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Discriminant functions

• Discriminant: x → y(x) := Ck ∈ {1, 2, · · · ,K}.

• Two classes linear discriminant function:

y(x) = w>x + w0,

where w is the weight vector and w0 is the bias.

• How to classify the input x?



Discriminant functions

• Discriminant: x → y(x) := Ck ∈ {1, 2, · · · ,K}.

• Two classes linear discriminant function:

y(x) = w>x + w0,

where w is the weight vector and w0 is the bias.

• x → C1 if y(x) ≥ 0 and x → C2 otherwise.



Discriminant functions in 2D



Decision boundary

• Decision boundary: y(x) = 0, which corresponds to a (D − 1)-dimensional
hyperplane within the D-dimensional input space.

• w is orthogonal to every vector lying within the decision surface: ∀xA and xB lie on
the decision surface, we have y(xA) = y(xB) = 0⇒ w>(xA − xB) = 0.

• The normal distance from the origin to the decision surface is: − w0
‖w‖ .

We need to find α such that αw is on the decision surface, i.e. w>(αw) + w0 = 0,
thus α = −w0/‖w‖2, i.e., the normal distance is −w0/‖w‖.



Discriminant functions in 2D

Figure: The decision surface, shown in red, is perpendicular to w , and its displacement from
the origin is controlled by the bias parameter w0. Also, the signed orthogonal distance of a
general point x from the decision surface is given by y(x)/‖w‖.



Discriminant functions

• The value of y(x) is a signed measure of the perpendicular distance r of the point x
from the decision surface.

• Consider an arbitrary point x and let x⊥ be its orthogonal projection onto the
decision surface, so that

x = x⊥ + r
w
‖w‖

, orthogonal decomposition. (1)

• Multiplying both sides of this result by w> and adding w0, and making use of
y(x) = w>x + w0 and y(x⊥) = w>x⊥ + w0 = 0, we have

r =
y(x)

‖w‖
, distant formula. (2)



Discriminant functions

• It is sometimes convenient to use a more compact notation in which we introduce a
dummy ‘input’ value x0 = 1 and then define w̃ = (w0,w) and x̃ = (x0, x) so that

y(x) = w̃>x̃ . (3)

• In this case, the decision surfaces are D-dimensional hyperplanes passing through the
origin of the (D + 1)-dimensional expanded input space.



How to generalize the discriminant function to multiple classes?



Multiple classes: Infeasible approaches

• One-versus-the-rest: combines K − 1 binary classifiers, each of which separate points
in a particular class Ck from points not in that class.

• One-versus-one: uses K (K − 1)/2 binary discriminant functions, one for every
possible pair of classes.



Multiple classes: Infeasible approaches

Figure: Left: the use of two discriminants designed to distinguish points in class Ck from points
not in class Ck . Right: three discriminant functions each of which is used to separate a pair of
classes Ck and Cj . Ambiguous regions is shown in green.



Multiple classes: Feasible approaches

• Consider a single K -class discriminant comprising K linear functions of the form

yk(x) = w>k x + wk0. (4)

Then x → Ck if yk(x) > yj(x) for all j 6= k .

• The decision boundary between class Ck and class Cj is therefore given by
yk(x) = yj(x) and hence corresponds to a (D − 1)-dimensional hyperplane defined by

(wk −wj)
>x + (wk0 − wj0) = 0. (5)

This has the same form as the decision boundary for the two-class case.



Multiple classes: Feasible approaches

• The decision regions are always singly connected and convex.

• xA and xB both of which lie inside decision region Rk . Any point x̂ that lies on the
line connecting xA and xB can be expressed in the form

x̂ = λxA + (1− λ)xB , where 0 ≤ λ ≤ 1. (6)

From the linearity of the discriminant functions, it follows that

yk(x̂) = λyk(xA) + (1− λ)yk(xB). (7)

Because both xA and xB lie inside Rk , it follows that yk(xA) > yj(xA), and
yk(xB) > yj(xB), for all j 6= k , and hence yk(x̂) > yj(x̂), and so x̂ also lies inside Rk .
Thus Rk is singly connected and convex.



How to learn wk? A least square approach

•
yk(x) = w>k x + wk0, k = 1, · · · ,K ⇔ y(x) = W̃>x̃ ,

where W̃ is a matrix whose k-th column comprises the D + 1-dimensional vector
w̃k = (wk0,w>k )> and x̃ is the corresponding augmented input vector (1, x>)> with a
dummy input x0 = 1. A new input x is then assigned to the class for which the output
yk = w̃>k x̃ is largest.



How to learn wk? A least square approach

• Consider a training data set {xn, tn} where n = 1, · · · ,N, and define a matrix T
whose n-th row is the vector t>n , together with a matrix X̃ whose n-th row is x̃>n . The
sum-of-squares error function can then be written as

ED(W̃ ) =
1
2
Tr
{

(X̃W̃ − T )>(X̃W̃ − T )
}
. (8)

• Setting the derivative with respect to W̃ to zero, and rearranging, we then obtain the
solution for W̃ in the form

W̃ = (X̃>X̃ )−1X̃>T = X̃ †T , (9)

where X̃ † is the pseudo-inverse of the matrix X̃ . We then obtain the discriminant
function in the form

y(x) = W̃>x̃ = T>
(
X̃ †
)>

x̃ . (10)



Probabilistic Generative Models



Probabilistic generative models

• Probabilistic view of classification: we model the class-conditional densities p(x |Ck),
as well as the class priors p(Ck), and then use these to compute posterior probabilities
p(Ck |x) through Bayes’ theorem.



Probabilistic generative models

• Consider first of all the case of two classes. The posterior probability for class C1 can
be written as

p(C1|x) =
p(x |C1)p(C1)

p(x |C1)p(C1) + p(x |C2)p(C2)
=

1
1 + exp(−a)

= σ(a) (11)

where we have defined
a = ln

p(x |C1)p(C1)

p(x |C2)p(C2)
(12)

and σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
. (13)



Probabilistic generative models

• The inverse of the logistic sigmoid is given by

a = ln

(
σ

1− σ

)
(14)

and is known as the logit function.



Probabilistic generative models

• For the case of K > 2 classes, we have

p(Ck |x) =
p(x |Ck)p(Ck)∑
j p(x |Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(15)

which is known as the normalized exponential and can be regarded as a multiclass
generalization of the logistic sigmoid. Here the quantities ak are defined by

ak = ln p(x |Ck)p(Ck). (16)

• The normalized exponential is also known as the softmax function, as it represents a smoothed
version of the ‘max’ function because, if ak � aj for all j 6= k, then p(Ck |x) ≈ 1, and p(Cj |x) ≈ 0.



Probabilistic generative models: Case study

• Assume that the class-conditional densities are Gaussian with the same covariance
matrix, i.e.

p(x |Ck) =
1

(2π)D/2
1
|Σ|1/2

exp
{
− 1

2
(x − µk)>Σ−1(x − µk)

}
, k = 1, 2. (17)

Let us consider the posterior probabilities for two classes, from (11) and (12), we have

p(C1|x) = σ(w>x + w0) (18)

where we have defined

w = Σ−1(µ1 − µ2); w0 = −1
2
µ>1 Σ−1µ1 +

1
2
µ>2 Σ−1µ2 + ln

p(C1)

p(C2)
. (19)



Probabilistic generative models: Case study — Maximal likelihood estimate

• How to estimate π, µ1, µ2,Σ?

• Observation: {xn, tn}Nn=1. Here tn = 1 denotes class C1 and tn = 0 denotes class C2.

• Let the prior class probability p(C1) = π and p(C2) = 1− π. By Bayes’ theorem we
have

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ);

p(xn, C2) = p(C2)p(xn|C2) = (1− π)N (xn|µ2,Σ).

• Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[
πN (xn|µ1,Σ)

]tn[
(1− π)N (xn|µ2,Σ)

]1−tn
, (20)

where t = (t1, · · · , tN)>.



Probabilistic generative models: Case study — Maximal likelihood estimate

• Instead of maximize the likelihood, we consider the log-likelihood!
• π:

max
π

N∑
n=1

{tn lnπ + (1− tn) ln(1− π)},

therefore,

π =
1
N

N∑
n=1

tn =
N1

N
=

N1

N1 + N2
, Ni = #Ci .

• µ1:
N∑

n=1

tn lnN (xn|µ1,Σ) = −1
2

N∑
n=1

tn(xn − µ1)>Σ−1(xn − µ1) + const,

therefore,

µ1 =
1
N1

N∑
n=1

tnxn.

• Similarly, µ2 = 1
N2

∑N
n=1(1− tn)xn. How to find Σ?



Probabilistic Discriminative Models



Probabilistic Discriminative Models

• So far, we have modeled

p(C1|x) =
p(x |C1)p(C1)

p(x |C1)p(C1) + p(x |C2)p(C2)
=

1
1 + exp(−a)

= σ(a),

for a wide choice of class-conditional distributions p(x |Ck). For specific choices of the
class-conditional densities p(x |Ck), we have used maximum likelihood to determine the
parameters of the densities as well as the class priors p(Ck) and then used Bayes’
theorem to find the posterior class probabilities.

• We can also generalize x to φ(x) with φ being a basis function, resulting in
generalized linear models. Note that classes that are linearly separable in the feature
space φ(x) need not be linearly separable in the original observation space x .



• Generative modeling. Indirectly find the parameters of a generalized linear model, by
fitting class-conditional densities and class priors separately and then applying Bayes’
theorem. We could take such a model and generate synthetic data by drawing values of
x from the marginal distribution p(x).

• We need to find p(x |Ck) and p(Ck). We can then perform sample p(x |Ck).



• Discriminative modeling. Directly maximize the likelihood function defined through
the conditional distribution p(Ck |x). It may also lead to improved predictive
performance, particularly when the class-conditional density assumptions give a poor
approximation to the true distributions.

• We only care about p(Ck |x).



Probabilistic Discriminative Models – Logistic regression

• Let us consider two-class classification problem, the posterior probability of class C1
can be written as a logistic sigmoid acting on a linear function of the feature vector φ
so that

p(C1|φ) = y(φ) = σ(w>φ) (21)

with p(C2|φ) = 1− p(C1|φ). Here σ(·) is the logistic sigmoid function. This model is
known as logistic regression, which is a classification model.



Probabilistic Discriminative Models – Logistic regression

• Maximum likelihood for parameters estimation. First note that for the sigmoid
function, we have

dσ

da
= σ(1− σ). (22)

• For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n = 1, · · · ,N, the
likelihood function is

p(t|w) =
N∏

n=1

y tnn (1− yn)1−tn , (23)

where t = (t1, · · · , tN)> and yn = p(C1|φn).



Probabilistic Discriminative Models – Logistic regression

• Taking the negative logarithm of the likelihood, resulting in the cross-entropy error:

E (w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)}, (24)

where yn = σ(an) and an = w>φn.

• Taking the gradient of the error function with respect to w , we obtain

∇E (w) =
N∑

n=1

(yn − tn)φn, (25)

where we have used the fact that dσ
da = σ(1− σ).



Probabilistic Discriminative Models – Multi-class logistic regression

• In our discussion of generative models for multiclass classification, we have seen that
for a large class of distributions, the posterior probabilities are given by a softmax
transformation of linear functions of the feature variables, so that

p(Ck |φ) = yk(φ) =
exp(ak)∑
j exp(aj)

, (26)

where the ‘activations’ ak are given by

ak = w>k φ. (27)


