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Abstract

We are concerned with a two-dimensional problem which models the scattering of a time-harmonic acoustic wave by
an arbitrary number of sound-soft circular obstacles. Assuming that their radii are small compared to the wavelength,
we propose a mathematical justification of different levels of asymptotic models available in the physical literature,
including the so-called Foldy–Lax model.
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1. Introduction

We consider the scattering of an acoustic time-harmonic wave by an arbitrary number of sound-soft obstacles
located in a homogeneous medium. When the size of the obstacles is small compared with the wavelength, the
numerical simulation of such a problem by classical methods (e.g., integral equation techniques or methods based
on a Dirichlet-to Neumann map) can become highly time-consuming, particularly when the number of scatterers is
large. In this case, the use of an asymptotic model may reduce considerably the numerical cost. Such a model was
introduced by Foldy [9] in the middle of the last century to study multiple isotropic scattering in a medium which
contains randomly distributed small scatterers. Its use was extended by Lax in [14, 15] to anisotropic or inelastic
scattering. Their asymptotic model is based on the fact that the scattered wave can be approximated by a wave emitted
by point sources placed at the centers of the scatterers; the amplitudes of the sources are calculated by solving a linear
system which represents the interactions between the scatterers (see [18] for an overview). The same system can be
derived formally from the usual first-kind integral equation associated with the scattering problem [22].

Nowadays, the Foldy–Lax model is widely used in the community of physicists to approximate scattered waves
in numerous physical and numerical applications. These applications concern on one hand deterministic media –
see, e.g., [4] (evaluation of the scattering amplitude of a cluster of small obstacles), [10] (attenuation, dispersion
and anisotropy caused by multiple scattering), [11] (multiple scattering between an extended scatterer and small
obstacles), [17] (localization of targets using time-reversal techniques) – and on the other hand random media –
see, e.g., [5] (generalization of well-established derivations of the radiative transfer equation from first principles),
[16] (effective wavenumber in a dilute random array of identical scatterers), [23] (higher order Foldy-Lax models).
Surprisingly, to our knowledge, there is no mathematical justification of the Foldy–Lax model. The case of one
single small scatterer is well understood. As shown in [18] for sound-soft or sound-hard obstacles, using a simple
dilation, it can be derived from the low-frequency behavior [12] of the wave scattered by a (non small) obstacle
(see also [2] for the case of a small inhomogeneity). To a certain extent, the Foldy–Lax model provides us the path
from single scattering to multiple scattering. Our purpose is to propose a rigorous justification of this model and to
obtain local error estimates for the two-dimensional problem in the case of circular obstacles. This assumption allows
us to represent the scattered wave by Fourier series, which yields explicit and simple proofs. Other more involved
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techniques (based on matched asymptotic expansions or multiple scale methods) have been developed in a slightly
different context and could probably be adapted to our problem for non circular obstacles. For instance, the Laplace
equation in a bounded domain with small inclusions (with Dirichlet boundary conditions) is dealt with in [19, 21]
for the two-dimensional case and [20] for three-dimensional case. Note that in [20], the authors consider two-scale
asymptotic expansions by assuming that the size of the obstacles as well as the distance between them are both small
parameters. We also refer to [7] which studies the case of a Neumann boundary condition on two small and close
obstacles for the Laplace equation.

The paper is organized as follows. In section 2, we show the equations of our scattering problem and follow a
physical point of view to introduce different levels of asymptotic models including the Foldy–Lax model. We end this
section with the statement of the main result of this paper, which concerns local error estimates between the exact
solution and its different levels of approximation. In section 3, we adopt an asymptotic point of view: starting from
a representation of the exact solution by means of Fourier series, we derive in a formal way the same asymptotic
models. This approach is well adapted to the mathematical justification of the asymptotic models, which is the subject
of section 4. For the sake of clarity, some general properties and technical lemmas used in the latter section are
collected in section 5. We conclude in section 6 by some comments about the possible generalizations of the work
proposed in the present paper.

2. A physical point of view

We are concerned with a two-dimensional problem which models the scattering of a given time-harmonic acoustic
wave of circular frequency ω by a family of P disjoint small circular sound-soft obstacles Oε1, . . . ,O

ε
P located in a

homogeneous medium filling the whole plane R2. We denote by s1, . . . , sP their respective centers and rε1, . . . , r
ε
P their

respective radii. For the sake of simplicity, we consider non-dimensional equations, which amounts to choosing a
constant celerity c = 1 in the propagative medium. We suppose that the radii of the obstacles are small compared to
the wavelength 2π/ω and are all of the same order of magnitude represented by a small positive parameter ε, i.e.,

ωrεp = O(ε) for p = 1, . . . , P. (1)

Let w be a given incident field, solution to

∆w + ω2w = 0 in R2. (2)

The associated scattered field uε is the solution to

∆uε + ω2uε = 0 in R2 \
⋃P

p=1 O
ε
p, (3)

uε = −w on
⋃P

p=1 ∂O
ε
p, (4)

which satisfies the usual Sommerfeld radiation condition

∂uε

∂|x|
− iω uε = O(|x|−3/2) as |x| → ∞. (5)

In order to approximate the solution to the above system of equations, we define below a family of asymptotic
models which are based on the fact that in the case of one single small scatterer (P = 1), the scattered field is similar
to the field emitted by a point source. More precisely, uε can be approximated (see [18]) by

uε(x) ≈ σε1 w(s1) G(x − s1),

where G(x) = H(1)
0 (ω |x|) /4i is the outgoing Green’s function of the Helmholtz equation (H(1)

0 is the Hankel function
of the first kind and order 0, see [1]) and σε1 is the reflection coefficient of the scatterer, which is given by σε1 :=
−4i/H(1)

0 (ωrε1) for a circular obstacle. Indeed it is readily seen that the above function satisfies (3) and (5), as well
as the boundary condition uε = −w(s1) on ∂Oε1, which actually approximates (4) since w(x) − w(s1) = O(ε) for all
x ∈ ∂Oε1 by virtue of our assumption (1).
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For several obstacles (P > 1), we can consider different levels of approximation uε,0, uε,1, . . . , uε,∞ of uε which
consist in superpositions of the form

uε,k(x) :=
P∑

p=1

σεp wε,k
p G(x − sp) where σεp := −4i/H(1)

0 (ωrεp) (6)

and wε,k
p represents different approximations of an “exciting field” on the p-th scatterer. In the simplest model (k = 0),

we choose
wε,0

p := w(sp) for p = 1, . . . , P,

which amounts to the well-known Born approximation [17] where the interactions between the obstacles are neglected,
since in this case, uε,0 is nothing but a superposition of single scattering approximations. The case k = ∞ corresponds
to the so-called Foldy–Lax model [9, 14, 15], which takes into account these interactions. In this case, the exciting
field for one given obstacle is the superposition of the incident field and the waves scattered by all the other obstacles,
i.e.,

wε,∞
p := w(sp) +

∑
q,p

σεq wε,∞
q G(sp − sq) for p = 1, . . . , P. (7)

If we denote by Wε,∞ and W the vectors of CP with components wε,∞
p and w(sp) respectively, this coupling between

the exciting fields can be written equivalently as

(I + Mε) Wε,∞ = W, (8)

where Mε is the P × P matrix defined by

Mε
pq := −σεq G(sp − sq) if q , p and Mε

pp := 0.

Between the cases k = 0 and k = ∞, one can consider intermediate models which take into account the successive
reflections between the scatterers. Indeed, instead of (7), the exciting field is defined recursively by

wε,k+1
p := w(sp) +

∑
q,p

σεqwε,k
q G(sp − sq) for p = 1, . . . , P.

It is readily seen that this relation amounts to approximating the inverse of operator I + Mε involved in (8) by a
truncated Neumann series, so that we can summarize these different models by the formula

Wε,k :=
k∑
`=0

(−Mε)` W for k = 0, 1, . . . ,∞. (9)

The aim of this paper is to prove the following error estimates between the solution uε of our initial problem (3)–(5)
and the different levels of approximations uε,k given by (6) and (9).

Theorem 1. For every compact subset K of R2 \
⋃P

p=1{sp} and every s ≥ 0, there exists a constant CK,s > 0
independent of ε such that for ε small enough,

∥∥∥uε − uε,k
∥∥∥

Hs(K) ≤


∣∣∣∣∣∣ CK,s

log ε

∣∣∣∣∣∣k+2

if k ∈ N,

CK,s ε∣∣∣log ε
∣∣∣ if k = ∞,

where ‖ · ‖Hs(K) denotes the norm of the usual Sobolev space Hs(K).

This result tells us that for the Foldy–Lax model (k = ∞), the magnitude of the approximation error is the same
as for the single scattering problem (see, e.g. [18]), whereas for the intermediate models (k ∈ N), it corresponds to
the first neglected reflections between the scatterers, that is, the reflections of order k + 1. For instance, if k = 1, the
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wave scattered by one of the scatterer is O((log ε)−1) so that the first reflections of this wave by the other scatterers
are O((log ε)−2) and the magnitude of the approximation error is O((log ε)−3) which corresponds to second-order
reflections. However it is important to notice that the constant CK,s involved in these estimates depends on the layout
of the scatterers. In particular, CK,s is likely to be an increasing function of the scatterer density. For a high density,
CK,s may be large, which means that the Foldy–Lax approximation will be valid for very small scatterers. To a certain
extent, the above theorem only tells us that the Foldy–Lax model becomes efficient for small enough scatterers, but
it does not give us a quantitative interpretation of the expression “small enough”. Unfortunately, we did not find a
quantitative estimate of the CK,s parameter with respect to the layout of the scatterers. This is a challenging but open
question. Maybe the two-scale approach developed in [20] in a different context could be used for our problem.

3. An asymptotic point of view

In this section, we revisit the asymptotic models defined by (6) and (9) by a more rigorous approach which will
allow us to prove Theorem 1 in section 4. The idea is to rewrite the initial problem (3)–(5) in an equivalent form using
standard tools for multiple scattering and Fourier series.

3.1. Rewriting the scattering problem
In a first step, we consider a representation of uε which transforms our multiple scattering problem into a family

of P coupled single scattering problems. This representation consists in splitting uε as follows (see [6]):

uε =

P∑
p=1

uεp, (10)

where uε1, u
ε
2, . . . , u

ε
P are the outgoing (in the sense of (5)) solutions to

∆uεp + ω2uεp = 0 in R2 \ Oεp, (11)

uεp = −w −
∑
q,p

uεq on ∂Oεp, (12)

for p = 1, . . . , P. This representation of uε makes clear the notion of exciting field introduced in the previous section.
Indeed each function uεp represents the wave scattered by the p-th obstacle illuminated by the exciting field w+

∑
q,p uεq.

The next step consists in taking advantage of the particular shape of the scatterers by using Fourier series expan-
sions of the single scattering fields uεp. We briefly recall here the main results; all details can be found in [18]. We
equip R2 with a Cartesian coordinate system (O, e1, e2) and define for each p = 1, . . . , P the local polar coordinates
by (ρp, θp) where ρp := |x − sp| and θp ∈ [0, 2π) is the angle between e1 and x − sp. We denote by x(ρp, θp) or simply
(ρp, θp) (if there is no ambiguity) a point of R2 defined by its local polar coordinates, so that a function of x can be
considered equivalently as a function of (ρp, θp) without change of notation.

As uεp is an outgoing solution to the homogeneous Helmholtz equation outside Oεp, it has a modal decomposition
on the Hankel functions H(1)

m (see [1]):

uεp(x) =
∑
m∈Z

cεp,m
H(1)

m (ωrεp)
Hp,m(x) for all x ∈ R2 \ Oεp where cεp,m :=

1
2π

∫ 2π

0
uεp(rεp, θp) e−imθp dθp (13)

is the m-th Fourier coefficient of uεp(rεp, ·) andHp,m(x) denotes the local outgoing cylindrical wave-functions associated
with the p-th scatterer defined by

Hp,m(x) := H(1)
m (ωρp) eimθp for x , sp.

Similarly, w is a solution to the homogeneous Helmholtz equation (2), thus it has an analogous modal decomposition
on the Bessel functions Jm [1]. We shall use such a decomposition by choosing r0 > 0 such that ωr0 is smaller than
the smallest zero of J0 (which ensures that Jm(ωr0) , 0 for all m ∈ Z). Then we have

w(x) =
∑
m∈Z

dp,m

Jm(ωr0)
Jm(ωρp) eimθp for all x ∈ R2 where dp,m :=

1
2π

∫ 2π

0
w(r0, θp) e−imθp dθp (14)
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is the m-th Fourier coefficient of w(r0, ·).
The idea is to use the Fourier coefficients cεp,m as new unknowns, more precisely to express the coupling boundary

condition (12) by means of the above decompositions (13) and (14), which yields the relation between cεp,m and the
Fourier coefficients dp,m of the incident field. Thanks to the Graf’s addition formula [1]

Hq,m(x) =
∑
n∈Z
Hq,m−n(sp) Jn(ωρp)einθp for p , q and ρp <

∣∣∣sp − sq

∣∣∣ , (15)

condition (12) becomes∑
m∈Z

cεp,m eimθp +
∑
q,p

∑
m∈Z

cεq,m
H(1)

m (ωrεq)

∑
n∈Z
Hq,m−n(sp) Jn(ωrεp) einθp = −

∑
m∈Z

dp,m

Jm(ωr0)
Jm(ωrεp) eimθp , (16)

for all θp ∈ [0, 2π). Interchanging the order of summation in the second term of the left-hand side (which will be
justified in the next section, see Remark 3) and using the fact that a Fourier series vanishes for all θp ∈ [0, 2π) if and
only if all the Fourier coefficients vanish, this equation writes equivalently as

cεp,m + Jm(ωrεp)
∑
q,p

∑
n∈Z

Hq,n−m(sp)

H(1)
n (ωrεq)

cεq,n = −
Jm(ωrεp)

Jm(ωr0)
dp,m for all m ∈ Z,

which can be expressed in a more concise form as

(I + Kε) cε = f ε, (17)

where cε is the vector (cε1, . . . , c
ε
P)> whose components cεp are the sequences of Fourier coefficients (cεp,m)m∈Z.Moreover

Kε can be defined in matrix form by

Kε :=



0 Kε
12 . . . Kε

1P

Kε
21 0 . . . Kε

2P
... . . .

. . .
...

Kε
P1 Kε

P2 . . . 0


where each term Kε

pq, for p , q, is an operator which represents the action of the q-th obstacle on the p-th obstacle,
defined by

Kε
pq cq :=

∑
n∈Z

Kε
pq,mn cq,n


m∈Z

where Kε
pq,mn :=

Hq,n−m(sp) Jm(ωrεp)

H(1)
n (ωrεq)

.

Finally the right-hand side f ε of (17) is the vector ( f ε1 , . . . , f εP)> whose components f εp are the sequences

f εp =
(

f εp,m
)

m∈Z
:= −

( Jm(ωrεp)

Jm(ωr0)
dp,m

)
m∈Z

.

Note that f εp is the sequence of Fourier coefficients of −w(rεp, ·). Indeed from (14), we have

−w(rεp, θp) =
∑
m∈Z

f εp,m eimθp . (18)

Thanks to (13) and (14), the linear equation (17) is clearly equivalent to the family of P coupled problems (11)–
(12), hence also to our initial problem (3)–(5). It provides us a numerical strategy for multiple scattering (see [3] for a
detailed analysis). Here we shall use this equivalent formulation to derive the asymptotic models exhibited in section
2 and to prove Theorem 1.
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3.2. Asymptotic models
Using the asymptotic behavior (28) of Bessel and Hankel functions for small arguments and the fact that w(sp) =

dp,0/J0(ωr0) (which follows from (14)), it is easy to see that for p , q,

Kε
pq,mn =


Hq,0(sp)

H(1)
0 (ωrεq)

+ O
(
ε2

log ε

)
= O

(
1

log ε

)
if (m,m) = (0, 0),

O(ε) else,

and

f εp,m =

 −w(sp) + O(ε2) if m = 0,

O(ε) else.

So the dominant coefficients of Kε
pq and f εp are reached respectively for (m, n) = (0, 0) and m = 0. As a consequence,

a formal approximation of order ε of (17) is given by

(I + K̃ε) cε = f 0, (19)

where K̃ε and f 0 are defined as Kε and f ε by replacing Kε
pq,mn and f εp,m by

K̃ε
pq,mn := δm,0 δn,0

Hq,0(sp)

H(1)
0 (ωrεq)

and f 0
p,m := −δm,0 w(sp) = −δm,0

1
J0(ωr0)

dp,0.

The above approximate system (19) is equivalent to the Foldy–Lax model (8). Indeed, following the notations
introduced in section 2, let cε,k, for k ∈ N, denote the approximation of the solution to (19) obtained by a truncated
Neumann series of the inverse of I + K̃ε, and cε,∞, the exact solution, i.e.,

cε,k :=
k∑
`=0

(−K̃ε)` f 0 for k = 0, 1, . . . ,∞,

which shows in particular that cε,kp,m = 0 for all p and m , 0 in view of the above definition of K̃ε and f 0. The acoustic
field associated with these Fourier coefficients by (13) is then given by

uε,k(x) :=
P∑

p=1

cε,kp,0

H(1)
0 (ωrεp)

H(1)
0 (ω|x − sp|) for k = 0, 1, . . . ,∞. (20)

This expression is nothing but the field (6) obtained by the physical approach, which is readily verified by noticing that
K̃ε

pq,00 = Mε
pq and f 0

p,0 = −Wp (thanks to the definitions of the reflection coefficients σεp and of the Green’s function),

thus cε,kp,0 = −Wε,k
p .

4. A mathematical point of view

4.1. Functional framework
As we shall see in the sequel, the natural function space for each component cεp of the solution cε to (17) is `2(Z),

that is, the Hilbert space composed of the sequences cp = (cp,m)m∈Z such that
∑

m∈Z |cp,m|
2 < ∞, equipped with the

following inner product and associated norm:

(cp, c′p)`2(Z) :=
∑
m∈Z

cp,m c′p,m and ‖cp‖`2(Z) =
{
(cp, cp)`2(Z)

}1/2
.

Moreover, for s > 0, we denote by hs(Z) the subspace of `2(Z) composed of the sequences cp = (cp,m)m∈Z such that
‖cp‖

2
hs(Z) :=

∑
m∈Z(1 + m2)s|cp,m|

2 is finite.
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Proposition 2. On the assumption that the scatterers are disjoint, Kε is a compact operator in `2(Z)P.

Proof. Let us first prove that Kε ∈ L(`2(Z)P), i.e., that Kε is a bounded operator in `2(Z)P. It is enough to verify that
each operator Kε

pq is bounded in `2(Z). Instead of working with Kε
pq, we define its formal adjoint by

Lε
qp cp :=

∑
n∈Z

Lε
qp,mn cp,n


m∈Z

with Lε
qp,mn := Kε

pq,nm =
Hq,m−n(sp) Jn(ωrεp)

H(1)
m (ωrεq)

.

Let cp ∈ `
2(Z) and m ∈ Z. Using the Cauchy-Schwarz inequality, we have∣∣∣∣∣∣∣∑n∈Z Lε

qp,mn cp,n

∣∣∣∣∣∣∣
2

≤

∑
n∈Z

∣∣∣Hq,m−n(sp) Jn(ωrεp)
∣∣∣2∣∣∣H(1)

m (ωrεq)
∣∣∣2

∥∥∥cp

∥∥∥2
`2(Z) . (21)

The main advantage of working with Lε
qp instead of Kε

pq lies in the observation that the sum in the right-hand side is
nothing but the sum of the squared moduli of the Fourier coefficients which appear in the Graf’s addition formula (15)
for x = (rεp, θp). Hence the Parseval identity yields

∑
n∈Z

∣∣∣Hq,m−n(sp) Jn(ωrεp)
∣∣∣2 =

∥∥∥Hq,m(rεp, ·)
∥∥∥2

L2(0,2π)
:=

1
2π

∫ 2π

0

∣∣∣Hq,m(rεp, θp)
∣∣∣2 dθp.

Summing over m ∈ Z in (21), we obtain

∥∥∥Lε
qp cp

∥∥∥2
`2(Z)
≤

∑
m∈Z

∥∥∥Hq,m(rεp, ·)
∥∥∥2

L2(0,2π)∣∣∣H(1)
m (ωrεq)

∣∣∣2
 ∥∥∥cp

∥∥∥2
`2(Z) . (22)

We prove in section 5 (see Lemma 8) that for disjoints obstacles, the series in the right-hand side is convergent, so
Lε

qp ∈ L(`2(Z)). This justifies the fact that Lε
qp and Kε

pq are adjoint to each other, so Kε
pq is also bounded in `2(Z).

Using the same arguments, we can verify that for all s > 0, Lε
qp is bounded from `2(Z) to the space hs(Z) defined

above. Indeed, instead of (22), we obtain

∥∥∥Lε
qp cp

∥∥∥2
hs(Z)
≤

∑
m∈Z

(1 + m2)s

∥∥∥Hq,m(rεp, ·)
∥∥∥2

L2(0,2π)∣∣∣H(1)
m (ωrεq)

∣∣∣2
 ∥∥∥cp

∥∥∥2
`2(Z) ,

where Lemma 8 tells us that the series in the right-hand side is convergent. As hs(Z) is compactly embedded in `2(Z),
the compactness of Lε

qp follows. Hence its adjoint is also compact in `2(Z).

Remark 3. It is easy to see that the convergence of the series which appears in (22) allows us to interchange the order
of summation of the double series in (16).

Proposition 4. On the assumption that the scatterers are disjoint, the multiple scattering problem (17) as well as the
Foldy–Lax approximation (19) are well-posed in `2(Z)P.

Proof. Proposition 2 tells us that (17) is a Fredholm equation in the space `2(Z)P (note that the right-hand side f ε

belongs to `2(Z)P since each f εp is the sequence of Fourier coefficients of −w(rεp, ·), see (18)). By virtue of Fredholm’s
alternative, the well-posedness of this equation follows from the uniqueness of the solution to our initial problem
(3)–(5). Indeed, it is well-known that this problem has a unique solution uε ∈ H1

loc(Ωε) where Ωε := R2 \
⋃P

p=1 O
ε
p.

Suppose then that cε ∈ `2(Z)P is a solution to (I + Kε) cε = 0. We have seen in the proof of Proposition 2 that Kε is
bounded from `2(Z)P to hs(Z)P. Hence cε = −Kε cε belongs to hs(Z)P for all s > 0. This shows that the associated
function uε defined by (10) and (13) is a smooth solution to (3)–(5) with w = 0. So uε = 0, which implies that cε = 0.
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For the Foldy–Lax approximation (19), the proof is very different. As mentioned in section 3.2, this equation is
equivalent to the finite dimensional system (8). Noticing that

∣∣∣H(1)
0 (·)

∣∣∣ is decreasing on (0,+∞) (which can be easily
deduced from formula (31)), we infer that

∣∣∣Mε
pq

∣∣∣ =
∣∣∣σεq G(sp − sq)

∣∣∣ =

∣∣∣H(1)
0 (ω|sp − sq|)

∣∣∣∣∣∣H(1)
0 (ωrεq)

∣∣∣ < 1 for all p, q ∈ {1, . . . , P} with p , q.

As a consequence, ‖Mε‖∞ := supp,q ∈ {1,...,P}

∣∣∣Mε
pq

∣∣∣ < 1, thus I + Mε is invertible.

4.2. Error analysis
The proof of Theorem 1 is mainly based on the following error estimates.

Proposition 5. There exits a constant C > 0 such that for ε small enough,

‖Kε‖L(`2(Z)P) ≤
C∣∣∣log ε

∣∣∣ , (23)∥∥∥∥Kε − K̃ε
∥∥∥∥
L(`2(Z)P)

≤ C ε , (24)∥∥∥ f ε − f 0
∥∥∥
`2(Z)P ≤ C ε. (25)

Proof. For inequality (23), we follow the same approach as in the proof of Proposition 2. The announced estimate
simply results from (22) and Lemma 9.

To prove formula (24), we use similar arguments. First notice that the adjoint of the finite rank operator K̃ε
pq is

clearly the operator L̃ε
qp of L(`2(Z)) defined by

L̃ε
qp cp :=

δm,0
Hq,0(sp)

H(1)
0 (ωrεq)

cp,0


m∈Z

.

Hence, for cp ∈ `
2(Z), we have∥∥∥∥(Lε

qp − L̃ε
qp

)
cp

∥∥∥∥2

`2(Z)
=

∑
|m|>0

∣∣∣∣(Lε
qp cp

)
m

∣∣∣∣2 +
∣∣∣∣((Lε

qp − L̃ε
qp) cp

)
0

∣∣∣∣2 .
On one hand, following the same lines as in the proof of Proposition 2 and using Lemma 9, we obtain

∑
|m|>0

∣∣∣∣(Lε
qp cp

)
m

∣∣∣∣2 ≤
∑
|m|>0

∥∥∥Hq,m(rεp, ·)
∥∥∥2

L2(0,2π)∣∣∣H(1)
m (ωrεq)

∣∣∣2
 ∥∥∥cp

∥∥∥2
`2(Z) ≤ C ε2

∥∥∥cp

∥∥∥2
`2(Z) ,

for ε small enough. On the other hand, applying the Cauchy-Schwarz inequality, we get

∣∣∣∣((Lε
qp − L̃ε

qp) cp

)
0

∣∣∣∣2 ≤ ∑
|n|>0

∣∣∣Hq,−n(sp) Jn(ωrεp)
∣∣∣2 +

∣∣∣(J0(ωrεp) − 1)Hq,0(sp))
∣∣∣2∣∣∣H(1)

0 (ωrεq)
∣∣∣2

∥∥∥cp

∥∥∥2
`2(Z) .

Again thanks to the Graf’s addition formula (15) and the Parseval identity, we see that the numerator of the fraction
in the right-hand side is nothing but

∥∥∥Hq,0(rεp, ·) −Hq,0(sp)
∥∥∥2

L2(0,2π)
. As Hq,0(x) is a smooth function near x = sp, this

quantity is O(ε2) for small ε. Noticing that H(1)
0 (ωrεq) = O(| log ε|) (see (28)), we conclude that∣∣∣∣((Lε

qp − L̃ε
qp) cp

)
0

∣∣∣∣2 ≤ C ε2
∣∣∣log ε

∣∣∣−2 ∥∥∥cp

∥∥∥2
`2(Z) .

which completes the proof of (24).
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It remains to prove (25). From the respective definitions of f εp and f 0
p , we have

∥∥∥ f εp − f 0
p

∥∥∥2
`2(Z)

=
∑
m∈Z

Aε
p,m

∣∣∣dp,m

∣∣∣2 where Aε
p,0 :=

∣∣∣∣∣∣ J0(ωrεp) − 1

J0(ωr0)

∣∣∣∣∣∣2 and Aε
p,m :=

∣∣∣∣∣∣ Jm(ωrεp)

Jm(ωr0)

∣∣∣∣∣∣2 if m , 0.

Using the asymptotic behaviors of Jm for small arguments (see (28)) and for large orders (see (29)), we infer that there
exists C > 0 independent of m such that

Aε
p,0 ≤ C

( rεp
r0

)4

and Aε
p,m ≤ C

( rεp
r0

)2m

if m , 0.

This shows that the dominant coefficient is obtained for m = 1, so supm∈Z Aε
p,m ≤ C ε2. As a consequence,∥∥∥ f εp − f 0

p

∥∥∥2
`2(Z)
≤ C ε2

∥∥∥dp

∥∥∥2
`2(Z) ,

where
∥∥∥dp

∥∥∥
`2(Z) is finite since dp is the sequence of Fourier coefficients of w(r0, ·) (see (14)).

Corollary 6. There exits a constant C > 0 such that for ε small enough,

∥∥∥cε − cε,k
∥∥∥
`2(Z)P ≤


∣∣∣∣∣∣ C
log ε

∣∣∣∣∣∣k+1

if k ∈ N,

C ε if k = ∞.

Proof. The case k = ∞ is a consequence of Proposition 5 using standard approximation results [13, Theorem 10.1].
The case k ∈ N then follows by noticing that∥∥∥cε − cε,k

∥∥∥
`2(Z)P ≤ ‖c

ε − cε,∞‖`2(Z)P +
∥∥∥cε,∞ − cε,k

∥∥∥
`2(Z)P where ‖cε − cε,∞‖`2(Z)P ≤ C ε

and ∥∥∥cε,∞ − cε,k
∥∥∥
`2(Z)P =

∥∥∥∥∥∥∥
∞∑

`=k+1

(−K̃ε)` f 0

∥∥∥∥∥∥∥
`2(Z)P

≤

∞∑
`=k+1

∥∥∥∥K̃ε
∥∥∥∥`
L(`2(Z)P)

∥∥∥ f 0
∥∥∥
`2(Z)P ≤ C′

∣∣∣∣∣∣ C
log ε

∣∣∣∣∣∣k+1

,

where the last inequality derives from (23) and (24).

We are now able to prove Theorem 1. We first deal with the case s = 0, that is, local L2 error estimates. Let K be
a compact subset of R2 \

(⋃
p=1,P{sp}

)
and k ∈ N ∪ {∞}. For a given p ∈ {1, . . . , P}, there exists ρ∗ > 0 and ρ∗ > ρ∗

such that K is contained in the domain Ξp :=
{
x ∈ R2; ρ∗ ≤ |x − sp| ≤ ρ

∗
}
. Moreover for ε small enough, the obstacle

Oεp is outside Ξp. Thanks to formulas (13) and (20) (recall that cε,kp,m = 0 for all p and m , 0), Parseval identity yields

1
2π

∫ 2π

0

∣∣∣uεp(ρp, θp) − uε,kp (ρp, θp)
∣∣∣2 dθp =

∑
m∈Z

∣∣∣cεp,m − cε,kp,m

∣∣∣2 ∣∣∣∣∣∣∣H
(1)
m (ωρp)

H(1)
m (ωrεp)

∣∣∣∣∣∣∣
2

for all ρp ∈ (ρ∗, ρ∗).

Using the same arguments as in the proof of Lemma 9, it is easy to see that there exists some positive constant C such
that for ε small enough, we have∣∣∣∣∣∣∣H

(1)
m (ωρp)

H(1)
m (ωrεp)

∣∣∣∣∣∣∣
2

≤ C | log ε|−2 for all m ∈ Z and ρp ∈ (ρ∗, ρ∗).

Hence, ∥∥∥uεp − uε,kp

∥∥∥2
L2(K)

≤

∫ ρ∗

ρ∗

∫ 2π

0

∣∣∣uεp(ρp, θp) − uε,kp (ρp, θp)
∣∣∣2 ρp dθpdρp ≤ C | log ε|−2

∥∥∥cεp − cε,kp

∥∥∥2
`2(Z)

,
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which shows finally that

∥∥∥uε − uε,k
∥∥∥

L2(K) ≤

P∑
p=1

∥∥∥uεp − uε,kp

∥∥∥
L2(K)

≤ C | log ε|−1
∥∥∥cε − cε,k

∥∥∥
`2(Z)P .

The conclusion then follows from Corollary 6.
In order to deal with the case s > 0, we simply have to use some classical interior regularity results for second

order elliptic equations (see, e.g., [8, Theorem 2, p. 314]). Indeed, noticing that

∆(uε − uε,k) + ω2(uε − uε,k) = 0 in K,

we infer that for any compact set K′ contained in the interior of K, uε − uε,k belongs to Hs(K) for all s > 0 and there
exists Cs > 0 (depending only of s, K and K′) such that:∥∥∥uε − uε,k

∥∥∥
Hs(K′) ≤ Cs

∥∥∥uε − uε,k
∥∥∥

L2(K) .

This completes the proof of Theorem 1.

5. Technical lemnas

We collect in this section different results about Bessel functions which are used in the paper. First recall some
well-known properties (see, e.g., [1]):

• Symmetry relations: for all n ∈ N,

J−n(x) = (−1)n Jn(x) for x ∈ R and H(1)
−n (x) = (−1)n H(1)

n (x) for x ∈ (0,+∞). (26)

• Recurrence formulas: for all n ∈ Z,

H(1)
n+1(x) =

2n
x

H(1)
n (x) − H(1)

n−1(x) for x ∈ (0,+∞). (27)

• Asymptotic behaviors for small arguments: when n ∈ N is fixed (see (26) if n < 0) and x↘ 0,

Jn(x) =

 1 + O(x2) if n = 0,

O(xn) else,
and H(1)

n (x) =


2i
π

log
( x
2

)
+ O(1) if n = 0,

(n − 1)!
iπ

( x
2

)−n
+ O(x−n+1) else.

(28)

• Asymptotic behaviors for large orders: when n→ +∞ (see (26) for n→ −∞),

Jn(x) =
xn

2n n!

(
1 + O

(
1
n

))
uniformly on compact subsets of [0,+∞), (29)

H(1)
n (x) =

2n (n − 1)!
iπ xn

(
1 + O

(
1
n

))
uniformly on compact subsets of (0,+∞). (30)

The following apparently non usual inequality plays an essential role in our estimates.

Lemma 7. For all integer n ≥ 2 and x ∈ (0, 1), we have∣∣∣∣∣∣ 1

H(1)
n (x)

∣∣∣∣∣∣ ≤ 2xn−2

n!
∣∣∣H(1)

2 (x)
∣∣∣ .
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Proof. First notice that for all n ∈ N and x ∈ (0,+∞), we have∣∣∣H(1)
n (x)

∣∣∣ ≤ ∣∣∣H(1)
n+1(x)

∣∣∣ ,
which can be easily derived from the following formula (see [24, p. 444]):∣∣∣H(1)

n (x)
∣∣∣2 =

8
π2

∫ ∞

0
K0(2x sinh t) cosh(2nt) dt where K0(x) :=

∫ ∞

0
e−x cosh sds (31)

is the modified Bessel function of order 0. Hence, from the recurrence relation (27), we deduce∣∣∣H(1)
n (x)

∣∣∣ ≥ ∣∣∣∣∣2n − 2
x

H(1)
n−1(x)

∣∣∣∣∣ − ∣∣∣H(1)
n−2(x)

∣∣∣ ≥ n
x

∣∣∣H(1)
n−1(x)

∣∣∣ for n ≥ 3 and x ∈ (0, 1).

Applying this inequality recursively, the conclusion follows.

The following lemmas concern the convergence and the order of magnitude of the series involved in (22).

Lemma 8. For a fixed ε > 0, if the obstacles Oεp and Oεq are disjoint, then for all s ≥ 0,

∑
m∈Z

(1 + m2)s

∥∥∥Hq,m(rεp, ·)
∥∥∥2

L2(0,2π)∣∣∣H(1)
m (ωrεq)

∣∣∣2 < ∞.

Proof. Thanks to the symmetry relation (26), we can consider the series for m ∈ N. The asymptotic behavior (30)
shows that for a fixed ε > 0, when m→ +∞,

1∣∣∣H(1)
m (ωrεq)

∣∣∣2 = O


{
ωrεq

}2m

22m (m − 1)!2

 , (32)

∥∥∥Hq,m(rεp, ·)
∥∥∥2

L2(0,2π)
=

1
2π

∫ 2π

0

∣∣∣∣H(1)
m

(
ω|x(rεp, θp) − sq|

)∣∣∣∣2 dθp = O

 22m (m − 1)!2{
ω

(
|sp − sq| − rεp

)}2m

 , (33)

where the last equality follows from the fact that |x(rεp, θp) − sq| ≥ |sp − sq| − rεp for all θp ∈ (0, 2π). As a consequence

(1 + m2)s

∥∥∥Hq,m(rεp, ·)
∥∥∥2

L2(0,2π)∣∣∣H(1)
m (ωrεq)

∣∣∣2 = O

m2s
( rεq
|sp − sq| − rεp

)2m as m→ +∞.

Hence the series is convergent since rεp + rεq < |sp − sq| (for the obstacles are disjoint).

Lemma 9. Let N ∈ N and p , q. For ε > 0 small enough, we have

∑
|m|≥N

∥∥∥Hq,m(rεp, ·)
∥∥∥2

L2(0,2π)∣∣∣H(1)
m (ωrεq)

∣∣∣2 =

 O
(
| log ε|−2

)
if N = 0,

O
(
ε2N

)
else.

Proof. We proceed as in the proof of Lemma 8. We denote by hm(ε) =
∥∥∥Hq,m(rεp, ·)

∥∥∥2
L2(0,2π)

/
∣∣∣H(1)

m (ωrεq)
∣∣∣2 the term of

order m of the above series. On one hand, formula (32) is no more valid for small ε since (30) cannot be used for
small arguments. We use instead Lemma 7 as well as the asymptotic behavior (28) of H(1)

2 for small arguments, which
shows that there exists C > 0 and ε0 > 0 such that

1∣∣∣H(1)
m (ωrεq)

∣∣∣2 ≤ C

{
ωrεq

}2m

m!2 for all m ≥ 2 and ε ≤ ε0.
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On the other hand, formula (33) holds. Noticing that |sp − sq| − rεp ≥ |sp − sq|/2 for small enough ε, say ε ≤ ε1, we
infer that there exists C′ > 0 and M ≥ 2 such that∥∥∥Hq,m(rεp, ·)

∥∥∥2
L2(0,2π)

≤ C′
42m (m − 1)!2{
ω |sp − sq|

}2m for all m ≥ M and ε ≤ ε1.

As a consequence,

hm(ε) ≤
C′′

m2

( 4rεq
|sp − sq|

)2m

for all m ≥ M and small enough ε.

This shows that
∑∞

m=M hm(ε) = O
(
ε2M

)
. Moreover, from the asymptotic behavior (28) of H(1)

n for small arguments,
we have

h0(ε) ≤ C0 | log ε|−2 and hm(ε) ≤ Cm ε
2m for 0 < m < M.

This completes the proof.

6. Conclusion

We have proposed in this paper a justification of different levels of asymptotic models available in the physical
literature, including the Foldy-Lax model, for the two-dimensional scattering of an acoustic wave by an arbitrary
number of sound-soft circular obstacles. In the models considered here, each obstacle has an isotropic behavior in
the sense that in the series (13) which describes the wave scattered by one obstacle, we only keep the dominant
contribution, associated with m = 0, which does not depend on θp. As shown in [23], the method we have presented
can be seen as the first order of a more general approach which allows higher order approximations that take into
account the angular dependence of the field scattered by each obstacle. Instead of keeping only the radial component
(m = 0) in the series (13), we simply have to truncate this series at |m| = ` for some ` ≥ 1 : the new unknowns are the
Fourier coefficients cεp,m for p = 1, . . . , P and m = −`, . . . ,+`. Instead of (19), we are then led to an approximation of
order ε`+1 of (17) which amounts to a linear system of size P(2` + 1). Using the same arguments as in section 4, we
will obtain an error estimate similar to that of Theorem 1 (for k = ∞) where ε/| log ε| will be replaced by ε`+1/| log ε|.
Such an improved Foldy-Lax model may become useful when the scatterer density is high. Moreover, a numerical
comparison between the original Foldy-Lax model and a high order approximation could help us to quantify the value
of CK,s in Theorem 1.

What about the possible generalizations of our study? First notice that our approach should also apply for other
boundary conditions on circular scatterers (Neumann or Robin) as well as for penetrable obstacles, since the scattered
wave can still be represented by means of Fourier series. However, for such boundary conditions, the asymptotic
behavior of each scatterer is no more isotropic: higher order terms in the multipole expansion of the scattered field
must be kept. Hence the implementation of a Foldy–Lax model in such situations is similar to the higher order
approximations mentioned above. In the three-dimensional case for spherical obstacles, the same ideas apply using
spherical harmonics expansions instead of Fourier series. The main difference lies in the fact that the asymptotic
expansions will only involve powers of ε whereas the expansions considered in the present paper also involve powers
of | log ε|. Let us finally mention that if we consider non-circular or non-spherical scatterers, the results we have
obtained are likely to hold, but the method we have used does no longer apply, for the scattered wave can no longer
be represented by Fourier series. Other techniques such as matched asymptotic expansions or multiple scale methods
[19–21] should be used.
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