Hyperbolic Geometry and the Moduli Space of
Real Binary Sextics

Daniel Allcock, James A. Carlson and Domingo Toledo

Abstract. The moduli space of real 6-tuples in CP? is modeled on a quotient of
hyperbolic 3-space by a nonarithmetic lattice in Isom H?>. This is an expository
note; the first part of it is an introduction to orbifolds and hyperbolic reflection
groups.

These notes are an exposition of the key ideas behind our result that the
moduli space M of stable real binary sextics is the quotient of real hyperbolic
3-space H® by a certain Coxeter group (together with its diagram automorphism).
We hope they can serve as an aid in understanding our work [2] on moduli of real
cubic surfaces, since exactly the same ideas are used, but the computations are
easier and the results can be visualized.

These notes derive from the first author’s lectures at the summer school
“Algebra and Geometry around Hypergeometric Functions”, held at Galatasary
University in Istanbul in July 2005. He is grateful to the organizers, fellow speakers
and students for making the workshop very rewarding. To keep the flavor of lec-
ture notes, not much has been added beyond the original content of the lectures;
some additional material appears in an appendix. The pictures are hand-drawn to
encourage readers to draw their own.

Lecture 1

Hyperbolic space H? is a Riemannian manifold for which one can write down an
explicit metric, but for us the following model will be more useful; it is called
the upper half-space model. Its underlying set is the set of points in R?® with
positive vertical coordinate, and geodesics appear either as vertical half-lines, or
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as semicircles with both ends resting on the bounding R?:

Jny;

Note that the ‘endpoints’ of these geodesics lie in the boundary of H?3, not in H?
itself. Planes appear either as vertical half-planes, or as hemispheres resting on
R2:

.

If two planes meet then their intersection is a geodesic. The most important prop-
erty of the upper half-space model is that it is conformal, meaning that an angle
between planes under the hyperbolic metric equals the Euclidean angle between
the half-planes and/or hemispheres. For example, the following angle € looks like
a w/4 angle, so it is a w/4 angle:
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This lets us build hyperbolic polyhedra with specified angles by pushing
planes around. For example, the diagram

O & O——O0 R (1)

describes a polyhedron Py with four walls, corresponding to the nodes, with the
interior angle between two walls being 7/2, 7/3 or 7/4 according to whether the
nodes are joined by no edge, a single edge or a double edge. For now, ignore the col-
ors of the nodes; they play no role until theorem 2. We can build a concrete model
of Py by observing that the first three nodes describe a Euclidean (7/2,7/4,7/4)
triangle, so the first three walls should be arranged to appear as vertical half-
planes. Sometimes pictures like this can be easier to understand if you also draw
the view down from vertical infinity; here are both pictures:

How to fit in the fourth plane? After playing with it one discovers that it cannot
appear as a vertical halfplane, so we look for a suitable hemisphere. It must be
orthogonal to two of our three walls, so it is centered at the foot of one of the
half-lines of intersection. The size of the hemisphere is determined by the angle
it makes with the remaining wall (namely 7/3). We have drawn the picture so
that the hemisphere is centered at the foot of the back edge. The figure should
continue to vertical infinity, but we cut it off because seeing the cross-section makes
the polyhedron easier to understand. We’ve also drawn the view from above; the
boundary circle of the hemisphere strictly contains the triangle, corresponding to
the fact that Py does not descend all the way to the boundary R2.

/D 1
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We think of Py as an infinitely tall triangular chimney with its bottom bitten
off by a hemisphere. The dimensions we have drawn on the overhead view refer
to FEuclidean distances, not hyperbolic ones. The “size” of a hemisphere has no
intrinsic meaning in hyperbolic geometry, since the isometry group of H? acts
transitively on planes.

Readers may enjoy trying their hands at this by drawing polyhedra for the
diagrams

% s ®----0 ® O P,

P (3)
° o O O Py

where the absent, single and double bonds mean the same as before, a triple bond
indicates a 7/6 angle, a heavy bond means parallel walls and a dashed bond means
ultraparallel walls. In the last two cases we describe the meaning by pictures:
parallelism means

aapasy=sy

and ultraparallelism means

Y=y,

That is, when two planes do not meet in H?, we call them parallel if they meet at
the boundary of H? and ultraparallel if they do not meet even there.

Diagrams like (1) and (3) are called Coxeter diagrams after H. S. M. Coxeter,
who introduced them to classify the finite groups generated by reflections. Given a
random diagram, there is no guarantee that one can find a hyperbolic polyhedron

with those angles, but if there is one then it describes a discrete group acting on
H3:

Theorem 1 (Poincaré Polyhedron Theorem). Suppose P C H?® is a polyhedron
(i.e., the intersection of a finite number of closed half-spaces) with every dihedral
angle of the form w/(an integer). Let T' be the group generated by the reflections
across the walls of P. Then T is discrete in Isom H® and P is a fundamental
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domain for T in the strong sense: every point of H® is I'-equivalent to exactly one
point of P.

The proof is a very pretty covering space argument; see [4] for this and
for a nice introduction to Coxeter groups in general. A reflection across a plane
means the unique isometry of H? that fixes the plane pointwise and exchanges the
components of its complement. Reflection across a vertical half-plane looks like an
ordinary Euclidean reflection, and reflection across a hemisphere means inversion
in it; here are before-and-after pictures of an inversion.

An inversion exchanges vertical infinity with the point of R? “at the center” of the
hemisphere.

The data of a group I acting discretely on H? is encoded by an object called
an orbifold. As a topological space it is H3/T'. But the orbifold has more structure:
an orbifold chart on a topological space X is a continuous map from an open
subset U of R™ to X, that factors as

U—>U/FU—>X,

where I'yy is a finite group acting on U and the second map is a homeomorphism
onto its image. Our H3/T has lots of such charts, because with € H3, ', its
stabilizer in I" and U a sufficiently small open ball around =z,

U—U/T, — H)T

is an orbifold chart. An orbifold is a space locally modeled on a manifold mod-
ulo finite groups. Formally, an orbifold X is a hausdorff space covered by such
charts, with the compatibility condition that if € X lies in the image of charts
U—-U/Ty - X and U' — U’ /Ty, — X then there are preimages v and v’ of x
in U and U’ with neighborhoods V' and V' preserved by I'y,, and 'y ., an iso-
morphism I'y, 2 Ty and an equivariant isomorphism 7,y between V' and V’
identifying v with v’. The group 'y, is called the local group at z, and the nature
of the isomorphisms 7y, determines the nature of the orbifold. That is, if all the
Ty,v+ are homeomorphisms then X is a topological orbifold, if all are real-analytic
diffeomorphisms then X is a real-analytic orbifold, if all are hyperbolic isometries
then X is a hyperbolic orbifold, and so on. So H3/T is a hyperbolic orbifold. There
is a notion of orbifold universal cover which allows one to reconstruct H? and its
I-action from the orbifold H3/T.
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Only in two dimensions is it easy to draw pictures of orbifold charts; here
they are for the quotient of the upper half-plane H? by the group I' generated by
reflections across the edges of the famous (7/2,7/3,7/00) triangle.

mod out by I'
—

WV
Here are local orbifold charts around various points of H?3/T:
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P V—

In three dimensions essentially the same thing happens: the local chart at a generic
point of a wall is the quotient of a 3-ball by a reflection, and along an edge it is
the quotient of a 3-ball by a dihedral group. One needs to understand the finite
Coxeter groups in dimension 3 in order to understand the folding at the vertices,
but this is not necessary here.

We care about hyperbolic orbifolds because it turns out that moduli spaces
arising in algebraic geometry are usually orbifolds, and it happens sometimes that
such a moduli space happens to coincide with a quotient of hyperbolic space (or
complex hyperbolic space or any of the other symmetric spaces). So we can some-
times gain insight into the algebraic geometry by manipulating simple objects like
tilings of hyperbolic space.

Suppose a Lie group G acts properly on a smooth manifold X with finite
stabilizers. (Properly means that the map G x X — X x X given by (g,z) —
(g(z), z) is a proper map, which means that preimages of compact sets are compact;
this is needed for G\ X to be Hausdorff.) Then the quotient G\ X is an orbifold,
by the following construction. For z € X one can find a small transversal T" to the
orbit G.x, that is preserved by the stabilizer G,. Then T — G, \T — G\ X gives
an orbifold chart. In particular, the local group at the image of z in G\ X is G,.
If G acts real-analytically then G\ X is a real-analytic orbifold.
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Now we come to the case which concerns us. Let € be the set of binary sextics,
i.e., nonzero 2-variable homogeneous complex polynomials of degree 6, modulo
scalars, so @ = CPY. Let C® be the subset given by those with real coefficients,
Cp the smooth sextics (those with 6 distinct roots), and €§ the intersection. Then
G = PGL,C acts on € and €y and GX = PGLsR acts on CF and GDOQ. The moduli
space My of smooth binary sextics is G\Cp, of 3 complex dimensions. The real
moduli space M = G®\CE is not the moduli space of 6-tuples in RP!; rather it is
the moduli space of nonsingular 6-tuples in CP! which are preserved by complex
conjugation. This set has 4 components, Mg ; being G¥\Cg ;, where j indicates the
number of pairs of conjugate roots. It turns out that G acts properly on €y, and
since the point stabilizers are compact algebraic subgroups of G they are finite;
therefore My is a complex-analytic orbifold and the M ; are real-analytic orbifolds.
The relation with hyperbolic geometry begins with the following theorem:

Theorem 2. Let I'; be the group generated by the Cozeter group of P; from (1) or
(3), together with the diagram automorphism when j = 1. Then MDOQJ is the orbifold
H3/T;, minus the image therein of the walls corresponding to the blackened nodes
and the edges corresponding to triple bonds. Here, ‘s’ means an isomorphism of
real-analytic orbifolds.

In the second lecture we will see that the faces of the P; corresponding to
blackened nodes and triple bonds are particularly interesting; we will glue the P;
together to obtain a real-hyperbolic description of the entire moduli space.

References. The canonical references for hyperbolic geometry and an intreoduction
to orbifolds are Thurston’s notes [13] and book [14]. The book is a highly polished
treatment of a subset of the material in the notes, which inspired a great deal of
supplementary material, e.g., [3]. For other applications of hyperbolic geometry
to real algebraic geometry, see Nikulin’s paper [11], which among other things
describes moduli spaces of various sorts of K3 surfaces as quotients of H™.

Lecture 2

We will not really provide a proof of theorem 2; instead we will develop the ideas
behind it just enough to motivate the main construction leading to theorem 4
below. Although theorem 2 concerns smooth sextics, it turns out to be better to
consider mildly singular sextics as well. Namely, let C, be the set of binary sextics
with no point of multiplicity 3 or higher, and let A C G4 be the discriminant,
so Gy = C5 — A. (For those who have seen geometric invariant theory, €y is the
set of stable sextics, hence the subscript s.) It is easy to see that A is a normal
crossing divisor in €,. (In the space of ordered 6-tuples in CP? this is clear; to
get the picture in C; one mods out by permutations.) Now let F¢ be the universal
branched cover of C4, with ramification of order 6 along each component of the
preimage of A. F, turns out to be smooth and the preimage of A a normal crossing
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divisor. More precisely, in a neighborhood of a point of F, describing a sextic with
k double points, the map to Cg is given locally by

(21,...,z6)|—>(z?,...,zg,zk_,_l,...,zg),

where the branch locus is the union of the hypersurfaces z; = 0,...,2; = 0. Let
Fo be the preimage of Cy and let I be the deck group of F, over C;. We call an
element of F, (resp. Fy) a framed stable (resp. smooth) binary sextic. Geometric
invariant theory implies that G acts properly on C4, and one can show that this
G-action lifts to one on F, which is not only proper but free, so G\F; is a complex
manifold. The reason we use 6-fold branching is that in this case G\F; has a nice
description, given by the following theorem. See the appendix for a sketch of the
Hodge theory involved in the proof.

Theorem 3 (Deligne-Mostow [5]). There is a properly discontinuous action of T on
complez hyperbolic 3-space CH? and a T-equivariant diffeomorphism g : G\Fs —
CH?3, identifying G\Fo with the complement of a hyperplane arrangement H in
CH?.

Complex hyperbolic space is like ordinary hyperbolic space except that it has
3 complex dimensions, and hyperplanes have complex codimension 1. There is an
upper-half space model analogous to the real case, but the most common model
for it is the (open) complex ball. This is analogous to the Poincaré ball model for
real hyperbolic space; we don’t need the ball model except to see that complex
conjugation of CH?, thought of as the complex 3-ball, has fixed-point set the real
3-ball, which is H?3.

Given a framed stable sextic S, theorem 3 gives us a point g(S) of CH?.
If S lies in ¥ (the preimage of CF), say over S € CF, then we can do better,
obtaining not just a point of CH3 but also a copy of H? containing it. The idea
is that complex conjugation k of Cy preserves S and lifts to an antiholomorphic
involution (briefly, an anti-involution) % of F, that fixes S. This uses the facts
that Fy — Cp is a covering space and that m1(Fp) C m1(Cp) is preserved by k.
Riemann extension extends % to an anti-involution of F,. Since x normalizes G’s
action on Cg4, K normalizes G’s action on Fy, so % descends to an anti-involution '
of CH® = G\JF,. Each anti-involution of CH? has a copy of H? as its fixed-point
set, so we have defined a map g® from F to the set of pairs

(x € CH?, a copy of H? containing ). (4)

Note that & fixes every point of F& sufficiently near S, so all nearby framed real sex-
tics determine the same anti-involution x’ of CH?. Together with the G-invariance
of g, this proves that ¢g® is invariant under the identity component of G®. A closer
study of g® shows that it is actually invariant under all of G¥. We write K for the
set of pairs (4) in the image g®(F%). An argument relating points of €, preserved
by anti-involutions in G x (Z/2) to points of CH? preserved by anti-involutions in
I'x(Z/2) shows that if z € F& has image (g(x), H), then every pair (y € H—3, H)
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also lies in K. That is, Ky is the disjoint union of a bunch of H?’s, minus their in-
tersections with 3. The theoretical content of theorem 2 is that g® : GF\F& — K
is a diffeomorphism.

The computational part of theorem 2 is the explicit description of K, in
enough detail to understand My = G\F5 /I’ = K/ concretely. It turns out that
I, H and the anti-involutions can all be described cleanly in terms of a certain
lattice A over the Eisenstein integers & = Z[w=e2""/3]. Namely, A is a rank 4 free
&-module with Hermitian form

<a,|a> = apQp — @141 — A2G2 — a3043 . (5)

The set of positive lines in P(C3 = A ®¢ C) is a complex 3-ball (i.e., CH?),
I' = PAut A, H is the union of the hyperplanes orthogonal to norm —1 elements
of A, and the anti-involutions of CH? corresponding to the elements of K are
exactly

Ko : (Zo, X1, T2, T3 To, Ti, T2, T3)

( )
k1 (zo, 21, 22, 23) — (To, T1, —73)
( ) )
)

K2 1 (Zo, T1,X2,T3 Zo, T1,—T2,—T3

K3 : (20, 21,22, 23) Zo, —T1, —T2, —T3

and their conjugates by I'. We write H ]3 for the fixed-point set of x;.

Since Hg, ..., H3 form a complete set of representatives for the H3’s com-
prising Ky, we have

3
M = Ko/T =[] (H - 9{)/ (its stabilizer T'; in T)
j=0

Understanding the stabilizers I'; required a little luck. Vinberg devised an algo-
rithm for searching for a fundamental domain for a discrete group acting on H"
that is generated by reflections [16]. It is not guaranteed to terminate, but if it
does then it gives a fundamental domain. We were lucky and it did terminate; the
reflection subgroup of I'; turns out to be the Coxeter group of the polyhedron P;.

One can obtain our polyhedra by applying his algorithm to the Z-sublattices
of A fixed by each x;. For example, an element of the ro-invariant part of A has
the form (ag, a1, azv/—3, azv/—3) with ao, ..., a3 € Z, of norm a3 — a? — 3a3 — 3a3.
Similar analysis leads to the norm forms
(ala) = af — af — a} — a3

(ala) = a§ — a3 — a3 — 3a3

in the four cases of (6). Now, I'; lies between its reflection subgroup and the
semidirect product of this subgroup by its diagram automorphisms. After checking
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that the diagram automorphism of P; lies in I'y, the identification of the I'; is
complete.

The final part of theorem 2 boils down to considering how the H?’s comprising
Ky meet the hyperplanes comprising . There is no big idea here; one just works
out the answer and writes it down. There are essentially two ways that the H3
fixed by an anti-involution x of A can meet a hyperplane r*, where 7 € A has
norm —1. It might happen that x(r) is proportional to 7, in which case H? Nr+
is a copy of H?; this accounts for the deleted walls of the P;. It can also happen
that #x(r) L 7, in which case H® N7t is a copy of H'; this accounts for the deleted
edges.

Now, the deleted faces are very interesting, and the next step in our discus-
sion is to add them back in. By theorem 3 we know that points of H represent
singular sextics, which occur along the boundary between two components of C§.
For example,

Ot . » . © ¢ 0000

double pe int

o —P [t o

Varying the remaining four points gives a 2-parameter family of singular sextics
which lie in the closures of both €  and €f ;. This suggests reinstating the deleted
walls of Py and P; and gluing the reinstated wall of Py to one of the reinstated
walls of P;. Which walls, and by what identification? There is really no choice
here, because H3 and H} meet along an H? that lies in 3, namely the locus

{(ag,a1,a2,a3) € ct3 | ap,a1,a2 € R and a3 =0} .

This gives a rule for identifying the points of Py and P; that lie in this H?2.

Carrying out the gluing visually is quite satisfying; we will draw the pictures
first and then worry about what they mean. We have indicated why Py and Py
are glued; in a similar way, P; and P, are glued, as are P, and Ps;. This uses up
all the gluing walls of the various H J3 /T'; because each has only two, except for
Py and P; which have one each. The j = 1 case is interesting because P; has four
gluing walls, but H3}/T'; has only two because the diagram automorphism of P
exchanges them in pairs. So the gluing pattern is

Py — P /(Z)2) — P, P; (7)
Working with polyhedra is so much simpler than working with quotients of them
by isometries that we will carry out the gluing by assembling P; and two copies
each of Py, P, and Ps, according to

/ "
\ ’,

P

B
\ .
/
B

P
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and take the quotient of the result by the diagram automorphism.

We begin by assembling P; and the copies of Fy and P». This requires pictures
of the polyhedra. Py appears in (2), and for the others we draw both 3-dimensional
and an overhead views.

Py ‘ -

f

A
2
Z
2
As before, length markings refer to Euclidean, not hyperbolic, distances.

There is only one way to identify isometric faces in pairs, pictured in figure 1.
We wind up with a square chimney with four bites taken out of the bottom, two
of radius 2 and two of radius v/2. The result appears in figures 2 and 3 in overhead
and 3-dimensional views.

It is time to attach the two copies of P3. We won’t use a “chimney” picture
of P3 because none of the four vertical walls in figure 3 are gluing walls; rather,
the two gluing walls are the two small faces on the bottom. Happily, the region
bounded by one of these walls and the extensions across it of the three walls it

meets is a copy of P3. That is, P3s may be described as the interior of a hemisphere
of radius v/2, intersected with one side of a vertical half-plane and the exteriors

P
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FIGURE 1. Overhead view of instructions for gluing P; to two
copies of Py and two copies of Ps.

FI1GURE 2. Overhead view of the result of gluing P; to two copies
of Py and two copies of Ps.
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FIGURE 3. Three-dimensional view of the result of gluing P; to
two copies of Py and two copies of Ps.

of two hemispheres of radius 2:

The 3-dimensional picture shows a copy of Ps that fits neatly beneath one of
the bottom walls of figure 3 (the back one). Adjoining it, and another copy of Ps
in the symmetrical way, completes the gluing described in (8). The result appears
in figures 4 and 5.
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FIGURE 4. Overhead view of the final result of gluing the poly-
hedra according to (8).

FIGURE 5. Three-dimensional view of the final result of gluing
the polyhedra according to (8).
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One can find its dihedral angles from our pictures; it is a Coxeter polyhedron
with diagram

This leads to our main result; we write I'® for the group generated by this Coxeter
group and its diagram automorphism, and @ for H3/T'®,

Theorem 4. We have ME = Q = H3/T®, where “=” means the following:

(i) M® — @Q is a homeomorphism;

(i) MB — @Q is an isomorphism of topological orbifolds if the orbifold structure
of Q is changed along the edges associated to triple bonds, by replacing the
dihedral group Dg of order 12 by Z/2 (see below);

(iii) MR — Q is an isomorphism of real-analytic orbifolds if Q is altered as in (i)
and also along the loci where the P; are glued together.

For the rest of the lecture we will focus on the perhaps-surprising subtlety
regarding the orbifold structures of M® and Q. We take I to be the preimage of
CR, or equivalently the closure of F. Now, FX is not a manifold because of the
branching of the cover F; — €,. One example occurs at S € FR lying over a sextic
S € G} with a single double point, necessarily real. In a neighborhood U of S, C¥
is a real 6-manifold meeting the discriminant (a complex 5-manifold) along a real
5-manifold. A neighborhood of S is got by taking a 6-fold cover of U, branched
along A. Therefore near S, F¥ is modeled on 12 half-balls of dimension 6 meeting
along their common 5-ball boundary. Here are pictures of the relevant parts of C¥
and FE:

/77 e

To get an orbifold chart around the image of S in M¥, we take a small transversal
to G®.S and mod out by the stabilizer of S in G, as explained in lecture 1. To
get an orbifold chart around the image of S in GF\F¥/T" we do the following,
necessarily more complicated than before because ¥ isn’t a manifold. We choose
a transversal to GR.S, which is identified under ¢ with a neighborhood of ¢(S) in
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the union X of six H3’s meeting along an H?. We take the quotient of X by the
stabilizer Z/6 of S in T. The result is isometric to H, and we take an open set in
this H® as the domain for the orbifold chart, mapping to G®\FX/T" by taking the
quotient of it by

(the stabilizer of g(S) and X in I') / (Z/6) = (the stabilizer of S in G¥) .

Identifying M2 with G®\FE /T leads to two orbifold charts around the same point.
One can check that these charts define the same topological orbifold structure but
different real-analytic structures. This leads to (i) in theorem 4.

A slightly different phenomenon leads to (i2). Another possibility for how A
meets CX is at a sextic S with two complex conjugate double points. Then in a
neighborhood U of S, A has two branches through S, meeting transversely. The
real 6-manifold C® meets A along a real 4-manifold lying in the intersection of
these two branches. Since A has two branches through S, there is not 6-to-1 but
36-to-1 branching near S e F® lying over S. It turns out that a neighborhood
U of S in F® may be taken to be the union of six real 6-balls meeting along a
common 4-ball, with each of the 6-balls mapping to U as a 6-to-1 cover branched
over the 4-ball. We get an orbifold chart around the image of S in GR\FR/T
as follows. Choose a transversal to I'®.S, which maps bijectively to its image in
CH?, which can be described as a neighborhood of g(5) in the union of six H®’s
meeting along an H!. Choose one of these H®’s and take the quotient of it by
the subgroup of I" which carries both it and g(S’) to themselves. Generically this
subgroup is Dg, because of the Z/6 coming from the branching and the fact that
S has a Z/2 symmetry exchanging its double points. This gives an orbifold chart
U — U/Dg — G®\FR/T. (The idea also applies if S has more symmetry than the
generic Z/2.)

Now, this cannot be a valid description of the orbifold M¥, because the
symmetry group of S is Z/2 and so the local group at the image of S in ME
should be Z/2 not Dg. The problem is that the Z/6 coming from the branching is
an artifact of our construction. To eliminate it, we take the quotient of the chart
by the Z/6, obtaining a topological ball, and use this ball rather than the original
one as the domain for the orbifold chart, with local group Dg/(Z/6) = Z/2. The
effect of this operation is to replace the orbifold chart
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We may picture this as a smoothing of the crease:

becomes

Therefore M®’s topological orbifold structure can be completely visualized by tak-
ing the hyperbolic polyhedron in figure 5 and smoothing two of its edges in this
manner.

Appendix

We will give a sketch of the Hodge theory behind theorem 3 and then make a few
remarks.

Theorem 3 is due to Deligne and Mostow [5], building on ideas of Picard,;
our approach is more explicitly Hodge-theoretic, along the lines of our treatment
of moduli of cubic surfaces in [1]. Let S € €y be a smooth binary sextic, defined
by F(zo,71) = 0, and let C be the 6-fold cyclic cover of CP! defined in CP?
by F(zo,z1) + 2§ = 0, which is a smooth curve of genus 10. It has a 6-fold
symmetry o : x9 — —wrs, where w is our fixed cube root of unity. Now, o* acts
on H'(C;C) and its eigenspaces refine the Hodge decomposition because o acts
holomorphically. One finds H.(C;C) = HL°(C) ® HS!(C), the summands having
dimensions 1 and 3 respectively. In fact, H?(C) is generated by the residue of
the rational differential

(o dxy A dxg + 21 dog A dxg + 2 dg A dTy) T3
F(zg,21) + 2§ ’

We remark that our construction really uses the 3-fold cover of CP! rather than
the 6-fold cover, because we are working with the w-eigenspace. We have used the
6-fold cover because the residue calculus is less fussy in projective space than in
weighted projective space.

The Hermitian form

<alﬂ>=i\/§/CaAB (9)

on H(C;C) is positive-definite on H? and negative-definite on H%!. Therefore
HLO(C) — HL(C;C) is an inclusion of a positive line into a Hermitian vector
space of signature (1, 3), i.e., a point of the complex 3-ball consisting of all such
lines in P(HL(C;C)). The v/3 in (9) is not very important; it makes the map Z
defined below be an isometry.
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To identify this ball with a single fixed complex 3-ball we need an additional
structure, namely a choice of basis for the relevant part of H!(C;Z), that is suitably
compatible with . Let A(C) be the sublattice of H*(C;Z) where o* has order 3,
together with the 0 element. Then A(C) is an €-module, with w acting as o*. The
projection

Z:ANC)®e C=A(C)®zR — HL(C;C)
is an isomorphism of complex vector spaces. The €-module structure and the
intersection pairing 2 together define a Hermitian form on A(C), namely

00z, y) + 0Q(x,y)
2 3

where § = w — @. This turns out to be a copy of A, the lattice from (5). A
framing of S is a choice of isometry ¢ : A(C) — A, taken modulo scalars. (The
term ‘marking’ is already taken, usually indicating an ordering of the six points
of S.) It turns out that Z is an isometry, so together with ¢ it identifies the ball
in P(H(C;C)) with the standard one, i.e., the one in P(C'®* = A ®¢ C). This
defines a holomorphic map ¢ : Fy — B3. One constructs an extension of the
covering space Fy — Cp to a branched covering s — C4 and extends g to Fs; g
is then the isomorphism of theorem 3. One can show (see, e.g., [1, lemma 7.12])
that the monodromy homomorphism 71 (Cp, S) — PAut A(C) is surjective, and it
follows that Fy and Fs are connected, with deck group I' = PAut A, and that g is
I"-equivariant.

The reason that ¥, — €5 has 6-fold branching along each component of the
preimage of A is that one can use [12] to work out the monodromy in PAut A of
a small loop encircling A at a general point of A; it turns out to have order 6.

(zly) = -

We close with some remarks relevant but not central to the lectures.

Remark 1. We have treated moduli of unordered real 6-tuples in CP!, which at
first might sound like only a slight departure from the considerable literature on
the hyperbolic structure on the moduli space of ordered 6-tuples in RP!. Briefly,
Thurston [15, pp. 515-517] developed his own approach to theorem 3, and de-
scribed a component of G*\((RP)S — A) as the interior of a certain polyhe-
dron in H3. Using hypergeometric functions, Yoshida [17] obtained essentially the
same result, described the tessellation of G¥\ ((RP)S — A) by translates of this
open polyhedron, and discussed the degenerations of 6-tuples corresponding to the
boundaries of the components. See also [7] and [9]. The relation to our work is the
following: the space G®\((RP')® — A) is the quotient of Hi — H by the level 3
principal congruence subgroup I'g 3 of I'g. A component C of H§ — H is a copy of
Thurston’s open polyhedron, its stabilizer in Ty is S3 X Z/2, and the quotient of
C by this group is the Coxeter orbifold Py, minus the wall corresponding to the
blackened node of the Coxeter diagram. There are |Sg|/|S3 X Z/2| = 60 compo-
nents of G¥\ ((RP')® — A), permuted by Sg. The Sg action is visible because the
Ko-invariant part of A is Z13, and T'g/Tg 3 acts on the F3-vector space Z!3 /3713,
Reducing inner products of lattice vectors modulo 3 gives a quadratic form on this
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vector space, and Sg happens to be isomorphic to the corresponding projective
orthogonal group.

In a similar way, one could consider the moduli space of ordered 6-tuples of
distinct points in CP! such that (say) points 1 and 2 are conjugate and points
3,...,6 are all real. This moduli space is a quotient of H} — 3{ by a subgroup of
I'y. Other configurations of points give quotients by subgroups of the other I';. It
is only by considering unordered 6-tuples that one sees all four types of 6-tuples
occurring together, leading to our gluing construction. One way that our results
differ from earlier ones is that the gluing leads to a nonarithmetic group acting on
H?3 (see remark 5 below), whereas the constructions using ordered 6-tuples lead
to arithmetic groups.

Remark 2. T has a single cusp in CH?, corresponding to the 6-tuple consisting
of two triple points; this is the unique minimal semistable orbit (in the sense
of geometric invariant theory) in €. The two cusps of I'® correspond to the two
possible real structures on such a 6-tuple—the triple points can be conjugate, or
can both be real.

Remark 3. Part (ii) of theorem 4 lets us write down the orbifold fundamental group
7P (MR). The theory of Coxeter groups shows that the reflection subgroup R of I'®
is defined as an abstract group by the relations that the six generating reflections
are involutions, and that the product of two has order n when the corresponding
walls meet at angle 7 /n. The modification of orbifold structures amounts to setting
two of the generators equal if their walls meet at angle 7/6. This reduces R to
Dy x Z/2 where D, denotes the infinite dihedral group. Adjoining the diagram
automorphism gives 7$"™(MR) = (D, x Z/2) x (Z/2), where the Z/2 acts on
D, x Z/2 by exchanging the involutions generating D,. This larger group is also
isomorphic to Dy, x Z/2, so we conclude 7™ (ME) 22 D, x Z/2. This implies that
MR is not a good orbifold in the sense of Thurston [14].

Remark 4. One can work out the volumes of the P; by dissecting them into suitable
simplices, whose volumes can be expressed in terms of the Lobachevsky function
A(z). For background see [8] and [10]. The results are

J covolume(T';) fraction of total
0 A(r/4)/6 = .07633..  ~ 8.66%
1 15A(n/3)/16 = .31716... ~36.01%
2 5A(m/4)/6 = .38165... ~43.33%
3 5A(m/3)/16 = .10572... ~ 12.00 %

These results suggest that I'g and I's are commensurable, that I'; and I's are
commensurable, and that these two commensurability classes are distinct. We
have verified these statements.

Remark 5. The group I'® is nonarithmetic; this is suggested by the fact that we
built it by gluing together noncommensurable arithmetic groups in the spirit of
Gromov and Piatetski-Shapiro’s construction of nonarithmetic lattices in O(n, 1).
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(See [6].) Their results do not directly imply the nonarithmeticity of I'®, so we
used 12.2.8 of [5]. verified this directly. That is, we computed the trace field of
I'®, which turns out to be Q(\/g), showed that T® is a subgroup of the isometry
group of the quadratic form diag[—1,+1,+1,41] over Z[v/3], and observed that
the Galois conjugate of this group is noncompact over R.

Remark 6. The anti-involutions (6) and their I'-conjugates do not account for
all the anti-involutions of CH? in T' x (Z/2): there is exactly one more conjugacy
class. Pick a representative 4 of this class and write H} for its fixed-point set. The
points of H} correspond to 6-tuples in CP! invariant under the non-standard anti-
involution of CP!, which can be visualized as the antipodal map on the sphere
S2. A generic such 6-tuple cannot be defined by a sextic polynomial with real
coefficients, but does represent a real point of M. One can show that the stabilizer
Iy of H} in T is the Coxeter group

O O O O

and that the moduli space of such 6-tuples is H} /'y, minus the edge corresponding
to the triple bond.

Remark 7. When discussing the gluing patterns 7 and 8 we did not specify infor-
mation such as which gluing wall of P, is glued to the gluing wall of Ps. It turns
out that there is no ambiguity because the only isometries between walls of the P;
are the ones we used. But for the sake of explicitness, here are the identifications.
The gluing wall of Py is glued to one of the top gluing walls of P;, the gluing wall
of P5 is glued to the left gluing wall of P, and the other gluing wall of P> is glued
to one of the bottom gluing walls of P;. The words ‘left’, ‘right’, ‘top’ and ‘bottom’
refer to the Coxeter diagrams (1) and (3), not to the pictures of the polyhedra.

Remark 8. In these notes we work projectively, while in [2] we do not. This means
that our space C is analogous to the CP'° of cubic surfaces in CP3, which is the
projectivization of the space called € in [2], and similarly for the various versions
of F. The group in [2] analogous to G here is the projectivization of the group
called G there, and similarly for G®, ', I'; and I'®.
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