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ABSTRACT. In this paper, we are concerned with focusing effects for time-dependent waves using
‘time reversal mirrors’. We consider a simple two-dimensional problem which models acoutic wave
propagation in a homogeneous medium which contains several unknown scatterers. We show how
to construct a wave that focuses in space and time near one of these scatterers, in the form of
a superposition of time-harmonic waves related to the eigenvectors of the so-called ‘time reversal
operator’.

RÉSUMÉ. Dans cette communication, on s’intéresse aux effets de focalisation obtenus à l’aide d’un
‘miroir à retournement temporel’. On considère un problème bi-dimensionnel simple qui modélise la
propagation d’ondes acoustiques dans un milieu homogène contenant quelques diffuseurs inconnus.
On montre comment construire une onde qui focalise en espace et en temps au voisinage d’un de
ces diffuseurs, sous la forme d’une superposition d’ondes périodiques en temps, ces dernières étant
reliées aux vecteurs propres d’un opérateur dit de retournement temporel.
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1. Introduction

The present paper is motivated by the following challengingquestion: in a propagative
medium which contains several unknown scatterers, how can one generate a wave that fo-
cuses selectively on one scatterer not only in space, but also in time, in other words, a wave
that ‘hits hard at the right spot’? Such focusing propertieshave been studied in the fre-
quency domain in the context of the DORT method (French acronym for “Decomposition
of the Time Reversal Operator”, see, e.g., [4, 5]). In short,a array of transducers, called
here a Time Reversal Mirror (TRM), first emits a wave which propagates in the medium
and interacts with the scatterers. In a second step, the TRM measures the scattered wave,
and time-reverses this measure, so that it can re-emit a wavein a last-in first-out process.
The operator which represents two successive iterations ofthis loop is referred to as the
Time Reversal Operator (TRO). It is now understood that for small and distant enough
scatterers, one can choose an eigenvector of the TRO such that the corresponding input
signals generate a wave which focuses selectively on one scatterer. Can we take advan-
tage of these spatial focusing properties which hold for time-harmonic waves to produce
a time-dependent wave which would be also focused in the timedomain? A natural idea
could be to iterate the above mentioned loop in the time-domain. But it is shown in [1]
that such an iterative process leads in general exactly to the opposite of time-focusing: it
produces a time-harmonic wave! In the present paper, we showhow to use the eigenele-
ments of the TRO to produce space-time focusing.

For the sake of simplicity, we deal with a two-dimensional acoustic problem. We
consider a family ofP sound-soft circular scatterersOp for p = 1, . . . , P, of respective
radii r1, . . . , rP and centerss1, . . . , sP , located in a homogeneous medium filling the
whole planeR2. We assume that the TRM is composed ofN pointlike transducersxn

for n = 1, . . . , N. The question is to find the input signals to be send to the traducers so
that they generate a wave that focuses on one of the scatterers. This waveU = U(x, t) is
solution to

∂2U

∂t2
− ∆U =

N
∑

n=1

Fn ⊗ δxn
in R

2 \
⋃P

p=1 Op,

U = 0 on
⋃P

p=1 ∂Op,

whereF1(t), . . . ,FN (t) denote the input signals andδxn
is the Dirac measure atxn.

FunctionU can be decomposed asU = V + W whereW represents theincident wave,
solution to

∂2W

∂t2
− ∆W =

N
∑

n=1

Fn ⊗ δxn
in R

2,

whereasV stands for thescattered wave, solution to

∂2V

∂t2
− ∆V = 0 in R

2 \
⋃P

p=1 Op, (1)

V = −W on
⋃P

p=1 ∂Op. (2)

As mentioned above, the idea is to construct the input signals by means of the eigenele-
ments of the TRO, which is related to the time-harmonic problem associated with (1)–(2).
For a given frequencyω and a time-harmonic incident waveW(x, t) = Re{w(x) e−iωt},



the time-harmonic scattered wave is given byV(x, t) = Re{v(x) e−iωt} wherev is solu-
tion to

∆v + ω2 v = 0 in R
2 \

⋃P
p=1 Op, (3)

v = −w on
⋃P

p=1 ∂Op, (4)

and satisfies in addition the usual Sommerfeld radiation condition

∂v

∂|x|
− iω v = O(|x|−3/2) as|x| → ∞. (5)

2. Asymptotics for small scatterers

Instead of the above system of equations, we consider a family of asymptotic models
which are valid for small scatterers, more precisely when the diameters of the scatterers
are small compared to the wavelength2π/ω. These models are based on the fact that in
the case of one scatterer(P = 1), the solutionv to (3)–(5) can be approximated by

σ1w(s1)G(x − s1),

where

G(x) :=
H

(1)
0 (ω |x|)

4i
(6)

is the outgoing Green’s function of the Helmholtz equation(H
(1)
0 is the Hankel function

of the first kind of order 0) andσ1 is the reflection coefficient on the scatterer, which
is given byσ1 = −4i/H

(1)
0 (ωr1) for a circular obstacle. IfP > 1, we can consider

different levels of approximationv(0), v(1), . . . , v(∞) of v which consist in superpositions
of the form

v(k)(x) :=
P

∑

p=1

σp w(k)
p G(x − sp),

wherew(k)
p represents different approximations of an “exciting field”on thep-th scatterer.

In the simplest model(k = 0), we choosew(0)
p = w(sp), which amounts to neglecting

the interactions between the obstacles. The casek = ∞ corresponds to the Foldy-Lax
model [3], which takes into account these interactions. In this case, the exciting field is
the superposition of the incident field and the waves scattered by all the other obstacles,
i.e.,

w(∞)
p = w(sp) +

∑

q 6=p

σqw
(∞)
q G(sp − sq) for p = 1, . . . , P. (7)

If we denote byW (∞) and W the vectors ofCP with componentsw(∞)
p and w(sp)

respectively, this coupling between the exciting fields canbe written equivalently as the
following linear system:

(I + M) W (∞) = W, (8)

whereM is theP × P matrix defined byMpq = −σqG(sp − sq) if q 6= p, andMpp = 0.



Between the casesk = 0 andk = ∞, one can consider intermediate models which
take into account the successive reflections between the scatterers. Instead of (7), the
exciting field is defined recursively by

w(k+1)
p = w(sp) +

∑

q 6=p

σqw
(k)
q G(sp − sq) for p = 1, . . . , P.

It is readily seen that this relation amounts to approximating the inverse of operatorI+M

involved in (8) by a truncated Neumann series, so that we can summarize these different
models by the formula

W (k) =
k

∑

ℓ=0

(−M)ℓ W for k = 0, 1, . . . ,∞. (9)

It can be shown [2] that the error (in a localL2 norm) is of order| log ε|−(k+2) for
finite k, andε/| log ε| for k = ∞, whereε denotes the ratio of the greatest radius by the
wavelength.

3. The time reversal operator

As described in the introduction, the TRO corresponds to twosuccessive iterations of
the following loop. In a first step, the TRM emits an incident time-harmonic wave given
by

w(x) =

N
∑

n=1

fn G(x − xn) (10)

wheref1, . . . , fN denote the complex amplitudes of the input signals at theN transduc-
ersx1, . . . , xN . This wave interacts with the scatterers, and the TRM then measures the
scattered wave. If we use for instance the Foldy–Lax model(k = ∞), the measure at the
transducerxn is

v(∞)(xn) =

P
∑

p=1

σp w(∞)
p G(xn − sp)

=

P
∑

p=1

σp ((I + M)−1W )p G(xn − sp)

=

P
∑

p=1

(D (I + M)−1
G f)p G

⊤
np

= (G⊤
D (I + M)−1

G f)n,

whereG is theP × N matrix defined byGpn = G(xn − sp), D is theP × P diagonal
matrix defined byDpp = σp, andf is the vector ofCN with componentsfn. We can then
define the operatorF ∈ L(CN ) which maps the inputf to the measure of the scattered
wave:

F f := G
⊤

D (I + M)−1
G f. (11)



The last step of the loop is to time-reverse the measureF f, which is a simple complex
conjugation in the frequency domain: the components ofF f can then be used as input
signals to re-emit a new incident wave. Finally, two successive loops are represented by
the following operator

T f := FF f = F F f = F
∗
F f, (12)

where the last equality follows from the fact thatF
∗ = F (which is easily deduced from

(11)).
Note that we could define similarly a TRO associated with one of the approximate

model which takes into account thek first reflections between the scatterers. In view of
(9), we simply have to replace(I + M)−1 by

∑k
ℓ=0(−M)ℓ in the definition (11) ofF.

It follows from (12) thatT is a positive selfadjoint operator. Hence it can be diagonal-
ized in an orthonormal basis of eigenvectors. The eigenelements ofT have the following
remarkable properties (which hold except in very particular symmetrical cases). First, the
number of scatterers is equal to the number of nonzero eigenvalues of the TRO. More-
over, when these eigenvalues are simple, each eigenvector associated with one of them
generates a wave which focuses selectively on each scatterer (see [4, 5]).

4. Space–time focusing

In the previous section, we have shown how to construct the time-reversal operator
for a fixed frequencyω. Suppose that in a given frequency band[ω1, ω2], we know an
eigenvectorf(ω) ∈ C

N of the TRO, chosen such that‖f(ω)‖CN = 1, which is associated
with a given scatterersp, in the sense that the corresponding time-harmonic incidentwave
(10) focuses on this scatterer. For a functionA : [ω1, ω2] → C, we can consider the
superposition of the time-harmonic input signals given by

F(t) = Re

∫ ω2

ω1

A(ω) f(ω) e−iωt dω, (13)

which will generate the following time-dependent incidentwave:

W(x, t) = Re

∫ ω2

ω1

A(ω)

N
∑

n=1

fn(ω)G(x − xn;ω) e−iωt dω, (14)

where we now indicate the dependence with respect toω in the time-harmonic Green’s
function defined in (6). This wave focuses in space nearsp, since it is a superposition of
focused waves. But how can we chooseA(ω) so that it focuses also in time, that is, so
that the period of interaction ofW(x, t) with the scatterer is as short as possible? What
kind of criterion can be used?

The idea we follow here is based on the fact that the best space–time focusing is
obtained for the time-reversed Green’s function of the waveequationG(x−sp,−t) where

G(x, t) =
−H(t − |x|)

2π(t2 − |x|
2
)

1

2

,

(H denotes the heaviside function). This function is related to the time-harmonic Green’s
function by the formula

G(x, t) =
1

π
Re

∫ +∞

0

G(x;ω) e−iωt dω.



As a consequence, the measures at the transducers ofG(x − sp, t) are given by







G(x1 − sp, t)
...

G(xN − sp, t)






=

1

π
Re

∫ +∞

0

Γp(ω) e−iωt dω

whereΓp(ω) := (G(x1 − sp;ω), . . . , G(xN − sp;ω))⊤. The time-reversed measures
are thus obtained by replacingΓp(ω) by its conjugate. In order to obtain a signal of
the expected form (13), it is then natural to replaceΓp(ω) by its orthogonal projection
on the eigenspace spanned byf(ω), which is given by(Γp(ω), f(ω))Cn f(ω). Using a
cutoff functionχ : R

+ → R
+ with support in the imposed frequency band[ω1, ω2], the

expected functionA(ω) in (13) has the form

A(ω) = χ(ω) (Γp(ω), f(ω))Cn ∀ω ∈ [ω1, ω2].

We shall present some numerical results which show that the incident wave (14) corre-
sponding to this choice ofA(ω) actually focuses in space and time nearsp. We shall
also consider the more involved situation where the propagative medium contains a diffu-
sive region modeled by a random distribution of pointlike scatterers, which improves the
focusing effect.

Let us notice that this is only a numerical confirmation of thefocusing effect. Some
related mathematical questions remain open. On one hand, isthere a mathematical defi-
nition of focusing that could allow us to evaluate the quality of a focusing wave? On the
other hand, can we find a criterion that leads us to the above choice ofA(ω) or even a
better one? Indeed, in the above lines, the position of the scatterersp is knowna priori,
since we have assumed thatΓp(ω) is known. But can we do without this knowledge,
using only the measures of the TRM? Works on these issues are in progress.
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