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Discriminant functions

Discriminant: x → y(x) := Ck ∈ {1, 2, · · · ,K}.

Two classes linear discriminant function:

y(x) = w>x + w0,

where w is the weight vector and w0 is the bias. x → C1 if y(x) ≥ 0 and x → C2
otherwise.



Decision boundary

Decision boundary: y(x) = 0, which corresponds to a (D − 1)-dimensional hyperplane
within the D-dimensional input space.

w is orthogonal to every vector lying within the decision surface: ∀xA and xB lie on the
decision surface, we have y(xA) = y(xB) = 0⇒ w>(xA − xB) = 0.

The normal distance from the origin to the decision surface is: − w0
‖w‖ .

We need to find α such that αw is on the decision surface, i.e. w>(αw) + w0 = 0,
thus α = −w0/‖w‖2, i.e., the normal distance is −w0/‖w‖.



Discriminant functions in 2D

Figure: The decision surface, shown in red, is perpendicular to w , and its displacement from
the origin is controlled by the bias parameter w0. Also, the signed orthogonal distance of a
general point x from the decision surface is given by y(x)/‖w‖.



Discriminant functions

The value of y(x) is a signed measure of the perpendicular distance r of the point x
from the decision surface.

Consider an arbitrary point x and let x⊥ be its orthogonal projection onto the decision
surface, so that

x = x⊥ + r
w
‖w‖

, orthogonal decomposition. (1)

Multiplying both sides of this result by w> and adding w0, and making use of
y(x) = w>x + w0 and y(x⊥) = w>x⊥ + w0 = 0, we have

r =
y(x)

‖w‖
, distant formula. (2)



Discriminant functions

It is sometimes convenient to use a more compact notation in which we introduce a
dummy ‘input’ value x0 = 1 and then define w̃ = (w0,w) and x̃ = (x0, x) so that

y(x) = w̃>x̃ . (3)

In this case, the decision surfaces are D-dimensional hyperplanes passing through the
origin of the (D + 1)-dimensional expanded input space.



Multiple classes: Infeasible approaches

One-versus-the-rest: combines K − 1 binary classifiers, each of which separate points in
a particular class Ck from points not in that class.

One-versus-one: uses K (K − 1)/2 binary discriminant functions, one for every possible
pair of classes.



Multiple classes: Infeasible approaches

Figure: Left: the use of two discriminants designed to distinguish points in class Ck from points
not in class Ck . Right: three discriminant functions each of which is used to separate a pair of
classes Ck and Cj . Ambiguous regions is shown in green.



Multiple classes: Feasible approaches

Consider a single K -class discriminant comprising K linear functions of the form

yk(x) = w>k x + wk0. (4)

Then x → Ck if yk(x) > yj(x) for all j 6= k .

The decision boundary between class Ck and class Cj is therefore given by
yk(x) = yj(x) and hence corresponds to a (D − 1)-dimensional hyperplane defined by

(wk −wj)
>x + (wk0 − wj0) = 0. (5)

This has the same form as the decision boundary for the two-class case.



Multiple classes: Feasible approaches

The decision regions are always singly connected and convex.
xA and xB both of which lie inside decision region Rk . Any point x̂ that lies on the line
connecting xA and xB can be expressed in the form

x̂ = λxA + (1− λ)xB , where 0 ≤ λ ≤ 1. (6)

From the linearity of the discriminant functions, it follows that

yk(x̂) = λyk(xA) + (1− λ)yk(xB). (7)

Because both xA and xB lie inside Rk , it follows that yk(xA) > yj(xA), and
yk(xB) > yj(xB), for all j 6= k , and hence yk(x̂) > yj(x̂), and so x̂ also lies inside Rk .
Thus Rk is singly connected and convex.



How to learn wk? A least square approach

yk(x) = w>k x + wk0, k = 1, · · · ,K ⇔ y(x) = W̃>x̃ ,

where W̃ is a matrix whose k-th column comprises the D + 1-dimensional vector
w̃k = (wk0,w>k )> and x̃ is the corresponding augmented input vector (1, x>)> with a
dummy input x0 = 1. A new input x is then assigned to the class for which the output
yk = w̃>k x̃ is largest.



How to learn wk? A least square approach

Consider a training data set {xn, tn} where n = 1, · · · ,N, and define a matrix T whose
n-th row is the vector t>n , together with a matrix X̃ whose n-th row is x̃>n . The
sum-of-squares error function can then be written as

ED(W̃ ) =
1
2
Tr
{

(X̃W̃ − T )>(X̃W̃ − T )
}
. (8)

Setting the derivative with respect to W̃ to zero, and rearranging, we then obtain the
solution for W̃ in the form

W̃ = (X̃>X̃ )−1X̃>T = X̃ †T , (9)

where X̃ † is the pseudo-inverse of the matrix X̃ . We then obtain the discriminant
function in the form

y(x) = W̃>x̃ = T>
(
X̃ †
)>

x̃ . (10)



Probabilistic generative models

Probabilistic view of classification: we model the class-conditional densities p(x |Ck), as
well as the class priors p(Ck), and then use these to compute posterior probabilities
p(Ck |x) through Bayes’ theorem.



Probabilistic generative models

Consider first of all the case of two classes. The posterior probability for class C1 can be
written as

p(C1|x) =
p(x |C1)p(C1)

p(x |C1)p(C1) + p(x |C2)p(C2)
=

1
1 + exp(−a)

= σ(a) (11)

where we have defined
a = ln

p(x |C1)p(C1)

p(x |C2)p(C2)
(12)

and σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
. (13)



Probabilistic generative models

The inverse of the logistic sigmoid is given by

a = ln

(
σ

1− σ

)
(14)

and is known as the logit function.



Probabilistic generative models

For the case of K > 2 classes, we have

p(Ck |x) =
p(x |Ck)p(Ck)∑
j p(x |Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(15)

which is known as the normalized exponential and can be regarded as a multiclass
generalization of the logistic sigmoid. Here the quantities ak are defined by

ak = ln p(x |Ck)p(Ck). (16)

The normalized exponential is also known as the softmax function, as it represents a smoothed version
of the ‘max’ function because, if ak � aj for all j 6= k, then p(Ck |x) ≈ 1, and p(Cj |x) ≈ 0.



Probabilistic generative models: Case study

Assume that the class-conditional densities are Gaussian with the same covariance
matrix, i.e.

p(x |Ck) =
1

(2π)D/2
1
|Σ|1/2

exp
{
− 1

2
(x − µk)>Σ−1(x − µk)

}
. (17)

Let us consider the posterior probabilities for two classes, from (11) and (12), we have

p(C1|x) = σ(w>x + w0) (18)

where we have defined

w = Σ−1(µ1 − µ2); w0 = −1
2
µ>1 Σ−1µ1 +

1
2
µ>2 Σ−1µ2 + ln

p(C1)

p(C2)
. (19)

How to determine the parameters µk and Σ? – Maximum likelihood!



Probabilistic generative models: Case study

Observation: {xn, tn}Nn=1. Here tn = 1 denotes class C1 and tn = 0 denotes class C2.

Let the prior class probability p(C1) = π and p(C2) = 1−π. By Bayes’ theorem we have

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ);

p(xn, C2) = p(C2)p(xn|C2) = (1− π)N (xn|µ2,Σ).

Thus the likelihood function is given by

p(t|π, µ1, µ2,Σ) =
N∏

n=1

[
πN (xn|µ1,Σ)

]tn[
(1− π)N (xn|µ2,Σ)

]1−tn
, (20)

where t = (t1, · · · , tN)>.

How to estimate π, µ1, µ2,Σ?



Probabilistic generative models: Case study

Instead of maximize the likelihood, we consider the log-likelihood!
π:

max
π

N∑
n=1

{tn lnπ + (1− tn) ln(1− π)},

therefore,

π =
1
N

N∑
n=1

tn =
N1

N
=

N1

N1 + N2
, Ni = #Ci .

µ1:
N∑

n=1

tn lnN (xn|µ1,Σ) = −1
2

N∑
n=1

tn(xn − µ1)>Σ−1(xn − µ1) + const,

therefore,

µ1 =
1
N1

N∑
n=1

tnxn.

Similarly, µ2 = 1
N2

∑N
n=1(1− tn)xn. How to find Σ?



Probabilistic Discriminative Models

So far, we have modeled

p(C1|x) =
p(x |C1)p(C1)

p(x |C1)p(C1) + p(x |C2)p(C2)
=

1
1 + exp(−a)

= σ(a),

for a wide choice of class-conditional distributions p(x |Ck). For specific choices of the
class-conditional densities p(x |Ck), we have used maximum likelihood to determine the
parameters of the densities as well as the class priors p(Ck) and then used Bayes’
theorem to find the posterior class probabilities.

We can also generalize x to φ(x) with φ being a basis function, resulting in generalized
linear models. Note that classes that are linearly separable in the feature space φ(x)
need not be linearly separable in the original observation space x .



Generative modeling. Indirectly find the parameters of a generalized linear model, by
fitting class-conditional densities and class priors separately and then applying Bayes’
theorem. We could take such a model and generate synthetic data by drawing values of
x from the marginal distribution p(x).

We need to find p(x |Ck) and p(Ck).



Discriminative modeling. Directly maximize the likelihood function defined through the
conditional distribution p(Ck |x). It may also lead to improved predictive performance,
particularly when the class-conditional density assumptions give a poor approximation
to the true distributions.

We only care about p(Ck |x).



Probabilistic Discriminative Models – Logistic regression

Let us consider two-class classification problem, the posterior probability of class C1 can
be written as a logistic sigmoid acting on a linear function of the feature vector φ so
that

p(C1|φ) = y(φ) = σ(w>φ) (21)

with p(C2|φ) = 1− φ(C1|φ). Here σ(·) is the logistic sigmoid function. This model is
known as logistic regression, which is a classification model.



Probabilistic Discriminative Models – Logistic regression

Maximum likelihood for parameters estimation. First note that for the sigmoid function,
we have

dσ

da
= σ(1− σ). (22)

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n = 1, · · · ,N, the
likelihood function is

p(t|w) =
N∏

n=1

y tnn (1− yn)1−tn , (23)

where t = (t1, · · · , tN)> and yn = p(C1|φn).



Probabilistic Discriminative Models – Logistic regression

Taking the negative logarithm of the likelihood, resulting in the cross-entropy error:

E (w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)}, (24)

where yn = σ(an) and an = w>φn.

Taking the gradient of the error function with respect to w , we obtain

∇E (w) =
N∑

n=1

(yn − tn)φn, (25)

where we have used the fact that dσ
da = σ(1− σ).



Probabilistic Discriminative Models – Multi-class logistic regression

In our discussion of generative models for multiclass classification, we have seen that for
a large class of distributions, the posterior probabilities are given by a softmax
transformation of linear functions of the feature variables, so that

p(Ck |φ) = yk(φ) =
exp(ak)∑
j exp(aj)

, (26)

where the ‘activations’ ak are given by

ak = w>k φ. (27)


