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Discriminant functions

e Discriminant: x — y(x) :=C, € {1,2,--- ,K}.

e Two classes linear discriminant function:
+
y(x)=w x+ w,

where w is the weight vector and wy is the bias.

e How to classify the input x?



Discriminant functions

e Discriminant: x — y(x) :=Cy € {1,2,--- ,K}.

e Two classes linear discriminant function:
+
y(x)=w x+ w,

where w is the weight vector and wy is the bias.

e x — C1 if y(x) > 0 and x — C, otherwise.



Discriminant functions in 2D
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Decision boundary

e Decision boundary: y(x) = 0, which corresponds to a (D — 1)-dimensional
hyperplane within the D-dimensional input space.

e w is orthogonal to every vector lying within the decision surface: Vx4 and xg lie on
the decision surface, we have y(x4) = y(xg) =0 = w' (x4 — xg) = 0.

e The normal distance from the origin to the decision surface is: _||WTO||-

We need to find o such that aw is on the decision surface, i.e. wT(

thus o = —wp/||w||?, i.e., the normal distance is —wg/||w/||.

aw) + wy =0,




Discriminant functions in 2D
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Figure: The decision surface, shown in red, is perpendicular to w, and its displacement from
the origin is controlled by the bias parameter wy. Also, the signed orthogonal distance of a
general point x from the decision surface is given by y(x)/||w||.



Discriminant functions

e The value of y(x) is a signed measure of the perpendicular distance r of the point x
from the decision surface.

e Consider an arbitrary point x and let x; be its orthogonal projection onto the
decision surface, so that

w
x =x; +r——-, orthogonal decomposition. (1)

lwl”

e Multiplying both sides of this result by w' and adding wp, and making use of
y(x)=w'x+wp and y(x.) = w'x; +wp =0, we have

r= y(x) distant formula. (2)

lwl”



Discriminant functions

e It is sometimes convenient to use a more compact notation in which we introduce a
dummy ‘input’ value xo = 1 and then define w = (wp, w) and X = (xp, x) so that

y(x)=w'%. (3)

e In this case, the decision surfaces are D-dimensional hyperplanes passing through the
origin of the (D + 1)-dimensional expanded input space.



How to generalize the discriminant function to multiple classes?



Multiple classes: Infeasible approaches

e One-versus-the-rest: combines K — 1 binary classifiers, each of which separate points
in a particular class Cj from points not in that class.

e One-versus-one: uses K(K — 1)/2 binary discriminant functions, one for every
possible pair of classes.



Multiple classes: Infeasible approaches

not C;

not Co \
Figure: Left: the use of two discriminants designed to distinguish points in class Cx from points
not in class Cx. Right: three discriminant functions each of which is used to separate a pair of
classes Cx and C;. Ambiguous regions is shown in green.



Multiple classes: Feasible approaches

e Consider a single K-class discriminant comprising K linear functions of the form
vi(x) = wy x + wyg. (4)
Then x — Cy if yi(x) > yj(x) for all j # k.
e The decision boundary between class C, and class C; is therefore given by
yk(x) = yj(x) and hence corresponds to a (D — 1)-dimensional hyperplane defined by
(wi — wj) " x + (wio — wjo) = 0. (5)

This has the same form as the decision boundary for the two-class case.



Multiple classes: Feasible approaches

e The decision regions are always singly connected and convex.

e x4 and xg both of which lie inside decision region Ry. Any point X that lies on the
line connecting x4 and xg can be expressed in the form

X=Mxa+(1—XN)xg, where 0 <\ < 1. (6)
From the linearity of the discriminant functions, it follows that
Yi(X) = Ayi(xa) + (1 = A)yi(xB).- (@)

Because both x4 and xg lie inside Ry, it follows that y,(xa) > yj(xa), and
yk(xg) > yj(xg), for all j # k, and hence y,(X) > y;j(X), and so X also lies inside R.
Thus Ry is singly connected and convex.



How to learn wy? A least square approach

T AT
ye(x) =we x+wko, k=1,--- K & y(x)=W X,
where W is a matrix whose k-th column comprises the D + 1-dimensional vector
Wy = (wko, w, )T and % is the corresponding augmented input vector (1,x")" with a
dummy input xo = 1. A new input x is then assigned to the class for which the output
Yk = W, X is largest.



How to learn wy? A least square approach
e Consider a training data set {x,, t,} where n=1,--- | N, and define a matrix T
whose n-th row is the vector t,] , together with a matrix X whose n-th row is ). The
sum-of-squares error function can then be written as

Ep(W) = fTr{(f(W ~T)T(XW — T)}. (8)

e Setting the derivative with respect to W to zero, and rearranging, we then obtain the
solution for W in the form

W=(X"X)XTT=XT, (9)

where XT is the pseudo-inverse of the matrix X. We then obtain the discriminant

function in the form .
y(x)= Wiz =TT (XT) %, (10)



Probabilistic Generative Models



Probabilistic generative models

e Probabilistic view of classification: we model the class-conditional densities p(x|C),
as well as the class priors p(Cx), and then use these to compute posterior probabilities
p(Ck|x) through Bayes' theorem.



Probabilistic generative models

e Consider first of all the case of two classes. The posterior probability for class C; can
be written as

p(x|C1)p(C) 1
Cilx) = = =o(a 11
PaR) = iep(er) + pxICp(@) ~ T+ ep(—a) 7 (Y
where we have defined (xIC1)p(Cy)
pix|C1)p(L1
a=In———F-—= 12
" p(x[C2)p(C2) 2
and o(a) is the logistic sigmoid function defined by
o(a) L (13)

T 1t+exp(—a)



Probabilistic generative models

e The inverse of the logistic sigmoid is given by

a=In g
- l1—0

and is known as the logit function.

)



Probabilistic generative models

o For the case of K > 2 classes, we have

_ P(x[C)p(C) _ exp(ax)
p(Cklx) = > P(xICP(C)) 2 exp(a)) Y

which is known as the normalized exponential and can be regarded as a multiclass
generalization of the logistic sigmoid. Here the quantities a, are defined by

ax = In p(x|Ck)p(Ck)- (16)

® The normalized exponential is also known as the softmax function, as it represents a smoothed

version of the ‘max’ function because, if ax > a; for all j # k, then p(C«|x) ~ 1, and p(Cj|x) = 0.



Probabilistic generative models: Case study

e Assume that the class-conditional densities are Gaussian with the same covariance
matrix, i.e.

1 1 1 _
PG = ooy 0] — (i) T -0} k=12 (17)

Let us consider the posterior probabilities for two classes, from (11) and (12), we have
p(Cilx) = o(w ' x + wo) (18)

where we have defined

p(C1)
p(C2)

) 1 1 o
w =3 (1 — po); WOZ—EMIZ 1M1+§M2TZ iz + In (19)



Probabilistic generative models: Case study — Maximal likelihood estimate

e How to estimate 7, u1, pp, X7
e Observation: {xp, t,,},’yzl. Here t, = 1 denotes class C; and t, = 0 denotes class C».

e Let the prior class probability p(C1) = 7 and p(C2) = 1 — 7. By Bayes' theorem we

hav
e D C1) = P(C1)P(%0[C1) = TN (xal i1, E):
D0 C2) = P(C2)p(x0/C2) = (1 — N (312, 5.

e Thus the likelihood function is given by

N t

p(elm, o2, T) = [ [oN Gl B [(1 = W (e, D] (20)

n=1

where t = (t1,--- ,ty) .



Probabilistic generative models: Case study — Maximal likelihood estimate
e Instead of maximize the likelihood, we consider the log-likelihood!

o T
N
maxZ{tn Inm+(1—t,)In(1—m)},
n=1
therefore,
N
1 Ny Ny
= — th=—=———, N;=#CGC.
TTN Z::l N~ Np+ N, #
® [i1:
u 1o Te-1
Z th |nN(xn‘,U/17 z) = _5 Z tn(xn - Nl) N (xn - Nl) + const,
n=1 n=1
therefore,

1 N
M1 = ﬁl nZ:; thXn.

e Similarly, yp = & Z,Iy:l(l — tp)Xp. How to find X7



Probabilistic Discriminative Models



Probabilistic Discriminative Models

e So far, we have modeled

B p(x|C1)p(C1) _ 1
PGP = Lxiep(Cr) + p(xIC2)p(C) ~ T+ exp(—a)

= o(a),

for a wide choice of class-conditional distributions p(x|Cx). For specific choices of the
class-conditional densities p(x|Cx), we have used maximum likelihood to determine the
parameters of the densities as well as the class priors p(Cy) and then used Bayes'
theorem to find the posterior class probabilities.

e We can also generalize x to ¢(x) with ¢ being a basis function, resulting in
generalized linear models. Note that classes that are linearly separable in the feature
space ¢(x) need not be linearly separable in the original observation space x.



e Generative modeling. Indirectly find the parameters of a generalized linear model, by
fitting class-conditional densities and class priors separately and then applying Bayes'
theorem. We could take such a model and generate synthetic data by drawing values of
x from the marginal distribution p(x).

e We need to find p(x|Cx) and p(Ck). We can then perform sample p(x|Ck).



e Discriminative modeling. Directly maximize the likelihood function defined through
the conditional distribution p(Ck|x). It may also lead to improved predictive
performance, particularly when the class-conditional density assumptions give a poor
approximation to the true distributions.

e We only care about p(Cy|x).



Probabilistic Discriminative Models — Logistic regression

e Let us consider two-class classification problem, the posterior probability of class C;
can be written as a logistic sigmoid acting on a linear function of the feature vector ¢
so that

p(C1]) = y(¢) = o(w ' ¢) (21)

with p(Ca|¢) = 1 — p(C1|¢). Here o(-) is the logistic sigmoid function. This model is
known as logistic regression, which is a classification model.



Probabilistic Discriminative Models — Logistic regression

e Maximum likelihood for parameters estimation. First note that for the sigmoid

function, we have
do

— =o(1-0). (22)

e For a data set {¢p, tp}, where t, € {0,1} and ¢, = &d(x,), with n=1,--- | N, the
likelihood function is

H l_yn 1 tn7 (23)

where t = (t1, <o ,tN)T and y, = P(Cl|¢n)-



Probabilistic Discriminative Models — Logistic regression

e Taking the negative logarithm of the likelihood, resulting in the cross-entropy error:
E(w) = —In p(t|w Z{tn 0y (1 ta) (1~ yn)). (24)
where y, = o(a,) and a, = w' ¢,.
e Taking the gradient of the error function with respect to w, we obtain
VE(W) = (vn — ta)n, (25)

where we have used the fact that % =o(l—-o0).



Probabilistic Discriminative Models — Multi-class logistic regression

e In our discussion of generative models for multiclass classification, we have seen that
for a large class of distributions, the posterior probabilities are given by a softmax
transformation of linear functions of the feature variables, so that

_ _exp(ak)
P(Ckl®) = yk(¢) = W7 (26)

where the ‘activations’ ay are given by

a = wy . (27)



