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Loss function

So far, we have formulated training machine learning models as

min f (x) =
1
N

N∑
i=1

Li (x) + R(x)

where x is the parameter of the machine learning model, Li (x) is the loss of the ith
training instance, and R(x) is the regularization term.

How to find the optimal x∗ if R(x) is not differentiable everywhere, e.g.
`1-regularization?

Subgradient methods or proximal gradient methods.



Recap: Subgradient method

x t+1 = x t − ηtg t , (1)

where g t is any subgradient of f at x t .

We say g is a subgradient of f at the point x if

f (z) ≥ f (x) + g>(z − x)︸ ︷︷ ︸
a linear under-estimate of f

, ∀z . (2)

The set of all subgradients of f at x is called the subdifferential of f at x , denoted by
∂f (x).



Recap: Convergence of subgradient methods

Subgradient method is very slow!



Proximal gradient descent for composite functions

Consider the composite model

min
x

F (x) := f (x) + h(x), x ∈ Rn,

let F opt := minx F (x) be the optimal cost.

1. `1 regularized minimization for promoting sparsity (e.g., lasso)

min
x

f (x) + ‖x‖1

2. nuclear norm (sum of the singular values) regularized minimization for promoting
low-rank structure (Netflix competition)

min
X

f (X ) + ‖X‖∗



Matrix completion

Recommender system through matrix completion! (User privacy?)



Nuclear norm?

The rank is the L0 norm of the spectrum (the vector of singular values) and so the best
approximation is the L1 norm of the spectrum. However, for a positive semidefinite
matrix, the singular values are the eigenvalues and the sum of eigenvalues is the trace.

The connection between the rank and the nuclear norm can be understood as follows.
The convex hull of all rank-1 matrices with norm equal to 1 is the nuclear ball. This is
why the tightest convex approximation to the rank functional is the nuclear norm.



A proximal view of gradient descent

We note that the gradient descent iteration

x t+1 = x t − ηt∇f (x t)

can be written as

x t+1 = argmin
x

{
f (x t) + 〈∇f (x t), x − x t〉︸ ︷︷ ︸
first-order approximation

+
1
2ηt
‖x − x t‖22︸ ︷︷ ︸

proximal term

}
.

Motivation. GD can be considered as find the optimal solution of the linear
approximation of f (x t), and the linear approximation is accurate when x and x t is close
to each other.



Proximal gradient algorithm

We note that the gradient descent iteration

x t+1 = x t − ηt∇f (x t)

can be written as

x t+1 = argmin
x

{
f (x t) + 〈∇f (x t), x − x t〉︸ ︷︷ ︸
first-order approximation

+
1
2ηt
‖x − x t‖22︸ ︷︷ ︸

proximal term

}
.

⇔

x t+1 = argmin
x

{1
2
‖x − (x t − ηt∇f (x t))‖22

}
.



Proximal gradient algorithm

Define the proximal operator

proxh(x) := argmin
z

{1
2
‖z − x‖22 + h(z)

}
for any convex function h.

This allows one to express GD update as (set h(z) = 0),

x t+1 = prox0(x t − ηt∇f (x t)). (3)

One can generalize (3) to accommodate more general h,

x t+1 = proxηth(x
t − ηt∇f (x t)).

The proximal gradient algorithm alternates between gradient updates on f and proximal
minimization on h, and it will be useful if proxh is inexpensive.



Proximal gradient descent

Consider the composite model

min
x

F (x) := f (x) + h(x), x ∈ Rn,

Proximal gradient descent
for k = 0, 1, · · ·

x t+1 = proxηth(x t − ηt∇f (x t))



Proximal mapping/operator

The proximal operator is define by

proxh(x) := argmin
z

{1
2
‖z − x‖22 + h(z)

}
.

> well-defined under very general conditions (including nonsmooth convex functions)

> can be evaluated efficiently for many widely used functions (in particular,
regularizers)

> this abstraction is conceptually and mathematically simple, and covers many
well-known optimization algorithms.



Example (`1 norm)

If h(x) = ‖x‖1, then (proxλh(x))i = ψst(xi ;λ) (soft-thresholding) where

ψst(x ;λ) =


x − λ if x ≥ λ
x + λ if x ≤ −λ
0 else

Why?



proxλ‖x‖1(x) = argmin
z

{1
2
‖z − x‖22 + λ‖z‖1

}
= argmin

z

{1
2
‖z‖22 − 〈z , x〉+ λ‖z‖1

}
Note that

argmin
z

{1
2
‖z‖22 − 〈z , x〉+ λ‖z‖1

}
=
∑
i

Li ,

where
Li :=

1
2
z2
i − zixi + λ|zi |.

If xi > 0, then we must have zi ≥ 0, otherwise, let z∗i < 0 minimizes Li , then −z∗i
enables even smaller Li .

If xi < 0, then we must have zi ≤ 0.



If xi > 0, since zi ≥ 0, then we have

Li = −xizi +
1
2
z2
i + λzi ,

∂L
∂zi

= 0⇒ −xi + zi + λ = 0⇒ zi = xi − λ.

Here, we require the RHS is positive (we require zi ≥ 0), i.e., xi ≥ λ.



If xi < 0, since zi ≤ 0, then we have

Li = −xizi +
1
2
z2
i − λzi ,

∂L
∂zi

= 0⇒ −xi + zi − λ = 0⇒ zi = xi + λ.

Here, we require the RHS is negative (we require zi ≤ 0), i.e., xi ≤ −λ.



Finally, let us consider the case when −λ < xi < λ, our goal is

argminLi := −xizi +
1
2
z2
i + λ|zi |.

1. zi = 0⇒ Li = 0
2. zi > 0⇒ Li = −xizi + 1

2z
2
i + λzi and the minimum is obtained when

zi = 1− λ, in this case we have

Li = −xi (1− λ) +
1
2
(1− λ)2 + λ(1− λ) > 0

3. zi < 0⇒ Li = −xizi + 1
2z

2
i − λzi and the minimum is obtained when

zi = 1+ λ, in this case we have

Li = −xi (1+ λ) +
1
2
(1+ λ)2 + λ(1+ λ) > 0.



Basic rules

If f (x) = ag(x) + b with a > 0, then

proxf (x) = proxag (x).



Basic rules, Affine addition

If f (x) = g(x) + a>x + b, then

proxf (x) = proxg (x − a)



Basic rules, Quadratic addition

If f (x) = g(x) + ρ
2‖x − a‖22, then

proxf (x) = prox 1
1+ρ

g

( 1
1+ ρ

x +
ρ

1+ ρ
a
)

Proof.

proxf (x) = argmin
x

{1
2
‖z − x‖22 + g(z) +

ρ

2
‖z − a‖22

}
= argmin

x

{1+ ρ

2
‖z‖22 − 〈z , x + ρa〉+ g(z)

}
= argmin

x

{1
2
‖z‖22 −

1
1+ ρ

〈z , x + ρa〉+ 1
1+ ρ

g(z)
}

= argmin
x

{1
2
‖z −

( 1
1+ ρ

x +
ρ

1+ ρ
a
)
‖22 +

1
1+ ρ

g(z)
}

= prox 1
1+ρ

g

( 1
1+ ρ

x +
ρ

1+ ρ
a
)



Basic rules, Scaling and translation

If f (x) = g(ax + b) with a 6= 0, then

proxf (x) =
1
a

(
proxa2g (ax + b)− b

)
Why?



proxf (x) = argmin
z

{1
2
‖z − x‖22 + g(az + b)

}
= argmin

z

{1
2
‖z
′ − b

a
− x‖22 + g(z ′)

}
(Let z ′ = az + b)

= argmin
z

{1
2
‖z ′ − (ax + b)‖22 + a2g(z ′)

}
Next, consider

z ′∗ = argmin
z ′

{1
2
‖z ′ − (ax + b)‖22 + a2g(z ′)

}
= proxa2g (ax + b).

Moreover, we have z∗ = z ′∗−b
a , thus

proxf (x) =
1
a

(
proxa2g (ax + b)− b

)
.



Basic rules, Orthogonal mapping

If f (x) = g(Qx) with Q orthogonal (QQ> = Q>Q = I ), then

proxf (x) = Q>proxg (Q>x)



proxf (x) = argmin
z

{1
2
‖x − z‖2 + f (z)

}
= argmin

z

{1
2
‖x − z‖2 + g(Qz)

}
= argmin

z

{1
2
‖x −Q>z ′‖22 + g(z ′)

}
Let z ′∗ = argminz ′

{
1
2‖x −Q>z ′‖22 + g(z ′)

}
= proxg (Q>x) and we have

z∗ = Q>z ′∗, therefore
proxf (x) = Q>proxg (Q>x)



Basic rules, Orthogonal affine mapping

If f (x) = g(Qx + b) with QQ> = α−1I︸ ︷︷ ︸
does not require Q>Q=α−1I

, then

proxf (x) =
(
I − αQ>Q

)
x + αQ>

(
proxα−1g (Qx + b)− b

)



Basic rules, Norm composition

If f (x) = g(‖x‖2) with domain(g) = [0,∞), then

proxf (x) = proxg (‖x‖2)
x
‖x‖2

∀x 6= 0



Basic rules, Norm composition – cont’d

Proof. Observe that

min
z

{
f (z) +

1
2
‖z − x‖22

}
= min

z

{
g(‖z‖2) +

1
2
‖z‖22 − z>x +

1
2
‖x‖22

}
= min

α≥0
min
‖z‖2=α

{
g(α) +

1
2
α2 − z>x +

1
2
‖x‖22

}
=︸︷︷︸

Cauchy−Schwarz

min
α≥0

{
g(α) +

1
2
α2 − α‖x‖2 +

1
2
‖x‖22

}
= min

α≥0

{
g(α) +

1
2
(α− ‖x‖2)2

}
From the above calculation, we know the optimal point is

α∗ = proxg (‖x‖2) and z∗ = α∗
x
‖x‖2

= proxg (‖x‖2)
x
‖x‖2

,

thus concluding proof.



Convergence analysis



Convergence analysis

Lemma 5. [Cost monotonicity] Suppose f is convex and L-smooth. If ηt ≡ 1/L, then

F (x t+1) ≤ F (x t).

Remark. This is different from subgradient methods (for which objective value might
be non-monotonic in t). Also, constant stepsize rule is recommended when f is convex
and smooth.



Fundamental Inequality

Lemma 6. (key lemma) Let y+ = prox 1
L
h

(
y − 1

L∇f (y)
)
, then

F (y+)− F (x) ≤ L

2
‖x − y‖22 −

L

2
‖x − y+‖22 − g(x , y)︸ ︷︷ ︸

≥0 by convexity

where g(x , y) := f (x)− f (y)− 〈∇f (y), x − y〉.

Take x = y = x t and hence y+ = x t+1 to complete the proof of Lemma 5.



Proof of Lemma 6. Define φ(z) = f (y) + 〈∇f (y), z − y〉+ L
2‖z − y‖22 + h(z). It is

easily seen that y+ = argminz φ(z). Two important properties:

1. Since φ(z) is L-strongly convex, one has

φ(x) ≥ φ(y+) +
L

2
‖x − y+‖22.

2. From smoothness,

φ(y+) = f (y) + 〈∇f (y), y+ − y〉+ L

2
‖y+ − y‖22︸ ︷︷ ︸

upper bound on f (y+) (L-smoothness)

+h(y+) ≥ f (y+)+h(y+) = F (y+).



Proof of Lemma 6 (cont’d). Taken collectively, these yield

φ(x) ≥ F (y+) +
L

2
‖x − y+‖22,

which together with the definition of φ(x) gives

f (y) + 〈∇f (y), x − y〉+ h(x)︸ ︷︷ ︸
=f (x)+h(x)−g(x ,y)=F (x)−g(x ,y)

+
L

2
‖x − y‖22 ≥ F (y+) +

L

2
‖x − y+‖22

which finishes the proof.



Monotonicity in estimation error

Lemma 7. Suppose f is convex and L-smooth. If ηt ≡ 1/L, then

‖x t+1 − x∗‖2 ≤ ‖x t − x∗‖2.

Proof. From Lemma 6, taking x = x∗, y = x t (and hence y+ = x t+1) yields

F (x t+1)− F (x∗)︸ ︷︷ ︸
≥0

+ g(x , y)︸ ︷︷ ︸
≥0

≤ L

2
‖x∗ − x t‖22 −

L

2
‖x∗ − x t+1‖22

which immediately concludes the proof.

Remark. Proximal gradient iterates are not only monotonic w.r.t. cost, but also
monotonic in estimation error.



Convergence for convex problems

Theorem. [Convergence of proximal gradient methods for convex problems] Suppose f
is convex and L-smooth. If ηt ≡ 1/L, then

F (x t)− F opt ≤ L‖x0 − x∗‖22
2t

.



Convergence for convex problems

Proof. With Lemma 6 in mind, set x = x∗, y = x t to obtain

F (x t+1)− F (x∗) ≤ L

2
‖x t − x∗‖22 −

L

2
‖x t+1 − x∗‖22 − g(x∗, x t)︸ ︷︷ ︸

≥0 by convexity

≤ L

2
‖x t − x∗‖22 −

L

2
‖x t+1 − x∗‖22

Apply it recursively and add up all inequalities to get

t−1∑
k=0

(
F (xk+1)− F (x∗)

)
≤ L

2
‖x0 − x∗‖22 −

L

2
‖x t − x∗‖22.

This combines with monotonicity of F (x t) (cf. Lemma 6) yields

F (x t)− F (x∗) ≤
L
2‖x

0 − x∗‖22
t

.



Convergence for convex problems

Theorem. [Convergence of proximal gradient methods for strongly convex problems]
Suppose f is µ-strongly convex and L-smooth. If ηt ≡ 1/L, then

‖x t − x∗‖22 ≤
(
1− µ

L

)t
‖x0 − x∗‖22.



Convergence for convex problems

Proof. Taking x = x∗, y = x t (and hence y+ = x t+1) in Lemma 6 gives

F (x t+1)− F (x∗) ≤ 1
L
‖x∗ − x t‖22 −

L

2
‖x∗ − x t+1‖22 − g(x∗, x t)︸ ︷︷ ︸

≥µ
2 ‖x∗−x t‖22

≤ L− µ
2
‖x t − x∗‖22 −

L

2
‖x t+1 − x∗‖22.

This taken collectively with F (x t+1)− F (x∗) ≥ 0 yields

‖x t+1 − x∗‖22 ≤ (1− µ

L
)‖x t − x∗‖22.

Applying it recursively concludes the proof.


