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Loss function

So far, we have formulated training machine learning models as

min f (x) =
1
N

N∑
i=1

Li (x) + R(x)

where x is the parameter of the machine learning model, Li (x) is the loss of the ith
training instance, and R(x) is the regularization term.

How to find the optimal x∗?



Gradient methods for unconstrained problems

Consider the following optimization problem

min
x

f (x) subject to x ∈ Rn,

where f (objective or cost function) is a differentiable. Starting with a point x0,
gradient descent iterates as follows:

x t+1 = x t − ηt∇f (x t). (1)

GD is also known as steepest descent.

How fast gradient descent is?



Quadratic minimization problems

To get a sense of the convergence rate of GD, let’s begin with quadratic objective
functions

min
x

f (x) :=
1
2

(x − x∗)>Q(x − x∗),

for some n × n matrix Q � 0 (positive definite), where ∇f (x) = Q(x − x∗).



Quadratic minimization problems: constant stepsizes

Convergence rate: if ηt ≡ η = 2
λ1(Q)+λn(Q) , then

‖x t − x∗‖2 ≤
(λ1(Q)− λn(Q)

λ1(Q) + λn(Q)

)t
‖x0 − x∗‖2

where λ1(Q) (resp. λn(Q)) is the largest (resp. smallest) eigenvalue of Q. Here η is
chosen s.t. |1− ηλn(Q)| = |1− ηλ1(Q)|.

Remark. The convergence rate is dictated by the condition number λ1(Q)
λn(Q) of Q, or

equivalently, maxx λ1(∇2f (x))
minx λn(∇2f (x))

. This convergence rate is often called linear convergence or
geometric convergence.



Quadratic minimization problems: constant stepsizes

Proof. According to the GD update rule,

x t+1−x∗ = x t−x∗−ηt∇f (x t) = (I−ηtQ)(x t−x∗)⇒ ‖x t+1−x∗‖2 ≤ ‖I−ηtQ‖2‖x t−x∗‖2.

The claim then follows by observing that

‖I−ηtQ‖2 = max{|1− ηtλ1(Q)|, |1− ηtλn(Q)|}︸ ︷︷ ︸
optimal choice is ηt= 2

λ1(Q)+λn(Q)

= 1− 2λn(Q)

λ1(Q) + λn(Q)
=
λ1(Q)− λn(Q)

λ1(Q) + λn(Q)
.

Apply the above bound recursively to complete the proof.

We need to choose the step size to minimize ‖I − ηtQ‖2.



Quadratic minimization problems: Exact line search

Note that the stepsize rule ηt ≡ η = 2
λ1(Q)+λn(Q) relies on the spectrum of Q, which

requires preliminary experimentation. Another more practical strategy is the exact line
search rule

ηt = arg min
η≥0

f (x t − η∇f (x t)). (2)

Convergence rate: if ηt = arg minη≥0 f (x t − η∇f (x t)), then

f (x t)− f (x∗) ≤
(
λ1(Q)− λn(Q)

λ1(Q) + λn(Q)

)2t (
f (x0)− f (x∗)

)
.

Note that the rate is stated in terms of the objective values, and the convergence rate
is not faster than the constant stepsize rule.

Exact line search is faster than using the constant step size.



Quadratic minimization problems: Exact line search – Proof

Proof. For notational simplicity, let gt = ∇f (x t) = Q(x t − x∗). It can be verified
that exact line search gives

ηt =
g t>g t

g t>Qg t
.

This gives

f (x t+1) =
1
2

(x t − ηtg t − x∗)>Q(x t − ηtg t − x∗)

=
1
2

(x t − x∗)>Q(x t − x∗)− ηt‖g t‖22 +
η2
t

2
g t>Qg t

=
1
2

(x t − x∗)>Q(x t − x∗)− ‖g t‖42
2g t>Qg t

=
(
1− ‖g t‖42

(g t>Qg t)(g t>Q−1g t)

)
f (x t)

where the last line uses f (x t) = 1
2(x t − x∗)>Q(x t − x∗) = 1

2g
t>Q−1g t .



Quadratic minimization problems: Exact line search – Proof Cont’d

From Kantorovich’s inequality

‖y‖42
(y>Qy)(y>Q−1y)

≥ 4λ1(Q)λn(Q)

(λ1(Q) + λn(Q))2 ,

we arrive at

f (x t+1) ≤
(
1− 4λ1(Q)λn(Q)

(λ1(Q) + λn(Q))2

)
f (x t) =

(λ1(Q)− λn(Q)

λ1(Q) + λn(Q)

)2
f (x t)

This concludes the proof since f (x∗) = minx f (x) = 0.



Strongly convex and smooth problems

Let’s now generalize quadratic minimization to a broader class of problems

min
x

f (x),

where f (·) is strongly convex and smooth. A twice-differentiable function f is said to be
µ-strongly convex and L-smooth if

0 � µI � ∇2f (x) � LI , ∀x .

Intuitively, the µ-strongly convex function is bounded below by a quadratic function;
the L-smooth function is bounded above by another quadratic function.



Strongly convex and smooth problems: convergence rate

Theorem 1. [GD for strongly convex and smooth functions] Let f be µ-strongly
convex and L-smooth. If ηt ≡ η = 2

µ+L , then

‖x t − x∗‖2 ≤
(κ− 1
κ+ 1

)t
‖x0 − x∗‖2,

where κ := L/µ is condition number; x∗ is the minimizer. By smoothness, we further
have

f (x t)− f (x∗) ≤ L

2

(κ− 1
κ+ 1

)2t
‖x0 − x∗‖22.

Remark. Generalization of quadratic minimization problems: stepsize (η = 2
µ+L vs.

η = 2
λ1(Q)+λn(Q)); contraction rate (κ−1

κ+1 vs. λ1(Q)−λn(Q)
λ1(Q)+λn(Q)).

Remark. Note that the convergence rate is dimension-free if κ does not depend on n.



Strongly convex and smooth problems: convergence rate

Proof. By the fundamental theorem of calculus that

∇f (x t) = ∇f (x t)−∇f (x∗)︸ ︷︷ ︸
=0

=
(∫ 1

0
∇2f (xτ )dτ

)
(x t − x∗),

where xτ := x t + τ(x∗ − x t). Here, {xτ}0≤τ≤1 forms a line segment between x t and
x∗. Therefore,

‖x t+1 − x∗‖2 = ‖x t − x∗ − η∇f (x t)‖2 = ‖
(
I − η

∫ 1

0
∇2f (xτ )dτ

)
(x t − x∗)‖2

≤ sup
0≤τ≤1

‖I − η∇2f (xτ )‖‖x t − x∗‖2 ≤
L− µ
L + µ

‖x t − x∗‖2.

Repeat this argument for all iterations to conclude the proof.



Why

sup
0≤τ≤1

‖I − η∇2f (xτ )‖ ≤ L− µ
L + µ

?



Equivalent characterizations of strongly convex functions

f (·) is said to be µ-strongly convex if any of the following holds:
(i) f (y) ≥ f (x) +∇f (x)>(y − x)︸ ︷︷ ︸

first-order Taylor expansion

+µ
2‖x − y‖22, ∀x , y .

(ii) For all x , y and all 0 ≤ λ ≤ 1,

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)− µ

2
λ(1− λ)‖x − y‖22.

(iii) 〈∇f (x)−∇f (y), x − y〉 ≥ µ‖x − y‖22, ∀x , y .

(iv) ∇2f (x) � µI , ∀x (for twice differentiable functions)



Equivalent characterizations of smooth functions

f (·) is said to be L-smooth if any of the following holds:
(i) f (y) ≤ f (x) +∇f (x)>(y − x)︸ ︷︷ ︸

first-order Taylor expansion

+L
2‖x − y‖22, ∀x , y .

(ii) For all x and y and all 0 ≤ λ ≤ 1,

f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y)− L

2
λ(1− λ)‖x − y‖22.

(iii) 〈∇f (x)−∇f (y), x − y〉 ≥ 1
L‖∇f (x)−∇f (y)‖22, ∀x , y .

(iv) ‖∇f (x)−∇f (y)‖2 ≤ L‖x − y‖2, ∀x , y (L-Lipschitz gradient).

(vi) ‖∇2f (x)‖2 ≤ L, ∀x (for twice differentiable functions)



Is strong convexity necessary for linear convergence?

So far we have established linear convergence under strong convexity and smoothness,
while the strong convexity requirement can be relaxed.



Is strong convexity necessary for linear convergence? Local strong convexity

Theorem 2. [GD for locally strongly convex and smooth functions] Let f be locally
µ-strongly convex and L-smooth such that

µI � ∇2f (x) � LI , ∀x ∈ B0,

where B0 := {x : ‖x − x∗‖2 ≤ ‖x0 − x∗‖2} and x∗ is the minimizer. Then the linear
convergence still holds.

Proof. Suppose x t ∈ B0. Then repeating our previous analysis yields
‖x t+1 − x∗‖2 ≤ κ−1

κ+1‖x
t − x∗‖2. This also means that x t+1 ∈ B0, so the above bound

continues to hold for the next iteration ...

Only deteriorates the global convergence constant.



Local strong convexity

Example. Consider the logistic regression problem, suppose we obtain m independent
binary samples

yi =

1 with prob. 1
1+exp(−a>i x†)

−1 with prob. 1
1+exp(a>i x†)

where {ai} are the design vectors and x† ∈ Rn are the unknown parameters. The
maximum likelihood estimate (MLE) is given by

min
x∈Rn

f (x) =
1
m

m∑
i=1

log
(
1 + exp(−yia>i x)

)



Local strong convexity

Note that ∇2f (x) = 1
m

∑n
i=1

exp(−yia>i x)

(1 + exp(−yia>i x))2︸ ︷︷ ︸
→0 as x→∞

aia>i → 0, indicating that f is

0-strongly convex. However, the local strong convexity parameter is given by

inf
x :‖x−x∗‖2≤‖x0−x∗‖2

λmin

( 1
m

m∑
i=1

exp(−yia>i x)

(1 + exp(−yia>i x))2
aia>i

)
(3)

which is often strictly bounded away from 0, thus enabling linear convergence.

Implement it and see if you can observe linear convergence?



Regularity condition

We can also replace strong convexity and smoothness by the regularity condition:

〈∇f (x), x − x∗〉 ≥ µ

2
‖x − x∗‖22 +

1
2L
‖∇f (x)‖22, ∀x , (4)

which is equivalent to

〈∇f (x)−∇f (x∗), x − x∗〉 ≥ µ

2
‖x − x∗‖22 +

1
2L
‖∇f (x)−∇f (x∗)‖22, ∀x .

Compared to strong convexity (which involves any pair (x , y)), we only restrict
ourselves to (x , x∗).

Can you think the geometry of this condition?



Regularity condition

Theorem 3. Suppose f satisfies (4). If ηt ≡ η = 1
L , then

‖x t − x∗‖22 ≤
(
1− µ

L

)t
‖x0 − x∗‖22.

Proof. It follows that

‖x t+1 − x∗‖22 = ‖x t − x∗ − 1
L
∇f (x t)‖22

= ‖x t − x∗‖22 +
1
L2 ‖∇f (x t)‖22 −

2
L
〈x t − x∗,∇f (x t)〉

≤︸︷︷︸
(4)

‖x t − x∗‖22 −
µ

L
‖x t − x∗‖22

=
(
1− µ

L

)
‖x t − x∗‖22.

Apply it recursively to complete the proof.



Polyak-Lojasiewicz condition

Another alternative is the PL condition

‖∇f (x)‖22 ≥ 2µ
(
f (x)− f (x∗)

)
, ∀x . (5)

It guarantees that gradient grows fast as we move away from the optimal value, and
also guarantees that every stationary point is a global minimum (may not be unique).

Theorem 4. Suppose f satisfies (5) and is L-smooth. If ηt ≡ η = 1
L , then

f (x t)− f (x∗) ≤
(
1− µ

L

)t(
f (x0)− f (x∗)

)
.

We will prove this theorem later.



Polyak-Lojasiewicz condition

Example. (over-parameterized linear regression) Suppose we have data
{ai ∈ Rn, yi ∈ R}1≤i≤m. We want to find a linear model that best fits the data

min
x∈Rn

f (x) :=
1
2

m∑
i=1

(a>i x − yi )
2 =

1
2
‖Ax − y‖22, A = [a1, · · · , am]> ∈ Rm×n.

Over-parameterization: model dim > sample size i.e. n > m, (an important regime
in deep learning).
The problem is convex but not strongly convex, since

∇2f (x) =
m∑
i=1

aia>i is rank-deficient if n > m. rank∇2f (x) ≤ m < n, 0 is an eigenevalue

But for most "non-degenerate" cases (∇2f (x) has rank m), one has f (x∗) = 0 and the
PL condition is met, and hence GD converges linearly.



Polyak-Lojasiewicz condition

Corollary. Suppose that A = [a1, · · · , am]> ∈ Rm×n has rank m, and that
ηt ≡ ηt = 1

λmax(AA>)
. Then GD obeys

f (x t)− f (x∗) ≤
(
1− λmin(AA>)

λmax(AA>)

)t(
f (x0)− f (x∗)

)
, ∀t.

Remark. Note that while there are many global minima for this over-parameterized
problem, GD has implicit bias. GD converges to a global min closest to initialization
x0!

An active research area! How over-parameterization helps training and generalization?



Polyak-Lojasiewicz condition

Proof. Everything boils down to showing the PL condition

‖∇f (x)‖22 ≥ 2λmin(AA>)f (x). (6)

If this holds, then the claim follows immediately from the Theorem above and the fact
f (x∗) = 0. To prove (6), let y = [yi ]1≤i≤m, and observe ∇f (x) = A>(Ax − y). Then

‖∇f (x)‖22 = (Ax − y)>AA>(Ax − y) ≥ λmin(AA>)‖Ax − y‖22 = 2λmin(AA>)f (x)

which satisfies the PL condition (6) with µ = λmin(AA>).



Convex and smooth problems

Consider minx f (x), where f (x) is convex and smooth.

Without strong convexity, it may often be better to focus on the objective improvement
(rather than improvement on estimation error).

Example. Consider f (x) = 1/x(x > 0). GD iterates {x t} might never converge to
x∗ =∞. In comparison, f (x t) might approach f (x∗) = 0 rapidly.



Convex and smooth problems

Consider the objective improvement, from the smoothness assumption,

f (x t+1)− f (x t) ≤ ∇f (x t)>(x t+1 − x t) +
L

2
‖x t+1 − x t‖22

= −ηt‖∇f (x t)‖22 +
η2
t L

2
‖∇f (x t)‖22︸ ︷︷ ︸

majorizing function of objective reduction due to smoothness

(7)

Let ηt = 1/L, the majorizing function is minimized, which gives

f (x t+1)− f (x t) ≤ − 1
2L
‖∇f (x t)‖22.



Convex and smooth problems

Lemma 1. [Objective improvement] Suppose f is L-smooth. Then GD with ηt = 1/L
obeys

f (x t+1) ≤ f (x t)− 1
2L
‖∇f (x t)‖22.

Note that the above result does not rely on convexity.



Theorem 4 (Recap). Suppose f satisfies PL condition and is L-smooth. If
ηt ≡ η = 1

L , then

f (x t)− f (x∗) ≤
(
1− µ

L

)t(
f (x0)− f (x∗)

)
.

Proof of Theorem 4. [Linear convergence of GD under the PL condition]

f (x t+1)− f (x∗) ≤︸︷︷︸
(i)

f (x t)− f (x∗)− 1
2L
‖∇f (x t)‖22

≤︸︷︷︸
(ii)

f (x t)− f (x∗)− µ

L
(f (x t)− f (x∗))

=
(
1− µ

L

)
(f (x t)− f (x∗))

where (i) follows from Lemma of the objective improvement, and (ii) comes from the
PL condition.



Convex and smooth problems

GD is not only improving the objective value, but is also dragging the iterates towards
minimizer(s), as long as ηt is not too large.

Lemma 2. Let f be convex and L-smooth. If ηt ≡ η = 1/L, then

‖x t+1 − x∗‖22 ≤ ‖x t − x∗‖22 −
1
L2 ‖∇f (x t)‖22,

where x∗ is any minimizer of f (·).



Convex and smooth problems

Proof. It follows that

‖x t+1 − x∗‖22 = ‖x t − x∗ − η(∇f (x t)−∇f (x∗)︸ ︷︷ ︸
=0

)‖22

= ‖x t − x∗‖22 − 2η〈x t − x∗,∇f (x t)−∇f (x∗)〉︸ ︷︷ ︸
≥ 2η

L
‖∇f (x t)−∇f (x∗)‖22 (smooth+cvx)

+η2‖∇f (x t)−∇f (x∗)‖22

≤ ‖x t − x∗‖22 −
2η
L
‖∇f (x t)−∇f (x∗)‖22 + η2‖∇f (x t)−∇f (x∗)‖22

= ‖x t − x∗‖22 −
1
L2 ‖∇f (x t)−∇f (x∗)︸ ︷︷ ︸

=0

‖22 (since η = 1/L).



Convergence of GD for convex and smooth problems

However, without strong convexity, convergence is typically much slower than linear (or
geometric) convergence.

Theorem 5. [GD for convex and smooth problems] Let f be convex and L-smooth. If
ηt ≡ η = 1/L, then GD obeys

f (x t)− f (x∗) ≤ 2L‖x0 − x∗‖22
t

where x∗ is any minimizer of f (·). That is, GD attains ε-accuracy within O(1/ε)
iterations.

Can be accelerated using Nesterov’s accelerated gradient! One of the most elegant
results ever!



Proof of the convergence of GD for convex and smooth problems

From Lemma of objective improvement,

f (x t+1)− f (x t) ≤ − 1
2L
‖∇f (x t)‖22.

To infer f (x t) recursively, it is often easier to replace ‖∇f (x t)‖2 with simpler functions
of f (x t). Use convexity and Cauchy-Schwarz to get

f (x∗)− f (x t) ≥ ∇f (x t)>(x∗ − x t) ≥ −‖∇f (x t)‖2‖x t − x∗‖2

therefore

‖∇f (x t)‖2 ≥
f (x t)− f (x∗)
‖x t − x∗‖2

≥︸︷︷︸
Lemma 2

f (x t)− f (x∗)
‖x0 − x∗‖2

.



Proof of the convergence of GD for convex and smooth problems

Setting ∆t := f (x t)− f (x∗) and combining the above bounds yield

∆t+1 −∆t ≤ −
1

2L‖x0 − x∗‖22
∆2

t := − 1
w0

∆2
t , (8)

i.e. ∆t+1 ≤ ∆t − 1
w0

∆2
t . Dividing both sides by ∆t∆t+1 and rearranging terms give

1
∆t+1

≥ 1
∆t

+
1
w0

∆t

∆t+1
.



Proof of the convergence of GD for convex and smooth problems

Since ∆t ≥ ∆t+1, thus 1
∆t+1

≥ 1
∆t

+ 1
w0

, and therefore

1
∆t
≥ 1

∆0
+

t

w0
≥ t

w0
⇒ ∆t ≤

w0

t
=

2L‖x0 − x∗‖22
t

.



Nonconvex problems

We cannot hope for efficient global convergence to global minima in general, but we
may have:

> convergence to stationary points (i.e. ∇f (x) = 0)
> convergence to local minima
> local convergence to global minima (i.e., when initialized suitably)



Convergence of GD for nonconvex problems

Theorem 6. Let f be L-smooth and ηk ≡ η = 1/L. Assume t is even,
In general, GD obeys

min
0≤k≤t

‖∇f (xk)‖2 ≤
√

2L(f (x0)− f (x∗))

t

If f (·) is convex, then GD obeys

min
t/2≤k<t

‖∇f (xk)‖2 ≤
4L‖x0 − x∗‖2

t

Remark. GD finds an ε-approximate stationary point in O(1/ε2) iterations.

Remark. Note that it does not imply GD converges to stationary points; it only says
that ∃ approximate stationary point in the GD trajectory.



Proof of Theorem 6

From Lemma 1 (Depend on L-smooth only), we know

1
2L
‖∇f (xk)‖22 ≤ f (xk)− f (xk+1), ∀k .

This leads to a telescopic sum when summed over k = t0 to k = t − 1:

1
2L

t−1∑
k=t0

‖∇f (xk)‖22 ≤
t−1∑
k=t0

(
f (xk)− f (xk+1)

)
= f (x t0)− f (x t) ≤ f (x t0)− f (x∗)

therefore,

min
t0≤k<t

‖∇f (xk)‖2 ≤

√
2L(f (x t0)− f (x∗))

t − t0
. (9)



Proof of Theorem 6

For a general f (·), taking t0 = 0 immediately establishes the claim.
If f (·) is convex, invoke Theorem 5 to obtain

f (x t0)− f (x∗) ≤ 2L‖x0 − x∗‖22
t0

Taking t0 = t/2 and combining it with (9) give

min
t0≤k<t

‖∇f (xk)‖2 ≤
2L√

t0(t − t0)
‖x0 − x∗‖2 =

4L‖x0 − x∗‖2
t

.


