Lecture 6. Subgradient Methods

Bao Wang
Department of Mathematics
Scientific Computing and Imaging Institute
University of Utah
Math 5750/6880, Fall 2021

Loss function

So far, we have formulated training machine learning models as

$$
\min f(\boldsymbol{x})=\frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{i}(\boldsymbol{x})+R(\boldsymbol{x})
$$

where \boldsymbol{x} is the parameter of the machine learning model, $\mathcal{L}_{i}(\boldsymbol{x})$ is the loss of the i th training instance, and $R(\boldsymbol{x})$ is the regularization term.

How to find the optimal \boldsymbol{x}^{*} if $R(x)$ is not differentiable everywhere, e.g. ℓ_{1}-regularization?

Subgradient methods or proximal gradient methods.
We will focus on the "subgradient-based methods" in this lecture, i.e.,

$$
\begin{equation*}
\boldsymbol{x}^{t+1}=\boldsymbol{x}^{t}-\eta_{t} \boldsymbol{g}^{t} \tag{1}
\end{equation*}
$$

where \boldsymbol{g}^{t} is any subgradient of f at \boldsymbol{x}^{t}.

We say \boldsymbol{g} is a subgradient of f at the point \boldsymbol{x} if

$$
\begin{equation*}
f(\boldsymbol{z}) \geq \underbrace{f(\boldsymbol{x})+\boldsymbol{g}^{\top}(\boldsymbol{z}-\boldsymbol{x})}_{\text {a linear under-estimate of } f}, \forall \boldsymbol{z} \tag{2}
\end{equation*}
$$

The set of all subgradients of f at \boldsymbol{x} is called the subdifferential of f at \boldsymbol{x}, denoted by $\partial f(\boldsymbol{x})$.

Example

Let $f(x)=|x|$, then

$$
\partial f(x)= \begin{cases}\{-1\}, & \text { if } x<0 \\ {[-1,1],} & \text { if } x=0 \\ \{1\}, & \text { if } x>0\end{cases}
$$

Example (a subgradient of norms at 0)

Let $f(\boldsymbol{x})=\|\boldsymbol{x}\|$ for any norm $\|\cdot\|$, then for any \boldsymbol{g} obeying $\|\boldsymbol{g}\|_{*} \leq 1$, then

$$
\boldsymbol{g} \in \partial f(0)
$$

where $\|\cdot\|_{*}$ is the dual norm of $\|\cdot\|$ (i.e. $\|\boldsymbol{x}\|_{*}:=\sup _{z:\|\boldsymbol{z}\| \leq 1}\langle\boldsymbol{z}, \boldsymbol{x}\rangle$).
Proof. To see this, it suffices to prove that

$$
f(\boldsymbol{z}) \geq f(0)+\langle\mathbf{g}, \boldsymbol{z}-0\rangle, \forall \boldsymbol{z} \Leftrightarrow\langle\mathbf{g}, \boldsymbol{z}\rangle \leq\|\boldsymbol{z}\|, \forall \boldsymbol{z}
$$

This follows from generalized Cauchy-Schwarz, i.e.

$$
\langle\boldsymbol{g}, \boldsymbol{z}\rangle \leq\|\boldsymbol{g}\|_{*}\|\boldsymbol{z}\| \leq\|\boldsymbol{z}\|
$$

Basic rules of subgradient methods

Scaling: $\partial(\alpha f)=\alpha \partial f$ for $\alpha>0$.

Basic rules of subgradient methods

Summation: $\partial\left(f_{1}+f_{2}\right)=\partial f_{1}+\partial f_{2}$.

Affine transformation: if $h(\boldsymbol{x})=f(\boldsymbol{A x}+\boldsymbol{b})$, then $\partial h(\boldsymbol{x})=\boldsymbol{A}^{\top} \partial f(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b})$.

Basic rules of subgradient methods

Chain rule: suppose f is convex, and g is differentiable, nondecreasing, and convex. Let $h=g \circ f$, then

$$
\partial h(\boldsymbol{x})=g^{\prime}(f(\boldsymbol{x})) \partial f(\boldsymbol{x})
$$

Composition: suppose $f(\boldsymbol{x})=h\left(f_{1}(\boldsymbol{x}), \cdots, f_{n}(\boldsymbol{x})\right)$, where f_{i} 's are convex, and h is differentiable, nondecreasing, and convex. Let $\boldsymbol{q}=\left.\nabla h(\boldsymbol{y})\right|_{\boldsymbol{y}=\left[f_{1}(\boldsymbol{x}), \cdots, f_{n}(x)\right] \text {, and }}$ $\boldsymbol{g}_{i} \in \partial f_{i}(\boldsymbol{x})$. Then

$$
q_{i} \boldsymbol{g}_{1}+\cdots+q_{n} \boldsymbol{g}_{n} \in \partial f(\boldsymbol{x})
$$

Basic rules of subgradient methods

Pointwise maximum: if $f(\boldsymbol{x})=\max _{1 \leq i \leq k} f_{i}(\boldsymbol{x})$, then

$$
\partial f(\boldsymbol{x})=\underbrace{\operatorname{conv}\left\{\cup\left\{\partial f_{i}(\boldsymbol{x}) \mid f_{i}(\boldsymbol{x})=f(\boldsymbol{x})\right\}\right\}}_{\text {convex hull of subdifferentials of all active functions }}
$$

Basic rules of subgradient methods

Pointwise supremum: if $f(\boldsymbol{x})=\sup _{\alpha \in \mathcal{F}} f_{\alpha}(\boldsymbol{x})$, then

$$
\partial f(\boldsymbol{x})=\operatorname{closure}\left(\operatorname{conv}\left\{\cup\left\{\partial f_{\alpha}(\boldsymbol{x}) \mid f_{\alpha}(\boldsymbol{x})=f(x)\right\}\right\}\right)
$$

Example

Let $f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}$ where f_{1} and f_{2} are differentiable, then

$$
\partial f(x)= \begin{cases}\left\{f_{1}^{\prime}(x)\right\} & \text { if } f_{1}(x)>f_{2}(x) \\ {\left[f_{1}^{\prime}(x), f_{2}^{\prime}(x)\right]} & \text { if } f_{1}(x)=f_{2}(x) \\ \left\{f_{2}^{\prime}(x)\right\} & \text { if } f_{1}(x)<f_{2}(x)\end{cases}
$$

Example (ℓ_{1} norm)

$$
\begin{aligned}
& f(\boldsymbol{x})=\|\boldsymbol{x}\|_{1}=\sum_{i=1}^{n} \underbrace{\left|x_{i}\right|}_{:=f_{i}(\boldsymbol{x})} \text { since } \\
& \qquad \partial f_{i}(\boldsymbol{x})=\left\{\begin{array}{l}
\operatorname{sgn}\left(x_{i}\right) \boldsymbol{e}_{i} \text { if } x_{i} \neq 0 \\
{[-1,1] \cdot \boldsymbol{e}_{i} \text { if } x_{i}=0}
\end{array}\right.
\end{aligned}
$$

Note that $f(\boldsymbol{x})=\|\boldsymbol{x}\|_{1}=\sum_{i,\left|x_{i}\right| \neq 0}\left|x_{i}\right|$, thus we have

$$
\sum_{i, x_{i} \neq 0} \operatorname{sgn}\left(x_{i}\right) \boldsymbol{e}_{i} \in \partial f(\boldsymbol{x})
$$

How about the subgradient at $x=0$?

Example

Let $h(\boldsymbol{x})=\|\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}\|_{1}$, and denote $f(\boldsymbol{x})=\|\boldsymbol{x}\|_{1}$ and $\boldsymbol{A}=\left[\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{m}\right]^{\top}$, we have

$$
\begin{aligned}
& \boldsymbol{g}=\sum_{i: \mathbf{a}_{i}^{\top} \boldsymbol{x}+b_{i} \neq 0} \operatorname{sgn}\left(\mathbf{a}_{i}^{\top} \boldsymbol{x}+b_{i}\right) \boldsymbol{e}_{i} \in \partial f(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}) \\
& \Rightarrow \boldsymbol{A}^{\top} \boldsymbol{g}=\sum_{i: \mathbf{a}_{i}^{\top} \boldsymbol{x}+b_{i} \neq 0} \operatorname{sgn}\left(\mathbf{a}_{i}^{\top} \boldsymbol{x}+b_{i}\right) \boldsymbol{a}_{i} \in \partial h(\boldsymbol{x}) .
\end{aligned}
$$

Example

Consider the piecewise linear function

$$
f(\boldsymbol{x})=\max _{1 \leq i \leq m}\left\{\mathbf{a}_{i}^{\top} \boldsymbol{x}+b_{i}\right\}
$$

pick any \boldsymbol{a}_{j} s.t. $\boldsymbol{a}_{j}^{\top} \boldsymbol{x}+b_{j}=\max _{i}\left\{\mathbf{a}_{i}^{\top} \boldsymbol{x}+b_{i}\right\}$, then

$$
\mathbf{a}_{j} \in \partial f(\boldsymbol{x})
$$

Let $f(\boldsymbol{x})=\|\boldsymbol{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$, if $\boldsymbol{x} \neq 0$, then pick any x_{j} obeying $\left|x_{j}\right|=\max _{i}\left|x_{i}\right|$ to obtain

$$
\operatorname{sgn}\left(x_{j}\right) \boldsymbol{e}_{j} \in \partial f(\boldsymbol{x})
$$

Consider $f(\boldsymbol{x})=\left|x_{1}\right|+3\left|x_{2}\right|$, at $\boldsymbol{x}=(1,0): \boldsymbol{g}_{1}=(1,0) \in \partial f(\boldsymbol{x})$ and $-\boldsymbol{g}_{1}$ is a descent direction; $\boldsymbol{g}_{2}=(1,3) \in \partial f(\boldsymbol{x})$ while $-\boldsymbol{g}_{2}$ is not a descent direction. This is because f is not continuous at \boldsymbol{x}, one can change directions significantly without violating the validity of subgradients.

Since $f\left(\boldsymbol{x}^{t}\right)$ is not necessarily monotone, we will keep track of the best point

$$
f^{\text {best }, t}:=\min _{1 \leq i \leq t} f\left(\boldsymbol{x}^{i}\right)
$$

We also denote by $f^{\text {opt }}:=\min _{x} f(\boldsymbol{x})$ the optimal objective value.

Convex and Lipschitz problems

Clearly, we cannot analyze all nonsmooth functions. A nice class to start with is Lipschitz functions, i.e. the set of all f obeying

$$
|f(\boldsymbol{x})-f(\boldsymbol{z})| \leq L_{f}\|\boldsymbol{x}-\boldsymbol{z}\|_{2}, \quad \forall \boldsymbol{x} \text { and } \boldsymbol{z}
$$

Fundamental inequality for projected subgradient methods

We'd like to optimize $\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}$, but do not have access to \boldsymbol{x}^{*}. The key idea is majorization-minimization: find another function that majorizes $\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}$, and optimize the majorizing function

Lemma 1. Subgradient update rule (1) obeys

$$
\begin{equation*}
\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2} \leq \underbrace{\underbrace{\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}}_{\text {fixed }}-2 \eta_{t}\left(f\left(\boldsymbol{x}^{t}\right)-f^{o p t}\right)+\eta_{t}^{2}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2}}_{\text {majorizing function }} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2} & =\left\|\boldsymbol{x}^{t}-\eta_{t} \boldsymbol{g}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2} \\
& =\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-2 \eta_{t}\left\langle\boldsymbol{x}^{t}-\boldsymbol{x}^{*}, \boldsymbol{g}^{t}\right\rangle+\eta_{t}^{2}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2} \\
& \leq\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-2 \eta_{t}\left(f\left(\boldsymbol{x}^{t}\right)-f\left(\boldsymbol{x}^{*}\right)\right)+\eta_{t}^{2}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2}
\end{aligned}
$$

where the last line uses the subgradient inequality

$$
f\left(\boldsymbol{x}^{*}\right)-f\left(\boldsymbol{x}^{t}\right) \geq\left\langle\boldsymbol{x}^{*}-\boldsymbol{x}^{t}, \boldsymbol{g}^{t}\right\rangle
$$

Proof of Lemma 1 - Cont'd

The majorizing function in (3) suggests a step size (Polyak's stepsize rule)

$$
\begin{equation*}
\eta_{t}=\frac{f\left(\boldsymbol{x}^{t}\right)-f^{\circ p t}}{\left\|\boldsymbol{g}_{t}\right\|_{2}^{2}} \tag{4}
\end{equation*}
$$

which leads to error reduction

$$
\begin{equation*}
\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2} \leq\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\frac{\left(f\left(\boldsymbol{x}^{t}\right)-f\left(\boldsymbol{x}^{*}\right)\right)^{2}}{\left\|\boldsymbol{g}^{t}\right\|_{2}^{2}} \tag{5}
\end{equation*}
$$

The algorithm is useful if fopt is known, and the estimation error is monotonically decreasing with Polyak's stepsize.

Theorem 1. Suppose f is convex and L_{f}-Lipschitz continuous. Then the projected subgradient method (1) with Polyak's stepsize rule obeys

$$
f^{b e s t, t}-f^{\text {opt }} \leq \frac{L_{f}\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}}{\sqrt{t+1}} .
$$

The rate $O(1 / \sqrt{t})$ is called sublinear convergence rate.

Convergence of subgradient method with Polyak's stepsize

Proof. We have seen from (5) that

$$
\begin{aligned}
\left(f\left(\boldsymbol{x}^{t}\right)-f\left(\boldsymbol{x}^{*}\right)\right)^{2} & \leq\left\{\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}\right\}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2} \\
& \leq\left\{\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}\right\} L_{f}^{2} .
\end{aligned}
$$

Applying it recursively for all iterations (from 0th to t th) and summing them up yield

$$
\sum_{k=0}^{t}\left(f\left(\boldsymbol{x}^{k}\right)-f\left(\boldsymbol{x}^{*}\right)\right)^{2} \leq\left\{\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}\right\} L_{f}^{2}
$$

therefore

$$
(t+1)\left(f^{\text {best }, t}-f^{\circ p t}\right)^{2} \leq\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2} L_{f}^{2}
$$

which concludes the proof.

Polyak's stepsize rule requires knowledge of fopt, which is often unknown a priori. We might often need simpler rules for setting stepsizes.

How about the other stepsize rules?

Convergence of subgradient methods for convex and Lipschitz functions

Theorem 2. [Subgradient methods for convex and Lipschitz functions] Suppose f is convex and L_{f}-Lipschitz continuous. Then the projected subgradient update rule (1) obeys

$$
f^{\text {best }, t}-f^{\text {opt }} \leq \frac{\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}+L_{f}^{2} \sum_{i=0}^{t} \eta_{i}^{2}}{2 \sum_{i=0}^{t} \eta_{i}}
$$

Convergence of subgradient methods for convex and Lipschitz functions - General step size
Proof. Applying Lemma 1 recursively gives

$$
\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2} \leq\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}-2 \sum_{i=0}^{t} \eta_{i}\left(f\left(\boldsymbol{x}^{i}\right)-f^{o p t}\right)+\sum_{i=0}^{t} \eta_{i}^{2}\left\|\mathbf{g}^{i}\right\|_{2}^{2}
$$

Rearranging terms, we are left with

$$
\begin{aligned}
2 \sum_{i=0}^{t} \eta_{i}\left(f\left(\boldsymbol{x}^{i}\right)-f^{o p t}\right) & \leq\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}+\sum_{i=0}^{t} \eta_{i}^{2}\left\|\boldsymbol{g}^{i}\right\|_{2}^{2} \\
& \leq\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}+L_{f}^{2} \sum_{i=0}^{t} \eta_{i}^{2}
\end{aligned}
$$

Thus

$$
f^{\text {best }, t}-f^{o p t} \leq \frac{\sum_{i=0}^{t} \eta_{i}\left(f\left(\boldsymbol{x}^{i}\right)-f^{\text {opt }}\right)}{\sum_{i=0}^{t} \eta_{i}} \leq \frac{\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}+L_{f}^{2} \sum_{i=0}^{t} \eta_{i}^{2}}{2 \sum_{i=0}^{t} \eta_{i}}
$$

Other stepsize rules

Constant step size $\eta_{t} \equiv \eta$:

$$
\lim _{t \rightarrow \infty} f^{\text {best }, t}-f^{\text {opt }} \leq \frac{L_{f}^{2} \eta}{2}
$$

i.e. may converge to non-optimal points. (Note that $2 \sum_{i=0}^{t} \eta_{i}=\infty$)

Diminishing step size obeying

$$
\sum_{t} \eta_{t}^{2} \leq \infty \text { and } \sum_{t} \eta_{t} \rightarrow \infty: \lim _{t \rightarrow \infty} f^{b e s t, t}-f^{o p t}=0
$$

i.e. converges to optimal points.

Other stepsize rules

Optimal choice?

$$
\eta_{t}=\frac{1}{\sqrt{t}}, \quad f^{\text {best }, t}-f^{o p t} \lesssim \frac{\left\|\boldsymbol{x}^{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}+L_{f}^{2} \log t}{\sqrt{t}}
$$

i.e. attains ϵ-accuracy within about $O\left(1 / \epsilon^{2}\right)$ iterations (ignoring the log factor).

Strongly convex and Lipschitz problems

Theorem 3. [Subgradient methods for strongly convex and Lipschitz functions] Let f be μ-strongly convex and L_{f}-Lipschitz continuous over \mathcal{C}. If $\eta_{t} \equiv \eta=\frac{2}{\mu(t+1)}$, then

$$
f^{\text {best }, t}-f^{o p t} \leq \frac{2 L_{f}^{2}}{\mu} \cdot \frac{1}{t+1}
$$

Strongly convex and Lipschitz problems (Proof)

Proof of Theorem 3. When f is μ-strongly convex, we can improve Lemma 1 to (exercise)

$$
\begin{aligned}
& \left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2} \leq\left(1-\mu \eta_{t}\right)\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-2 \eta_{t}\left(f\left(\boldsymbol{x}^{t}\right)-f^{\circ p t}\right)+\eta_{t}^{2}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2} \\
& \Rightarrow f\left(\boldsymbol{x}^{t}\right)-f^{\circ p t} \leq \frac{1-\mu \eta_{t}}{2 \eta_{t}}\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\frac{1}{2 \eta_{t}}\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}+\frac{\eta_{t}}{2}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2}
\end{aligned}
$$

Strongly convex and Lipschitz problems (Proof Cont'd)

Since $\eta_{t}=2 /(\mu(t+1))$, we have

$$
f\left(\boldsymbol{x}^{t}\right)-f^{\text {opt }} \leq \frac{\mu(t-1)}{4}\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\frac{\mu(t+1)}{4}\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}+\frac{1}{\mu(t+1)}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2}
$$

and hence

$$
t\left(f\left(\boldsymbol{x}^{t}\right)-f^{o p t}\right) \leq \frac{\mu t(t-1)}{4}\left\|\boldsymbol{x}^{t}-\boldsymbol{x}^{*}\right\|_{2}^{2}-\frac{\mu t(t+1)}{4}\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}+\frac{1}{\mu}\left\|\boldsymbol{g}^{t}\right\|_{2}^{2}
$$

Summing over all iterations before t, we get

$$
\begin{gathered}
\sum_{k=0}^{t} k\left(f\left(\boldsymbol{x}^{k}\right)-f^{o p t}\right) \leq 0-\frac{\mu t(t+1)}{4}\left\|\boldsymbol{x}^{t+1}-\boldsymbol{x}^{*}\right\|_{2}^{2}+\frac{1}{\mu} \sum_{k=0}^{t}\left\|\boldsymbol{g}^{k}\right\|_{2}^{2} \leq \frac{t}{\mu} L_{f}^{2} \\
\Rightarrow f^{b e s t, k}-f^{o p t} \leq \frac{L_{f}^{2}}{\mu} \frac{t}{\sum_{k=0}^{t} k} \leq \frac{2 L_{f}^{2}}{\mu} \frac{1}{t+1}
\end{gathered}
$$

	stepsize rule	convergence rate	iteration complexity
convex \& Lipschitz problems	$\eta_{t} \asymp \frac{1}{\sqrt{t}}$	$O\left(\frac{1}{\sqrt{t}}\right)$	$O\left(\frac{1}{\varepsilon^{2}}\right)$
 Lipschitz problems	$\eta_{t} \asymp \frac{1}{t}$	$O\left(\frac{1}{t}\right)$	$O\left(\frac{1}{\varepsilon}\right)$

In contrast, gradient descent is much faster!

