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We study the Fp-cohomology rings of the classifying space of a compact Lie group G using

methods from equivariant cohomology. Building on ideas of Duflot and Symonds we study

a “rank filtration” on the p-toral equivariant cohomology of a smooth manifold. We analyze

the structure induced by this filtration and construct a well behaved chain complex that

controls the local cohomology of H∗BG.

We also refine the Duflot filtration to a filtration by a ranked poset, and from this get

a detection result and restrictions on associated primes that generalize some of the work of

Carlson and of Okuyama from finite groups to general compact Lie groups. We also use

our methods to give new local cohomology computations for the cohomology of p-Sylow

subgroups of Spn .

In the final chapter we show that the derived category of cochains on the Borel construc-

tion of a finite G-CW complex is stratified in the sense of Benson, Iyengar, and Krause by

the equivariant cohomology ring.
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Chapter 1

INTRODUCTION

1.1 Historical introduction

Group cohomology rings are a natural object of study in topology and in representation

theory. For topologists, principal G bundles over a space X are classified by homotopy

classes of maps from X into BG, so the cohomology of BG is the setting for characteristic

classes of principal G bundles and the spaces BG are interesting homotopy types. Modular

representation theorists study representations of a finite group G over fields of characteristic

p, where p divides the order of G. In this setting Maschke’s theorem does not hold, so there

are interesting extensions of modules and not all modules are projective. The cohomology

of G, H∗(G,−), then appears as the derived functors of the G-fixed point functor. When G

is a finite group, these coincide: H∗Sing(BG; k) = H∗Group(G; k). This is true for k any field

with trivial G-action, but there is higher cohomology only when k is of characteristic p and

p divides the order of G. From now on, all cohomology will be with Fp coefficients, where p

divides the order of G if G is finite.

So, understanding group cohomology rings is of interest to both topologists and to rep-

resentation theorists, and group cohomology is an ongoing area of interaction between the

two subjects. The first important theorem about group cohomology rings is a theorem of

Venkov saying that group cohomology rings are reasonable rings from the point of view of

commutative algebra (we have that H∗BG is graded commutative, as it is the cohomology

of a space).

Theorem 1.1.1 (Venkov [Ven59]). For G a compact Lie group, H∗BG is finitely generated

as an Fp-algebra.

It is interesting to note that when G is a finite group this theorem is purely algebraic



2

(and has a purely algebraic proof, due to Evens [Eve61]), but Venkov’s proof crucially in-

volves compact Lie groups. Here is a sketch of the proof: take a unitary embedding of G,

and consider the fiber bundle U(n)/G −→ BG −→ BU(n). The cohomology of BU(n) is a

polynomial algebra on n generators, so as U(n)/G is a manifold its cohomology is a finite

dimensional Fp vector space, and consequently the E2 page of the Serre spectral sequence of

this fibration is finitely generated over H∗BU(n). The same is true for each successive page,

and because the spectral sequence converges in finite time the E∞ page is finitely generated

over H∗BU(n), from which we can extract the desired result.

Even though H∗BG is finitely generated, for most groups computing the cohomology ring

is a daunting task, and knowing all the generators and relations in the ring is not necessarily

illuminating. What is more desirable is structural or geometric information about these

rings, relating the geometry of SpecH∗BG to the group theory of G. With a good structural

result, we can understand H∗BG even without having an explicit presentation of this ring,

and structural results can also help in computing the cohomology rings of specific groups.

The first structural result in the study of group cohomology rings is Quillen’s stratification

theorem. This result describes SpecH∗BG as a space, and also shows that H∗BG is detected

modulo nilpotents on subgroups of the form (Z/p)n, which we follow Quillen in calling p-tori.

Before stating the theorem, we need to explain a bit of terminology. A uniform F-

isomorphism is a map between Fp-algebras such that the kernel is nilpotent, and where there

is an n so that the pnth power of every element of the codomain is in the image of the map.

Given a compact Lie group G, the category A(G) is the category whose objects are p-tori

of G, and where morphisms from E to E ′ are homotopy classes of G-equivariant maps from

G/E −→ G/E ′. Quillen uses a slightly different category in the orginal paper.

Theorem 1.1.2 (Quillen [Qui71]). Let G be a compact Lie group.

1. The map H∗BG −→ lim−→E∈A(G)
H∗BE induced by the restriction maps is a uniform

F-isomorphism.

2. The induced map on spectra lim←−E∈A(G)
SpecH∗BE −→ SpecH∗BG is a homeomor-
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phism.

The second statement is a corollary of the first. Here are a few more corollaries.

Corollary 1.1.3 (Quillen [Qui71]). Let G be a compact Lie group.

1. If x ∈ H∗BG restricts to 0 on all p-tori in G, then x is nilpoent.

2. The Krull dimension of H∗BG is the largest rank of a p-torus of G.

3. The minimal primes of H∗BG are in bijection with conjugacy classes of the maximal

(by inclusion) p-tori of G.

Just as Venkov’s proof of the finite generation of cohomology uses compact Lie groups,

Quillen’s stratification theorem crucially uses equivariant cohomology. If X is a G-space,

then the equivariant cohomology of X, denoted by H∗GX, is the cohomology of the Borel

construction on X. Taking X equal to a point recovers the cohomology of BG, so we can

write H∗G = H∗BG.

In the proof of the stratification theorem, Quillen uses the G-space obtained by taking

a faithful finite dimensional representation G ↪→ U(n) and quotienting by the right action

of S, the diagonal matrices of order dividing p. The equivariant cohomology of this space

is faithfully flat over H∗G, and Quillen first proves his theorem for H∗GU(n)/S and then uses

faithfully flat descent to deduce the result for H∗G.

This is the first example of the use of equivariant cohomology to study group cohomology

rings. There are several other mathematicians after Quillen who have used his ideas, but

applying equivariant cohomology to group cohomology is not yet fully explored. Quillen also

introduced techniques from commutative algebra and algebraic geometry into studying group

cohomology rings, and Quillen’s result suggests that group cohomology rings are interesting

from a geometric point of view, and that there are rich connections between the geometry

of SpecH∗G and the group theory of G.
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After Quillen’s theorem on dimension and minimal primes, it is natural to ask about

depth and associated primes. Duflot [Duf81, Duf83a] proved the following.

Theorem 1.1.4 (Duflot). Let G be a compact Lie group.

1. The associated primes of H∗G come from restricting to p-tori, in the sense that for each

associated prime p there is a p-torus E so that p is the kernel of the map H∗G −→ H∗E/
√

0.

2. The depth of H∗G is bounded below by the maximal rank of a central p-torus of G.

3. For G finite, the depth of H∗G is bounded below by the maximal rank of a central p-torus

in a p-Sylow subgroup of G. In particular, depthH∗G ≥ 1.

Duflot’s results are very helpful in concluding that some groups have H∗G Cohen-Macaulay

and they provide some control over the associated primes of H∗G, but they also raise the

questions: which p-tori represent associated primes, and what is the depth of H∗G? As we

will see, these questions are closely related.

Duflot also uses equivariant cohomology and a technique of Quillen that reduces the

study of G-equivariant cohomology to the study of S-equivariant cohomology, where S is

a p-torus. In the special case of the S-equivariant cohomology of a smooth manifold M ,

Duflot [Duf83b] defined a filtration on H∗SM via a filtration defined on the manifold M by

the ranks of isotropy groups of points in M . The key property of this filtration is that the

subquotients are particularly nice: the ith subquotient is free over the cohomology of a rank

i p-torus.

The Duflot filtration puts a rich structure on the S-equivariant cohomology of smooth

manifolds, and one of the main goals of this thesis is to describe and exploit this structure

to the fullest extent possible. Before coming back to the Duflot filtration, we describe some

further results in the geometry of group cohomology rings.

Carlson [Car83] applied Quillen’s ideas to modular representation theory by defining for

a finite dimensional modular representation M of a finite group G a subvariety of SpecH∗G
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called the support variety of M . This subvariety controls much of the large scale structure

of M , for example it reflects the indecomposability of M and the complexity of M . Using

the theory of support varieties and techniques from algebraic topology, Benson, Carlson,

and Rickard [BCR97] showed that the cohomology of a finite group controls the thick tensor

ideals of the stable module category of that group, so that geometric facts about H∗G have

representation theoretic interpretations.

The idea of support theory has found broad applications, and the way in which H∗G

controls the structure of the stable module category is well understood by the work of

many people, especially Benson, Iyengar, and Krause [BIK11c], but as of yet there are no

applications of equivariant cohomology to the study of the stable module category. We hope

to indicate in this thesis the relevance of equivariant cohomology to support theory, and

some directions for future work in this area.

In [Ben04] Benson conjectured that group cohomology rings have Castelnuovo-Mumford

regularity 0. Castelnuovo-Mumford regularity is an integer invariant of a local ring involving

the local cohomology of that ring as a module over itself, and this conjecture has structural

and computational consequences. The local cohomology modules of a ring encode much

of the geometric information of the ring, including the depth and dimension, so if one is

interested in the geometry of H∗G it is natural to study its local cohomology. Moreover in

the case of H∗G, Greenlees [Gre95] has constructed a spectral sequence with E2 page the

local cohomology of H∗G converging to (H∗G)∗, the Fp-linear graded dual of H∗G, so the local

cohomology modules are a natural approximation to the cohomology ring.

Symonds proved Benson’s regularity conjecture in [Sym10], and he used equivariant coho-

mology and the Duflot filtration to reduce the conjecture to the p-torus case, where regularity

can be computed via an explicit local cohomology computation. In this thesis we extend

Symonds’ techniques to get more information about the local cohomology modules of equiv-

ariant cohomology rings.
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1.2 Overview of contents

Using some of the ideas in Symonds’ proof of the regularity theorem, we construct a chain

complex that essentially computes the local cohomology of a group cohomology ring, in a

way in which structural information like Krull dimension, regularity, and bounds on depth

can be read off immediately.

The construction of this chain complex necessitates the study of the algebraic structure

present in equivariant cohomology provided by the Duflot filtration, and we define this struc-

ture purely algebraically and prove some geometric facts about rings having this structure.

We also show how to enrich the structure of the Duflot filtration to a filtration by a poset, and

we derive some computational consequences from this enrichment, including a cohomologi-

cal detection result of Carlson and new restrictions on which p-tori can represent associated

primes.

The general strategy is to study group cohomology rings by first studying related equiv-

ariant cohomology rings, and then descending down to group cohomology. These equivariant

cohomology rings are the p-toral equivariant cohomology of homogeneous spaces arising from

a unitary representation of a group, and in general the structural results have more content

in the equivariant cohomology setting than they do only for group cohomology rings, sug-

gesting that for families of groups where these homogeneous spaces can be well understood

the techniques of this thesis will give even more cohomological information than the general

theory developed here. For example, we compare the rich structure of the Duflot filtration

with group theoretic properties of iterated wreath products to get new local cohomology

computations for these itereated wreath products.

In the final chapter we begin an attempt to categorify the Duflot filtration, and to apply

equivariant topology to the study of modular representation theory proper, rather than

merely group cohomology. To this end, we show that just as group cohomology controls the

structure of the stable module category of a group, the equivariant cohomology of a space

controls the equivariant analogue. This leads to the classification of the localizing and thick
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subcategories in the equivariant version of the stable module category.

1.3 Outline

Now we review in more detail the contents of this document.

1.3.1 The Duflot chain complex

In this thesis, inspired by Symonds’ proof of the regularity theorem, we show that the Duflot

filtration of H∗SM for a smooth S-manifold M , with S a p-torus, gives rise to a cochain

complex, DM , of graded modules we call the Duflot complex of M . The cohomology of

DM is the local cohomology of H∗SM , and DM enjoys the following properties, which we

state here in the special case that G is a finite group and M is the manifold G\U(V ) for V

a faithful representation of G, with S < U(V ) the maximal p-torus of diagonal matrices of

order p acting on the right.

Theorem 1.3.1 (2.1.9, 3.1.4, 3.2.1, 4.1.3). A finite dimensional representation G ↪→ U(V )

can be chosen so that the Duflot complex of G\U(V ) satisfies the following:

1. H∗D(G\U(V )) = H∗H∗S(G\U(V )) = H∗(H∗G)⊗H∗U(V )/S.

2. D(G\U(V ))i = 0 for i less than the p-rank of Z(G) and i greater than the p-rank of

G.

3. The Krull dimension of the ith term of the dual chain complex D(G\U(V ))∗ is i.

4. D(G\U(V ))i,j is zero above the line i = −j + dimG\U(V ).

From this theorem and basic commutative algebra we can conclude Quillen’s theorem on

the dimension of H∗G, Duflot’s lower bound for the depth of H∗G, and Symonds’ regularity

theorem. This method of proof is different than the proofs of the theorems of Quillen and

Duflot, but similar to Symonds’ proof of the regularity theorem.
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We also show that the layers of the Duflot filtration are good approximations to the local

cohomology of H∗SM in the following sense.

Theorem 1.3.2 (2.5.1). Denote by Fi the ith layer of the Duflot filtration for a smooth S-

manifold M , where S is a p-torus. Then FiH
∗
SM −→ H∗SM induces a surjection HiFiH

∗
SM −→

HiH∗SM , and an isomorphism HjFiH
∗
SM −→ HjH∗SM for j > i.

This lets us compute some of the local cohomology modules of H∗SM by studying higher

layers of the Duflot filtration, which can be easier in a way that we will shortly describe.

1.3.2 Systematizing the Duflot filtration

This filtration puts a lot of structure on H∗SM , and to clarify what structure is forced by

the Duflot filtration we found it useful to systematize the Duflot filtration. We define a

“free rank filtration”, which is simply a filtration with subquotients of the form appearing in

the Duflot filtration, and we show that any module with a free rank filtration has a Duflot

chain complex and satisfies analogs of the dimension, depth, and regularity theorems, as

well as Duflot’s theorem on associated primes. The current application for this theory is

to simplify the study of S-equivariant cohomology, but it would be very interesting to have

more examples of algebras with free rank filtrations.

The Duflot filtration is a filtration by the natural numbers, but we show how it can be

refined to be a filtration by a certain poset. This poset is the poset of connected components

of MA, as A ranges over all subtori of S, and it is equipped with a map to Nop by the

rank of A. Precise definitions are given in sections 2.2 and 3.1. Studying this refinement of

the Duflot filtration yields some restrictions on associated primes and a detection result for

cohomology. It also lets us study some maps between S-manifolds in terms of the maps on

their associated posets, which ultimately leads to new local cohomology computations.

1.3.3 Detection on subgroups and restrictions on associated primes

Our detection result is the following:
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Theorem 1.3.3 (4.1.13). Let G be a compact Lie group, and let d be the depth of H∗G. Then

H∗G −→
∏

E<G,rankE=dH
∗
CGE

is injective.

This result is due to Carlson [Car95] for finite groups. This result could also be derived

using the techniques of Henn, Lannes, and Schwartz in [HLS95].

Our restriction on associated primes is the following. For finite groups Okuyama [Oku10]

showed that one and three are equivalent, and the equivalence of two and three is a special

case of a result of Kuhn [Kuh07] given below.

Theorem 1.3.4 (4.1.8). Let G be a compact Lie group and E < G a p-torus. The following

are equivalent:

1. E represents an associated prime in H∗G.

2. E represents an associated prime in H∗CGE
.

3. The depth of H∗CGE
is rankE.

This theorem is useful because it allows one to rule out, without computation, some p-tori

from representing associated primes. For example if the Duflot bound for depth for H∗CGE
is

bigger than rankE, then E can’t represent an associated prime in H∗G. Our proof uses the

Duflot filtration and goes through equivariant cohomology, and for particular groups where

there is a good understanding of the relevant S-manifold, our methods could presumably

give more restrictions on associated primes.

Carlson conjectured that for finite groups there is always an associated prime of dimension

equal to the depth of H∗G. Green [Gre03] and Kuhn [Kuh07, Kuh13] have shown that for

p-groups and compact Lie groups respectively, this is true when the Duflot bound for depth

is sharp. We give in 4.1.19 a different proof that also applies to compact Lie groups.

Theorem 1.3.5 (Kuhn). For G a compact Lie group, depthH∗G is equal to the p-rank of the

center of G if and only if the maximal central p-torus of G represents an associated prime.
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1.3.4 Local cohomology modules for p-Sylows of Spn

We also study the relationship between the posets mentioned above associated to manifolds

M,N with M −→ N an equivariant principal K-bundle for K a finite group. In favorable

situations there is an induced map between the posets that is an analog of a principal K-

bundle in the category of posets. For certain group extensions that we call i-trivial (see

section 4.2 for definitions), this leads to a spectral sequence:

Theorem 1.3.6 (4.2.11). If 1 −→ H −→ G −→ K −→ 1 is i-trivial, then for any faithful

representation G −→ U(V ) there is a spectral sequence with Ep,q
2
∼= Hp(K,HqFiH

∗
SH\U(V ))

converging to Hp+qFiH
∗
SG\U(V ).

This leads to computations involving the top local cohomology modules of the group

cohomology of the Sylow p-subgroups of Spn , which we denote by W (n). In other word, if

we let W (1) = Z/p, then we can inductively define W (n) by W (n) = W (n− 1) o Z/p. From

the spectral sequence, we can compute the local cohomology of W (n) in terms of the Tate

cohomology of W (n− 1).

Theorem 1.3.7 (4.3.10). Let k be the dimension of a faithful representation W (n) −→ U(V ),

and let d be −pn−1 + k. For 0 < i < p − 3, we have that Hpn−1−(p−3)+iH∗S(W (n)\U(V )) is

isomorphic as an H∗W (n)-module to

Ĥ i−(p−2)(W (n− 1),Σd(H∗SE(n)\U(V ))∗).

For the top local cohomology, we have that Hpn−1
(H∗SW (n)\U(V )) is isomorphic as an

Fp-vector space to

Ĥ−1(W (n− 1),Σd(H∗SE(n)\U(V ))∗)⊕N(Σd(H∗SE(n)\U(V ))∗).

Here N is the norm map, and Ĥ is Tate cohomology.

Local cohomology is known to vanish in degrees below the depth and above the dimension,

and it is nonvanishing at degrees equal to the depth and dimension, and at any degree equal

to the dimension of an associated prime.
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The regularity theorem concerns the vanishing of Hi,jH∗G for j > −i, but little is known

about the vanishing and nonvanishing of the entireHi(H∗G) beyond what is known for general

graded rings. In particular, it is not known if there is any finite group G with depthH∗G = d

and dimH∗G = r and some i with d < i < r with HiH∗G = 0. In other words, in the range

where local cohomology can be either zero or nonzero, it is not known if there is a group

where local cohomology is ever nonzero. Perhaps no such group exists. Using 1.3.7, we can

show that:

Proposition 1.3.8 (4.3.11). For 0 ≤ i < p− 3, Hpn−1−i(H∗W (n)) 6= 0.

In other words, there are arbitrarily long intervals where local cohomology is nonzero and

where there is no a priori reason (in light of the fact noted above about associated primes)

for local cohomology to be nonzero (the embedded primes for H∗W (n) are all of rank less than

pn−1 − (p− 3)).

Proposition 1.3.9 (4.3.12). For each p ≥ 5, for each n there exists a p-group G and an i so

that Hi+j(H∗G) 6= 0 for all 0 < j < n , and so that i+ j is not the dimension of an associated

prime.

Additionally, the strong form of Benson’s regularity conjecture is still open. This conjec-

ture states that Hi,−i(H∗G) = 0 for i 6= dimH∗G. It is known by the work of Symonds that

this can only fail for i equal to the rank of a maximal p-torus in G, so it is already known

that this conjecture is true for W (n) in the range which we compute in 1.3.7. Nevertheless,

it is interesting to observe that for the i in our range the largest j for which Hi,jH∗W (n) 6= 0

is smaller than predicted by the strong form of the regularity conjecture.

In fact, we have the following:

Corollary 1.3.10 (4.3.13). For 0 < i < p− 3, Hpn−1−i,jH∗W (n) = 0 for j > −pn−1.

In other words, the strong regularity conjecture, which is confirmed for these groups in

this range, tells us that Hi,jH∗W (n) should be 0 for j > −(i + 1), but in fact we can show in

this range the bound can be improved to j > −pn−1, independent of i.
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1.3.5 Stratification of derived categories of cochains on Borel constructions

One of the exciting connections between cohomology and representation theory is that, in

the language of Benson, Iyengar, and Krause [BIK11b] for G a finite group H∗G stratifies

StmodFpG. We will define stratificaiton in Chapter 5. The connection to topology is that

StmodFpG is closely related to the derived category of C∗BG-modules. The latter is also

stratified by H∗G by the work of Benson and Greenlees [BG14] and Barthel, Castellana, Heard,

and Valenzuela [BCHV17], even in the case when G is a compact Lie group and there is no

stable module category.

The proof of Benson and Greenlees uses ideas from the Quillen stratification theorem and

equivariant cohomology, and we show that their proof and some of the results of [BCHV17]

together extend this stratification result to the derived category of cochains on the Borel

construction of a G-space.

Theorem 1.3.11 (5.4.1). For X a finite G-CW complex, D(C∗(EG×G X)) is stratified by

H∗GX.

1.4 Notation and conventions

Throughout, we fix a prime p.

We will denote by PW the polynomial algebra S(W ∗), where W is a fixed i-dimensional

Fp-vector space. The grading on PW is inherited from that on W , which is concentrated

in degree −1 when p = 2 and in degree −2 otherwise. So, after choosing a basis for W ,

PW = Fp[y1, . . . , yi], where |yi| is either 1 or 2. For V ⊂ W , we denote by PV the symmetric

algebra S(V ∗), graded in the same manner as PW . We have a PW module structure on PV

induced by the inclusion V −→ W .

All rings are graded commutative and all modules are graded, and Σd denotes the suspen-

sion functor. All homological algebra is to be done in the graded sense. See Appendix B for

a discussion on the difference between commutative graded rings and graded commutative

rings.
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We use H∗m to denote local cohomology with respect to m. All our local cohomology

modules will be taken with respect to the maximal ideal of positive degree elements in an

obvious algebra, so we will often omit m. For a treatment of local cohomology that includes

the graded case, see [BS13]. We collect the results on local cohomology we need in Appendix

A.

A p-torus is a group isomorphic to (Z/p)r for some r, and if a p-torus E is isomorphic to

(Z/p)r we say that the rank of E is r.

For X a G-space, we write H∗GX for H∗(EG×GX;Fp), and write H∗G for H∗Gpt, which is

H∗(BG;Fp).

For V a complex unitary representation of G, we will use U(V ) to denote the group

of unitary isomorphims of V , which is of course equipped with a map G −→ U(V ). If V

is equipped with a direct sum decomposition, i.e. V ∼= V1 ⊕ V2 as G-vector spaces, we will

require that U(−) respects this direction sum decomposition, so U(V1⊕V2) = U(V1)×U(V2).

This is so we can refer to a map G ↪→ U(V ), where we more properly mean a map

G ↪→
∏

i U(ni). Generally any faithful representation of G suffices for our theory, but there

are a few points where we want to specify a representation V of G so that the center of G

maps to the center of U(V ), which is only possible in general if U(V ) is allowed to denote a

product of unitary groups.
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Chapter 2

AN ABSTRACT TREATMENT OF MODULES WITH FREE
RANK FILTRATIONS

In this chapter we describe the algebraic structure that is present on the S-equivariant

cohomology of a smooth manifold, and explore this structure in depth. We then show that

whenever this structure is present there are analogs of Quillen’s theorem on dimension,

Duflot’s theorem on depth, Carlson’s detection theorem, and Symonds’ regularity theorem.

In section 2.5 we describe how the structures studied earlier in the chapter behave with

respect to certain classes of maps, which leads to a spectral sequence for local cohomology

modules.

2.1 Modules with free rank filtrations

2.1.1 Structure on H∗SM

Our initial goal is to develop a framework for studying the algebraic consequences of the

Duflot filtration. To motivate the definitions used in this framework, we first recall some of

the structure apparent in the Duflot filtration. We will return to this in much more detail

in section 3.1.

Let M be a smooth S-manifold, where S is a p-torus. Then Duflot in [Duf83b] defines a

filtration on H∗SM so that Fi/Fi+1 is a sum of modules of the form Σd(H∗A ⊗H∗N), where

N is a manifold and A is a rank i p-torus. This H∗A ⊗ H∗N arises as the S-equivariant

cohomology of a submanifold L of M on which A acts trivially and S/A acts freely, so it is

an H∗SM -module via the restriction map H∗SM −→ H∗SL
∼= H∗A ⊗H∗N .
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Because A acts trivally on L, there are S-equivariant maps:

pt

M L

S/A

. Taking

S-equivariant cohomology gives:

H∗S

H∗SM H∗SL

H∗A

.

When p = 2, the top and bottom objects of this diagram are already polynomial rings,

and when p is odd there is an inclusion of a polynomial ring PS on rankS variable of degree

two, and a map from H∗A onto a polynomial ring on rankA variables in degree 2. For p odd,

we can write H∗SL as a polynomial ring on rankA variables tensored with the tensor product

of H∗N and an exterior algebra on rankA variables, so as PA ⊗ B, where B is bounded as

a graded ring. So, for both p odd and for p even we have a diagram:

PS

H∗SM PA ⊗B

PA

.

The map PS −→ PA is induced by the linear inclusion A −→ S. For our description of

these polynomial rings, recall that for p = 2 the cohomology of a 2-torus A is naturally

S(A∗) where A∗ is concentrated in degree 1, and for p odd the cohomology of a p-torus B is

naturally S(B∗) ⊗ S(ΣB∗), where B∗ is in degree 1 and therefore ΣB∗ is in degree 2 (and

symmetric algebras are to be taken in the graded commutative sense). Note that this is

compatible with our grading conventions.

Suspensions of modules of this form we will call “r-free” where r is the rank of A. We

will now define this in a purely algebraic setting.



16

2.1.2 Free rank filtrations

Fix an Fp vector space W .

We are interested in Noetherian Fp-algebras R that are also finite algebras over PW , i.e.

finitely generated Fp-algebras R with a (graded) Fp-algebra map PW −→ R making R into a

finitely generated PW -module.

Throughout this section, R will be a fixed finite PW -algebra.

Definition 2.1.1. An R-module M is called j-free if it is a suspension of a PW -module

which is a PW -algebra of the form PV ⊗N , where V is a j-dimensional subspace of W , N is

a bounded connected Fp-algebra, and M is an R-module via an algebra map R −→ PV ⊗N .

Moreover, in the commuting diagram of algebra maps:

PW

R PV ⊗N

PV

we require

that the map PW −→ PV is induced by the inclusion V −→ W (the map PV ⊗N −→ PV is the

obvious one, induced by the identity PV −→ PV and the augmentation N −→ Fp −→ PV ).

The name is indicating that as PW -modules, j-free modules are in particular the pullback

of a free PV -module under the map PW −→ PV .

Definition 2.1.2. A descending R-module filtration 0 = Fi+1 ⊂ Fi ⊂ Fi−1 ⊂ · · · ⊂ F0 = L

of an R-module L is called a free rank filtration if Fj/Fj+1 is a finite sum of j-free modules.

We will write Fj/Fj+1 as
⊕

V⊂W,dimV=j

⊕l
k=0 ΣdV,k(PV,k⊗NV,k), and we denote ΣdV,kPV,k⊗

NV,k as MV,k. We will denote the map R −→ PV,k as φV,k, but whenever it is possible

to do so without confusion we will omit the k in the subscript. We regard the direct sum

decomposition of Fj/Fj+1 as part of the data of a free rank filtration; the same j-dimensional

subspace of W can occur more than once in this direct sum decomposition.

Definition 2.1.3. In the future we will want to add the condition that the kernels of the

φV : R −→ PV are distinct; we will call a free rank filtration with this extra property minimal.
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Lemma 2.1.4. If an R-module L has a free rank filtration, then the Krull dimension of

L/Fs is less than s. If R is in addition connected, and Fs+1 6= Fs, then depthFs ≥ s.

Remark 2.1.5. This is an analog of Quillen’s theorem on dimension and the Duflot bound

for depth, and we will later use this theorem to derive these theorems in group cohomology.

Proof. The proofs of both statements follow from examining induced filtrations on L/Fs and

Fs.

For the first statement, consider the filtration Fs/Fs ⊂ Fs−1/Fs ⊂ . . . F0/Fs = L/Fs. The

subquotients in this filtration are Fs−1/Fs, Fs−2/Fs−1,

. . . , F0/F1. The Krull dimension of Fs/Fs+1 is less than or equal to s (and in fact equal to

i unless Fs = Fs+1 and Fs/Fs+1 = 0), so as dimL/Fs = maxk≤s dimFk−1/Fk, the result for

L/Fs follows.

For the second statement, we consider the filtration of Fs: Fi ⊂ Fi−1 ⊂ · · · ⊂ Fs. The

subquotients of the filtration are Fi−1/Fi, . . . , Fs/Fs+1. The subquotient Fi/Fi+1 has depth

i, so as the depth of a filtered module must be greater than or equal to the minimum depth

of the subquotients, the depth must be greater than or equal to s. The assumption that R

is connected is just because it is traditional to only define depth in the context of modules

over local rings.

Corollary 2.1.6. If R is connected and L has a free rank filtration, then the depth of L is

greater than or equal to the smallest k such that Fk+1 6= Fk.

Proof. This follows from Lemma 2.1.4, because for such a k, Fk = F0 = R.

Definition 2.1.7. A prime p of an algebra R with a free rank filtration is called toral if it

is the kernel of one of the maps φ : R −→ PV appearing in the free rank filtration.

Theorem 2.1.8. If L has a free rank filtration, then every element of AssR L is toral.
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Proof. We have that AssR L ⊂
⋃
V,k AssRMV,k, so it suffices to prove that each element of

AssRMV is toral. The map AssMV
MV −→ AssRMV is surjective.

But MV is a domain tensored with a finite dimensional (as an Fp-vector space) algebra,

and any such algebra has a unique associated prime. So the only associated prime of MV as

a module over itself is the kernel of the map MV −→ PV , and we have our result.

Theorem 2.1.9. If R is in addition a connected PW algebra and L has a free rank filtration,

then there is a cochain complex DL where

DLj =
⊕

V⊂W,dimV=j

l⊕
k=0

Σ−σj(ΣdV,k(P ∗V,k ⊗NV,k)),

where σj = j when the characteristic is 2 and σj = 2j when the characteristic is odd,

and (−)∗ denotes the graded linear dual, and this cochain complex has the property that

H i(DL) = Hi(L), the ith local cohomology of L as an R module with respect to the maximal

homogeneous ideal m of positive degree elements.

We call this chain complex the Duflot complex of L, and this complex is functorial for

module maps preserving the filtration.

Remark 2.1.10. In other words, the ith term of the Duflot complex is a sum of shifts of

modules of the form of the dual of polynomial ring in i variables, tensored with a bounded

module.

Proof. We have a diagram:
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L

Fi−1/Fi L/Fi

...

F1/F2 L/F2

F0/F1 L/F1

0 L/F0 = 0

Here, going to the right and down is a short exact sequence. All maps are maps of

R-modules, so we can apply the local cohomology functor to get an exact couple:

H∗L

H∗Fi−1/Fi H∗L/Fi

...

H∗F1/F2 H∗L/F2

H∗F0/F1 H∗L/F1

0 H∗L/F0 = 0

Here the dotted maps have cohomological degree 1, and are the boundary maps in the

local cohomology long exact sequence. This exact couple gives a spectral sequence with

Ep,q
1 = Hp+qFp/Fp+1 converging to H∗L.

However, Fp/Fp+1 =
⊕

V⊂W,dimV=p

⊕l
k=0 ΣdV,k(PV,k ⊗NV,k), so Hp+qFp/Fp+1 is a sum of

modules of the form Hp+q(ΣdV,kPV ⊗NV ) where dimV = p, which we now compute.
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We recall that the independence theorem for local cohomology, A.0.4, tells us that we

can compute the local cohomology of PV ⊗NV either over R or over PV (this uses the fact

that R −→ PV is finite, that these are connected rings, and that local cohomology is radical

invariant).

But by A.0.5 H∗(PV ⊗NV ) = H∗PV ⊗H∗NV .

So by A.0.6, our spectral sequence collapses to the bottom row at the E1 page, and we

have our result.

Functoriality follows from a map of filtered modules inducing a map on the exact couples

giving the spectral sequence.

Definition 2.1.11. For R a local graded ring and L a module over R, let aiL = supj{Hi,jL 6=

0}. Then recall that the Castelnuovo-Mumford regularity of L, or regL, is supi{aiL+ i}.

Corollary 2.1.12. Let t(N) denote the top nonzero degree of a bounded module N . If L

satisfies the hypotheses of the previous theorem, then regL ≤ max{t(NV,k) + dV,k} when

p = 2, and regL ≤ max{t(NV ) + dV,k − rank(V )} when p 6= 2.

Proof. This comes from examining the Duflot chain complex. Under the hypotheses of the

theorem DLi,j is zero for j > −σi + max{t(NV,k) + dV,k}, giving the result.

Finally, we remark that this cochain complex is perhaps better understood via its dual.

For a connected PW algebra R, let d denote the Matlis duality functor. In our setting this

coincides with Homk(−, k), see [BS13] exercise 14.4.2.

Theorem 2.1.13. For R a connected PW algebra and L a module with a free rank filtration,

taking the Matlis dual of DL gives a chain complex with

d(DLj) =
⊕

V⊂W,dimV=j

l⊕
k=0

Σσj(Σ−dV,kPV,k ⊗N∗V,k),

and the homology of this chain complex is the Matlis dual of H∗L.

In other words, the ith term of the dual chain complex is a sum of shifts of polynomial

rings tensored with bounded modules.
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2.2 Modules with a stratified free rank filtration

2.2.1 Preliminary definitions and motivation from topology

In the application we are focused on, the filtration on H∗SM will be related to the fixed points

of subgroups of S. In fact, these submanifolds refine the filtration and clarify how we can

understand H∗SM by studying the different H∗SY , for Y a component of the fixed points of a

subgroup of S. In this section we give an algebraic description of how a free rank filtration

can be refined to a filtration by a poset.

First, we describe some of the algebraic structure present when considering embedded

manifolds along with their Gysin and restriction maps.

Definition 2.2.1. We say that a PW -algebra T is embedded in R with codimension dT if

there is a map of PW algebras R −→ T and a map of R-modules ΣdTT −→ R, so that the

composition ΣdT −→ R −→ T is a map of T modules. We call the map i∗ : ΣdTT −→ R the

pushforward, and the map i∗ : R −→ T restriction. We define the Euler class of T , or eT ,

to be i∗i∗1. We will also refer to i∗ as tr or transfer or also as the Gysin map, and to i∗ as

restriciton, res.

Note that if T is embedded in R, the composition of pushforward followed by restriction

is multiplication by eT .

The terminology comes from topology, if X −→ Y is an embedding of smooth manifolds

where X has codimension d, then H∗X is embedded in H∗Y with codimension d. This is

also true equivariantly.

We are only interested in the case of embedded PW -algebra in the case that the Euler

class is not a zero divisor; we give a name to this class of algebras.

Definition 2.2.2. If T is embedded in R and eT is a nonzero divisor, then we say that T is

fixed in R.

The terminology comes from equivariant topology, if M is a smooth S-manifold, for S
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a p-torus, and Y is a connected component of the fixed point set of a sub-torus of S, then

H∗SY is fixed in H∗SM .

Note that if T is fixed in R, then the pushforward ΣdTT −→ R is injective.

2.2.2 Filtrations by posets

The free rank filtrations that occur in topology have refinements to filtrations by posets.

Here we discuss some features of the posets we are interested in.

Let P be a poset weakly coranked by the natural numbers, i.e. equipped with a map of

posets r : P −→ Nop.

Given such a poset, there are a few related posets: P≥j is the subposet of elements of

rank greater than or equal to j, and P<Y for Y ∈ P is the subposet of elements less than Y ,

and similary P≤Y , P>j, etc. We’ll use Pj for the set of elements of rank j.

A filtration of a module L by such a poset P is a submodule FX(L) (or just FX if L is

understood) for each X ∈ P , and where if X ≤ Y , FX ⊂ FY , and so that
∑

X∈P FX = L.

We want to think of such a filtration as a functor from P to the category of R-modules

N equipped with an injection N −→ L (where L is the module being filtered), so from now

on we write F (X) for FXL.

We will continually be referring to the lowest subquotient of F (X) in the filtration on

F (X) by P≤X , so if r(X) = j, let grjF (X) = F (X)/
∑

Y ∈P<X
F (Y ).

Given a module filtered by P , there is an associated filtration by N, where Fj =
∑

X∈P≥j
F (X).

Definition 2.2.3. The filtration ofM by P is called good if for all j the map⊕Y ∈Pj
grjF (Y ) −→

Fj/Fj+1 is an isomorphism.

All the filtrations we are interested in are good, so the associated graded can be computed

one element of the poset at a time. The point is that a filtration by a weakly coranked poset

gives a filtration by N, so there are two associated graded: one indexed by N and one indexed

by the poset. When the filtration is good, these associated gradeds agree.
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Remark 2.2.4. For a trivial example where the filtration is not good, consider a filtration on

Z by the poset a ←− b −→ c, where b has rank 1 and a, c have rank 0, and filter by f(b) = 0

and f(a) = f(c) = Z. Then the associated filtration by N just has F0 = Z and F1 = 0, and

we see that the filtration is not good, since f(a)/f(b)⊕ f(c)/f(b) = Z⊕ Z, which of course

is not F0/F1.

There is a potential for confusion between the filtration by P and the induced filtration

by N, so we will use letters like X, Y for elements of P and i, j, l for natural numbers. We

will use capital letters for elements of P and natural numbers will always be lower case.

Note that if the filtration of L by P is good, then for each X ∈ P , F (X) has a good

filtration by P≤X . The fact that there is a filtration is automatic; to see that it is good

consider the following commutative diagram.⊕
Y ∈Pj

grjF (Y )
⊕

Z∈(P≤X)j
grjF (Z)

Fj/Fj+1L Fj/Fj+1F (X)

The right hand arrow is always surjective (the map that is required to be an isomorphism

in a good filtration is always surjective), so because the left hand arrow is injective, the

righthand arrow must be injective also, and therefore an isomorphism.

2.2.3 Stratified rank filtrations

Definition 2.2.5. An R-module L has a free rank filtration stratified by a weakly coranked

finite poset P if there is a good filtration of L by P such that for all j each grjF (Y ) is j-free.

Note that the induced filtration by N of such a stratified free rank filtration is a free rank

filtration, where the decomposition of Fj/Fj+1 into a sum of j-free modules is induced by

Fj/Fj+1 = ⊕Y ∈Pj
grjF (Y ). Also note that for each Y ∈ P , F (Y ) has a stratified free rank

filtration by P≤Y . The condition that our poset is finite ensures that our associated filtration

by N is finite.
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Definition 2.2.6. If L is an ideal of R, a free rank filtration stratified by a finite poset P is

called a topological filtration stratified by P if the following are satisfied:

1. For each Y ∈ P , F (Y ) = i∗(Σ
dTT ) for an embedded, fixed T . We use the same symbol

for T ∈ P and the embedded T corresponding to F (T ).

2. For T ∈ P , the filtration on R induces on F (T ) = ΣdTT a free rank filtration (of

T -modules) stratified by P≤T on T , and the structure maps T −→ PV for the various

j-free modules occurring as subquotients give us a commuting diagram:

R

T PV

.

3. For all U < T in P with corresponding embedded U and T in R, U is also embedded

in T , and the composition of the two transfers ΣdT,R(ΣdU,TU −→ T ) −→ R is the transfer

of ΣdU,RU −→ R.

In the third point, the notation dU,T refers to the codimension of U in T . Condition three

implies that the codimension of U in T plus the codimension of T in R is the codimension

of U in R. Note that if L ⊂ R has a free rank filtration that is topologically stratified by

P , then each embedded T appearing in the stratification for L has a free rank filtration

topologically stratified by P≤T .

Here we record some useful properties of such filtrations.

Proposition 2.2.7. If L has a topological filtration stratified by P , then the following hold

for all T ∈ P . We use the same symbol F for the functor appearing in the filtration of L by

P and for the functor appearing in the filtration of the embedded T by P≤T .

1. For j = r(T ) we have that FjT = F0T = T , so Fl/Fl+1T = 0 for l < j.

2. Each Fl/Fl+1Σ
dTT −→ Fl/Fl+1L is the inclusion of direct summands.
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3. For each MV appearing in the decomposition of Fj/Fj+1L as j-free modules (so dimV =

j), there is a unique T ∈ Pj such that grjF (T ) maps isomorphically onto MV .

Proof. 1. Recall that FlT =
∑

X∈(P≤T )≥l
F (X). So if l ≤ j, then T occurs in this sum and

FlT = T .

2. For T ∈ P , we consider Fl/Fl+1T , which because the original filtration is good, is

⊕U∈(P≤y)lgrlF (U). But each such U is also embedded in R, so on each component

of Fl/Fl+1T our map is part of the composition ΣdY (Fl/Fl+1Σ
dU,Y U −→ Fl/Fl+1Y ) −→

Fl/Fl+1L, giving our result.

3. This follows from the fact that the filtration is good.

Note that the stratification condition implies that the coproduct of all the ΣdTT surjects

onto L, because this map is surjective on associated gradeds. Actually, in many examples L =

R, and R itself will be one of the T s appearing in the topological stratification, corresponding

to the maximal element of P .

However even in this situation when R is one of the T s, we can restrict to those elements

of the poset that have rank equal to l, then by the definition of the associated filtration on

N the coproduct of all of these (with the appropriate shifts according to the codimension)

surjects onto Fl(R). In fact, we can look at the subposet P≥j, and we can compute Fj as a

colimit over this poset.

Lemma 2.2.8. Suppose L has a topological filtration stratified by P and that Y, Z are em-

bedded rings appearing in the stratification. Then, if x is in the image of the transfer from Y

and the transfer from Z, there are Wts embedded in R, Y and Z as part of each stratification,

and wt ∈ Wt so that x = ΣttrWtwt, and so that for each t there is a commuting diagram:

ΣdWtWt ΣdY Y L

ΣdZZ

.
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Note: The subscript on Wt is just an indexing, it has nothing to do with the various

filtrations.

Proof. The proof is by downward induction on the filtration degree. First, consider the

highest degree filtration that is potentially nonzero, FiL, so suppose that x ∈ FiL is in

the image of transfer from some Y and from some Z, so there exist y ∈ ΣdY Y, z ∈ ΣdZZ

with trY (y) = trZ(z) = x. Then x ∈ Fi/Fi+1L = FiL is equal to x1 + x2 + . . . xk, where

xj ∈ griF (Wj),. Similarly, y = y1 + · · ·+ yk, z = z1 + · · ·+ zk, and each yj, zj maps to xj.

Then, because Y and Z are stratified, for each j there is a wj ∈ ΣdWjWj so that Wj is

embedded in Y and Z and so that under the transfer from Wj to Y , wj 7→ yj, and under

the transfer from Wj to Z, wj 7→ zj. That there is some Wj with this property for Y and

Z separately follows because Y and Z are stratified, but there is a common Wj with this

property because there is a unique Wj appearing in the stratification for R mapping to the

summand supporting xj. This also explains why the following diagram commutes:

ΣdWjWj ΣdY Y L

ΣdZZ

.

Now, suppose the result is true for x ∈ FlL with l > j, and consider trY (y) = trZ(z) = x,

where x ∈ FjL− Fj+1L. Then x ∈ FjL/Fj+1L is equal to x1 + · · ·+ xk, where xl ∈ grjYVj,l .

By similar logic as in the preceding paragraphs, the images of y, z in FjY/Fj+1Y , FjZ/Fj+1Z

can be written as a sum y = y1 + · · ·+ yk, z = z1 + · · ·+ zk, where yl, zl 7→ xl. As X, Y, Z are

compatibly stratified, for each l there is some wl ∈ ΣdWlWl where Wl is embedded in Y, Z,R

so that the transfer of wl hits yl, zl, xl and so that the following diagram commutes:

ΣdWlWl ΣdY Y L

ΣdZZ

.

But then trY (y −
∑

l trWl
wl) = trZ(y −

∑
l trWl

wl) = x −
∑

l trWl
. Additionally, x −∑

l trWl
∈ Fj+1L, where our result is already assumed to be true, so we are done by induction.
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Proposition 2.2.9. If L has a topological filtration stratified by P , then lim−→T∈P≥j
F (T ) =

FjL.

Proof. We show that FjL satisfies the required universal property. First, there are compatible

maps F (T ) −→ FjL for T ∈ P≥j. Now, suppose that there are compatible maps F (T ) −→ C,

where C is some other R-module. We need to fill in the dashed arrow in the diagram:

F (T ) FjL

C

trT

jT .

Because each map F (T ) −→ FjL is injective and because
⊕

T∈P≥j
F (T ) −→ FjL is surjective

by the definition of our filtration by N on L, there is at most one map from FjL −→ C making

the diagram commute. We need to show that this map is well defined.

In other words, if trT (t) = trU(u), we need to show that jT (t) = jU(u). But this follows

from Lemma 2.2.8, because we will have a commuting diagram

F (Wj)

F (T ) L F (U)

C

i1

i2

jT

jU

and wj ∈ F (Wj) so that t =
∑
i1(wj), u =

∑
i2(uj). Then we see that jT (t) = jU(u) =∑

jWj
(wj), which completes the proof.

There is one final very strong condition we can add to a free rank filtration topologically

stratified by P .

Definition 2.2.10. An R-module with a topological filtration stratified by P is called Duflot

if for all T ∈ P , the corresponding embedded T is isomorphic as PW algebras to PV ⊗ T ′

where T ′ is a PW algebra, and where dimV = r(T ), and T/
∑

X∈P<T
X is r(T )-free and a

suspension of a module of the form PV ⊗N , and T −→ T/ΣX∈P<T
X ∼= Σd(PV ⊗N) is induced

by a linear map T ′ −→ ΣdN .

For X ∈ P as mentioned in 2.2.6 we just write X for F (X), so T/
∑

X∈P<T
X means

F (T )/
∑

X∈P<T
F (X).
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We will refer to “Duflot algebras” and “Duflot modules” in the sequel: R is a Duflot

algebra when R itself has the structure of a Duflot module.

2.3 An example

We will see how to extract examples of Duflot algebras from any compact Lie group G and

representation G ↪→ U(n) in Chapter 3. Here we work out one example that is not completely

trivial, but is simple enough that everything can be written down very explicitly.

The example comes from the C2-equivariant cohomology of S1 with the reflection action.

This C2-manifold is described as the unit sphere in the sum of the trivial representation and

the sign representation, or it can be given an explicit C2-CW complex structure where there

are two zero cells both with isotropy C2, which we call l and r, and a single one cell with

isotropy e. The attaching map C2×S0 −→ {l, r} is given by (e,−1) 7→ l and (e, 1) 7→ r. Here

we are thinking of S0 as {±1}.

We have that H∗C2
S1 = F2[x, y]/(xy). We define a filtration on H∗C2

S1 by F2 = 0,

F1 = H>0
C2
S1 and F0 = H∗C2

S1. We can compute directly that this is a free rank filtration:

F1/F2 = F1
∼= Σ1F2[t1]⊕Σ1F2[t2] where in the first summand we map 1 to x and the second

we map 1 to y, and F0/F1 is just F2.

In the Duflot complex DR for R = H∗C2
S1, we have that DR1 is F2 concentrated in

degree 0, and DR2 by the computation A.0.6 is (F2[t1])
∗ ⊕ (F2[t2])

∗ (the shift down from

A.0.6 and the shift up in F1 cancel out). If we label the generators in degree 0 for the

two summands of DR1 e1 and e2, we have that the single differential in the Duflot complex

takes the generator for DR0 to e1 + e2. Consequently, upon taking cohomology we get that

H∗(H∗C2
S1) = (HC2S

1)∗.

We can read off that the regularity, depth, and dimension are all one. Note that this is

consistent with Theorem 2.1.12: for each layer in the free rank filtration the bounded module

NV is just F2, and the shift dV is 0 for the rank 0 part and 1 for each other the rank 1 pieces.
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We can also observe that this filtration is topologically stratified by the following poset.

S1

l r

The rank of S1 is 0 and the rank of l and r are 1.

We define F (S1) = H∗C2
S1, F (l) = (x), and F (r) = (y). Note that F (l) and F (r) are the

image of the Gysin map induced by l ↪→ S1 and r ↪→ S1. Note that F (l) and F (r) are each

embedded; we have two different embeddings Σ1F2[t] −→ H∗C2
S1 −→ F2[t]

This gives H∗C2
S1 the structure of a Duflot algebra.

2.4 Results on associated primes and detection for Duflot modules

Theorem 2.4.1. If L has a minimal topological filtration stratified by P , then φV,k represents

an associated prime in AssR L if and only if φV,k represents an associated prime in the

embedded T corresponding to φV , as a module over itself.

Proof. Let us unpack what this means. Here we suppress the subscripts on our vector spaces

for clarity. Let φV : R −→ PV be one of the structure maps appearing the stratified free

rank filtration for L. Associated to this φV , there is a rankV -free MV appearing as a direct

summand of FrankV /FrankV+1L. By the stratification hypothesis there is a unique T ∈ P

whose highest filtered subquotient hits MV . So, we have a triangle

R PV

T

φV

φV . The

vertical map is the restriction map, and the maps going to the right are the two different

structure maps, both of which we denote by φV .

First, note that if φV represents an associated prime in AssT T , then considering the

surjective map AssT T −→ AssR T , kerφV : T −→ PV is also an associated prime of AssR T .

But then it is also an associated prime of AssR ΣdTT , and because there is an injective map

ΣdTT −→ L, it is an associated prime of AssR L.
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Conversely, we consider the short exact sequence ΣdTT −→ L −→ coker. Any associated

prime of L as an R module must be in AssR ΣdTT or AssR coker. We see that coker has a

free rank filtration induced from those on T and L, and moreover φV doesn’t appear as one

of the structure maps in the free rank filtration for coker, as the filtered subquotients for

coker are just those for L modulo those for ΣdTT , and our filtration is minimal. So, if φV

represents an associated prime in R, it must represent one in T as well.

In the above proof we crucially use the minimality of the free rank filtration, which tells

us that we can check every potential associated prime on a unique T . However, we don’t use

the full strength of our embedding hypothesis: we just use that the transfer is injective, not

that the composition of transfer and restriction is a map of T -modules.

Also note that under the hypotheses of the above theorem, by Lemma 2.1.4 the depth of

T is greater than or equal to dimV = i, the lowest nonzero filtration degree. But kerφV :

T −→ PV is i dimensional, so if kerφV is associated in T , it is the smallest dimensional

associated prime in T and depthT = i, as the dimension of an associated prime cannot be

less than the depth.

Under the additional assumption that the filtration is Duflot, we can conclude the con-

verse of this statement.

Theorem 2.4.2. If L is a Duflot module, then a φV occurring in the filtration represents an

associated prime in R if and only if the embedded T corresponding to φV has depth equal to

dimV .

Proof. We saw above that φV represents an associated prime in L if and only if φV represents

an associated prime in T , and that if φV represented an associated prime in T , then the depth

of T was dimV .

For the converse, if depthT = dimV , then as T = PV ⊗ T ′, by the Künneth theorem

for local cohomology the depth of T ′ as an module over itself must be zero, so there is some

element x ∈ T ′ annihilated by all of T , therefor annT 1⊗ x = ker(T −→ PV ) is in AssT T .
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Proposition 2.4.3. Suppose R is Duflot algebra (so it has the required filtration as a module

over itself). If depthR = d, then R

∏
resT−−−→

∏
T∈Pd

T is injective.

We say that R is detected on such T

Proof. Suppose for a contradiction that x is a nonzero element in the kernel of R

∏
resT−−−→∏

T∈Pd
T , so x restricts to zero on each T . We claim that x is annihilated by Fd. To see this,

it is enough to show that x is annihilated by the image of each ΣdTT with r(T ) = d. So,

suppose i∗(t) ∈ image(ΣdTT −→ R), and consider xi∗(t). But, because i∗ is a map of modules,

this is i∗i
∗xt, and therefore 0 since i∗(x) = 0.

Therefore x is annihilated by Fd, so Fd consists entirely of zero divisors, and is conse-

quently contained in the union of all the associated primes of R, and therefore in one of

the associated primes of R by prime avoidance, so we have Fd ⊂ p, where p is associated.

But by 2.1.4 dimR/Fd < d. Therefore dimR/p < d, and the depth of R is less than d, a

contradiction.

Here we are using the fact that the depth of a ring gives a lower bound for the dimension

of an associated prime.

2.5 K Duflot modules and maps of Duflot modules

Sometimes, given an extension 1 −→ H −→ G −→ K −→ 1 and a representation G ↪→ U(n),

the associated bundle K −→ H\U(n) −→ G\U(n) gives a close relationship between the poset

controlling H∗SH\U(n) and H∗SG\U(n), perhaps after restricting to some higher level of

the filtrations. Here we describe the algebraic structure this puts on the associated Duflot

filtrations.

The main point of this section is Theorem 2.5.16. In order to make sense of this theorem

we have to study how the map FiH
∗
SG\U(n) −→ FiH

∗
SH\U(n) mentioned above is controlled

by a map between the stratifying posets and a natural transformation between the functors

appearing in the filtration, and we need to similarly understand how the K-module structure
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on H∗SG\U(n) is determined by an action of K on the stratifying poset that is compatible

with the filtering functor.

Before we do this, we note that most of the pleasant algebraic properties of a Duflot

algebra R are shared by each FiR.

Lemma 2.5.1. If R is a PW -algebra that is Duflot as a module over itself with filtration

stratified by P , then for all i:

1. FiR is a Duflot module, with filtering poset P≥i.

2. lim−→X∈P≥i
F (X) = FiR

3. The map FiR −→ R induces an isomorphism on Duflot complexes in degree greater than

or equal to i, and consequently an isomorphism on local cohomology in degree greater

than i and a surjection in degree i.

In this section, we will be focusing on these FiR.

Definition 2.5.2. We will write a Duflot module as (L, P, F ), where L is the module, P is

the filtering poset, and F is the functor P −→ PW -mod realizing the filtration.

Note: The functor F actually takes values in R-mod. However, we will want to consider

maps between Duflot modules that come from different Duflot algebras, so we forget to

PW -mod.

2.5.1 Morphisms of Duflot modules

Definition 2.5.3. A map P
π−→ Q of posets is a covering map if over every chain C ⊂ Q,

there is a commutative diagram of posets
π−1C C × n

C

∼

.

By n we mean the poset with n objects and only identity arrows, in other words C × n

is just n copies of C.



33

Definition 2.5.4. A morphism of Duflot modules (L, P, F )
π−→ (N,Q,G) consists of the

following data:

1. A covering map of posets π : P −→ Q

2. A natural transformation Gπ −→ F .

Lemma 2.5.5. A morphism π : (L, P, F ) −→ (N,Q,G) induces a PW -module map π∗ : N −→

L which is uniquely characterized by: for all Y ∈ Q, the diagram:

G(Y ) N

∏
X∈π−1Y F (X) L

commutes.

Proof. We show how this information defines a map, and then uniqueness follows from the

universal property of colimits.

Recall that L = lim−→X∈P F (X) and that N = lim−→Y ∈QG(Y ). We define compatible maps

G(Y ) −→ L by G(Y ) −→
∏

X∈π−1Y F (X) −→ L, where the left hand arrow is the product of the

maps G(π(X)) −→ F (X) appearing in the natural transformation, and the right hand arrow

is the sum of the inclusions.

To see that this gives a map from N we must show that if we have a map Y −→ Y ′ in

Q, then the diagram:

G(Y ) G(Y ′)

∏
X∈π−1Y F (X)

∏
X′∈π−1Y ′ F (X ′)

N

commutes, and this follows

because local triviality ensures the existence of the dotted arrow.

Proposition 2.5.6. If π : (L, P, F ) −→ (N,Q,G) be a morphism of Duflot modules, then the

map on associated gradeds is a follows. Recall that Fj/Fj+1L = ⊕X∈Pj
grjF (X), and that

Fj/Fj+1N = ⊕W∈Qj
grjG(W ). The map grjG(W ) −→ grjF (X) is the one induced by the map

G(W ) −→ F (X) if π(X) = W (the map appearing in the natural transformation), and zero

if W 6= π(X)
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Proof. To determine grjG(W ) −→ L, we must study the composition:

L

G(W ) N

.

This map factors as:

∏
X∈π−1W F (X) L

G(W ) N

, so the map is as claimed when π(X) = W .

For the other case, because the map factors as in the above diagram, if x ∈ image(G(W ))∩

F (Y ) with π∗(Y ) 6= W , then x is in filtration degree greater than j, so we are done.

2.5.2 K-Duflot modules

Definition 2.5.7. For K a finite group, a K-Duflot module is a Duflot module L with a left

action of K on P by poset maps along with for all k ∈ K natural isomorphisms Fk ⇒ F

so that for all X ∈ P , the induced map Fk(X) −→ F (X) is an isomorphism satisfying the

following axioms:

1. F ◦ id⇒ F is the identify

2. The induced natural isomorphisms Fhk ⇒ Fk satisfy associativity, in the sense that

for all l, h, k ∈ K,

Fk(hl) Fhl

F (kh)l F l

commutes.

Here the left vertical arrow is the identity, the functors k(hl) and (kh)l are equal as

functors on P .

Note: In addition to the natural isomorphism Fk ⇒ F , we have a natural isomorphism

F ⇒ Fk, obtained from k−1, which we will use.

To put this more explicitly, we have an action of K on P , and for a morphism X −→ Y

in P , we have a diagram:

F (X) F (kX)

F (Y ) F (kY )

k∗

k∗
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Lemma 2.5.8. A K-Duflot module L has a PW -linear right K action, uniquely characterized

by: for all k ∈ K, the diagram:

F (X) L

F (k−1X) L

k∗ k∗ commutes.

Proof. We show how this data defines an action on L, and then uniqueness follows from the

universal property of colimits.

For k ∈ K, we define a map k∗ : L −→ L as follows. For all X ∈ P , we need a map

F (X) −→ L commuting with the maps F (X) −→ F (Y ) defining our colimit. For X ∈ P ,

we define F (X) −→ L by the map F (X)
k∗−→ F (k−1X) −→ L, where the second map is the

natural map F (k−1X) −→ L. That this defines a system of compatible maps follows from the

commutativty of the diagram:

F (X) F (Y )

F (k−1X) F (k−1Y )

k∗ k∗ . That it defines a group action

follows from the conditions on the natural transformations, namely that multiplication by

the identity acts as the identify and that the composition F (hkx)
h∗−→ F (kx)

k∗−→ F (x) is the

composition F ((hk)x)
hk∗−−→ F (x), i.e. that (hk)∗ = k∗h∗.

Proposition 2.5.9. The action of K on L induces an action of K on the associated graded:

on each summand the map k∗ : grjF (kX) −→ grjF (X) is the isomorphism induced by the

isomorphism F (kX) −→ F (X), and the image of grjF (kX) in the other summands is zero.

Proof. This follows because the action by k on F (kX) fits into the diagram

F (X) L

F (kX) L

k∗ k∗ .

This shows that the map is as claimed on these summands, and if k∗(F (kX)) intersects any

other F (Y ) it is in higher filtration degree, so is in
∑

Z<Y F (Z).

Definition 2.5.10. For K-Duflot modules L,N , a morphism π : (L, P, F ) −→ (N,Q,G) is

equivariant if:

1. π∗ : P −→ Q is equivariant
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2. For all k ∈ K, there is a commuting diagram

Gπ F

Gkπ Fk

. In this diagram,

the vertical natural transformation and the upper horizontal one are stipulated in the

definitions of a K-Duflot module and a morphism, and the bottom one is induced from

these.

Lemma 2.5.11. The unique map of 2.5.5 induced by an equivariant morphism is an equiv-

ariant map π∗ : N −→M .

Proof. This follows from the commutativity of diagrams of the form:

G(Y )
∏

Y ∈π−1Y F (X)

G(k−1Y )
∏

Z∈π−1k−1Y F (Z)

k∗ k∗ , because the lower right hand object is also
∏

X∈π−1Y F (k−1X).

Definition 2.5.12. A covering map of posets P −→ Q is a principal K-bundle if K =

Aut(P −→ Q) acts transitively on all fibers, or equivalently if P −→ Q fits into a triangle

P

P/K Q

where the bottom map is an isomorphism.

By AutP −→ Q we mean the group of poset isomorphisms P −→ P fitting into triangles:

P P

Q

.

Definition 2.5.13. If π : (L, P, F ) −→ (N,Q,G) is a morphism where all the mapsQ(π(X)) −→

F (X) are isomorphims, π : P −→ Q is a principal K-bundle, L is K-Duflot with respect to

the K action on P , N is K-equivariant with trivial action, and π is an equivariant map with

respect to these actions, then we say that π : (L, P, F ) −→ (N,Q,G) is a K-bundle.

Proposition 2.5.14. If π : (L, P, F ) −→ (N,Q,G) is a K-bundle, then π∗ : N −→ LK is an

injection.
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Proof. First, because the map is equivariant and because the action on N is trivial, π∗ must

map into the invariants. Then to check injectivity it is enough to check on associated gradeds,

where the result is clear because the maps Q(π(X)) −→ F (X) are all isomorphisms.

Proposition 2.5.15. If π : (L, P, F ) −→ (N,Q,G) is a K-bundle, then DN∗ −→ (DL∗)K is

an isomorphism, and each DLi is a sum of free K-modules.

Proof. That each DLi is a sum of free modules comes from the computation of the action

of K on the subquotients of the filtration, because the action on the poset P is free, and

because the summands of DLi are indexed on Pi.

For the map DN∗ −→ (DL∗)K , this follows because on associated gradeds, Fj/Fj+1N −→

Fj/Fj+1L
K is an isomorphism. This is so because over one summand of Fj/Fj+1N , the map

is the diagonal map grjG(X) −→
∑

Y ∈π−1X(grjF (Y )) ∼= indK1 grjF (X).

Theorem 2.5.16. If π : (L, P, F ) −→ (N,Q,G) is a K-bundle, then there is a spectral

sequence Hp(K,Hq(L))⇒ Hp+qN .

Proof. This is the one of the two hypercohomology spectral sequences associated to the

complex of K modules DL∗. One spectral sequence has the E2 term listed in the state-

ment of the theorem, and the other spectral sequence has E2-term Hp+q(Hp(K,DL∗)). But

Hp(K,DL∗) is zero above degree 1 and is DN∗ in degree 0, so the hypercohomology is H∗N

as claimed.
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Chapter 3

CONNECTIONS WITH EQUIVARIANT COHOMOLOGY

In this chapter we show that the algebraic structures studied in the previous chapter

are present in the S-equivariant cohomology rings of smooth manifolds, and we apply the

theorems of the previous chapter to deduce structural results in S-equivariant cohomology.

Recall that all cohomology with with Fp coefficients.

3.1 H∗SM has a Duflot free rank filtration

Now we show that this theory isn’t vacuous: H∗SM has a Duflot algebra structure, where S

is a p-torus and M is a smooth S-manifold. For applications to group cohomology, the most

interesting S-manifold is M = G\U(V ), where we have a representation G −→ U(V ) and S

is the maximal diagonal p-torus of U(V ) acting on the right of G\U(V ). This manifold has

two useful geometric properties:

1. For each subgroup A ⊂ S, each component Y of G\U(V )A is S-invariant.

2. For each subgroup A ⊂ S and component Y of G\U(V )A, the open submanifold of Y

consisting of those points that have isotropy exactly equal to A is connected.

We call S-manifolds satisfying these two properties S-connected. There is a straightforward

modification of the definition of a free rank filtration that applies to smooth S-manifolds

that aren’t S-connected, but it is more complicated to state so we don’t do so here.

In this section, fix a p-torus S and a smooth S-connected manifold M .

Lemma 3.1.1. For A < S and Y a component of MA, we have that Y is also S-connected.

Proof. This follows from the fact that a component of Y B is also a component of MB.
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Definition 3.1.2. Let M j
i = {x ∈M : i ≤ rankSx ≤ j}.

Proposition 3.1.3 (Duflot). Define a filtration of H∗SM-modules on H∗SM by Fj = kerH∗SM −→

H∗SM
j−1
0 . Then Fj/Fj+1 = ⊕{V⊂S:rankV=j} ⊕[Y ]∈π0(MV ) ΣdYH∗SY

j
j , where dY is the codimen-

sion of Y in M . A shorter way to write this is as Fj/Fj+1 = ⊕[M ′]∈π0Mj
j
ΣdYH∗SM

′, where Y

is the component of the fixed points of a rank j p-torus containing M ′.

Proof. Duflot’s original proof from [Duf83b] shows this, although it is not stated there in

this generality. Duflot states the result for p 6= 2 and only gives a filtration as vector spaces,

however her proof works verbatim to give the result here. A treatment is found on the section

on Symonds’ theorem in [Tot14].

Theorem 3.1.4. We have that H∗SM has a free rank filtration.

Proof. We use the notation as in Proposition 3.1.3.

This is essentially just a computation of each H∗SM
′. First, the points of M ′ have isotropy

of rank exactly equal to j, so there is a unique rank j p-torus V with M ′V = M ′. So, V

acts trivially on M ′, so H∗SM
′ = H∗V ⊗ H∗S/VM

′. But S/V acts freely on M ′, so this is

H∗V ⊗H∗M ′/(S/V ). But H∗V = S(V ∗) when p = 2 and is S(β(V ∗))⊗ Λ(V ∗) when p is odd.

Finally, we see that we have the diagram of S-spaces:

pt

M Y j
j

S/V

.
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Applying H∗S gives:

PS

H∗S

H∗SM H∗SY
j
j

H∗SS/V

PV

.

In this diagram, when p = 2 the top and bottom vertical arrows are just the identity.

This shows that each ΣdYH∗SY
j
j is j-free, so we are done.

To show how to refine this free rank filtration to get a Duflot free rank filtration, we first

observe that all the associated primes of H∗SM are toral in the sense of definition 2.1.7, and

also toral in the sense of being pulled back from the map H∗SM −→ H∗SS/V/
√

0 induced by a

map S/V −→M .

Lemma 3.1.5. Every associated prime of H∗SM is toral in the sense of 2.1.7, and toral

primes are exactly the primes that come from restricting to a p-torus.

Proof. That the associated primes are toral in the sense of 2.1.7 follows immediately from

2.1.8 once we know that H∗SM has a free rank filtration.

To see that this definition of toral coincides with restriction to a p-torus, in the diagram

above that shows that the Duflot filtration is a free rank filtration, observe that the map

H∗SM −→ PV is induced by S/V −→M .

Lemma 3.1.6. For Y a component of MA and for p 6= 2, the normal bundle of Y in M is

S-equivariantly orientable.

Proof. First we show that the normal bundle is orientable. Denote the total space of the

normal bundle by N , and consider the bundle N −→ Y as an A-vector bundle, i.e. restrict
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the action to A. Now A acts trivially on Y , and because Y is a component of MA, no

trivial representations of A appear in the isotypical decomposition of N −→ Y . Therefore,

since every irreducible real representation of A has a complex structure, N −→ Y is in fact a

complex vector bundle, and therefore orientable.

Now, in order to show that the normal bundle is S-equivariantly orientable, we need

to show that the S-action preserves a given orientation. For this, consider the bundle of

orientations O −→ Y of the bundle N −→ Y ; by previous discussion this is a trivial Z/2-

bundle. Now the action of S on O −→ Y gives a map S −→ Z/2 which is trivial if and only if

S preserves the orientation. But S is a p-group, so the result follows.

Proposition 3.1.7. Let Y be a component of MA. Then H∗SY is fixed in H∗SM .

Proof. To see that H∗SY is fixed in H∗SM , we need to show that the composition of pushfoward

and restriction ΣdYH∗SY −→ H∗SM −→ H∗SY is injective, and to show that this composition is

injective we just need to show that the equivariant Euler class of the normal bundle of Y

is a non-zerodivisor. We are using 3.1.6 to guarantee the existence of a pushforward. So,

suppose that the Euler class e is a zero divisor. Then it is contained in one of the associated

primes of H∗SY . These associated primes are all toral, so e must restrict to 0 under a map

S/B −→ Y . But Y is fixed by A, so the map S/B −→ Y fits in the diagram S/A −→ S/B −→ Y ,

so e must restrict to zero on S/A.

However, when the normal bundle is restricted to S/A, we have an A representation with

no trivial summands, so its Euler class is nonzero.

Proposition 3.1.8. For Y a component of MA, the map i∗ : ΣdYH∗SY −→ H∗SM induces a

map from the Duflot filtration of Y to the Duflot filtration of M , which induces an inclusion

from a suspension of the Duflot complex of Y to the Duflot complex of M .

Proof. To see that we have the induced map on Duflot filtrations, we use the naturality

and functoriality of the Gysin map. We have the following diagram, where each square is a

pullback square:
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Y i
i Y i

0 Y i−1
0

M i
i M i

0 M i−1
0

i1

j1 j2

i2

This induces the following commutative diagram, which is

one piece of the Duflot filtration. In the following diagram, the two left horizontal arrows

and the three slanted arrows are pushforwards, and the other maps are restrictions. We omit

the suspensions for clarity.

H∗SM
i
i H∗SM

i
0

H∗SY
i
i H∗SY

i
0 H∗SM

i−1
0

H∗SY
i−1
0

Note that H∗SY
i
i −→ H∗SM

i
i is the inclusion of a summand, since the map Y i

i −→M i
i is the

inclusion of a component. After applying local cohomology we get the following ladder:

· · · Hi(H∗SY
i
i ) Hi+1H∗S(Y i+1

i+1 ) · · ·

· · · Hi(H∗SM
i
i ) Hi+1H∗S(M i+1

i+1 ) · · ·

diY

diM

Here the vertical arrows are inclusions of summands, since local cohomology is an additive

functor.

Definition 3.1.9. Let Fix(M) be the weakly coranked poset whose elements are components

Y of MV , where V is some subtorus of S, and where Y rankV
rankV is non empty, and where the

morphisms are given by inclusions. The rank of Y is the rank of the largest p-torus that

fixes it.

There is a functor F : Fix(M) −→ H∗SM − mod sending Y to ΣdYH∗SY . We now show

that this refines the filtration from 3.1.4.

Lemma 3.1.10. The filtration on H∗SM by Fix(M) refines the filtration we have already

defined, i.e.
∑

Y ∈Fix(M)≥s
F (Y ) = FsH

∗
SM .
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Proof. Let Js =
∑

Y ∈Fix(M)≥s
F (Y ). First, we observe that Js ⊂ Fs: this is because for each

Y i∗ : H∗SY −→ H∗SM respects the Duflot filtration, and because s is the lowest possibly

nonzero term in the Duflot complex for Y , where Y is a connected component in the fixed

point set for a rank s p-torus.

The other inclusion is by downward induction on s. First, when s = dimH∗SM , then

FsH
∗
SM = Fs/Fs+1H

∗
SM , which by is Js.

So, suppose Fi+1 = Ji+1, and consider x ∈ Fi. By our description of Fi/Fi+1 from the

first part of Proposition 3.1.3, there is some y ∈ Ji+1 so that x and y are equal modulo Fi+1,

so we are done by induction.

Lemma 3.1.11. The filtration on H∗SM induced by Fix(M) is good.

Proof. We need to show that the map ⊕Y ∈Fix(M)jgrjF (Y ) −→ Fj/Fj+1H
∗
SM is an isomor-

phism. This follows from 3.1.8: Fj/Fj+1 has a direct sum decomposition indexed on Fix(M)j,

and the map F (Y ) −→ H∗SM for Y ∈ Fix(M)j induces an inclusion of the direct summand

corresponding to Y on Fj/Fj+1Y = grjF (Y ) −→ Fj/Fj+1H
∗
SM .

Proposition 3.1.12. The poset Fix(M)≥i puts a Duflot module structure on FiH
∗
SM .

Proof. We have seen in 3.1.11 that the filtration by Fix(M) is a stratified free rank filtration.

To see that it is topological, we use 3.1.7 and 3.1.8.

To see that it is minimal, we need to check that for each Y ∈ Fix(M) each H∗SM −→ H∗SY

has a distinct kernel. For Y ∈MA, we have the diagram:

H∗S

H∗SM H∗SY H∗SS/A

The maps H∗S −→ H∗SS/A = H∗A have distinct kernel for distinct A, so we only need to

show that if Y, Y ′ are different components of MA, then the restrictions to Y and to Y ′

have different kernels. However, this is immediate because Y and Y ′ are disjoints, so the

compostion ΣdYH∗SY −→ H∗SM −→ H∗SY
′ is zero, while ΣdYH∗SY −→ H∗SM −→ H∗SY is nonzero.

Finally, to see that it is Duflot, we use the computation that if Y is a component of MA,

then H∗SY
∼= H∗A ⊗H∗S/AY .
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3.2 Structural properties of H∗SM

Here we collect various algebraic properties of H∗SM that follow from H∗SM having a Duflot

algebra structure. We will use these in 4.1.

As in the previous section, here M is a smooth S-connected manifold.

Corollary 3.2.1 (Duflot [Duf81], Quillen [Qui71]). The depth of H∗SM is no less than the

largest rank of a subtorus of S that acts trivially on M , and the dimension is equal to the

largest rank of a subtorus of S that acts with fixed points on M .

Proof. This follows from 2.1.4. If we let d be the largest rank of a subtorus of S that acts

trivially on M and r the largest rank of a subtorus that acts with fixed points on M , then

FdH
∗
SM = H∗SM , and FrH

∗
SM is the smallest nonzero level of the filtration. Note that 2.1.4

only gives that the dimension of H∗SM is less than or equal to r, but by studying the dual

of the Duflot chain complex for H∗SM we conclude that HrH∗SM is nonzero.

Corollary 3.2.2 (Duflot [Duf83a]). Each associated prime of H∗SM is toral.

Proof. This is just Lemma 3.1.5.

Note: The proof we have given here is essentially the same as Duflot’s proof.

Corollary 3.2.3. There is a cochain complex DM with H i(DM) = Hi(H∗SM), and DM i =

⊕Y ∈Fix(M)iΣ
dYHi(H∗SY

i
i ).

Proof. This follows from 2.1.9.

Remark 3.2.4. This result should be compared with the compuation of the Atiyah-Bredon

complex in [AFP14]. There, Allday, Franz, and Puppe study a chain complex that occurs in

the rational torus equivariant cohomology of a manifold, which is analagous to the dual of

the Duflot chain complex. In unpublished work the authors extend some of their results to

the setting of p-torus equivariant cohomology.
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Corollary 3.2.5 (Symonds [Sym10]). The regularity of H∗SM is less than or equal to the

dimension of M .

Proof. This follows from 2.1.12. Each j-free summand appearing in the free rank filtration

has the form ΣdYHV ⊗H∗(Y j
j /S), and dY + dimY j

j /S = dimM , so the result is as claimed.

The distinction between p = 2 and p 6= 2 appearing in 2.1.12 does not change the result

because of the exterior terms in H∗V cancel out the extra j term.

Corollary 3.2.6 (Symonds [Sym10]). If ai(H
∗
SM) = −i + dimM , then there is a maximal

element of Fix(M) of rank i.

Proof. Consider the Duflot chain complex for H∗SM . The ith degree term of this chain

complex is a sum of modules of the form Hi(ΣdYH∗V ) ⊗ H∗(Y i
i /S), where V is a rank i

p-torus. The top nonzero degree of this will be dY + −i + HtopH∗(Y i
i /S). We have that

Y i
i /S is a manifold of dimension dimM − dY , so ai(H

∗
SM) = −i + dimM only if there is

some Y so that HdimY Y i
i /S is nonzero, which happens if and only if Y i

i /S is compact, and

consequently if and only if Y i
i is compact.

However, Y i
i = Y − ∪W∈Fix(M)>Y

W (recall that every point of Y has isotropy of rank

greater than or equal to i), so Y i
i is compact if and only if Y i

i = Y and Y is maximal in

Fix(M).

Remark 3.2.7. Symonds shows this without explicitly stating it in his proof of some special

cases of the strong regularity theorem in [Sym10].

Corollary 3.2.8. Take (Y,A) ∈ Fix(M), and let p be the kernel of H∗SM −→ H∗SY −→ H∗SS/A.

The following are equivalent.

1. p ∈ AssH∗SM H∗SM .

2. p ∈ AssH∗SY H
∗
SY .

3. The depth of H∗SY is rankY .
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Proof. This follows from 2.4.2.

Corollary 3.2.9 (Quillen [Qui71]). The minimal primes of H∗SM are in bijection with the

minimal elements of Fix(M), i.e. the pairs A, Y where A is a p-torus of Y and Y is a

component of Y A, and S/A acts freely on Y . The primes are obtained via the kernel of

H∗SM −→ H∗SY −→ H∗SS/A.

Proof. It is clear by our description of the associated primes that if the primes arising in this

manner are associated, then they are minimal among the associated primes and therefore

minimal primes. That there are distinct primes for each maximal element was noted in the

proof of 3.1.12.

To see that these primes are associated we use 3.2.8. Since S/A acts freely on H∗SY ,

H∗SY is isomorphic to H∗A ⊗ H∗Y/S, so the Duflot bound is sharp for H∗SY and the result

follows.

This proof is different than Quillen’s proof. In [Qui71] he obtains this as a consequence

of the F-isomorphism theorem.

The following is the S-equivariant cohomology version of a detection result of Carlson

[Car95]. We will use this later to derive Carlson’s detection result.

Corollary 3.2.10. If H∗SM has depth d, then H∗SM is detected by restricting to the H∗SY

for Y ∈ Fix(M)d.

Proof. This follows from 2.4.3.

Recall Carlson’s conjecture:

Conjecture 3.2.11 (Carlson). If H∗G has depth d, then H∗G has a d-dimensional associated

prime.

We will use the following to prove Carlson’s conjecture in the special case where G is a

compact Lie group with the Duflot bound sharp.
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Theorem 3.2.12. If the Duflot bound for H∗SM is sharp, then there is associated prime of

dimension the depth of G given by H∗SM −→ H∗SS/A, where A is the maximal p-torus that

acts trivially on M .

Proof. This follows from the third part of 3.2.8: MA = M , so M is a minimal element

of Fix(M) of rank dimA, so if depthH∗SM = dimA, then H∗SM −→ H∗SS/A represents an

associated prime.

Remark 3.2.13. It is worth stating that this proof does not essentially use the machinery of

a Duflot filtration, and this can be converted to an elementary proof of Carlson’s conjecture

when the Duflot bound for depth is sharp.

3.3 Exchange between S and G equivariant cohomology

The S-manifolds we are primarily interested in are those of the form G\U(V ), where G is

a compact Lie group and G −→ U(V ) is faithful. Recall that by convention U(V ) respects

direct sum decompositions of V . In other words, if we have a direct sum decomposition

V = V1 ⊕ · · · ⊕ Vn of a faithful unitary representation V of G, then U(V ) =
∏n

i=1 U(Vi).

The space U(V ) has a maximal p-torus S of diagonal matrices of order dividing p. We

take G to act on the left of U(V ) and S to act on the right, so we write G\U(V ) instead

of U(V )/G. Our first main goal is to show is that G\U(V ) is an S-connected manifold.

This will show that H∗SG\U(V ) has a Duflot algebra structure, and then we will see that

H∗GU(V )/S does as well.

We need to explain the relationships between three closely related manifolds. First we

have U(V ). The left action of G and the right action of S gives an action of G× S on U(V )

(if this is to be a left action, we must modify the right action of S so that s acts by s−1, and

if we want this to be a right action we similarly modify the G action). We also have the left

action of G on U(V )/S, and the right action of S on G\U(V ).
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Note that there are maps G\U(V ) ←− U(V ) −→ U(V )/S. If A < S and Gu ∈ G\U(V )A,

then uA < G, and uS ∈ (U(V )/S)(
uA). Here we mean the action of uA as a subgroup of G,

so it is acting on the right.

Let D < uA×A < G×S be the image of A under a 7→ (uau−1, a). We give D the action on

U(V ) that is restricted from G×S acting on U(V ) on the left, so (uau−1, a) ·v = uau−1va−1.

Parts of the following lemma are used in [Sym10]. These results could also be derived

from [Duf83a], but for completeness we include a proof here.

Lemma 3.3.1. 1. For A < S and x = Gu ∈ (G\U(V ))A, the connected component Y of

x in (G\U(V ))A is isomorphic as S-spaces to CGuA\CU(V )A.

2. Moreover, the connected component X of xS ∈ U(V )/S
uA is CG(uA)-invariant and iso-

morphic as CG(uA)-spaces to Cu
U(V )A/

uS, and the G orbit of the connected component

is G×CG(uA) CU(V )(
uA)/uS.

3. Given Gu ∈ (G\U(V ))A, the connected component Z of u ∈ U(V )D (where the D

is as in the discussion preceding the lemma) is the left CU(V )(
uA) orbit of u, and the

right CU(V )A-orbit of u (in fact, U(V )D has one connected component). Under the

maps G\U(V ) ←− U(V ) −→ U(V )/S, Z maps onto to Y and onto X. We have that

Z is invariant under the right S action, but not necessarily under the left G action.

However, the G-orbit of Z is G ×CG(uA) CU(V )A and it maps onto the G-orbit of X,

and the G orbit of Z also maps onto Y .

Proof. 1. First, observe that if Gu is fixed by A, then uA < G, and A < Gu. Also, it

is immediate that CU(V )A acts on the right on (G\U(V ))A, and because CU(V )A is a

product of unitary groups it is connected, and consquently the CU(V )A-orbit of x is

connected.

We will first show that Y is the CU(V )A-orbit of x. It is enough to show that there

are only finitely many orbits of the CU(V )A action on (G\U)A, from this it follows

that each orbit is a component of (G\U)A. To see that there are only finitely many
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CU(V )A-orbits is it enough to show that there are only finitely many NU(V )A-orbits on

(G\U(V ))A, because CU(V )A has finite index in NU(V )A.

If Gu,Gv ∈ (G\U)A have the property that uA and vA are conjugate p-tori in G, so

gvA = uA for some g ∈ G, then u−1gv ∈ NU(V )A, and Gu and Gv are in the same

NU(V )A-orbit. So, since G has only finitely many conjugacy classes of p-tori, there are

only finitely many NU(V )A-orbits, and we have shown that Y is the CU(V )A-orbit of x.

To see that Y is CGuA\CU(V )A, observe that the stabilizer of Gu under the CU(V )A

action is CGuA.

2. We can follow the same strategy as above to identify X. First note that CU(V )(
uA)

acts on U(V )/S
uA, then observe that the CU(V )(

uA)-orbits are each a component of

U(V )/S
uA, and then that the stabilizer is as claimed. Once we have identified X this

also shows that X is C
uA
G -invariant, as CG(uA) < CU(V )(

uA).

To see that the G-orbit of X is isomorphic to G ×CG(uA) X as G-spaces, note that

G acts on the components of the G-orbit of X, and there is an obvious equivariant

homeomorphism from G ×stabX X to the G-orbit of X. We have already observed

that CG(uA) is contained in stabX. To see the other containment, suppose that

gcuS = c′uS, where c, c′ ∈ CU(V )(
uA) and g ∈ G. Then c′−1gc ∈u S < CU(V )(

uA), so g

must centralize uA.

3. If we can show that connected component of u ∈ U(V )D is as claimed, then the other

claims follow. This is just a computation, it is easy to check that the left action of

CU(V )(
uA) and the right action of CU(V )A preserve Z, and if y ∈ U(V )D, then we can

write y = cu = uc′, where c ∈ CU(V )(
uA) and c′ ∈ CU(V )A.

This is very nice, because if we start with a right S space of the form G\U(V ), then

each component of (G\U(V ))A has the same form for some conjugate subgroup of G: the
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components are of the form CGuA\U(V ′), where V ′ is a direct sum of representations of

CGuA, giving a faithful representation of CGuA.

Similarly, if we start with the right G-space U(V )/S, then each component of U(V )/SB

has the same form for some subgroup of G: the components are of the form U(V ′)uS.

We’ll explore the implications of this for group cohomology in the next section. For now,

we show that G\U(V ) is S-connected.

Proposition 3.3.2. Let M = G\U(V ). Then M is S-connected.

Proof. That S preserves each component of MA is clear from our description of each com-

ponent of MA. So, we need to show that, for Y a component of MA, if Y rankA
rankA is nonempty

it is connected.

Via the above correspondence between connected components of the fixed point sets of

U(V )/S and G\U(V ), it is enough to show that ZrankD
rankD is connected, where the notation is

as in 3.3.1.

For this, note that for each E a sub p-torus ofD, U(V )E is the total space of a torus bundle

over a (product of) flag manifolds, and for U(V )E ⊂ U(V )D, we have the following diagram

of these T -bundles:

T T

U(V )E U(V )D

F ′′ F ′,

where F ′′ −→ F ′ is a proper sub (product of) flag

manifolds. But F ′′ therefore has even codimension in F ′, so U(V )E has even codimension in

U(V )D.

However, ZrankD
rankD = Z − (∪E<DZE). Each ZE therefore has even codimension in Z, so

ZrankD
rankD is connected and we are done.

Instead of looking at these flag manifolds, we could get this same result by comparing

the dimension of CU(V )A and CU(V )B for A < B, each is a product of unitary groups

corresponding to the isotypical decomposition of the representation for the respective p-

torus, and if A < B the isotypical decomposition for B refines that for A.
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So, this tells us that all the theorems from 3.1 and 3.2 apply to H∗SG\U(V ).

Moreover, we now show that these theorems also apply to H∗GU(V )/S.

Proposition 3.3.3. Under the maps G\U(V )←− U(V ) −→ U(V )/S, and for Y, Z,X compo-

nents of the fixed point sets of A,D and uA respectively, as above, we have this diagram:

H∗SY H∗G×SGZ H∗GGX

H∗SG\U(V ) H∗G×SU(V ) H∗GU(V )/S

H∗SY H∗G×SGZ H∗GGX

.

The notation GZ and GX denote the G-orbits of Z and X. In this diagram, all the

horizontal arrow are isomorphisms.

Proof. The diagram of the theorem comes from the diagram of spaces:

ES ×S Th(Y ) EG× ESG×STh(GZ) EG×G Th(GX)

ES ×S G\U(V ) EG× ESG×SU(V ) EG× U(V )/S

ES ×S Y EG× ESG×SGZ EG×G GX

.

The horizontal arrows in the bottom two rows are homotopy equivalences by our descrip-

tion of Y,GZ, and GX. For the top row, we first apply the equivariant Thom isomorphism

to the cohomology of the top row, and then our description of Y,GZ and GX gives us the

result.

Remark 3.3.4. It is worth noting that in order for this proof to be correct, we must verify

that in the case that p is odd all the bundles in question are actually orientable, so that the

claimed Thom isomorphisms exist. However, this follows in a straightforward way from the

normal bundle for Y in G\U(V ) being S-equivariantly orientable.
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Definition 3.3.5. Let Fix(U(V )/S) be the weakly coranked poset whose elements are G-

orbits of connected components of U(V )/SA, for A a p-torus of G.

Lemma 3.3.6. Under the correspondence between connected components of G\U(V )A and

connected components of U(V )/S
uA, Fix(G\U(V ))

∼−→ Fix(U(V )/S).

Proof. This is immediate from the discussion of these connected components above.

Note that there is a functor F : Fix(U(V )/S) −→ H∗GU(V )/S −mod where X is mapped

to the module (ΣdXH∗G(G×stabX X), which via the Gyisn map is equipped with an inclusion

into H∗G(U(V )/S)).

Theorem 3.3.7. H∗GU(V )/S is a Duflot algebra, stratified by Fix(U(V )/S).

Proof. This follows immediately from 3.3.3: we know that H∗SG\U(V ) has a Duflot algebra

structure stratified by Fix(G\U), and this puts a Duflot algebra structure on H∗GU(V )/S via

the isomorphisms in 3.3.3.
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Chapter 4

APPLICATIONS TO THE COHOMOLOGY OF BG

In this chapter we apply the Duflot algebra structure on H∗SU(n)/G to study H∗BG. In

section 4.1 we give structural results that apply to H∗G for any compact Lie group G, and in

sections 4.2 and 4.3 we show how certain extensions of finite groups lead to the structures

studied in 2.5, from which we derive some local cohomology computations for the p-Sylow

subgroups of Spn and for Spn itself.

4.1 Structural results in group cohomology

Here we demonstrate how the results of this paper recover several classical results in group

cohomology. All of the results listed in this section were previously known at least for finite

groups, but except where indicated otherwise with different proofs from our methods. There

are several new results for compact Lie groups.

Throughout this section, G is a compact Lie group and V a faithful finite dimensional

unitary representation of G.

Crucial to applying the techniques of this paper to get results in group cohomology is a

theorem of Quillen [Qui71] showing to what extent H∗G can be recovered from H∗GU(V )/S.

Proposition 4.1.1. The map H∗G −→ H∗GU(V )/S is faithfully flat, and as H∗G-modules

H∗GU(V )/S is non-canonically isomorphic to H∗G ⊗H∗U(V )/S.

Corollary 4.1.2. The map H∗G −→ H∗GU(V )/S induces a surjection AssH∗GU(V )/S −→

AssH∗G.

This is a consequence of the map being faithfully flat.
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Theorem 4.1.3 (Duflot [Duf81], Quillen [Qui71]). The depth of H∗G is greater than or equal

to the p-rank of the center of G, and the dimension of G is equal to the maximal rank of a

p-torus of G.

The result on depth is due to Duflot, and the result on dimension is due to Quillen.

Duflot’s original proof does not use the Duflot filtration in the way that we do here, but it

has the advantage that it explicitly constructs a regular sequence of length the lower bound

for depth.

The result on dimension follows from the Quillen stratification theorem. Here we give a

proof of this theorem using the Duflot filtration.

Proof. By 4.1.1, it is enough to show the analogous result for H∗GU(V )/S = H∗SG\U(V ).

However, we note that we can choose for V a sum of representations for G so that Z(G) −→

Z(U(V )). With this choice of V , the result follow from 3.2.1.

Remark 4.1.4. Duflot’s bound can be made stronger in the case that G is a finite group: the

depth is in fact no less than the maximal rank of a central p-torus in a p-Sylow of G. This

stronger statement follows immediately from the statement we have given, by using the fact

that for P a p-Sylow of G, H∗G is a summand of H∗P as H∗G-modules: if HiH∗G is nonzero, so

is HiH∗P .

Quillen also showed that the minimal primes of H∗G are given by restricting to a maximal

(by inclusion) p-torus. We can also get this result using our techniques.

Theorem 4.1.5 (Quillen [Qui71]). The minimal primes of H∗G are obtained by restricting

to maximal p-tori.

Proof. Because H∗G −→ H∗GU(V )/S is faithfully flat, all the minimal primes of H∗GU(V )/S

pull back to minimal primes of H∗G. But 3.2.9 describes the minimal primes of H∗SU/S,

which are given by restricting to minimal elements of Fix(U/S). These minimal elements

correspond to a maximal p-torus A of G and a component of U/SA, so it is clear that all

minimal primes of H∗G have the claimed description.
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Remark 4.1.6. Quillen in fact shows that there is a bijection between the conjugacy classes of

maximal p-tori and the minimal primes of H∗G. In order to conclude this stronger result from

what we have done so far, it is only necessary to show that if A and B are non-conjugate p-

tori in G then H∗G −→ H∗GG/A/
√

0 and H∗G −→ H∗GG/B/
√

0 have different kernels. Note that

we already have shown that H∗GU(V )/S −→ H∗GG/A/
√

0 and H∗GU(V )/S −→ H∗GG/B/
√

0

have different kernels.

We haven’t yet completed this final step using the methods of this thesis, but there are

various ways to conclude the desired result, for example Quillen’s original proof or using the

Even’s norm.

Duflot also showed that the associated primes of H∗G are given by restricting to p-tori,

but there is no known group theoretic description of what p-tori give associated primes. Our

proof of 3.1.5 is essentially a reformulation of Duflot’s original proof.

Theorem 4.1.7 (Duflot [Duf83a]). The associated primes of H∗G all come from restricting

to p-tori of G.

Proof. This follows from 4.1.1 and 3.1.5.

In the following, Okuyama [Oku10] shows the equivalence of 1 and 3 for finite groups,

and the equivalence of 2 and 3 is due to Kuhn [Kuh13].

Theorem 4.1.8. Let A be a p-torus of G. The following are equivalent.

1. A represents an associated prime in H∗G.

2. A represents an associated prime in H∗CGA
.

3. We have that depthH∗CGA
= dimA.

Proof. This follows from 3.2.8, 4.1.1, and our description of the fixed points of the A-action

on U(V )/S.
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Remark 4.1.9. Note that this gives some restrictions on which p-tori can represent associated

primes: such a p-torus must be the maximal central p-torus in its centralizer. This for

example rules out all the p-tori of Z/p o Z/p of rank from 3 to p− 1.

Theorem 4.1.10 (Symonds [Sym10]). For G a compact Lie group with orientable adjoint

representation, regH∗G = − dimG.

Proof. Since H∗SG\U(V ) ∼= H∗GU(V )/S, by 3.2.5, regH∗SG\U(V ) = regH∗GU(V )/S and this

quantity is less than or equal to dimU(V )− dimG. Hwoever as H∗G-modules, H∗GU(V )/S ∼=

H∗G⊗H∗U(V )/S. Now, because regH∗U(V )/S = dimU(V ) and regularity is additive under

tensor products, we have that regH∗G ≤ − dimG.

That − dimG ≤ regH∗G follows from the Greenlees spectral sequence of [Gre95]; it is this

direction that requires the adjoint representation to be orientable.

Theorem 4.1.11 (Symonds [Sym10]). For G a compact Lie group, if ai(H
∗
G) = −i− dimG

for some i, then i must be the rank of a maximal p-torus in G.

Proof. This follows from 3.2.6 and the fact that the minimal elements of Fix(G\U(V )) are

in bijection with the maximal p-tori of G.

Remark 4.1.12. Symonds uses this without explicitly stating it in his proof of a special case

of the Strong Regularity conjecture.

Theorem 4.1.13. If depthH∗G = d, then H∗G −→
∏

rankE=iH
∗
CGE

is injective.

Proof. By 3.2.10 and our analysis of the elements of Fix(G\U(V )) and Fix(U(V )/S, we have

an injective map H∗GU(V )/S −→
∏

rankE=iH
∗
CGE

CU(V )E/
uS. This fits into a diagram:

H∗GU(V )/S
∏

rankE=iH
∗
CGE

CU(V )E/
uS

H∗G
∏

rankE=iH
∗
CGE

.

Both vertical arrows are injections by 4.1.1, so because the top arrow is an injection the

bottom arrows is too.
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Remark 4.1.14. Carlson in [Car95] proves this theorem when G is a finite group. The tech-

niques of Henn, Lannes, and Schwartz [HLS95] could also prove this theorem, presumably

including the case of compact Lie groups.

Theorems 4.1.13 and 4.1.8 can be combined to show that H∗G is detected on the family

of centralizers of p-tori representing associated primes, and this family is minimal.

First recall the definition of a family of subgroups:

Definition 4.1.15. For G a compact Lie group a collection F of subgroups of G is called

a family if F is closed under subconjugacy, in other words if H ∈ F and Kg < H for some

g ∈ G implies that K ∈ F as well.

Definition 4.1.16. Let CAss denote the family generated by the set of subgroups CGE,

where E represents an associated prime in H∗G.

Theorem 4.1.17. We have that H∗G is detected on CAss, and if F is any other family gen-

erated by centralizers of p-tori, then CAss ⊂ F .

Proof. First, we show that G is detected on CAss. Suppose that depthH∗G = d, so H∗G is

detected on the centralizers of rank d p-tori. If E is a rank d p-torus, if E doesn’t represent

an associated prime in H∗G, then depthH∗CGE
> d, so H∗CGE

is itself detected on centralizers

of higher rank p-tori. So, because CCGEA = CGA for a p-torus A in CGE in any detecting

family of centralizers of p-tori we can always replace CGE by a collection of centralizers of

higher rank p-tori, unless E represents an associated prime.

To show that this family is the minimal family of centralizers of p-tori that detected

cohomology, suppose that F is another such family.

Then AssH∗G H
∗
G ⊂ AssH∗G

∏
H∈F H

∗H = ∪H∈F AssH∗G H
∗
H , and AssH∗G H

∗H is mapped

onto by AssH∗H H
∗
H . So, if E represents an associated prime in H∗G, then this associated

prime must be in some AssH∗G H
∗
H , so there is some H ∈ F containing E. But by assumption

H = CGA for some p-torus A, so CGE ⊂ H, which shows that CAss ⊂ F .
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Remark 4.1.18. Note that CAss is not the minimal detecting family, but merely the minimal

detecting family generated by centralizers of p-tori. Indeed, if the Duflot bound for depth is

sharp (and G is a p-group), then as a central p-torus will represent an associated prime in

H∗G, CAss is the family of all subgroups. The family of all subgroups is the minimal detecting

family if and only if there is essential cohomology, i.e. cohomology classes that restrict to

zero on all subgroups.

However, there are examples of groups where the Duflot bound is sharp and that do not

have essential cohomology. The semidihedral group of order 16 is one such example, it is

detected on the family of all proper subgroups (i.e. it has no essential cohomology), but the

depth is one and CAss is the family of all subgroups. If there is essential cohomology, then by

4.1.13 the Duflot bound must be sharp and therefore CAss is the minimal detecting family.

It would be interesting to have an understanding of those groups that have no essential

cohomology and where the Duflot bound for depth is sharp. In the special case where

H∗G is Cohen-Macaulay, Adem and Karagueuzian [AK97] give a group theoretic criterion

for when there is essential cohomology and prove that under the assumption that H∗G is

Cohen-Macaulay having essential cohomology is equivalent to the Duflot bound being sharp.

We now give a proof of the result due to Kuhn that Carlson’s conjecture is true in a

special case.

Theorem 4.1.19. If the Duflot bound is sharp for the depth of H∗G, then the maximal central

p-torus of G represents an associated prime in H∗G.

In the case when G is finite and the strengthened Duflot bound is sharp (see 4.1.4), then

the maximal central p-torus of a p-Sylow of G represents an associated prime.

Proof. The first sentence of the theorem follows immediately from 4.1.8, where we let A be

the maximal central p-torus.

For the case when the strengthened Duflot bound is sharp, let A be the maximal central

p-torus of a p-Sylow, let dimA = d, and suppose that the depth of H∗G is d. Then CGA has

index prime to p in G, so H∗G is a direct summand of H∗CGA
. Therefore, if HdH∗G is nonzero,
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so is HdH∗CGA
. Therefore the Duflot bound is sharp for H∗CGA

, so A represents an associated

prime.

Remark 4.1.20. For finite groups, Green proved this for p-groups in [Gre03] and Kuhn ex-

tended the result to all finite groups in [Kuh07], and to compact Lie groups in [Kuh13].

4.2 i-trivial bundles

Here we explore the relationship on cohomology and local cohomology when we have an

S-equivariant principal K-bundle M −→ N , where M , N are smooth S-connected manifolds.

Our goal is to describe a manifestation of the structures studied in Section 2.5 in equivariant

topolgy.

Recall that S denotes a p-torus.

Definition 4.2.1. For K a finite group an S-equivariant principal K-bundle π : M −→ N is

i-trivial if for all Y ∈ Fix(N)≥i π
−1Y −→ Y is a trivial K-bundle.

Remark 4.2.2. If M is a left S-space and K any finite group, then the trivial K-bundle

M × K −→ M is i-trivial for any i. Of course the interesting cases are when the bundle is

not trivial. We will construct examples of i-trivial bundles by group extensions that we also

call i-trivial momentarily.

Let K −→M −→ N be an i-trivial S-equivariant bundle.

Lemma 4.2.3. If an equivariant submanifold W ⊂ N is fixed by A < S with rankA ≥ i,

so is π−1W , and if Y is a component of MA, with rankA ≥ i, then π restricted to Y is a

diffeomorphism onto a component of NA.

Proof. For the first part, if x ∈ N is fixed by A, then x ∈ W where W is a component of

NA. Then π−1W −→ W is an S-equivariant trivial principal K-bundle, so the fiber over x is

also fixed by A.
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For the second part, if Y is a component of MA, then π(Y ) is connected and fixed by A, so

π(Y ) ⊂ W , for someW ∈ Fix(N)≥i. Then there is a pullback square:

π−1π(Y ) π−1W

π(Y ) W

which is isomorphic to

π(Y )×K W ×K

π(Y ) W

We see that Y ⊂ π−1π(Y ), and as Y is connected Y is contained in a unique component

W × k ⊂ W ×K. But then as Y is a component of MA and Y is fixed by A, we must have

that that Y is all of W × k

Corollary 4.2.4. An i-trivial map π : M −→ N induces a map π∗ : Fix(M)≥i −→ Fix(N)≥i by

Y 7→ π(Y ), and this map gives Fix(M)≥i −→ Fix(N)≥i the structure of a principal K-bundle,

as defined in section 2.5.

Proof. The previous lemma shows that π∗ defines a map Fix(M)≥i −→ Fix(N)≥i compatible

with the ranking. To see that it is a map of posets we must show that if Y ⊂ Y ′ then

π(Y ) ⊂ π(Y ′), which is completely obvious.

The previous lemma also shows that over each W ∈ Fix(N)≥i, π
−1W ∼= W ×K, but we

also need to see that this is true over each chain in Fix(N)≥i. So, given a chain W1 −→ . . . −→

Wk is a chain in Fix(N)≥i, consider π−1W1. Choosing an isomorphism π−1W1
∼= W1 × K

determines an isomorphism π−1Wi ×K for all i because W1 × e lies in a unique component

of π−1Wi, so we have shown that π∗ : Fix(M)≥i −→ Fix(N)≥i is a covering map.

To see that it is a principal K-bundle, we note that the K-action on M induces a K

action on Fix(M)≥i, and that Fix(M)≥i/K = Fix(N)≥i.

Denote the functors filtering H∗SM and H∗SN by F and G respectively.

Lemma 4.2.5. The K-action on M makes (FiH
∗
SM,Fix(M)≥i, F ) a K-Duflot module.

Proof. We only need to define the natural transformations Fk 7→ F , and these comes from
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the restriction maps H∗SY ←− H∗SkY induced by the K action, that they satisfy the axioms

from 2.5.10 is immediate from the fact that the maps are coming from a group action.

Theorem 4.2.6. There is an equivariant morphism

π : (FiH
∗
SM,Fix(M)≥i, F ) −→ (FiH

∗
SN,Fix(N)≥i, G)

making

π : (FiH
∗
SM,Fix(M)≥i, F ) −→ (FiH

∗
SN,Fix(N)≥i, G)

into a K-bundle, and the induced map FiH
∗
SN −→ FiH

∗
SM is the map coming from restriction

H∗SN −→ H∗SM .

Proof. The only piece of data we haven’t defined yet is the natural transformation Gπ∗ ⇒ F ,

and this also comes from the restriction maps H∗S(π(Y )) −→ H∗SY . That all the given data

satisfies the requirements of 2.5.10 is immediate.

To see that the map FiH
∗
SN −→ FiH

∗
SM induced by the equivariant morphism agrees

with the map induced by the map of spaces M −→ N , we appeal to the uniqueness result of

2.5.5

Theorem 4.2.7. There is a spectral sequence with E2 = Hp(K,Hq(FiH
∗
SN)) converging to

Hp+qFiH
∗
SM .

Proof. This follows immediately from 2.5.16.

Now, we can connect this to the group theory.

Definition 4.2.8. For i less than or equal to the p-rank of G, we say that an extension

1 −→ H −→ G −→ K −→ 1 with K finite is i-trivial if for all j ≥ i, if E is a rank j p-torus of G,

then CGE < H.

Remark 4.2.9. The main example we will be concerned with are iterated wreath products.

For example, the extension 1 −→ (Z/p)p −→ Z/p o Z/p −→ Z/p −→ 1 for p ≥ 3 is 3-trivial.
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Proposition 4.2.10. If H −→ G −→ K is i-trivial, and V is a faithful representation of G,

then K −→ H\U(V ) −→ G\U(V ) is i-trivial.

Proof. To show this, we use our description of the fixed points of G\U(V )A, where A < S.

Recall that the connected component of Gu ∈ G\U(V )A is isomorphic to Cu
GA\CU(V )uA.

By the i-triviality assumption, this is isomorphic to Cu
HA\Cu

U(V )A.

Now the points of H\U(V ) lying over Gu are {Hku : k ∈ K}. Under the i-triviality

assumption each Hku is also fixed by A, and the connected component of each Hku is

Cku
H A\Cku

U(V ). Recall how S acts on one of the Cu
HA\Cu

U(V )A: it is via the natural action

of Su on Cu
HA\Cu

U(V )A, and the twist map S −→ Su. Therefore these are all isomorphic as

S-manifolds.

In order to complete the proof, we just need to show that these components are all

disjoint. So, suppose that Hgu = Hg′uc, where c ∈ CU(V )A. We wish to show that g and

g′ have the same image in K. We have that Hg = Hg′ucu−1. So, ucu−1 ∈ G. We also

have that ucu−1 ∈ CuA
U(V ), so ucu−1 ∈ Cu

GA. Therefore by i-triviality, ucu−1 ∈ H as well, so

Hg = Hg′h, so g and g′ have the same image in H and we are done.

Putting it all together, 4.2.7 gives us a spectral sequence computing the local cohomology

of H∗SG\U(V ) when we have an i-trivial extension.

Theorem 4.2.11. If 1 −→ H −→ G −→ K −→ 1 is i-trivial, and V a faithful representation

of G, then there is a spectral sequence starting at the E2 page: Hp(K,HqFiH
∗
SH\U(V )) ⇒

Hp+qFiH
∗
SG\U(V ).

4.3 The top p− 2 local cohomology modules of H∗SW (n)\U(V )

Here, we give an application of the theory we have developed so far to do some computations

in local cohomology. Our goal will be to exploit i-triviality to get at the top local cohomology

modules of H∗SW (n)\U(V ), where W (1) is Z/p and for n > 1 W (n) is W (n− 1) o Z/p, and

V is any faithful representation of W (n).
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Recall that W (n) is the p-Sylow of Spn . The depth of H∗W (n) is known by [CH95], it is

n. The Krull dimension is pn−1, so these groups have a large difference between their depth

and dimension and consequently a lot of room for nontrivial local cohomology. However,

other than the regularity theorem, which was proved for these groups by Benson in [Ben08],

nothing is known about the structure of their local cohomology modules.

For a p-group H, let r(H) (the rank of H) be the maximal rank of a p-torus of H, i.e.

the dimension of H∗H . Let G = H o Z/p be the split extension Hp −→ G −→ Z/p, and denote

the generator of Z/p by σ.

Theorem 4.3.1. We have that Hp −→ G −→ Z/p is r(H) + 2 trivial.

We’ll prove this in a series of lemmas.

Lemma 4.3.2. Any subgroup of H o Z/p not contained in Hp is generated by a subgroup K

of Hp and an element of H o Z/p−Hp.

Proof. Suppose that g′, h′ are elements of H o Z/p − Hp. We will show that the subgroup

generated by g′ and h′ is equal to the subgroup generated by g′ and k, where k ∈ Hp.

First, write g′ = g′′σj, and h′ = h′′σl, where g′′, h′′ ∈ Hp and j, l 6≡ 0 (mod p). Then there

are m,n 6≡ 0 (mod p) so that (g′)m = gσ, (h′)n = hσ. But since H and therefore H o Z/p

are p-groups, (g′)m and (h′)n generate the same subgroup as g′ and h′, so we can reduce to

the case where we have two elements of the form gσ and hσ. But then hσ(gσ)−1 ∈ Hp, and

we are done.

Lemma 4.3.3. Given an element gσj of H oZ/p−Hp, the maximal rank of a p-torus of Hp

centralized by gσj is r(H).

Proof. We want to classify the elements of Hp that commute with gσj. As above, by raising

gσj to the appropriate power we can reduce to the case that j = 1. Then if h = (h1, . . . , hp)

commutes with gσ = (g1, . . . , gp)σ, we have that hgσh−1 = gσ, so hg(σ · h−1)σ = gσ, so

hg(σ · h)−1 = g.
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Therefore we have the equations:

h1g1h
−1
p = g1

h2g2h
−1
1 = g2

. . .

higih
−1
i−1 = gi

. . .

hpgph
−1
p−1 = gp

(4.3.1)

Therefore, h1 determines at most one h that commutes with gσ. But if gσ is to centralize

a p-torus of Hp, all the choices for the first coordinate of h must commute with one another,

so they must lie in a p-torus of H, giving us our result.

Proof of the theorem. We must show that if E is a p-torus of rank greater than r(H) + 1

then the centralizer of E lies entirely in Hp.

First, we will show that E lies in Hp. If not, by the first lemma E is generated by E ′ < Hp

and an element g of H oZ/p−Hp. But E ′ must then be a p-torus of rank greater than r(H)

that commutes with an element of H o Z/p−Hp, which contradicts the second lemma.

Now the second lemma finishes the proof.

Lemma 4.3.4. If H −→ G is i-trivial, then Hn −→ Gn is (n− 1)r(H) + i trivial.

Recall that if H is i-trivial in G by definition i is less than or equal to the p-rank of G,

so the p-rank of H is equal to the p-rank of G.

Proof. The i-triviality condition ensures that for E a p-torus of rank greater than or equal

to (n− 1)r(H) + i in Gn, the rank of imageπjE is greater than or equal to i for each j (πj is

the jth projection map). So, if c ∈ Gn commutes with E, then as πj(c) commutes with πjE,

so πj(c) ∈ H, and c ∈ Hn.

Lemma 4.3.5. If H is normal in G, then Hp is normal in G o Z/p.
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Proof. This follows because Hp is invariant under the Z/p action on Gp and is normal in

Gp.

Corollary 4.3.6. If H is i-trivial in G, and (p− 1)r(H) + i is greater than r(G) + 2, then

Hp is (p− 1)r(H) + i-trivial in G o Z/p

Lemma 4.3.7. Let p ≥ 5, and let W (n) denote the n − 1-fold iterated wreath product

of Z/p with itself, with W (1) = 1 o Z/p = Z/p. Then for n > 1, W (n) has a unique,

normal, maximal rank p-torus E(n) of rank pn−1, E(n) is pn−1 − p+ 3-trivial in W (n), and

W (n)/E(n) ∼= W (n− 1).

Proof. First, we will define E(n), show that it is normal, has maximal rank, and that the

quotient is W (n − 1). Then we will show that it is pn−1 − p + 3 trivial, which implies that

it is the unique maximal p-torus.

We define E(n) inductively: E(1) = W (1) = Z/p, and for n > 1 E(n) = (E(n − 1))p <

W (n−1)p < W (n). This shows that E(n) is normal by 4.3.5. To see that E(n) has maximal

rank, we can note that W (n) is the p-Sylow of Spn , where it is clear that a maximal rank

p-torus has rank pn−1.

To determine that the quotient is W (n − 1), we again proceed inductively (noting that

this is true for n = 2). Note that we have the map of extensions:

1 W (n− 1)p W (n) Z/p 1

1 W (n− 1)p/E(n) W (n)/E(n) Z/p 1

So W (n)/E(n) fits into an extension of Z/p by W (n−1)p/E(n−1)p, which is W (n−2)p

by hypothesis. Then a section Z/p −→ W (n) determines a section of W (n)/E(n) −→ Z/p,

and the induced action of Z/p on W (n − 1)p/E(n − 1)p cyclically permutes the factors, so

W (n)/E(n) is W (n− 1).

Now, it remains to show that E(n) is pn−1 − p + 3 trivial. First, this is true for n = 2.

We have that W (2) = Z/p o Z/p and E(2) = Z/pp, and this is 3 trivial by 4.3.1. Now,

suppose it is true for W (n − 1), and consider W (n). Since r(E(n − 1)) = r(W (n − 1)),
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4.3.6 tells us that E(n) = E(n − 1)p is (p − 1)pn−2 + pn−2 − p + 3 trivial in W (n), and

(p− 1)pn−2 + pn−2 − p+ 3 = pn−1 − p+ 3.

Now, applying our result 4.2.11 about spectral sequences for i-trivial extensions, we have

the following:

Proposition 4.3.8. There is a spectral sequence

H i(W (n− 1),Hj(Fpn−1−p+3H
∗
S(E(n)\U(V )))⇒ Hi+j(Fpn−1−p+3H

∗
S(W (n)\U(V ))).

Note that Hj(Fpn−1−p+3H
∗
S(E(n)\U(V ))) is zero except for j = pn−1 and possibly for

j = pn−1 − p + 3, that Hi+j(Fpn−1−p+3H
∗
S(W (n)\U(V ))) is zero for i + j < pn−1 − p + 3

and i + j > pn−1, and that Hi+j(Fpn−1−p+3H
∗
S(W (n)\U(V ))) = Hi+j(H∗S(W (n)\U(V ))) for

i+ j > pn−1 − p+ 3. The last equality follows from 2.5.1.

This tells us that the spectral sequence is concentrated in two rows, so the only differ-

ential is a dp−3+1 : Ei,pn−1

p−3+1 −→ E
i+p−3+1,pn−1−(p−3)
p−3+1 . Therefore this differential must be an

isomorphism for i > 0 and a surjection for i = 0, which tells us that:

HiH∗S(W (n)\U(V )) =

H i−(pn−1−(p−3))(W (n− 1),Hpn−1−(p−3)(Fpn−1−(p−3)H
∗
S(E(n)\U(V )))) (4.3.2)

for pn−1 − (p− 3) < i < pn−1, and:

Hpn−1
H∗S(W (n)\U(V )) =

H(p−3)(W (n− 1),Hpn−1−(p−3)(Fpn−1−(p−3)H
∗
S(E(n)\U(V ))))

⊕ (ker : dp−2 : E0,pn−1

2 −→ E
p−2,pn−1−(p−3)
2 ). (4.3.3)

We would like to have some expression of Hi(H∗SW (n)\U(V )) that doesn’t reference the

Duflot filtration, which we can achieve if we can relate

H i−(pn−1−(p−3))(W (n−1),Hpn−1−(p−3)(Fpn−1−(p−3)H
∗
S(E(n)\U(V )))) to the group cohomology

of W (n− 1) with coefficients in Hpn−1
H∗S(E(n)\U(V )). Fortunately, we are able to do this.
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Recall how the spectral sequence at hand is constructed: it is one of the hypercohomology

spectral sequences for W (n−1) acting on the Duflot complex for one level of H∗S(E(n)\U(V )).

We know what it is converging to since the Duflot complex for this level of H∗SE(n)\U(V )

is a complex of free W (n − 1) modules, and the fixed point set is the Duflot complex for

H∗SW (n)\U(V ).

If instead of taking the hypercohomology spectral sequence we constructed a hyper-Tate

cohomology spectral sequence, we would have:

Ei,j
2 = Ĥ i(W (n),Hj(Fpn−1−(p−3)(H

∗
SE(n)\U(V )))).

This agrees with the E2 page of the previous spectral sequence for i > 0, and it converges to

0 because the Tate cohomology of a free module is zero. This tells us that for all i, Ĥ i(W (n−

1),Hpn−1
(H∗SE(n)\U(V )))

∼−→ Ĥ i+p−2(W (n− 1),Hpn−1−(p−3)(Fpn−1−(p−3)H
∗
SE(n)\U(V ))).

This gives us the following computation for the local cohomology of H∗SW (n)\U(V ).

For a G-module A, let N : A −→ AG denote the map a 7→
∑

g∈G g · a, and recall that the

kernel of the map H0(G,A) −→ Ĥ0(G,A) is imageN .

Theorem 4.3.9. For 0 < i < p− 3,

Hpn−1−(p−3)+iH∗S(W (n)\U(V )) ∼= Ĥ i−(p−2)(W (n− 1),Hpn−1

H∗SE(n)\U(V )).

This isomorphism is as H∗SW (n)\U(V )-modules.

For the top local cohomology, we have that Hpn−1
(H∗SW (n)\U(V )) is isomorphic as vector

spaces to Ĥ−1(W (n− 1),Hpn−1
(H∗SE(n)\U(V )))⊕N(Hpn−1

(H∗SE(n)\U(V ))).

Proof. Everything follows from our computation with Tate cohomology, the only part that

isn’t immediate is the second half of the direct sum in the top local cohomology, and this

comes from our identifying the kernel of the map dp−2 on E0,pn−1

2 of the original spectral

sequence with the kernel from H0 to Ĥ0.

By [DGI06] there is a local cohomology spectral sequenceH∗(H∗SE(n)\U(V ))⇒ (H∗SE(n)\U(V ))∗.

But H∗SE(n)\U(V ) is Cohen-Macaulay, so the spectral sequence collapses and we have that:

Hpn−1

H∗SE(n)\U(V ) = Σ−p
n−1+d(H∗SE(n)\U(V ))∗
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Here d = dimU(V ).

So, we can rewrite the computation of the top local cohomology modules ofH∗SW (n)\U(V )

without reference to local cohomology.

Theorem 4.3.10. Denote the dimension of U(V ) by d.

For 0 < i < p− 3, we have an isomorphism H∗W (n)-modules:

Hpn−1−(p−3)+iH∗S(W (n)\U(V )) = Ĥ i−(p−2)(W (n− 1),Σ−p
n−1+d(H∗SE(n)\U(V ))∗).

For the top local cohomology, we have thatHpn−1
(H∗SW (n)\U(V )) ∼= Ĥ−1(W (n−1),Σ−p

n−1+d(H∗SE(n)\U(V ))∗)⊕

N(Σ−p
n−1+d(H∗SE(n)\U(V ))∗). This isomorphism is only as graded Fp vector spaces, there is

an extension problem to solve to compute the HW (n)-module structure.

As mentioned in the introduction, we can now show that there are groups whose coho-

mology has arbitrarily long sequences of nonzero local cohomology modules.

Corollary 4.3.11. For 0 ≤ i < p− 3, Hpn−1−i(H∗W (n)) 6= 0.

Proof. That the top local cohomology is nonzero is immediate from the fact that the Krull

dimension is equal to the top degree in which local cohomology is nonvanishing, so we just

need to show the result for 0 < i < p− 3.

By 4.1.1 is enough to show that the result is true with H∗S(W (n)\U(V )) in place of H∗W (n).

For this, we can use 4.3.10. This tells us that:

Hpn−1−(p−3)+i(H∗SW (n)\U(V )) = Ĥ i−(p−2)(W (n− 1); Σ−p
n−1+d(H∗SE(n)\U(V ))∗).

Recall that local cohomology is bigraded. We have that:

Hpn−1−(p−3)+i,−pn−1+d(H∗SW (n)\U(V )) = Ĥ i−(p−2)(W (n− 1);Fp).

But H∗W (n−1) is nonzero in all degrees since it is a p-group, so we are done.

We have proved:
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Proposition 4.3.12. For each p ≥ 5, for each n there exists a p-group G and an i so that

Hi+j(H∗G) 6= 0 for all 0 < j < n, and so that i + j is not the dimension of an associated

prime.

The regularity theorem states that for each finite group G, Hi,jH∗G = 0 for j > −i and for

some i Hi,−iH∗G 6= 0. In fact, it is known that if r is the dimension H∗G, then Hr,−rH∗G 6= 0,

and it is conjectured that for all other i we have that Hi,−iH∗G = 0.

In fact, for the groups W (n) in the range we have been studying more is true.

Corollary 4.3.13. For 0 ≤ i < p− 3, Hpn−1−i,jH∗W (n) = 0 for j > −pn−1.

Proof. For i = 0 the result is true by the regularity theorem, so we just need to show the

result for i > 0.

Recall that by 4.1.1, H∗SW (n)\U(V ) ∼= H∗W (n) ⊗ H∗W (n)\U(V ) as H∗W (n) modules. So,

H∗(H∗S(W (n)\U(V )) ∼= H∗(H∗W (n)) ⊗ H∗W (n)\U(V ). So, as W (n)\U(V ) is an oriented N

dimensional manifold (where N = dimU(V )) the top nonvanishing degree of its cohomology

is N . Therefore the top nonzero degree ofHiH∗SW (n)\U(V ) is N plus the top nonzero degree

of HiH∗W (n).

So, we need to show that for 0 < i < p − 3, Hpn−1−i,j+NH∗SW (n)\U(V ) = 0 for j >

−pn−1. For this, by 4.3.10 we have that Hpn−1−(p−3)+iH∗S(W (n)\U(V )) = Ĥ i−(p−2)(W (n −

1),Σ−p
n−1+N(H∗SE(n)\U(V ))∗). But since H∗SE(n)\U(V ) is concentrated in positive degrees,

its dual is concentrated in negative degrees, so Σ−p
n−1+N(H∗SE(n)\U(V ))∗) is zero above

degree −pn+1 +N , and the result follows.
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Chapter 5

STRATIFICATION OF COCHAINS

5.1 Introduction

One of the exciting reasons to study the geometry of group cohomology rings is because

of a non-obvious connection to representation theory. This story starts in stable homotopy

theory, with the nilpotence theorem of Devinatz, Hopkins, and Smith [DHS88].

Using the nilpotence theorem, Hopkins and Smith [HS98] were able to classify the thick

subcategories of the compact objects in the stable homotopy category. Even though the sta-

ble homotopy category is tremendously complicated, its thick subcategories can be described

and have a relatively simple structure: roughly speaking they look like SpecZ, but where in

place of each of the prime numbers there is an infinite tower of thick subcategories.

This idea of studying the thick subcategories of complicated triangulated categories took

root, and Benson, Carlson, and Rickard [BCR97] classified the thick tensor ideals of the

stable module category of a finite group G, and showed that they are in bijection with

specialization closed subsets of ProjH∗G. Later, [FP07] showed how to put the structure of a

locally ringed space on the set of prime thick tensor ideals in the stable module category, and

showed that the set of prime thick tensor ideals of the stable module category is isomorphic

as locally ringed spaces to ProjH∗G.

Balmer [Bal10] associated to every essentially small tensor triangulated category T a

locally ringed space now called the Balmer spectrum of T , or just Spec T . In this language,

the spectrum of the stable module category of G is ProjH∗G. This gives a representation

theoretic interpretation of any geometric fact about group cohomology.

Benson, Iyengar, and Krause [BIK11c] were also able to classifying the localizing sub-

categories of the big stable module category of G, StmodFpG, via the notion of an action
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of a ring on a triangulated category “stratifying” the triangulated category. Some of the

precursors to these ideas are contained in the work of Hovey, Palmieri, and Strickland in

[HPS97], which gives a framework for translating results and techniques from stable homo-

topy theory to the setting of tensor triangulated categories. In their work, Benson, Iyengar,

and Krause study an enlargement of StmodFpG, the homotopy category of complexes of

injective FpG-modules. When G is a p-group, K(InjFpG) is equivalent as tensor triangulated

categories to the derived category of C∗BG-modules, and in general the derived category of

C∗BG-modules is equivalent to the localizing subcategory of K(InjFpG) generated by an

injective resolution of Fp.

There is a long history dating back to Quillen and even earlier to use compact Lie groups

to study the cohomology rings of finite groups, and the previous part of this thesis has

been devoted to studying group cohomology rings using the equivariant cohomology of man-

ifolds. However, currently there aren’t applications of compact Lie groups or of equivariant

cohomology to the study of modular representation theory directly.

Of course, C∗BG is a perfectly fine ring spectrum even if G is a compact Lie group, and

it makes sense to study its derived category. Benson and Greenlees [BG14] and Barthel,

Castellana, Heard, and Valenzuela [BCHV17] show that this category is stratified by the

action of the coefficient ring, which is just H∗G. We have that Spec(D(C∗BG)c) is the

homogeneous spectrum of H∗G, denoted by SpechH∗G, so any geometric features of H∗G have

an interpretation in D(C∗BG)c.

Consequently, we would like to understand how the Duflot filtration fits into this picture.

The first step is to show that for M a G-manifold, D(C∗(EG ×G M)) is also stratified by

H∗GM , which is the goal of this chapter.

The background material for this chapter is primarily in a series of papers of Benson,

Iyengar, and Krause [BIK08, BIK11b, BIK11c, BIK11a], as well as a paper by Barthel,

Heard, Castellana, and Valenzuela [BCHV17], which generalizes some of Benson, Iyengar,

and Krause’s work in a more homotopical setting. In the next two sections we will recall

their definitions and theorems.
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5.2 Local (co)homology and (co)support

We work in a good category of spectra such as the S-modules of [EKMM97]. In such a

category the commutative monoid objects are E∞-ring spectra; we will refer to these com-

mutative monoid objects as commutative ring spectra. This means that for R a commutative

ring spectrum, the homotopy category of R-modules, or D(R), has the structure of a tensor

triangulated category, where the tensor is ∧R.

The homotopy groups of R inherit a ring structure and we say that R is Noetherian if

π∗R is Noetherian. The homotopy groups of R act on D(R) in the sense of [BIK08]: we

have maps π∗R −→ π∗(EndRM) so that the two induced actions on π∗(homR(M,N)) are

compatible.

In [BIK08] a support theory is developed for a triangulated category with an action of a

commutative ring. This support theory is related to the support theory developed in Chapter

6 of [HPS97] in the context of axiomatic stable homotopy theory. In what follows we will

describe their definitions and conclusions in the special case of the derived category of a

Noetherian commutative ring spectrum. In this setting the theory is slightly simplified.

Notation 5.2.1. We will denote our fixed Noetherian commutative ring spectrum by R, and

denote π∗R by A. We denote D(R) by T .

The monoidal unit of T is R, so we denote R by 1. We use hom for the internal hom and

Hom for the categorical hom, which is related to the internal one by taking the 0th homotopy

group.

In [BIK08] the authors show that if V is a specialization closed subset of SpechA, then

the subcategory TV consisting of those objects X ∈ T which have π∗X supported in V (that

is if p ∈ SpechA and π∗(X)p 6= 0, then p ∈ V) forms a localizing subcategory of T denoted

by TV . This is Lemma 4.2 and Lemma 4.3 of [BIK08].

Benson, Iyengar, and Krause use Brown representability to construct a localization func-

tor LV : T −→ T whose kernel is TV , and such that every X ∈ T fits in a localization triangle:

ΓVX −→ X −→ LVX.
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For p ∈ SpechA define V(p) = {q ∈ SpechA : p ⊂ q}, and Z(p) = {q ∈ SpechA : q 6⊂ p}.

Definition 5.2.2. We define functors Γp : T −→ T for p ∈ SpechA by Γp = ΓV(p)LZ(p). We

call these functors local cohomology functors.

This definition is in the beginning of Section 5 of [BIK08].

One justification of the terminology is that the objects in ΓpT are exactly those which

are p-local and p-torsion.

Proposition 5.2.3 ([BIK08] Theorem 4.7, Lemma 2.4, Corollary 4.10). For X ∈ T :

1. We have π∗(LZ(p)X) = π∗(X)p.

2. We have X ∈ ΓpT if and only if π∗X is p-local and p-torsion.

Benson, Iyengar, and Krause also develop a dual notion of local homology.

Lemma 5.2.4 ([BIK12] Section 4). Each functor Γp : T −→ T has a right adjoint, and ΓpT

is a localizing subcategory of T .

Definition 5.2.5 ([BIK12] Section 4). For each p ∈ SpechA we define the local homology

functor with respect to p, or Λp, to be the right adjoint of Γp.

Lemma 5.2.6 ([BIK12] Proposition 4.16). Each ΛpT is a colocalizing subcategory of T .

Theorem 5.2.7. [[BIK08], [BIK12] Corollary 8.3, Proposition 8.3]

1. For M ∈ T we have ΓpM = Γp1 ∧RM .

2. For M ∈ T , we have ΛpM = hom(Γp1,M).

Now that we have local (co)homology functors, we can define (co)support.

Definition 5.2.8. [[BIK08], [BIK12]]
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1. For M ∈ T , we define the support of M , or suppRM (or just suppM if T is obvious),

by suppM = {p ∈ SpechA : ΓpM 6= 0}.

2. For M ∈ T , we define the cosupport of M , or cosuppRM (or just cosuppM if T is

obvious), by cosuppM = {p ∈ SpechA : ΛpM 6= 0}.

Here we gather some convenient properties of support and cosupport that hold uncon-

ditionally. We focus on support and give only a few properties of cosupport that we will

subsequently use.

Theorem 5.2.9. 1. For M ∈ T , M = 0 if and only if suppM = cosuppM = ∅.

2. For A −→ B −→ C a triangle in T , we have suppB ⊂ suppA ∪ suppC, and supp(A ⊕

C) = suppA ∪ suppC.

3. For A,B ∈ T , suppA ∧R B ⊂ suppA ∩ suppB.

4. For A,B ∈ T , cosupp hom(A,B) ⊂ suppA ∩ cosuppB.

5. For nonzero M ∈ ΓpT , p ∈ cosuppM .

6. We have supp 1 = SpechA.

Proof. 1. This is [BIK08] Theorem 5.2 and [BIK12] Theorem 4.5.

2. This is Proposition 5.1 of [BIK08].

3. This follows from Γp being smashing, which is Theorem 5.2.7.

4. This is Lemma 9.3 of [BIK12].

5. This follows from 4.13 of [BIK12].

6. This follows from spectral sequence 1 of Proposition 3.19 from [BHV18].
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5.3 Stratification

Support and cosupport have particularly nice properties when the (co)localizing categories

generated by each local (co)homology functor are minimal (co)localizing subcategories of T .

In this case, we say that T is canonically (co)stratified. In this chapter we are particulary

interested in support and stratificiation, but cosupport is unavoidable.

Definition 5.3.1 ([BIK11b] Section 4). We say that T is canonically stratified if for each

p ∈ SpechA the localizing subcategory ΓpT is a minimal localizing subcategory.

Remark 5.3.2. This is not the precise definition from [BIK11b]. There they also require that

the local to global principal holds, that is that for X ∈ T we have locT X = locT{ΓpX : p ∈

SpechA}. However, in [BIK11b] Theorem 7.2 they show that in our situation, where T is

D(R) with the canonical π∗R action for a Noetherian ring spectrum R, this automatically

holds.

They also allow that the categories ΓpT are zero, but this cannot happen in this situation

for example by 6 of 5.2.9 above.

There is a convenient criterion for checking the minimality of a localizing subcategory.

Proposition 5.3.3. [[BIK11b] Lemma 4.1] A localizing subcategory C ⊂ T is minimal if and

only if for every nonzero M,N ∈ C we have that hom(M,N) 6= 0.

In the case when T is canonically stratified, then the support theory is particulary nice.

Theorem 5.3.4. Suppose that T is canonically stratified. Then in addition to all the prop-

erties of 5.2.9, support also satisfies the following:

1. For A,B ∈ T , suppA ∧R B = suppA ∩ suppB.

2. For A,B ∈ T , cosupp hom(A,B) = suppA ∩ cosuppB.

Proof. One is Theorem 7.3 of [BIK11b], and two is Theorem 9.5 of [BIK12].
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There are also many interesting structural consequences when stratification holds.

Proposition 5.3.5. If T is canonically stratified by A, then:

1. There is a bijection between the localizing subcategories of T and subsets of SpechA.

2. There is a bijection between thick subcategories of T c and specialization closed subsets

of SpechA.

3. There is an isomorphism of topological spaces between the Balmer spectrum of T c and

SpechA.

Proof. Number one is Theorem 4.2 of [BIK11b] and number two is Theorem 6.1 of the same

paper. Three follows from 2 essentially by the definition of the Balmer spectrum.

This classification result is similar to Theorem 6.3.7 of [HPS97]; the local cohomology

objects used here play the role of the K(p) from [HPS97].

For a space X, let C∗X be the ring spectrum F (Σ∞X+, HFp). Here F is the internal

hom in S-modules or any other convenient category of spectra, and + denotes adjoining a

disjoint basepoint. Note that the negative homotopy groups of C∗X are the cohomology

groups of X. We are especially interested in the case that X = BG for G a compact Lie

group. The spectrum C∗BG inherits a commutative ring structure from the commutative

ring structure on HFp and the coalgebra structure on Σ∞BG+. For R any commutative ring

spectrum, D(R) denotes the homotopy category of R-module spectra, i.e. the category of

R-module spectra localized at weak equivalences.

When G is a finite group, there is a close connection between D(C∗BG) and the repre-

sentation theory of G.

Proposition 5.3.6. For G a finite group, the localizing subcategory of K(Inj(FpG)) gen-

erated by an injective resolution of Fp is equivalent as a tensor triangulated category to

D(C∗BG). In particular, for G a finite p-group, D(C∗BG) and K(Inj(FpG)) are equivalent

as tensor triangulated categories.
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See [BK08] for a detailed discussion. The crux of the matter is the Rothenburg-Steenrod

construction which gives an equivalence between the derived endomorphism ring of HFp in

the category of G+ ∧HFp-modules and C∗BG.

For G a finite group, it is shown in [BIK11a] that D(C∗BG) is stratified by H∗G. Their

proof uses the techniques of [BIK11c].

Theorem 5.3.7 ([BIK11a]). For G a finite group, D(C∗BG) is canonically stratified.

It follows from stratification that support and cosupport work nicely with respect to

restricting to a subgroup. For H < G, there is a restriction map res : C∗BG −→ C∗BH. This

leads to the following adjoint triple of functors.

D(C∗BG) D(C∗BH)

coind

ind

res (5.3.1)

Here restriction is via the map C∗BG −→ C∗BH, induction is the left adjoint to restriction

defined by M 7→M ∧C∗BG C∗BH, and coinduction is the right adjoint to restriction defined

by M 7→ homC∗BG(C∗BH,M).

It is worth noting that unlike in the situation for finite groups and the stable module

category, ind and coind do not always agree.

Corollary 5.3.8 (The Subgroup Theorem). For G a finite group and H < G, we have that

for M ∈ D(C∗BG):

1. supp indM = (res∗)−1(suppM)

2. cosupp coindM = (res∗)−1(cosuppM)

Proof. This is Theorem 11.2 of [BIK11c] and Theorem 11.11 of [BIK12], with the language

translated into cochains using [BK08]. These can also be derived from Proposition 3.13 of

[BCHV17].
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The subgroup theorem shows that when stratification holds support and cosupport are

compatible with maps of ring spectra and the corresponding restriction, induction, and

coinduction functors. Here we point out some ways in which support is compatible with

arbitrary maps of Noetherian ring spectra.

For f : R −→ S a map of ring spectra we write f ∗ for the induced map Spech π∗S −→

Spech π∗R. The map f induces a triple of adjoints as in equation 5.3.1.

Theorem 5.3.9. Let f : R −→ S be a map of Noetherian ring spectra so that the map on

homotopy groups is finite, and take M ∈ D(R), N ∈ D(S). Then:

1. suppR resN = f ∗ suppS N .

2. suppR res indM ⊂ suppRM .

3. For M ∈ ΓpD(R) with coind ΛpM 6= 0, then cosuppS coindM ∩ (f ∗)−1p 6= ∅.

Number one is Proposition 3.11 of [BCHV17] and closely related to Propostion 4.3.ii of

[BG14], and number two is closely related to Proposition 4.3.ii of [BG14]. Number three is

essentially Prop 3.23 of [BCHV17]. For completeness we include their proofs.

Proof. 1. This follows from the fact that Γp resN =
⊕

q∈(f∗)−1p ΓqN . This is in turn

proved by applying Corollary 3.9 of [BCHV17] to get that ind ΓpR =
⊕

q∈(f∗)−1p ΓqS,

and the fact that Γp resN = res(N ∧S ind ΓpR), which follows from 2.2 of [BCHV17].

Corollary 3.9 of [BCHV17] is essentially Corollary 7.10 of [BIK12] adapated to the

situation where induction does not have adjoints on both sides.

Once we have that Γp resN =
⊕

q∈(f∗)−1p ΓqN we see that if p ∈ suppR resN then there

is some q mapping to p with q ∈ suppS N . This gives us that suppR resN ⊂ f ∗ suppS N .

The other direction also follows immediately from Γp resN =
⊕

q∈(f∗)−1p ΓqN .

Note: This is essentially the proof given in [BG14]. The proof in [BCHV17] is different

and appears to be more general, it doesn’t use the fact that the map on homotopy

groups is finite.



79

2. This follows immediately from the fact that Γp is smashing. If p ∈ supp(res indM),

then Γp(M ∧R S) is nonzero, so ΓpM is nonzero as well.

3. Note that homR(Γp resS,M) is res coind ΛpM , so by assumption homR(Γp resS,M) 6=

0.

By Corollary 3.12 of [BCHV17], Γp resS ∈ locD(R){res ΓqS : q ∈ (f ∗)−1p}. Now

suppose that for all q ∈ (f ∗)−1p we have q 6∈ cosupp coindM , so homS(ΓqS, coindM) =

homR(res ΓqS,M) = 0. But then since Γp resS ∈ locD(R){res ΓqS : q ∈ (f ∗)−1p} we

have homR(Γp resS,M) = 0, a contradiction.

5.4 Stratification for Borel constructions

In [BG14] and [BCHV17], using homotopy theoretic arguments dating back to Quillen, it is

shown that for G a compact Lie group, D(C∗BG) is stratified by the canonical action of H∗G.

However, it would be desirable to not only have a stratification result for BG, but for

Borel constructions on manifolds with a G action. Fortunately, we can show that their

arguments still hold in this generality. Fix a compact Lie group G and a finite G CW-

complex X. In this section, we denote C∗EG ×G X by C∗GX. Moreover, we use X as a

shorthand for D(C∗GX), especially in our induction, coinduction, and restriction functors,

and in our homs.

Theorem 5.4.1. We have that C∗GX is stratified by the canonical action of H∗GX.

We will prove this by showing how to adapt the proofs [BG14] and [BCHV17] to hold

in this context. First we recall the generalization of restriction to p-tori that is relevant to

equivariant cohomology.

Definition 5.4.2. The homotopy orbit category OGX is the category where the objects

are homotopy classes of equivariant maps G/H −→ X, where H is a closed subgroup of
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G, and where the morphisms are homotopy commutative triangles where all the maps are

equivariant.

Definition 5.4.3. The Quillen category AGX is the full subcategory of OGX spanned by

objects of the form G/E −→ X, where E is a p-torus.

We now recall the Quillen stratification theorem. For G/E −→ X ∈ AGX, let V +
G/E−→X

be the subspace of SpechH∗GG/E consisting of primes that are not in the image of res∗ :

SpechH∗GG/E
′ −→ SpechH∗GG/E for any G/E ′ −→ X ∈ AGX admitting a map to G/E −→ X.

Theorem 5.4.4. [Qui71] Let A be a set of isomorphism classes of objects of AGX. We have

that SpechH∗GX is isomorphic as sets to
⊔
x∈A V

+
x .

In particular, for each p ∈ SpechH∗GX, there is a unique up to isomorphism orbit in

AGX minimal with respect to p ∈ image res∗ : SpechH∗GG/E −→ SpechH∗GX.

Definition 5.4.5. For p ∈ SpechH∗GX, an originator is a choice of a minimal orbit G/E −→

X together with q ∈ SpechH∗GG/E so that res(q) = p, and we say that the pair (G/E −→ X, q)

originates p.

Remark 5.4.6. This category AGX is not the precise category used to formulate the stratifi-

cation theorem in [Qui71], but those results are valid with this category in place of the one

that Quillen uses.

Remark 5.4.7. Each object of AGX induces a triple of adjoints:

D(C∗GX) D(C∗GG/E)

coind

ind

res

These all come from the map of ring spectra C∗GX −→ C∗GG/E induced by the equivariant

map G/E −→ X.

The two keys facts that drive the proof of stratification for D(C∗GX) are the Quillen

stratification theorem stated above, and an analogue of Chouinard’s theorem, which in its

classical form states that a modular representation of a finite group G is projective if and

only if it is projective upon restricting to every p-torus of G.
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Proposition 5.4.8. Chouinard’s theorem holds for D(C∗GX), in the sense that for M ∈

D(C∗GX) the following are equivalent.

1. M is equivalent to 0.

2. For every G/E −→ X ∈ AGX, ind
G/E
X M ∼ 0.

3. For every G/E −→ X ∈ AGX, coind
G/E
X M ∼ 0.

For X a point this is Theorem 3.1 in [BG14], see also 4.17 of [BCHV17]. The proof of

Benson and Greenlees applies immediately to this more general situation; for completeness

we include their argument and fill in some details in a series of lemmas.

The proof uses the descent technique we have used throughout the thesis. For G ↪→ U(n)

a representation, let F be the G-space U(n)/S, where S is the maximal diagonal p-torus, so

G acts diagonally on X × F .

Lemma 5.4.9. The map C∗GX −→ C∗GX × F induced by the projection X × F −→ X admits

a retract as C∗GX-modules.

Proof. As shown in [Qui71] and discussed elsewhere in this thesis, the Serre spectral sequence

associated to the bundle F −→ EG×GX×F −→ EG×GX collapses, so H∗GX×F is a finitely

generated free H∗GX-module. So, there are cohomology classes x1, . . . , xn in H∗GX×F (where

|xi| = ji) so that the map:
⊕n

i=1 Σji(H∗GX)i −→ H∗GX × F induced by mapping 1 ∈ (H∗GX)i

to xi is an isomorphism of H∗GX-modules.

Each class xi is induced by a map ηi : S−ji −→ C∗GX×F , so consider the map Σ−jiC∗GX
∼−→

C∗GX ∧ S−ji −→ C∗GX ∧C∗GX ×F −→ C∗GX where the first map is id∧ η and the second is the

action map. Upon taking homotopy groups this is the map induced by mapping 1 7→ xi, so

we see that
⊕n

i=1 Σ−jiC∗GX is equivalent as modules over C∗GX to C∗GX × F , which yields

the desired result.

Lemma 5.4.10. We have that C∗GX×F ∈ ThickX×F{C∗GG/E : G/E −→ X×F ∈ AGX×F}
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Proof. We will show that Σ∞(EG×G (X×F ))+ is a finite sequence of homotopy pushouts of

suspensions of the Σ∞(EG×GG/E)+, where the maps defining the colimit are all compatible

with the maps Σ∞EG×GG/E+ −→ Σ∞EG×GX+. Since homotopy pushouts can be expressed

with cones, the claimed result then follows from taking cochains.

Since the isotropy groups for X ×F are all p-tori, X ×F is a finite G-CW complex built

of cells of the form G/E ×Dn where E is a p-torus. In other words it is built from finitely

many iterated homotopy colimits of the following form.⊔
j(G/Ej × Sn) X × Fn

⊔
j G/Ej X × Fn+1

Here X ×Fn is the n-skelteton of X ×F . All the maps in these diagrams are G-equivariant.

Applying the Borel construction preserves homotopy colimits, so we have:⊔
j(EG×G (G/Ej × Sn)) EG×G (X × Fn)

⊔
j EG×G G/Ej EG×G (X × Fn+1)

.

Adding a disjoint basepoint and taking suspension spectra gives:

∨
j Σ∞(EG×G G/Ej × Sn)+ Σ∞(EG×G (X × Fn))+

∨
j Σ∞(EG×G G/Ej)+ Σ∞(X × Fn+1)+

.

We also have that each Σ∞(EG×G G/Ej × Sn)+ is a cone of suspensions of Σ∞(EG×G
G/Ej)+, compatibly with the structure maps. We see that Σ∞EG×G (X ×F )+ is obtained

from a finite number of homotopy pushouts of the Σ∞(G/Ej)+, compatibly with the maps

to Σ∞EG×G (X × F )+, and we are done.

Lemma 5.4.11. We have that C∗GX ∈ ThickX{C∗GG/E : G/E −→ X ∈ AGX}.

Proof. Since by 5.4.9 we have that C∗GX ∈ ThickC∗GX C
∗
GX × F , it is enough to show

that C∗GX × F ∈ ThickX{C∗GG/E : G/E −→ X ∈ AGX}. But all of the objects in
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ThickX×F{C∗GG/E : G/E −→ X × F ∈ AGX × F} are in ThickX{C∗GG/E : G/E −→ X ∈

AGX} when pulled back along the map C∗GX −→ C∗GX × F , so this follows from 5.4.10.

Lemma 5.4.12. Let T be a tensor triangulated category and let C = Thick{A1, . . . An}.

1. If for all i we have that HomT (Ai,M) = 0, then for all J ∈ C we have HomT (J,M) = 0.

2. If for all i we have that Ai ⊗M = 0, then for all J ∈ C we have J ⊗M = 0.

Proof. If we have a triangle A −→ B −→ C and HomT (A,M) = HomT (B,M) = 0 then by

the long exact sequence of a triangle HomT (C,M) = 0 as well. Similarly, tensoring with M

gives a triangle A⊗M −→ B ⊗M −→ C ⊗M , and if the first two are zero so is the third.

Also, if A is a retract of B and HomT (B,M) = 0, then the identiy map HomT (A,M)

factors through 0, so is 0. Similarly, if B ⊗M = 0 then A⊗M = 0, so we have shown that

these properties are closed under triangles and retracts, giving us the desired result.

Proof of 5.4.8. One obviously implies two and three, so we only need to show that two

and three imply one.

Suppose that for all G/E −→ X ∈ AGX we have ind
G/E
X M ∼ 0, or C∗GG/E∧C∗GXM ∼ 0.

Then by 5.4.12 and 5.4.11 we have that C∗GX ∧C∗GX M ∼M ∼ 0. This shows that two

implies one.

For three implies one, suppose that for all G/E −→ X ∈ AGX we have coind
G/E
X M ∼ 0,

or HomX(C∗GG/E,M) ∼ 0. Then again by 5.4.12 and 5.4.11 we have that M ∼

HomX(C∗GX,M) is equivalent to 0, so we are done.

Now that we have Chouinard’s theorem, we can use stratification for D(C∗GG/E) to prove

stratification for D(C∗GX). At this point we could appeal to Theorem 3.24 of [BCHV17], but

for completeness we include a variant of their argument.



84

Proposition 5.4.13. If M ∈ ΓpD(C∗GX) is nonzero and q ∈ SpecH∗GG/E originates p in

the sense of 5.4.4, then q ∈ suppG/E ind
G/E
X M ∩ cosuppG/E coind

G/E
X M .

This property is closely related to what the authors of [BCHV17] call Quillen lifting, see

Definition 3.15 of [BCHV17]. The part of this claim for supp is proved by arguing as in the

first part of the proof of Theorem 4.5 of [BG14], and the second part uses Propostion 3.23

of [BCHV17].

For completeness, we give the arguments– the key ingredients are 5.3.8 and 5.3.9.

Proof. Suppose that M is nonzero, so there is some G/E ′ −→ X ∈ AGX with ind
G/E′

X M

nonzero. Therefore, by 5.2.9 there is some q′ ∈ suppG/E′ ind
G/E′

X M . But res∗ suppG/E′ ind
G/E′

X M ⊂

suppXM by 5.3.9 so res∗ q′ = p. Now, let (G/E −→ X, q) originate p. Then G/E −→ X fits

into a triangle:

G/E X

G/E ′

j .

Because D(C∗GG/E), D(C∗GG/E
′) are stratified, by the subgroup theorem for D(C∗BE ′)

5.3.8 we have that for all X ∈ D(C∗GG/E
′), suppG/E ind(j)X = (j∗)−1 suppG/E′ X. There-

fore, q ∈ suppG/E ind
G/E
X M .

The argument for cosupport is similar: there is some G/E ′′ −→ X with coind
G/E′′

X ΛpM

nonzero. So by 5.3.9 we have that there is some q′′ ∈ cosuppG/E′′ coind
G/E′′

X M with res∗ q′′ =

p. Then, by the subgroup theorem for coinduction and cosupport, we have that for the pair

(G/E −→ X, q) originating p, q ∈ cosuppG/E coind
G/E
X M .

Proof of 5.4.1. We need to show that each ΓpD(C∗GG/E) is a minimal localizing subcat-

egory. So, by 5.3.3 we need to show that for nonzero M,N in ΓpD(C∗GX) we have that

HomX(M,N) 6= 0.

Choose a (unique up to isomorphism) q ∈ SpecH∗GG/E originating p. Then consider

homX(res
G/E
X ind

G/E
X M,N). By adjointness, this is homG/E(ind

G/E
X M, coind

G/E
X N). Because

D(C∗GG/E) is stratified, we have by 5.2.9:

cosupp homG/E(ind
G/E
X M, coind

G/E
X N) = supp ind

G/E
X M ∩ cosupp coind

G/E
X N.
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Then, by 5.4.13 q ∈ cosupp homG/E(ind
G/E
X M, coind

G/E
X N) and we conclude that:

homX(res
G/E
X ind

G/E
X M,N) 6= 0.

But res
G/E
X ind

G/E
X M ∈ locXM (all localizing subcategories are tensor ideals in our set-

ting, since D(R) is generated by R), so we conclude that homX(M,N) 6= 0, as we desired.
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Appendix A

RECOLLECTIONS ON LOCAL COHOMOLOGY

Here we recall some of the basic facts about local cohomology modules, which are used

throughout the thesis. The main source for this is [BS13], which includes a discussion of the

graded case. Fix a finitely generated connected graded Fp-algebra R. Denote the unique

homogeneous maximal ideal of R by m. All modules will be finitely generated, and everything

is meant in the graded sense. Note that [BS13] deals exclusively with commutative rings,

not the graded commutative rings we have been dealing with thus far, however Appendix B

lets us extend results to the graded commutative setting.

Definition A.0.1. The m-torsion functor of an R-module M , or ΓmM , is the functor that

takes M to the submodule consisting of those elements which are annihilated by some power

of m. This functor is left exact, and its derived functors are the local cohomology functors,

or Hi.

Remark A.0.2. The a-torsion functor makes sense for any ideal a of R, and usually the functor

Hi is written as Hi
a, taking into account the ideal a. However, in the first four chapters of

this thesis, we are solely concerned with the maximal ideal, and so we omit the ideal from

the notation.

One convenient property of the local cohomology functors is that they contain much of

the information about depth, dimension, and associated primes.

Theorem A.0.3. Let M be an R-module.

1. The depth of M is the smallest i with HiM 6= 0.

2. The dimension of M is the largest i with HiM 6= 0.
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3. If p ∈ AssRM of dimension d, then HdM 6= 0.

Proof. One and two are standard and proofs are contained in [BS13]. Three is less well

known, but is in [GL00].

Local cohomology is very flexible in terms of which ring it is computed over.

Theorem A.0.4 (The independence theorem). If R −→ S is a finite map of connected graded

Fp-algebras, and M is an S-module, then res(HiM) is naturally isomorphic to Hi resM .

Proof. This is also in [BS13].

Local cohomology can be computed via C̆ech complexes, which shows that it satisfies a

Künneth theorem.

Theorem A.0.5. Let R and R′ be connected, graded Fp-algebras and let M be an R-module

and N and R′-module. Then we have that H∗(M ⊗Fp N) = H∗N ⊗Fp H∗N .

This implies that if R ∼= R′ ⊗Fp N where N is a bounded Fp-algebra, then H∗R =

H∗R′ ⊗Fp N .

As we have seen throughout this thesis, because of the Duflot filtration the local cohomol-

ogy of a polynomial ring determines a lot about the local cohomology of group cohomology

rings. Consequently we close this appendix with a computation of the local cohomology of

a polynomial ring as a module over itself.

Theorem A.0.6. Let R = Fp[x1, . . . , xn], where |xi| = di (and the di are all even when the

prime is odd). Then HnR = Σ−(d1+···+dn)(R∗), where here ∗ denotes the Fp-linear dual.

Proof. By A.0.5, it is enough to prove this when n = 1. For this, we can proceed directly from

the definitions. The exact sequence 0 −→ Fp[x] −→ Fp[x, x−1] −→ Fp[x, x−1]/Fp[x] −→ 0 is an

injective resolution of Fp[x]. This is so because we are working in the graded category, we can

use the graded version of Baer’s criterion to check injectivity. Note that Fp[x, x−1]/Fp[x] ∼=

Σ−d(Fp[x]∗). Applying Γm to this resolution then gives the desired result.
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Appendix B

GRADED COMMUTATIVE VERSUS COMMUTATIVE
GRADED RINGS

In this thesis, we have been concerned with graded commutative rings, that is graded rings

R so that for for homogeneous a, b ∈ R, ab = (−1)|a||b|ba. Unfortunately most references in

commutative algebra that deal with graded rings and modules typically assume that graded

rings are strictly commutative.

It is customary to either ignore the distinction between graded commutative rings and

commutative graded rings, or to insist that all theorems from commutative algebra hold for

graded commutative rings. It seems worthwhile to explain how to reduce concepts for graded

commutative rings to commutative graded counterparts.

First of all, for graded commutative rings the notion of a left and right ideal coincide, and

if M is a left R−module it can be converted into a right R−module via m·x = (−1)|x||m|x·m.

A graded commutative ring R has a subring Rev which is generated by the even degree

elements, and Rev is both graded commutative and commutative graded. All the odd degree

elements of R are nilpotent, and the inclusion Rev −→ R induces a bijection of prime ideals.

The whole ring R is an Rev module, and commutative algebra notions about R are the same

as notions about R as an Rev-module, as indicated in the following proposition. If R is

Noetherian, then R is a finitely generated Rev-module.

Proposition B.0.1. Let R be a finitely generated graded commutative ring.

1. The depth of R is equal to the depth of R as an Rev-module.

2. The dimension of R is equal to the dimension of R as an Rev-module.

3. The map Rev −→ R induces a bijection AssRR −→ AssRev R.
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These are all consequences of the facts that the inclusion of Rev denotes a bijection of

primes, and the fact that all odd degree elements of R are nilpotent.

Local cohomology modules can be defined for graded commutative rings exactly as for

commutative graded rings, and the local cohomology of R as a module over itself is the same

as the local cohomology of R as an Rev module.

Theorem B.0.2. For all R-modules M , the inclusion Rev into R induces an isomorphism

of Rev-modules resH∗M −→ H∗ resM . Here the left hand side denotes local cohomology as an

R-module restricted to Rev, and the right hand side denotes local cohomology after restricting

to Rev.

Proof. Denote the maximal ideal of R by m and the maximal ideal of Rev by mev. Then

Γmev resM is equal to res ΓmM . This is because it is clear that if m ∈ resM is annihilated

by Γmev , then x is annihilated by Γ〈mev〉, where 〈mev〉 denotes the ideal in R generated by

mev. However, the torsion functor is radical invariant, and the radical of 〈mev〉 is m.

Now, an injective R-module is Γmev -acyclic as an Rev-module. This is Theorem 4.1.6 of

[BS13]. The proof there is given for commutative rings, but the same proof works in this

context.

Remark B.0.3. This proof is essentially the proof of the independence theorem A.0.4. An

alternative proof proceeds using the C̆ech complex: we can choose generators for mev so that

the C̆ech complex for resM with respect to the ideal generated by mev as an Rev-module is

equal to the C̆ech complex of M with respect to the ideal generated by mev as an R-module.
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