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Loss function

So far, we have formulated training machine learning models as

min f (x) =
1
N

N∑
i=1

Li (x) + R(x)

where x is the parameter of the machine learning model, Li (x) is the loss of the ith
training instance, and R(x) is the regularization term.

How to find the optimal x∗ if R(x) is not differentiable everywhere, e.g.
`1-regularization?



Subgradient Methods

Subgradient methods or proximal gradient methods.

We will focus on the "subgradient-based methods" in this lecture, i.e.,

x t+1 = x t − ηtg t , (1)

where g t is any subgradient of f at x t .



Subgradients

We say g is a subgradient of f at the point x if

f (z) ≥ f (x) + g>(z − x)︸ ︷︷ ︸
a linear under-estimate of f

, ∀z . (2)

The set of all subgradients of f at x is called the subdifferential of f at x , denoted by
∂f (x).



Example

Let f (x) = |x |, then

∂f (x) =


{−1}, if x < 0
[−1, 1], if x = 0
{1}, if x > 0.



Example (a subgradient of norms at 0)

Let f (x) = ‖x‖ for any norm ‖ · ‖, then for any g obeying ‖g‖∗ ≤ 1, then

g ∈ ∂f (0),

where ‖ · ‖∗ is the dual norm of ‖ · ‖ (i.e. ‖x‖∗ := supz :‖z‖≤1〈z , x〉).

Proof. To see this, it suffices to prove that

f (z) ≥ f (0) + 〈g , z − 0〉, ∀z ⇔ 〈g , z〉 ≤ ‖z‖, ∀z .

This follows from generalized Cauchy-Schwarz, i.e.

〈g , z〉 ≤ ‖g‖∗‖z‖ ≤ ‖z‖.



Basic rules of subgradient methods

Scaling: ∂(αf ) = α∂f for α > 0.



Basic rules of subgradient methods

Summation: ∂(f1 + f2) = ∂f1 + ∂f2.



Basic rules of subgradient methods

Affine transformation: if h(x) = f (Ax + b), then ∂h(x) = A>∂f (Ax + b).



Basic rules of subgradient methods

Chain rule: suppose f is convex, and g is differentiable, nondecreasing, and convex.
Let h = g ◦ f , then

∂h(x) = g ′(f (x))∂f (x)



Basic rules of subgradient methods

Composition: suppose f (x) = h(f1(x), · · · , fn(x)), where fi ’s are convex, and h is
differentiable, nondecreasing, and convex. Let q = ∇h(y)|y=[f1(x),··· ,fn(x)], and
gi ∈ ∂fi (x). Then

qig1 + · · ·+ qngn ∈ ∂f (x)



Basic rules of subgradient methods

Pointwise maximum: if f (x) = max1≤i≤k fi (x), then

∂f (x) = conv
{
∪ {∂fi (x)|fi (x) = f (x)}

}
︸ ︷︷ ︸

convex hull of subdifferentials of all active functions



Basic rules of subgradient methods

Pointwise supremum: if f (x) = supα∈F fα(x), then

∂f (x) = closure
(
conv

{
∪ {∂fα(x)|fα(x) = f (x)}

})



Example

Let f (x) = max{f1(x), f2(x)} where f1 and f2 are differentiable, then

∂f (x) =


{f ′1(x)} if f1(x) > f2(x)

[f ′1(x), f
′
2(x)] if f1(x) = f2(x)

{f ′2(x)} if f1(x) < f2(x)



Example (`1 norm)

f (x) = ‖x‖1 =
∑n

i=1 |xi |︸︷︷︸
:=fi (x)

since

∂fi (x) =

{
sgn(xi )ei if xi 6= 0
[−1, 1] · ei if xi = 0

Note that f (x) = ‖x‖1 =
∑

i ,|xi |6=0 |xi |, thus we have∑
i ,xi 6=0

sgn(xi )ei ∈ ∂f (x).

How about the subgradient at x = 0?



Example

Let h(x) = ‖Ax + b‖1, and denote f (x) = ‖x‖1 and A = [a1, · · · , am]>, we have

g =
∑

i :a>
i x+bi 6=0

sgn(a>i x + bi )ei ∈ ∂f (Ax + b)

⇒ A>g =
∑

i :a>
i x+bi 6=0

sgn(a>i x + bi )ai ∈ ∂h(x).



Example

Consider the piecewise linear function

f (x) = max
1≤i≤m

{a>i x + bi},

pick any aj s.t. a>j x + bj = maxi{a>i x + bi}, then

aj ∈ ∂f (x).



Example (`∞ norm)

Let f (x) = ‖x‖∞ = max1≤i≤n |xi |, if x 6= 0, then pick any xj obeying |xj | = maxi |xi |
to obtain

sgn(xj)ej ∈ ∂f (x).



Negative subgradients are not necessarily descent directions

Consider f (x) = |x1|+ 3|x2|, at x = (1, 0): g1 = (1, 0) ∈ ∂f (x) and −g1 is a descent
direction; g2 = (1, 3) ∈ ∂f (x) while −g2 is not a descent direction. This is because f is
not continuous at x , one can change directions significantly without violating the
validity of subgradients.

Since f (x t) is not necessarily monotone, we will keep track of the best point

f best,t := min
1≤i≤t

f (x i ).

We also denote by f opt := minx f (x) the optimal objective value.



Convex and Lipschitz problems

Clearly, we cannot analyze all nonsmooth functions. A nice class to start with is
Lipschitz functions, i.e. the set of all f obeying

|f (x)− f (z)| ≤ Lf ‖x − z‖2, ∀x and z .



Fundamental inequality for projected subgradient methods

We’d like to optimize ‖x t+1 − x∗‖22, but do not have access to x∗. The key idea is
majorization-minimization: find another function that majorizes ‖x t+1 − x∗‖22, and
optimize the majorizing function

Lemma 1. Subgradient update rule (1) obeys

‖x t+1 − x∗‖22 ≤ ‖x t − x∗‖22︸ ︷︷ ︸
fixed

−2ηt(f (x t)− f opt) + η2
t ‖g t‖22

︸ ︷︷ ︸
majorizing function

(3)



Proof of Lemma 1

‖x t+1 − x∗‖22 = ‖x t − ηtg t − x∗‖22
= ‖x t − x∗‖22 − 2ηt〈x t − x∗, g t〉+ η2

t ‖g t‖22
≤ ‖x t − x∗‖22 − 2ηt(f (x t)− f (x∗)) + η2

t ‖g t‖22
where the last line uses the subgradient inequality

f (x∗)− f (x t) ≥ 〈x∗ − x t , g t〉.



Proof of Lemma 1 – Cont’d

The majorizing function in (3) suggests a step size (Polyak’s stepsize rule)

ηt =
f (x t)− f opt

‖gt‖22
, (4)

which leads to error reduction

‖x t+1 − x∗‖22 ≤ ‖x t − x∗‖22 −
(f (x t)− f (x∗))2

‖g t‖22
. (5)

The algorithm is useful if f opt is known, and the estimation error is monotonically
decreasing with Polyak’s stepsize.



Convergence of projected subgradient method with Polyak’s stepsize

Theorem 1. Suppose f is convex and Lf -Lipschitz continuous. Then the projected
subgradient method (1) with Polyak’s stepsize rule obeys

f best,t − f opt ≤ Lf ‖x0 − x∗‖2√
t + 1

.

The rate O(1/
√
t) is called sublinear convergence rate.



Convergence of subgradient method with Polyak’s stepsize

Proof. We have seen from (5) that

(f (x t)− f (x∗))2 ≤ {‖x t − x∗‖22 − ‖x t+1 − x∗‖22}‖g t‖22
≤ {‖x t − x∗‖22 − ‖x t+1 − x∗‖22}L2

f .

Applying it recursively for all iterations (from 0th to tth) and summing them up yield

t∑
k=0

(f (xk)− f (x∗))2 ≤
{
‖x0 − x∗‖22 − ‖x t+1 − x∗‖22

}
L2
f .

therefore
(t + 1)(f best,t − f opt)2 ≤ ‖x0 − x∗‖22L2

f

which concludes the proof.



Polyak’s stepsize rule requires knowledge of f opt , which is often unknown a priori. We
might often need simpler rules for setting stepsizes.

How about the other stepsize rules?



Convergence of subgradient methods for convex and Lipschitz functions

Theorem 2. [Subgradient methods for convex and Lipschitz functions] Suppose f is
convex and Lf -Lipschitz continuous. Then the projected subgradient update rule (1)
obeys

f best,t − f opt ≤
‖x0 − x∗‖22 + L2

f

∑t
i=0 η

2
i

2
∑t

i=0 ηi
.



Convergence of subgradient methods for convex and Lipschitz functions – General step size

Proof. Applying Lemma 1 recursively gives

‖x t+1 − x∗‖22 ≤ ‖x0 − x∗‖22 − 2
t∑

i=0

ηi (f (x i )− f opt) +
t∑

i=0

η2
i ‖g i‖22.

Rearranging terms, we are left with

2
t∑

i=0

ηi (f (x i )− f opt) ≤ ‖x0 − x∗‖22 − ‖x t+1 − x∗‖22 +
t∑

i=0

η2
i ‖g i‖22

≤ ‖x0 − x∗‖22 + L2
f

t∑
i=0

η2
i .

Thus

f best,t − f opt ≤
∑t

i=0 ηi (f (x
i )− f opt)∑t

i=0 ηi
≤
‖x0 − x∗‖22 + L2

f

∑t
i=0 η

2
i

2
∑t

i=0 ηi
.



Other stepsize rules

Constant step size ηt ≡ η:

lim
t→∞

f best,t − f opt ≤
L2
f η

2
,

i.e. may converge to non-optimal points. (Note that 2
∑t

i=0 ηi =∞)

Diminishing step size obeying∑
t

η2
t ≤ ∞ and

∑
t

ηt →∞ : lim
t→∞

f best,t − f opt = 0,

i.e. converges to optimal points.



Other stepsize rules

Optimal choice?

ηt =
1√
t
, f best,t − f opt .

‖x0 − x∗‖22 + L2
f log t√

t
,

i.e. attains ε-accuracy within about O(1/ε2) iterations (ignoring the log factor).



Strongly convex and Lipschitz problems



Strongly convex and Lipschitz problems

Theorem 3. [Subgradient methods for strongly convex and Lipschitz functions] Let f
be µ-strongly convex and Lf -Lipschitz continuous over C. If ηt ≡ η = 2

µ(t+1) , then

f best,t − f opt ≤
2L2

f

µ
· 1
t + 1

.



Strongly convex and Lipschitz problems (Proof)

Proof of Theorem 3. When f is µ-strongly convex, we can improve Lemma 1 to
(exercise)

‖x t+1 − x∗‖22 ≤ (1− µηt)‖x t − x∗‖22 − 2ηt
(
f (x t)− f opt

)
+ η2

t ‖g t‖22

⇒ f (x t)− f opt ≤ 1− µηt
2ηt

‖x t − x∗‖22 −
1
2ηt
‖x t+1 − x∗‖22 +

ηt
2
‖g t‖22



Strongly convex and Lipschitz problems (Proof Cont’d)

Since ηt = 2/(µ(t + 1)), we have

f (x t)− f opt ≤ µ(t − 1)
4

‖x t − x∗‖22 −
µ(t + 1)

4
‖x t+1 − x∗‖22 +

1
µ(t + 1)

‖g t‖22

and hence

t(f (x t)− f opt) ≤ µt(t − 1)
4

‖x t − x∗‖22 −
µt(t + 1)

4
‖x t+1 − x∗‖22 +

1
µ
‖g t‖22.

Summing over all iterations before t, we get

t∑
k=0

k
(
f (xk)− f opt

)
≤ 0− µt(t + 1)

4
‖x t+1 − x∗‖22 +

1
µ

t∑
k=0

‖gk‖22 ≤
t

µ
L2
f .

⇒ f best,k − f opt ≤
L2
f

µ

t∑t
k=0 k

≤
2L2

f

µ

1
t + 1

.



Subgradient method summary

In contrast, gradient descent is much faster!


