Lecture 2. Linear Models for Classification

Bao Wang
Department of Mathematics
Scientific Computing and Imaging Institute
University of Utah
Math 5750/6880, Fall 2021

Discriminant functions

Discriminant: $\boldsymbol{x} \rightarrow \boldsymbol{y}(\boldsymbol{x}):=\mathcal{C}_{k} \in\{1,2, \cdots, K\}$.

Two classes linear discriminant function:

$$
y(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}+w_{0}
$$

where \boldsymbol{w} is the weight vector and w_{0} is the bias. $\boldsymbol{x} \rightarrow \mathcal{C}_{1}$ if $y(\boldsymbol{x}) \geq 0$ and $\boldsymbol{x} \rightarrow \mathcal{C}_{2}$ otherwise.

Decision boundary: $y(\boldsymbol{x})=0$, which corresponds to a ($D-1$)-dimensional hyperplane within the D-dimensional input space.
\boldsymbol{w} is orthogonal to every vector lying within the decision surface: $\forall \boldsymbol{x}_{A}$ and \boldsymbol{x}_{B} lie on the decision surface, we have $y\left(\boldsymbol{x}_{A}\right)=y\left(\boldsymbol{x}_{B}\right)=0 \Rightarrow \boldsymbol{w}^{\top}\left(\boldsymbol{x}_{A}-\boldsymbol{x}_{B}\right)=0$.

The normal distance from the origin to the decision surface is: $-\frac{w_{0}}{\|\boldsymbol{w}\|}$.
We need to find α such that $\alpha \boldsymbol{w}$ is on the decision surface, i.e. $\boldsymbol{w}^{\top}(\alpha \boldsymbol{w})+w_{0}=0$, thus $\alpha=-w_{0} /\|\boldsymbol{w}\|^{2}$, i.e., the normal distance is $-w_{0} /\|\boldsymbol{w}\|$.

Discriminant functions in 2D

Figure: The decision surface, shown in red, is perpendicular to \boldsymbol{w}, and its displacement from the origin is controlled by the bias parameter w_{0}. Also, the signed orthogonal distance of a general point \boldsymbol{x} from the decision surface is given by $y(\boldsymbol{x}) /\|\boldsymbol{w}\|$.

Discriminant functions

The value of $y(\boldsymbol{x})$ is a signed measure of the perpendicular distance r of the point \boldsymbol{x} from the decision surface.

Consider an arbitrary point \boldsymbol{x} and let \boldsymbol{x}_{\perp} be its orthogonal projection onto the decision surface, so that

$$
\begin{equation*}
\boldsymbol{x}=\boldsymbol{x}_{\perp}+r \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}, \quad \text { orthogonal decomposition. } \tag{1}
\end{equation*}
$$

Multiplying both sides of this result by \boldsymbol{w}^{\top} and adding w_{0}, and making use of $y(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}+w_{0}$ and $y\left(\boldsymbol{x}_{\perp}\right)=\boldsymbol{w}^{\top} \boldsymbol{x}_{\perp}+w_{0}=0$, we have

$$
\begin{equation*}
r=\frac{y(\boldsymbol{x})}{\|\boldsymbol{w}\|}, \quad \text { distant formula. } \tag{2}
\end{equation*}
$$

Discriminant functions

It is sometimes convenient to use a more compact notation in which we introduce a dummy 'input' value $x_{0}=1$ and then define $\tilde{\boldsymbol{w}}=\left(w_{0}, \boldsymbol{w}\right)$ and $\tilde{\boldsymbol{x}}=\left(x_{0}, \boldsymbol{x}\right)$ so that

$$
\begin{equation*}
y(\boldsymbol{x})=\tilde{\boldsymbol{w}}^{\top} \tilde{\boldsymbol{x}} . \tag{3}
\end{equation*}
$$

In this case, the decision surfaces are D-dimensional hyperplanes passing through the origin of the $(D+1)$-dimensional expanded input space.

One-versus-the-rest: combines $K-1$ binary classifiers, each of which separate points in a particular class \mathcal{C}_{k} from points not in that class.

One-versus-one: uses $K(K-1) / 2$ binary discriminant functions, one for every possible pair of classes.

Multiple classes: Infeasible approaches

Figure: Left: the use of two discriminants designed to distinguish points in class \mathcal{C}_{k} from points not in class \mathcal{C}_{k}. Right: three discriminant functions each of which is used to separate a pair of classes \mathcal{C}_{k} and \mathcal{C}_{j}. Ambiguous regions is shown in green.

Consider a single K-class discriminant comprising K linear functions of the form

$$
\begin{equation*}
y_{k}(\boldsymbol{x})=\boldsymbol{w}_{k}^{\top} \boldsymbol{x}+w_{k 0} . \tag{4}
\end{equation*}
$$

Then $\boldsymbol{x} \rightarrow \mathcal{C}_{k}$ if $y_{k}(\boldsymbol{x})>y_{j}(\boldsymbol{x})$ for all $j \neq k$.
The decision boundary between class \mathcal{C}_{k} and class \mathcal{C}_{j} is therefore given by $y_{k}(\boldsymbol{x})=y_{j}(\boldsymbol{x})$ and hence corresponds to a ($D-1$)-dimensional hyperplane defined by

$$
\begin{equation*}
\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{j}\right)^{\top} \boldsymbol{x}+\left(w_{k 0}-w_{j 0}\right)=0 \tag{5}
\end{equation*}
$$

This has the same form as the decision boundary for the two-class case.

Multiple classes: Feasible approaches

The decision regions are always singly connected and convex.
x_{A} and x_{B} both of which lie inside decision region \mathcal{R}_{k}. Any point \hat{x} that lies on the line connecting \boldsymbol{x}_{A} and \boldsymbol{x}_{B} can be expressed in the form

$$
\begin{equation*}
\hat{\boldsymbol{x}}=\lambda \boldsymbol{x}_{A}+(1-\lambda) \boldsymbol{x}_{B}, \text { where } 0 \leq \lambda \leq 1 \tag{6}
\end{equation*}
$$

From the linearity of the discriminant functions, it follows that

$$
\begin{equation*}
y_{k}(\hat{\boldsymbol{x}})=\lambda y_{k}\left(\boldsymbol{x}_{A}\right)+(1-\lambda) y_{k}\left(\boldsymbol{x}_{B}\right) . \tag{7}
\end{equation*}
$$

Because both \boldsymbol{x}_{A} and \boldsymbol{x}_{B} lie inside \mathcal{R}_{k}, it follows that $y_{k}\left(\boldsymbol{x}_{A}\right)>y_{j}\left(\boldsymbol{x}_{A}\right)$, and $y_{k}\left(\boldsymbol{x}_{B}\right)>y_{j}\left(\boldsymbol{x}_{B}\right)$, for all $j \neq k$, and hence $y_{k}(\hat{\boldsymbol{x}})>y_{j}(\hat{\boldsymbol{x}})$, and so $\hat{\boldsymbol{x}}$ also lies inside \mathcal{R}_{k}. Thus \mathcal{R}_{k} is singly connected and convex.

$$
y_{k}(\boldsymbol{x})=\boldsymbol{w}_{k}^{\top} \boldsymbol{x}+w_{k 0}, \quad k=1, \cdots, K \quad \Leftrightarrow \quad \boldsymbol{y}(\boldsymbol{x})=\tilde{\boldsymbol{W}}^{\top} \tilde{\boldsymbol{x}},
$$

where $\tilde{\boldsymbol{W}}$ is a matrix whose k-th column comprises the $D+1$-dimensional vector $\tilde{\boldsymbol{w}}_{k}=\left(w_{k 0}, \boldsymbol{w}_{k}^{\top}\right)^{\top}$ and $\tilde{\boldsymbol{x}}$ is the corresponding augmented input vector $\left(1, \boldsymbol{x}^{\top}\right)^{\top}$ with a dummy input $x_{0}=1$. A new input \boldsymbol{x} is then assigned to the class for which the output $y_{k}=\tilde{\boldsymbol{w}}_{k}^{\top} \tilde{\boldsymbol{x}}$ is largest.

How to learn \boldsymbol{w}_{k} ? A least square approach

Consider a training data set $\left\{\boldsymbol{x}_{n}, \boldsymbol{t}_{n}\right\}$ where $n=1, \cdots, N$, and define a matrix \boldsymbol{T} whose n-th row is the vector $\boldsymbol{t}_{n}^{\top}$, together with a matrix $\tilde{\boldsymbol{X}}$ whose n-th row is $\tilde{\boldsymbol{x}}_{n}^{\top}$. The sum-of-squares error function can then be written as

$$
\begin{equation*}
E_{D}(\tilde{\boldsymbol{W}})=\frac{1}{2} \operatorname{Tr}\left\{(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{W}}-\boldsymbol{T})^{\top}(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{W}}-\boldsymbol{T})\right\} \tag{8}
\end{equation*}
$$

Setting the derivative with respect to \tilde{W} to zero, and rearranging, we then obtain the solution for \tilde{W} in the form

$$
\begin{equation*}
\tilde{\boldsymbol{W}}=\left(\tilde{\boldsymbol{X}}^{\top} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\top} \boldsymbol{T}=\tilde{\boldsymbol{X}}^{\dagger} \boldsymbol{T} \tag{9}
\end{equation*}
$$

where $\tilde{\boldsymbol{X}}^{\dagger}$ is the pseudo-inverse of the matrix $\tilde{\boldsymbol{X}}$. We then obtain the discriminant function in the form

$$
\begin{equation*}
\boldsymbol{y}(\boldsymbol{x})=\tilde{\boldsymbol{W}}^{\top} \tilde{\boldsymbol{x}}=\boldsymbol{T}^{\top}\left(\tilde{\boldsymbol{X}}^{\dagger}\right)^{\top} \tilde{\boldsymbol{x}} \tag{10}
\end{equation*}
$$

Probabilistic generative models

Probabilistic view of classification: we model the class-conditional densities $p\left(\boldsymbol{x} \mid \mathcal{C}_{k}\right)$, as well as the class priors $p\left(\mathcal{C}_{k}\right)$, and then use these to compute posterior probabilities $p\left(\mathcal{C}_{k} \mid \boldsymbol{x}\right)$ through Bayes' theorem.

Probabilistic generative models

Consider first of all the case of two classes. The posterior probability for class \mathcal{C}_{1} can be written as

$$
\begin{equation*}
p\left(\mathcal{C}_{1} \mid \boldsymbol{x}\right)=\frac{p\left(\boldsymbol{x} \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)}{p\left(\boldsymbol{x} \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)+p\left(\boldsymbol{x} \mid \mathcal{C}_{2}\right) p\left(\mathcal{C}_{2}\right)}=\frac{1}{1+\exp (-a)}=\sigma(a) \tag{11}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
a=\ln \frac{p\left(\boldsymbol{x} \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)}{p\left(\boldsymbol{x} \mid \mathcal{C}_{2}\right) p\left(\mathcal{C}_{2}\right)} \tag{12}
\end{equation*}
$$

and $\sigma(a)$ is the logistic sigmoid function defined by

$$
\begin{equation*}
\sigma(a)=\frac{1}{1+\exp (-a)} \tag{13}
\end{equation*}
$$

Probabilistic generative models

The inverse of the logistic sigmoid is given by

$$
\begin{equation*}
a=\ln \left(\frac{\sigma}{1-\sigma}\right) \tag{14}
\end{equation*}
$$

and is known as the logit function.

Probabilistic generative models

For the case of $K>2$ classes, we have

$$
\begin{equation*}
p\left(\mathcal{C}_{k} \mid \boldsymbol{x}\right)=\frac{p\left(\boldsymbol{x} \mid \mathcal{C}_{k}\right) p\left(\mathcal{C}_{k}\right)}{\sum_{j} p\left(\boldsymbol{x} \mid \mathcal{C}_{j}\right) p\left(\mathcal{C}_{j}\right)}=\frac{\exp \left(a_{k}\right)}{\sum_{j} \exp \left(a_{j}\right)} \tag{15}
\end{equation*}
$$

which is known as the normalized exponential and can be regarded as a multiclass generalization of the logistic sigmoid. Here the quantities a_{k} are defined by

$$
\begin{equation*}
a_{k}=\ln p\left(\boldsymbol{x} \mid \mathcal{C}_{k}\right) p\left(\mathcal{C}_{k}\right) \tag{16}
\end{equation*}
$$

The normalized exponential is also known as the softmax function, as it represents a smoothed version of the 'max' function because, if $a_{k} \gg a_{j}$ for all $j \neq k$, then $p\left(\mathcal{C}_{k} \mid x\right) \approx 1$, and $p\left(\mathcal{C}_{j} \mid x\right) \approx 0$.

Probabilistic generative models: Case study

Assume that the class-conditional densities are Gaussian with the same covariance matrix, i.e.

$$
\begin{equation*}
p\left(\boldsymbol{x} \mid \mathcal{C}_{k}\right)=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(\boldsymbol{x}-\mu_{k}\right)^{\top} \Sigma^{-1}\left(\boldsymbol{x}-\mu_{k}\right)\right\} . \tag{17}
\end{equation*}
$$

Let us consider the posterior probabilities for two classes, from (11) and (12), we have

$$
\begin{equation*}
p\left(\mathcal{C}_{1} \mid \boldsymbol{x}\right)=\sigma\left(\boldsymbol{w}^{\top} \boldsymbol{x}+w_{0}\right) \tag{18}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
\boldsymbol{w}=\Sigma^{-1}\left(\mu_{1}-\mu_{2}\right) ; \quad w_{0}=-\frac{1}{2} \mu_{1}^{\top} \Sigma^{-1} \mu_{1}+\frac{1}{2} \mu_{2}^{\top} \Sigma^{-1} \mu_{2}+\ln \frac{p\left(\mathcal{C}_{1}\right)}{p\left(\mathcal{C}_{2}\right)} \tag{19}
\end{equation*}
$$

How to determine the parameters μ_{k} and Σ ? - Maximum likelihood!

Probabilistic generative models: Case study

Observation: $\left\{\boldsymbol{x}_{n}, t_{n}\right\}_{n=1}^{N}$. Here $t_{n}=1$ denotes class \mathcal{C}_{1} and $t_{n}=0$ denotes class \mathcal{C}_{2}.
Let the prior class probability $p\left(\mathcal{C}_{1}\right)=\pi$ and $p\left(\mathcal{C}_{2}\right)=1-\pi$. By Bayes' theorem we have

$$
\begin{array}{r}
p\left(\boldsymbol{x}_{n}, \mathcal{C}_{1}\right)=p\left(\mathcal{C}_{1}\right) p\left(\boldsymbol{x}_{n} \mid \mathcal{C}_{1}\right)=\pi \mathcal{N}\left(\boldsymbol{x}_{n} \mid \mu_{1}, \boldsymbol{\Sigma}\right) \\
p\left(\boldsymbol{x}_{n}, \mathcal{C}_{2}\right)=p\left(\mathcal{C}_{2}\right) p\left(\boldsymbol{x}_{n} \mid \mathcal{C}_{2}\right)=(1-\pi) \mathcal{N}\left(\boldsymbol{x}_{n} \mid \mu_{2}, \Sigma\right)
\end{array}
$$

Thus the likelihood function is given by

$$
\begin{equation*}
p\left(\boldsymbol{t} \mid \pi, \mu_{1}, \mu_{2}, \Sigma\right)=\prod_{n=1}^{N}\left[\pi \mathcal{N}\left(x_{n} \mid \mu_{1}, \Sigma\right)\right]^{t_{n}}\left[(1-\pi) \mathcal{N}\left(\boldsymbol{x}_{n} \mid \mu_{2}, \Sigma\right)\right]^{1-t_{n}} \tag{20}
\end{equation*}
$$

where $\boldsymbol{t}=\left(t_{1}, \cdots, t_{N}\right)^{\top}$.
How to estimate $\pi, \mu_{1}, \mu_{2}, \Sigma$?

Probabilistic generative models: Case study
Instead of maximize the likelihood, we consider the log-likelihood!
π :

$$
\max _{\pi} \sum_{n=1}^{N}\left\{t_{n} \ln \pi+\left(1-t_{n}\right) \ln (1-\pi)\right\}
$$

therefore,

$$
\pi=\frac{1}{N} \sum_{n=1}^{N} t_{n}=\frac{N_{1}}{N}=\frac{N_{1}}{N_{1}+N_{2}}, \quad N_{i}=\# C_{i}
$$

$\mu_{1}:$

$$
\sum_{n=1}^{N} t_{n} \ln \mathcal{N}\left(\boldsymbol{x}_{n} \mid \mu_{1}, \Sigma\right)=-\frac{1}{2} \sum_{n=1}^{N} t_{n}\left(\boldsymbol{x}_{n}-\mu_{1}\right)^{\top} \Sigma^{-1}\left(\boldsymbol{x}_{n}-\mu_{1}\right)+\text { const }
$$

therefore,

$$
\mu_{1}=\frac{1}{N_{1}} \sum_{n=1}^{N} t_{n} x_{n} .
$$

Similarly, $\mu_{2}=\frac{1}{N_{2}} \sum_{n=1}^{N}\left(1-t_{n}\right) x_{n}$. How to find Σ ?

So far, we have modeled

$$
p\left(\mathcal{C}_{1} \mid \boldsymbol{x}\right)=\frac{p\left(\boldsymbol{x} \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)}{p\left(\boldsymbol{x} \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)+p\left(\boldsymbol{x} \mid \mathcal{C}_{2}\right) p\left(\mathcal{C}_{2}\right)}=\frac{1}{1+\exp (-a)}=\sigma(a)
$$

for a wide choice of class-conditional distributions $p\left(\boldsymbol{x} \mid \mathcal{C}_{k}\right)$. For specific choices of the class-conditional densities $p\left(\boldsymbol{x} \mid \mathcal{C}_{k}\right)$, we have used maximum likelihood to determine the parameters of the densities as well as the class priors $p\left(C_{k}\right)$ and then used Bayes' theorem to find the posterior class probabilities.

We can also generalize \boldsymbol{x} to $\phi(\boldsymbol{x})$ with ϕ being a basis function, resulting in generalized linear models. Note that classes that are linearly separable in the feature space $\phi(\boldsymbol{x})$ need not be linearly separable in the original observation space \boldsymbol{x}.

Generative modeling. Indirectly find the parameters of a generalized linear model, by fitting class-conditional densities and class priors separately and then applying Bayes' theorem. We could take such a model and generate synthetic data by drawing values of \boldsymbol{x} from the marginal distribution $p(\boldsymbol{x})$.

We need to find $p\left(\boldsymbol{x} \mid \mathcal{C}_{k}\right)$ and $p\left(\mathcal{C}_{k}\right)$.

Discriminative modeling. Directly maximize the likelihood function defined through the conditional distribution $p\left(\mathcal{C}_{k} \mid \boldsymbol{x}\right)$. It may also lead to improved predictive performance, particularly when the class-conditional density assumptions give a poor approximation to the true distributions.

We only care about $p\left(\mathcal{C}_{k} \mid \boldsymbol{x}\right)$.

Let us consider two-class classification problem, the posterior probability of class \mathcal{C}_{1} can be written as a logistic sigmoid acting on a linear function of the feature vector ϕ so that

$$
\begin{equation*}
p\left(\mathcal{C}_{1} \mid \phi\right)=y(\phi)=\sigma\left(\boldsymbol{w}^{\top} \phi\right) \tag{21}
\end{equation*}
$$

with $p\left(\mathcal{C}_{2} \mid \phi\right)=1-\phi\left(\mathcal{C}_{1} \mid \phi\right)$. Here $\sigma(\cdot)$ is the logistic sigmoid function. This model is known as logistic regression, which is a classification model.

Maximum likelihood for parameters estimation. First note that for the sigmoid function, we have

$$
\begin{equation*}
\frac{d \sigma}{d a}=\sigma(1-\sigma) \tag{22}
\end{equation*}
$$

For a data set $\left\{\phi_{n}, t_{n}\right\}$, where $t_{n} \in\{0,1\}$ and $\phi_{n}=\phi\left(\boldsymbol{x}_{n}\right)$, with $n=1, \cdots, N$, the likelihood function is

$$
\begin{equation*}
p(\boldsymbol{t} \mid \boldsymbol{w})=\prod_{n=1}^{N} y_{n}^{t_{n}}\left(1-y_{n}\right)^{1-t_{n}} \tag{23}
\end{equation*}
$$

where $\boldsymbol{t}=\left(t_{1}, \cdots, t_{N}\right)^{\top}$ and $y_{n}=p\left(\mathcal{C}_{1} \mid \phi_{n}\right)$.

Taking the negative logarithm of the likelihood, resulting in the cross-entropy error:

$$
\begin{equation*}
E(\boldsymbol{w})=-\ln p(\boldsymbol{t} \mid \boldsymbol{w})=-\sum_{n=1}^{N}\left\{t_{n} \ln y_{n}+\left(1-t_{n}\right) \ln \left(1-y_{n}\right)\right\} \tag{24}
\end{equation*}
$$

where $y_{n}=\sigma\left(a_{n}\right)$ and $a_{n}=\boldsymbol{w}^{\top} \phi_{n}$.
Taking the gradient of the error function with respect to \boldsymbol{w}, we obtain

$$
\begin{equation*}
\nabla E(\boldsymbol{w})=\sum_{n=1}^{N}\left(y_{n}-t_{n}\right) \phi_{n} \tag{25}
\end{equation*}
$$

where we have used the fact that $\frac{d \sigma}{d a}=\sigma(1-\sigma)$.

In our discussion of generative models for multiclass classification, we have seen that for a large class of distributions, the posterior probabilities are given by a softmax transformation of linear functions of the feature variables, so that

$$
\begin{equation*}
p\left(\mathcal{C}_{k} \mid \phi\right)=y_{k}(\phi)=\frac{\exp \left(a_{k}\right)}{\sum_{j} \exp \left(a_{j}\right)} \tag{26}
\end{equation*}
$$

where the 'activations' a_{k} are given by

$$
\begin{equation*}
a_{k}=\boldsymbol{w}_{k}^{\top} \phi \tag{27}
\end{equation*}
$$

