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I am interested in tensor triangulated geometry, homotopy theory, and modular representation
theory, and interactions between these subjects. During my PhD I focused on geometric properties
of equivariant cohomology rings and using the Borel equivariant cohomology of smooth manifolds
to study group cohomology rings. This led to generalizing theorems on depth and associated
primes from group cohomology rings to the equivariant cohomology of smooth manifolds, as well
as a method to study the local cohomology modules of group cohomology rings using equivariant
cohomology. During my poctdoc at UCLA I have focused on tensor triangulated geometry, where
homotopy theory and modular representation theory are two of my favoritve examples in the more
general theory. In particular I have been working on understanding fields in tensor triangulated
geometry, and in joint work with Paul Balmer we have classified the homological residue fields that
occur in tensor triangulated categories arising in algebra, homotopy theoory, and representation
theory.

1. Tensor triangulated geometry

Tensor triangulated geometry (tt geometry) is the study of of tensor triangulated categories
(tt categories) using geometric methods. One of the organizing principles is the Balmer Spectrum
[Bal10], this is a space asscociated to a tensor triangulated category that is the home of the universal
support theory for the category, and understanding this space gives information about the tensor
triangulated category, such as a classification of thick tensor ideals. Theorems that classify the
thick tensor ideals of a tensor triangulated category, such as in the case of the stable homotopy
category [HS98] or the stable module category of a group [BCR96], can be interpreted as theorems
about the Balmer spectrum of these categories. The thrust of tt geometry can be encapulated in
two open ended questions:

(1) Given a tt category T , what is the Balmer spectrum of T ?
(2) What can the Balmer spectrum of T (and associated constructions) tell you about T ?

My research involves both of these questions.

1.1. Homological Residue Fields. A good theory of residue fields for tt categories does not yet
exist, but key examples such as the derived category of a ring, the stable homotopy category, and
the stable module category of a finite group all have functors that act like residue field functors.
Homological residue fields were introduced by Balmer, Krause, and Stevenson [BKS19] as the
abelian avatar of the hypothetical tensor triangulated residue field functor, they are symmetric
monoidal functors from a tt category T to an abelian category with no nontrivial localizing tensor
ideals, and they have the advantage that there is always at least one such homological residue field
for each tensor triangulated prime.

To construct a homological residue for a compactly-rigidly category T , one takes the category
of T c-modules, that is the category of additive functors from T c to abelian groups. A homological
residue field is a quotient of T c-modules by a homological prime B, and if we have a tensor tri-
angulated residue field functor T −→ F we have a diagram T //

F
��

Mod-T c

F̂
��

F //

U

OO

Mod-Fc

Û

OO
from which we can

contruct a homological prime B and an homological residue field ĀB.
Homological residue fields are useful, for example Balmer in [Bal20b] [Bal20a] has used them to

prove a theorem characterizing maps that are tensor nilpotent in a general tt category and also to
develop a theory of supports for not necessarily compact objects.
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Homological residue fields are useful but their definition is rather abstract and a priori it is
difficult to do calculations with them, and some of my joint work with Paul Balmer has been in
connecting homological residue fields with the tt residue fields that exist in some examples.

Each homological residue field ĀB for a tt category T is governed by a pure-injective object EB
of T , and one way of understanding ĀB is to understand this object EB. We show that in the
standard examples the object EB is a familiar object related to the tt residue field.

Theorem 1 ([BC20]). (1) For B the homological prime of Spch(SHc) corresponding to K(p, n),
we have an isomorphism EB ' K(p, n) in SH.

(2) Let R be a ring with derived category T = D(R) and let B be a homological prime corre-
sponding to the prime p of Spec(R) ∼= Spc(Dperf(R)). Then the pure-injective object EB is
isomorphic to the residue field κ(p)[0].

One deficiency of this theorem is that it does not cover the case of the stable module category
of a group. We have partial results in this direction with restrictive hypotheses. The reason is
that the tt residue field functor in question, the π-points of [FP07], give functors on stable module
categories that aren’t monoidal, so the theory that connects the tt residue field with a homological
residue field does not work, and resolving this difficulty is a high priority.

Project 1. For ĀB a homological prime of Stab kG, for G an arbitrary finite group, determine the
associated pure injective object EB.

Another approach to understanding the homological residue field ĀB arrising from tensor trian-
gulated residue field F is to directly relate the category F and ĀB, and Balmer and I do this as
well.

Theorem 2 ([BC20]). Let F : T −→ F be a monoidal functor with right adjoint U , where F is a

tensor-triangulated field. The category of comodules for the comonad F̂U on the functor category
of Fc-modules is equivalent to the homological residue field ĀB corresponding to F .

Project 2. Understand the comonad F̂U and its category of comodules in the standard examples,

and determine in what generality F̂U comodules are comodules for some coalgebra. This is the
case for the stable homotopy category and for the derived category of a ring, and I am currently
pursuing this further in joint work with Greg Stevenson.

Project 3. Determine the structure of the pure injective object EB associated to a homological
prime B. It is always a “weak ring” object by [BKS19] and is a ring object in all of the examples
that have been computed thus far– it is perhaps always a ring object? If not, are there conditions
on T that guarantee every EB is a ring object?

1.2. Stratification for cochain algebras. Another approach to understanding the large scale
structure of tt categories, especially those of an “algebraic nature” is the support theory and
associated stratification theory of Benson, Iyengar, and Krause [BIK11b]. This is a support theory
for a tt category T with values in the spectrum of a Noetherian ring equipped with a map to the
homotopy groups of the unit of T , and there are conditions for when this support theory classifies
the localizing subcategories of T , and also the thick subcategories of T c, and hence the Balmer
spectrum. In this case we say that the category T is stratified by the ring R.

Benson, Iyengar, and Krause [BIK11a] show that the derived category of modules for Fp-cochains
on the classifying space of a finite group is stratified by H∗(BG,Fp), initiating a study of when the
derived category of Fp-cochains on a space is stratifed by the Fp cohomology ring.

Benson and Greenlees [BG14] showed that stratification holds for connected compact Lie groups,
and Barthel, Castellana, Heard, and Valenzuela [BCHV19] showed that stratification holds for all
compact Lie groups, as well as for homotopical generalizations of compact Lie groups.
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Building on the work of Benson and Greenlees and of Barthel, Castellana, Heard, and Valenzuela,
I show that stratification holds for the Borel construction of a compact Lie group G acting on a
finite G-CW complex.

Theorem 3 ([Cam18]). Let G be a compact Lie group and and X a finite G-CW complex. Then the
category D(Mod−C∗(EG×GX,Fp)) is stratified by the Borel equivariant cohomology H∗G(X,Fp).

In particular, the Balmer spectrum SpcD(Mod−C∗(EG×GX,Fp)
c is isomorphic to the homo-

geneous spectrum SpechH∗G(X,Fp).

The most interesting case for me is the case where G −→ U(n) is a faithful representation, S
is a maximal elementary abelian p-subgroup of U(n), and G acts on U(n)/S. In this case, the
equivariant U(n)/S is intimately related to the cohomology ring H∗(BG,Fp) and cochains on
EG×G U(n)/S are closely related to chains on BG.

In my work in group cohomology I use a geometrically defined filtration of H∗G(U(n)/S,Fp) due
to Duflot [Duf83b] to study the local cohomology of H∗(BG,Fp). This filtration of H∗G(U(n)/S,Fp)
lifts to a filtration of C∗(EG×G U(n)/S,Fp), and it is natural to ask what this filtration tells you
about Mod−C∗(EG×GU(n)/S,Fp) and about Mod−C∗(BG,Fp). Because Mod−C∗(BG,Fp) is
closely related to the stable module category of FpG, this would give an approach to study modular
representation theory using equivariant topology, mirroring the great successes of using equivariant
cohomology to study group cohomology.

Project 4. Describe the structure the Duflot filtration puts on D(C∗(EG ×G U(n)/S,Fp)), and
use this to study D(C∗(BG,Fp)) and StMod kG.

2. Cohomology of classifying spaces and equivariant cohomology

I am interested in the the modular cohomology rings of classifying spaces of compact Lie groups.
For finite groups these rings can be described purely algebraically as Ext∗FpG(Fp,Fp), but there is

a long and fruitful history of studying these rings using techniques from algebraic topology. For G
a finite group the Balmer spectrum of the stable module category of FpG is ProjH∗(BG,Fp), so
understanding H∗(BG,Fp) from a geometric point of view has direct consequences in representation
theory. In my research, I’ve used a filtration due to Duflot [Duf83b] on the Borel equivariant
cohomology ring of a smooth manifold with an elementary abelian p-group action to study group
cohomology rings. I’ve developed a framework that gives unified proofs of Quillen’s theorem on
dimension, Duflot’s theorem on depth, and Symonds’ regularity theorem, as well as new restrictions
on depth and associated primes for H∗BG, and new local cohomology computations.

2.1. Detection and Associated Primes. The Duflot filtration is a filtration by the natural
numbers, but I show how it can be refined to be a filtration by a certain poset relating to fixed
point data. This leads to an alternative description of the Duflot filtration, and also yields some
restrictions on associated primes. This extends to compact Lie groups several results that were
only known for finite groups, and provides new proofs for the finite group case.

Recall that Duflot proved [Duf83a] that all associated primes of H∗BG come from restricting to
elementary abelian p-subgroups.

Theorem 4 (Cameron, [Cam17]). Let G be a compact Lie group and E < G an elementary abelian
p-subgroup. The following are equivalent:

(1) E represents an associated prime in H∗(BG,Fp)
(2) The Duflot bound for depth is sharp for H∗B(CGE,Fp)

This follows from the work of Okuyama [Oku10] of Kuhn [Kuh13] for finite groups, so this
theorem is new in the compact Lie group case. The recent work of Heard [Hea20] gives another
approach to these ideas using the technology of unstable modules over the Steenrod algebra, but the
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approach using the Duflot filtration, or perhaps a combination of the Duflot filtration and unstable
algebra technology is very promising.

This theorem shows that understanding when the Duflot bound for depth is sharp is equivalent
to understanding what elementary abelian p-subgroups give associated primes, which raises the
following questions.

Project 5. Find a group theoretic criterion for determining when the Duflot bound for depth is
sharp.

Project 6. Classify the elementary abelian p-groups giving associated primes of H∗(BG,Fp).

Because Spc StabFpG
c is isomorphic to SpechH∗(BG,Fp) as locally ringed spaces, you could

instead try to understand the associated primes of Spc StabFpG
c, or indeed the associated primes

of the spectrum of any tt category.

Project 7. Develop a theory of associated primes in tensor triangulated geometry.

2.2. Vanishing and Nonvanishing of Local Cohomology. Local cohomology is known to
vanish in degrees below the depth and above the dimension, and it is nonvanishing at degrees equal
to the depth, dimension, and at any degree equal to the dimension of an associated prime. Denote
local cohomology with respect to the ideal of positive degree elements by H.

The seminal regularity theorem of Symonds [Sym10] concerns the vanishing of Hi,jH∗BG for
j > −i, but little is known about the vanishing and nonvanishing of the entire Hi(H∗BG) beyond
what is known for general graded rings. This motivates the following question, if the answer to this
question is no (as it currently appears based on computational evidence) this place great restrictions
on group cohomology rings among all finite Fp-algebras:

Project 8. Determine whether or not there is any compact Lie group G with depthH∗BG = d
and dimH∗BG = r and some d < i < r with HiH∗BG = 0.

In other words, in the range where local cohomology can be either zero or nonzero, it is not
currently known if there is a group where local cohomology is ever nonzero.

I have made some partial progress on this question: in [Cam17] I show that for each n there
exists a G and an i so that Hi+j(H∗BG) 6= 0 for all 0 < j < n , and so that i + j is not the
dimension of an associated prime.

The groups that give examples of this phenomenon are the Sylow p-subgroup of Spn , denoted by
W (n). By taking advantage of the geometry of bundles associated to certain extensions involving
W (n), I use the machinery I develop in [Cam17] to compute the local cohomology of W (n) in terms
of the group cohomology of W (n− 1), and from this learn the following:

Theorem 5 ([Cam17]). For 0 ≤ i < p− 3, Hpn−1−i(H∗B(W (n)) 6= 0.

In other words:

Proposition 6 ([Cam17]). For each n there exists a G and an i so that Hi+j(H∗G) 6= 0 for all
0 < j < n , and so that i+ j is not the dimension of an associated prime.

2.3. More exotic groups. My theorems on the cohomology rings of classifying spaces focus on
the compact Lie group case, but there are interesting cases beyond compact Lie group such as
p-compact groups where much of the theory works the same, but essential theorems involving local
cohomology such as Symonds’ regularity theorem are unknown.

Project 9. Determine whether or not the regularity theorem holds for p-compact groups: that is, if
G is a p-compact groups of dimension d, is regH∗(BG = −d? Answering this question would likely
involve a more homotopical formulation of the Duflot filtration, and might also involve unstable
algebra technology.
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