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Recap

We have studied:
• Statistic learning models: linear regression, logistic regression, SVM, kernel methods,
regularization
• First-order optimization: gradient descent, subgradient, proximal gradient descent,
heavy-ball, Nesterov acceleration, stochastic gradient

Next,
• Understanding high-dimensional spaces: high-dimensional geometry, concentration
inequalities, clustering, dimension reduction, compressed sensing
• Deep learning: TBA.



• Curse of Dimensionality (CoD): the exponential increase in volume associated with
adding extra dimensions to Euclidean space. Many algorithmic approaches to problems
in Rd become exponentially more difficult as the dimension d grows. E.g., finite
difference solver for PDEs.

• Blessings of Dimensionality (BoD): concentration of measure. For instance, for a
d-dimensional unit ball almost all of its volume is concentrated near the boundary
sphere since rd � (r − ε)d when d is large.



Geometry of Spheres and balls in high dimension



Some notations:

• The d-dimensional hyperball of radius R is defined by

Bd(R) = {x ∈ Rd : x2
1 + · · ·+ x2

d ≤ R2}.

• The d-dimensional hypersphere (or d-sphere) of radius R is given by

Sd−1(R) = {x ∈ Rd : x2
1 + · · ·+ x2

d = R2}.

• The d-dimensional hypercube with side length 2R is the subset of Rd defined as the
d-fold product of intervals [−R,R]:

Cd(R) = [−R,R]× · · · × [−R,R]︸ ︷︷ ︸
d times

.

We denote Bd := Bd(1), Sd−1 := Sd−1(1), and Cd := Cd(1
2).



Volume of the hyperball

Theorem 1. The volume of Bd(R) is given by

Vol(Bd(R)) =
π

d
2Rd

d
2 Γ(d2 )

. (1)

The Gamma function is defined by

Γ(n) =

∫ ∞
0

rn−1e−rdr = 2
∫ ∞

0
e−r

2
r2n−1dr ∼︸︷︷︸

Stirling’s formula

√
2π
n

(n
e

)n
.

Therefore, we have an approximation for the volume of the d-unit ball for large d

Vol(Bd) ≈ 1√
dπ

(2πe
d

)d/2
. (2)



Remarks

Vol(Bd) ≈ 1√
dπ

(2πe
d

)d/2
→ 0 as d →∞. (3)

Unit spheres in high dimensions have almost no volume – compare this to the unit
cube, which has volume 1 in any dimension. For Bd(R) to have volume equal to 1, its

radius R must be approximately (asymptotically) equal to
√

d
2πe .



Volume of the hyperball

Figure: The volume of the unit d-ball. The volume reaches its maximum for d = 5 and
decreases rapidly to zero with increasing dimension d .



Proof. The volume of Bd(R) is given by

Vol(Bd(R)) =

∫ R

0
sd r

d−1dr =
sdR

d

d
, (4)

where sd denotes the (hyper-)surface area of a unit d-sphere. A unit d-sphere satisfy

sd

∫ ∞
0

e−r
2
rd−1dr =

∫ ∞
−∞
· · ·
∫ ∞
−∞︸ ︷︷ ︸

d times

e−(x2
1 +···+x2

d )dx1 · · · dxd =
(∫ ∞
−∞

e−x
2
dx
)d
.



Recall that the Gamma function is given by

Γ(n) =

∫ ∞
0

rn−1e−rdr = 2
∫ ∞

0
e−r

2
r2n−1dr ,

hence
1
2
sdΓ(

d

2
) =

[
Γ(

1
2

)
]d

= (π1/2)d ,⇒ sd =
2πd/2

Γ(d2 )
.

Plugging this expression into (4) gives

Vol(Bd(R)) =
πd/2Rd

d
2 Γ(d2 )

, (5)

which concludes the proof.



Concentration of the volume of a ball near its equator

Suppose we want to cut off a slab around the “equator” of the d-unit ball such that
99% of its volume is contained inside the slab. In 2D the width of the slab has to be
almost 2, so that 99% of the volume are captured by the slab. But as the dimension
increases the width of the slab gets rapidly smaller.

Theorem 2. Almost all the volume of Bd(R) lies near its equator.



Concentration of the volume of a ball near its equator – Result first

• Let P = {x : ‖x‖ ≤ 1, x1 ≥ p0} be the “polar cap”, i.e., part of the sphere above the
slab of width 2p0 around the equator. Then the volume of the slab is 2Vol(P).

• We have
2Vol(P)

Vol(Bd)
≤ 2Vol(P)

Vol(Bd−1)
≤ e−

d−1
2 p2

0 .



Proof. It suffices to prove the result for the unit d-ball. W.L.O.G. we pick as “north”
the direction x1. The intersection of the sphere with the plane x1 = 0 forms our
equator, which is formally given by the (d − 1)-D region {x : ‖x‖ ≤ 1, x1 = 0}. This
intersection is a sphere of dimension (d − 1) with volume Vol(Bd−1) given by the
(d − 1)-analog of formula (5) with R = 1.

We now compute the volume of Bd that lies between x1 = 0 and x1 = p0. Let
P = {x : ‖x‖ ≤ 1, x1 ≥ p0} be the “polar cap”, i.e., part of the sphere above the slab of
width 2p0 around the equator. To compute the volume of the cap P we will integrate
over all slices of the cap from p0 to 1. Each such slice will be a sphere of dimension
d − 1 and radius

√
1− p2, hence its volume is (1− p2)

d−1
2 Vol(Bd−1). Therefore,

Vol(P) =

∫ 1

p0

(1− p2)
d−1

2 Vol(Bd−1)dp = Vol(Bd−1)

∫ 1

p0

(1− p2)
d−1

2 dp.

The polar cap has almost no volume when d is large.



Using ex ≥ 1 + x for all x we can upper bound the integral by

Vol(P) ≤ Vol(Bd−1)

∫ ∞
p0

e−
d−1

2 p2
dp = Vol(Bd−1)

√
2

d − 1

∫ ∞
p0

√
d−1

2

e−u
2
du

= Vol(Bd−1)

√
π

2(d − 1)
erfc

(
p0

√
d − 1
2

)
,

where erfc(x) = 2√
π

∫∞
x e−u

2
du is the complementary error function. The upper bound

erfc(x) ≤ e−x
2
/(
√
πx) gives

Vol(P) ≤ Vol(Bd−1)

√
π

2(d − 1)

e−
d−1

2 p2
0

√
πp0

√
d−1

2

=
Vol(Bd−1)

d − 1
e−

d−1
2 p2

0

p0
.

Recall from (5) that Vol(Bd) = πd/2
d
2 Γ( d

2 )
, so for d large enough (since Γ( d

2 )

Γ( (d−1)
2 )
≈
√
d/2),

we have



Vol(Bd−1) =
π−1/2

d−1
d

Γ(d2 )

Γ(d−1
2 )

Vol(Bd) ≤ d − 1
2

Vol(Bd).

Finally, a simple calculation shows that the ratio between the volume of the polar caps
and the entire hypersphere is bounded by

2Vol(P)

Vol(Bd)
≤ 2Vol(P)

Vol(Bd−1)
≤ e−

d−1
2 p2

0 .

The expression above shows that this ratio decreases exponentially as both d and p
increase, proving our claim that the volume of the sphere concentrates strongly around
its equator. This concludes the proof.



Concentration of the volume of a ball on shells

Recall the volume of unit d-ball is Vol(Bd(R)) = π
d
2 Rd

d
2 Γ( d

2 )
∼ 1√

dπ

(
2πe
d

)d/2
· Rd , thus the

ratio of two concentric balls Bd(1) and Bd(1− ε) is

Vol(Bd(1− ε))

Vol(Bd(1))
= (1− ε)d .

Clearly, for every ε this ratio tends to zero as d →∞, i.e., the spherical shell given by
the region between Bd(1) and Bd(1− ε) will contain most of the volume of Bd(1) for
large enough d even if ε is very small. How quickly does the volume concentrate at the
surface? We choose ε as a function of d , e.g. ε = t

d , then

Vol(Bd(1− ε))

Vol(Bd(1))
= (1− t

d
)d → e−t .

Thus, almost all the volume of Bd(R) is contained in an annulus of width R/d .



Geometry of the Hypercube



We have seen that most of the volume of the hypersphere is concentrated near its
surface. A similar result holds for the hypercube, and in general for high dimensional
geometric objects. Yet, the hypercube exhibits an even more interesting volume
concentration behavior, which we will establish below.

Proposition 3. The hypercube Cd has volume 1 and diameter
√
d .

Remark. Proposition 3 shows somewhat counterintuitive behavior of the cube in high
dimensions. Its corners seem to get “stretched out” more and more, while the rest of
the cube must “shrink” to keep the volume constant. This property becomes even more
striking when we compare the cube with the sphere as the dimension increases.



In 2D, the unit square is completely contained in the unit sphere. The distance from
the center to a vertex (radius of the circumscribed sphere) is

√
2/2 and the apothem

(radius of the inscribed sphere) is 1/2.

Figure: 2-dimensional unit sphere and unit cube, centered at the origin.



In 4D, the distance from the center to a vertex is 1 (note the diameter of the cube is 2
in 4D), so the vertices of the cube touch the surface of the sphere. However, the
apothem is still 1/2. The result, when projected in 2D no longer appears convex,
however all hypercubes are convex. This is part of the strangeness of higher dimensions
– hypercubes are both convex and “pointy.”

Figure: Projections of the 4D unit sphere and unit cube, centered at the origin (4 of the 16
vertices of the hypercube are shown).



In dimensions greater than 4 the distance from the center to a vertex is
√
d

2 > 1, and
thus the vertices of the hypercube extend far outside the sphere.

Figure: Projections of the d-dimensional unit sphere and unit cube, centered at the origin (4 of
the 2d vertices of the hypercube are shown).

Most of the volume of the high-dimensional cube is located in its corners.
Recall why `1-regularization works?



Basic Concepts from Probability



• The two most basic concepts in probability associated with a random variable X are
expectation (or mean) and variance, denoted by

E[X ] and Var(X ) := E[X − E[X ]]2,

respectively.
• An important tool to describe probability distributions is the moment generating
function of X , defined by

MX (t) = E[etX ], t ∈ R.

The p-th moment of X is defined by E[X p] for p > 0 and the p-th absolute moment is
E[|X |p]. (Take the derivative of MGF w.r.t. t.)
• The Lp-norms of random variables is defined by taking the p-th root of moments:

‖X‖Lp := (E[|X |p])
1
p , p ∈ [0,∞],

with
‖X‖∞ := ess sup |X |.



Let (Ω,Σ,P) be a probability space, where Σ denotes a σ-algebra on the sample space
Ω and P is a probability measure on (Ω,Σ). For fixed p the vector space Lp(Ω,Σ,P)
consists of all random variables X on Ω with finite Lp-norm, i.e.,

Lp(Ω,Σ,P) = {X : ‖X‖Lp <∞}.

We will usually not mention the underlying probability space. For example, we will often
simply write Lp for Lp(Ω,Σ,P).

For p = 2, L2 is a Hilbert space with inner product and inner product and norm

〈X ,Y 〉L2 = E[XY ], ‖X‖L2 = (E[X 2])
1
2 ,

respectively.



• The standard deviation σ(X ) :=
√

Var(X ) of X can be written as

σ(X ) = ‖X − E[X ]‖L2 .

• The covariance of the random variables X and Y is

cov(X ,Y ) = E[(X − E[X ])(Y − E[Y ])] = 〈X − E[X ],Y − E[Y ]〉L2 . (6)



Classical inequalities for random variables

• Holder’s inequality: for random variables X and Y on a common probability space
and p, q ≥ 1 with 1/p + 1/q = 1, there holds

|E[XY ]| ≤ ‖X‖Lp‖Y ‖Lq . (7)

The special case p = q = 2 is the Cauchy-Schwarz inequality

|E[XY ]| ≤
√

E[|X |2]E[|Y |2]. (8)

• Jensen’s inequality: for any random variable X and a convex function φ : R→ R:

φ(E[X ]) ≤ E[φ(X )]. (9)

Since φ(x) = xq/p is convex for q ≥ p ≥ 0, it follows from Jensen’s inequality that

‖X‖Lp ≤ ‖X‖Lq for 0 ≤ p ≤ q <∞.



Classical inequalities for random variables

• Minkovskii’s inequality: for any p ∈ [0,∞] and any random variables X ,Y , we have

‖X + Y ‖Lp ≤ ‖X‖Lp + ‖Y ‖Lp , (10)

which can be viewed as the triangle inequality.



The cumulative distribution function of X is defined by

FX (t) = P(X ≤ t), t ∈ R.

• We have P{X > t} = 1− FX (t).

• The function t → P{|X | ≥ t} is called the tail of X .

The following lemma establishes a close connection between expectation and tails.

Proposition 4. (Integral identity). Let X be a non-negative random variable. Then

E[X ] =

∫ ∞
0

P{X > t}dt.

Given an event E with non-zero probability, P(·|E ) denotes conditional probability,
furthermore for a random variable X we use E[X |E ] to denote the conditional
expectation.



Markov’s inequality

Markov’s inequality is a fundamental tool to bound the tail of a random variable in
terms of its expectation.

Proposition 5. For any non-negative random variable X : S → R we have

P{X ≥ t} ≤ E[X ]

t
for all t > 0. (11)

Proof.
E[X ] =

∫ ∞
0

P{X ≥ t}dt >
∫ ∞
t

P{X ≥ t}dt ≥ tP
{
X > t

}
.



Chebyshev’s inequality

Corollary 6. Let X be a random variable with mean µ and variance σ2. Then, for any
t > 0

P{|X − µ| ≥ t} ≤ σ2

t2
. (12)

Remark. Chebyshev’s inequality, which follows by applying Markov’s inequality to the
non-negative random variable Y = (X − E[X ])2, is a form of concentration inequality,
as it guarantees that X must be close to its mean µ whenever the variance of X is
small. Both, Markov’s and Chebyshev’s inequality are sharp, i.e., in general they cannot
be improved.



Chernoff bound

Markov’s inequality only requires the existence of the first moment. We can say a bit
more if in addition the random variable X has a moment generating function in a
neighborhood around zero, that is, there is a constant b > 0 such that E[eλ(X−µ)]
exists for all λ ∈ [0, b]. In this case we can apply Markov’s inequality to the random
variable Y = eλ(X−µ) and obtain the generic chernoff bound

P{X − µ ≥ t} = P{eλ(X−µ) ≥ eλt} ≤ E[eλ(X−µ)]

eλt
. (13)

Optimizing over λ in order to obtain the tightest bound in (13) gives

logP{X − µ ≥ t} ≤ − sup
λ∈[0,b]

{λt − logE[eλ(X−µ)]}.

A very useful trick!



Gaussian tail bound

A Gaussian random variable X with mean µ and standard deviation σ has a probability
density function given by

ψ(t) =
1√
2πσ2

exp
(
− (t − µ)2

2σ2

)
. (14)

We write X ∼ N (µ, σ2). We call a Gaussian random variable X with E[X ] = 0 and
E[X 2] = 1 a standard Gaussian or standard normal (random variable).

Proposition 7. [Gaussian tail bounds] Let X ∼ N (µ, σ2). Then for all t > 0

P(X ≥ µ+ t) ≤ e−t
2/2σ2

. (15)



Gaussian tail bound

Proof. We use the moment-generating function λ→ E[eλX ]. A simple calculation gives

E[eλX ] =
1√
2π

∫ ∞
−∞

eλx−x
2/2dx =

1√
2π

eλ
2/2
∫ ∞
−∞

e−(x−λ)2/2dx = eλ
2/2,

where we have used the fact that
∫∞
−∞ e−(x−λ)2/2dx is just the entire Gaussian integral

shifted and therefore its value is
√
2π. We now apply Chernoff’s bound (13) and obtain

P(X > t) ≤ E[eλX ]e−λt . Minimizing this expression over λ gives λ = t and thus
P(X > t) ≤ e−t

2/2.



Sub-Gaussian random variables

Definition 8. A random variable X with mean µ = E[X ] is called sub-Gaussian if there
is a positive number σ such that

E[eλ(X−µ)] ≤ eσ
2λ2/2, for all λ ∈ R.

If X satisfies the above definition, we also say that X is sub-Gaussian with parameter σ,
or X is (µ, σ) sub-Gaussian.

Owing to the symmetry in the definition, −X is sub-Gaussian if and only of X is
sub-Gaussian.

Any Gaussian random variable with variance σ2 is sub-Gaussian with parameter σ.



Sub-Gaussian tail bounds

Proposition 9. [Sub-Gaussian tail bounds] Assume X is sub-Gaussian with parameter
σ. Then for all t > 0

P(|X − µ| ≥ t) ≤ e−t
2/2σ2

for all t ∈ R. (16)

Proof. Combining the moment condition in Def. 8 with calculations similar to those
that lead us to the Gaussian tail bounds in Proposition. 7.

Example. An important example of non-Gaussian, but sub-Gaussian random variables
are Rademacher random variables. A Rademacher random variable ε takes on the
values ±1 with equal probability and is sub-Gaussian with parameter σ. Indeed, any
bounded random variable is sub-Gaussian.



Sub-exponential random variables

Many important random variables have a sub-Gaussian distribution, this class of
random variables does not include several frequently occurring distributions with heavier
tails. A classical example is the χ2 distribution.

Relaxing slightly the condition on the moment-generating function in Def 8 leads to the
class of sub-exponential random variables.

Definition 10. A random variable X with mean µ = E[X ] is called sub-exponential if
there are parameters ν, b such that

E[eλ(X−µ)] ≤ eν
2λ2/2, for all |λ| ≤ 1

b
.



Sub-exponential random variables

Clearly, a sub-Gaussian random variable is sub-exponential (set ν = σ and b = 0, where
1/b is interpreted as +∞). However, the converse is not true. Take for example
X ∼ N (0, 1) and consider the random variable Z = X 2. For λ < 1

2 it holds that

E[eλ(Z−1)] =
1√
2π

∫ ∞
−∞

eλ(x2−1)e−x
2/2dx =

e−λ√
1− 2λ

. (17)

However, for λ ≥ 1
2 the moment-generating function does not exist, which implies that

X 2 is not sub-Gaussian/ But X 2 is sub-exponential. Indeed, a brief computation shows
that

e−λ√
1− 2λ

≤ e2λ2
= e4λ2/2, for all |λ| ≤ 1/4,

which in turn implies that X 2 is sub-exponential with parameters (ν, b) = (2, 4).



Sub-exponential tail bounds

Proposition 11. [Sub-exponential tail bounds] Assume X is sub-exponential with
parameters (ν, b). Then

P(X ≥ µ+ t) ≤

{
e−t

2/2ν2
if 0 ≤ t ≤ ν2

b ,

e−t/2b if t > ν2

b .
(18)



Comments on sub-Gaussian and sub-exponential random variables

Both sub-Gaussian and sub-exponential properties are preserved under summation for
independent random variables and the associated parameters transform in a simple
manner.

A collection X1, · · · ,Xn of mutually independent random variables that all have the
same distribution is called independent identically distributed (i.i.d.). A random variable
X ′ is called an independent copy of X if X and X ′ are independent and have the same
distribution.

In general, we cannot improve Markov’s inequality and Chebyshev’s inequality, the
question arises whether we can give a stronger statement for a more restricted class of
random variables. Of central importance in this context is the case of random variable
that is the sum of a number of independent random variables. This leads to the rich
topic of concentration inequalities.



An example

If X1, · · · ,Xn are independent, standard normal random varables, then the sum of their
squares, Z =

∑n
k=1 X

2
k is distributed according to the χ2 distribution with n degrees of

freedom. We denote this by Z ∼ ξ2(n). Its probability density function is

φ(t) =


t
n
2−1e−

n
2

2
n
2 Γ( n

2 )
, t > 0.

0 else.

Since the X 2
k , k = 1, · · · , n are sub-exponential with parameters (2, 4) and independent,

Z =
∑n

k=1 X
2
k is sub-exponential with parameters (2

√
n, 4). Therefpre, using (18), we

obtain the χ2 tail bound

P

(
1
n

∣∣∣ n∑
k=1

X 2
k − 1

∣∣∣ ≥ t

)
≤

{
2e−nt

2/8 for t ∈ (0, 1).

2e−nt/8 if t ≥ 1.
(19)



Blessings of Dimensionality



Suppose we wish to predict the outcome of an event of interest. One natural approach
would be to compute the expected value of the object. We would also like to have an
estimate for the probability that the actual outcome deviates from its expectation by a
certain amount. This is exactly the role that concentration inequalities play in
probability and statistics.

Concentration inequalities are instances of what is sometimes called Blessings of
dimensionality. This expression refers to the fact that certain random fluctuations can
be well controlled in high dimensions, while it would be very complicated to make such
predictive statements in moderate dimensions.



Large Deviation Inequalities

Concentration and large deviations inequalities are among the most useful tools when
understanding the performance of some algorithms. We start with two of the most
fundamental results in probability.

Theorem 12. [Strong law of large numbers] Let X1,X2, · · · be a sequence of i.i.d.
random variables with mean µ. Denote

Sn := X1 + · · ·+ Xn.

Then, as n→∞
Sn
n
→ µ almost surely. (20)



Large Deviation Inequalities

Theorem 13. [Lindeberg-Levy Central limit theorem] Let X1,X2, · · · be a sequence of
i.i.d. random variables with mean µ and variance σ2. Denote

Sn := X1 + · · ·+ Xn,

and consider the normalized random variable Zn with mean zero and variance one,
given by

Zn :=
Sn − E[Sn]√

VarSn
=

1
σ
√
n

n∑
i=1

(Xi − µ).

Then, as n→∞
Zn → N (0, 1) in distribution. (21)



Large Deviation Inequalities

The strong law of large numbers and the central limit theorem give us qualitative
statements about the behavior of a sum of i.i.d. random variables. In many applications
it is desirable to be able to quantify how such a sum deviates around its mean. This is
where concentration inequalities come into play.

The intuitive idea is that if we have a sum of independent random variables

X = X1 + · · ·+ Xn,

where Xi are i.i.d. centered random variables, then while the value of X can be of order
O(n) it will very likely be of order O(

√
n) (the order of its standard deviation). The

inequalities that follow are ways of very precisely controlling the probability of X being
larger (or smaller) than O(

√
n) While we could use, for example, Chebyshev’s inequality

for this, in the inequalities that follow the probabilities will be exponentially small,
rather than just quadratically small, which will be crucial in many applications to come.
Moreover, classical central limit theorem, the concentration inequalities below are
non-asymptotic in the sense that they hold for all fixed n and not just for n→∞.



Large Deviation Inequalities

Theorem 14. [Hoeffding’s Inequality] Let X1, · · · ,Xn be independent bounded random
variables, i.e. |Xi | ≤ ai and E[Xi ] = 0. Then,

P

{∣∣∣ n∑
i=1

Xi

∣∣∣ > t

}
≤ 2 exp

(
− t2

2
∑n

i=1 a
2
i

)
.

Remark. The inequality implies that fluctuations larger than O(
√
n) have small

probability. For example, if ai = a for all i , setting t = a
√
2n log n yields that the

probability is at most 2
n .



Proof. We prove the result for the case |Xi | ≤ a, the extension to the case |Xi | ≤ ai is
straightforward. We first get a probability bound for the event

∑n
i=1 Xi > t. The proof,

again, will follow from Markov. Since we want an exponentially small probability, we
use a classical trick that involves exponentiating with any λ > 0 and then choosing the
optimal λ.

P
{ n∑

i=1

Xi > t
}

= P
{ n∑

i=1

Xi > t
}

(21)

= P
{
eλ

∑n
i=1 Xi > eλt

}
≤ E[eλ

∑n
i=1 Xi ]

etλ

= e−tλ
n∏

i=1

E[eλXi ] (22),

where the penultimate step follows from Markov’s inequality and the last equality
follows from independence of the Xi ’s.



We now use the fact that |Xi | ≤ a to bound E[eλXi ]. Because the function f (x) = eλx

is convex,
eλx ≤ a + x

2a
eλa +

a− x

2a
e−λa, for all x ∈ [−a, a].

Since, for all i , E[Xi ] = 0 we get

E[eλXi ] ≤ E
[a + Xi

2a
eλa +

a− Xi

2a
e−λa

]
≤ 1

2
(eλa + e−λa) = cosh(λa).

Since cosh(x) =
∑∞

n=0
x2n

(2n)! , e
x2/2 =

∑∞
n=0

x2n

2nn! , and (2n)! ≥ 2nn!, we have

cosh(x) ≤ ex
2/2, for all x ∈ R.

Hence,
E[eλXi ] ≤ e(λa)2/2.



Together with (21), this gives

P
{ n∑

i=1

Xi > t
}
≤ e−tλ

n∏
i=1

e(λa)2/2 = e−tλen(λa)2/2.

This inequality holds for any choice of λ ≥ 0, so we choose the value of λ that
minimizes

min
λ

{
n

(λa)2

2
− tλ

}
.

Differentiating readily shows that the minimizer is given by

λ =
t

na2 ,

which satisfies λ > 0. For this choice of λ,

n(λa)2/2− tλ =
1
n

( t2

2a2 −
t2

a2

)
= − t2

2na2 .



Thus,

P
{ n∑

i=1

Xi > t
}
≤ e−

t2

2na2 .

By using the same argument on
∑n

i=1(−Xi ), and union bounding over the two events
we get,

P
{∣∣∣ n∑

i=1

Xi

∣∣∣ > t
}
≤ 2e−

t2

2na2 ,

which concludes the proof.



Remark. Hoeffding’s inequality is suboptimal in a sense we now describe. Let us say
that we have random variables r1, · · · , rn i.i.d. distributed as

ri =


−1 with probability p/2
0 with probability 1− p

1 with probability p/2.

Then, E(ri ) = 0 and |ri | ≤ 1 so Hoeffding’s inequality gives:

P
{∣∣∣ n∑

i=1

ri

∣∣∣ > t
}
≤ 2 exp

(
− t2

2n

)
.

Intuitively, the smaller p is, the more concentrated |
∑n

i=1 ri | should be, however
HOeffding’s inequality does not capture this behaviour.



Large Deviation Inequalities

A natural way to capture this behaviour is by noting that the variance of
∑n

i=1 ri
depends on p as Var(ri ) = p. The inequality that follows, Bernstein’s inequality, uses
the variance of the summands to improve over Hoeffding’s inequality.

The way this is going to be achieved is by strengthening the proof above, more
specifically in step (22) we will use the bound on the variance to get a better estimate
on E[eλXi ] essentially by realizing that if Xi is centered, EX 2

i = σ2, and |Xi | ≤ a then,
for k ≥ 2,

EX k
i ≤ E|Xi |k ≤ σ2E|Xi |k−2 ≤ σ2ak−2 =

(σ2

a2

)
ak .



Large Deviation Inequalities

Theorem 16. [Bernstein’s inequality] Let X1, · · · ,Xn be independent centered
bounded random variables satisfying |Xi | ≤ a and E[X 2

i ] = σ2. Then,

P
{∣∣∣ n∑

i=1

Xi

∣∣∣ > t
}
≤ 2 exp

(
− t2

2nσ2 + 2
3at

)
.

Remark. For the random variables r1, · · · , rn i.i.d. distributed as

ri =


−1 with probability p/2
0 with probability 1− p

1 with probability p/2.

we have

P
{∣∣∣ n∑

i=1

ri

∣∣∣ > t
}
≤ 2 exp

(
− t2

2np + 2
3 t

)
,

which depends on p; for small p, it is considerably smaller than what Hoeffding’s
inequality gives.



Bernstein’s inequality

Proof. As before, we will prove

P
{ n∑

i=1

Xi > t
}
≤ exp

(
− t2

2nσ2 + 2
3at

)
,

and then union bound with the same result for −
∑n

i=1 Xi , to prove the Theorem.
For any λ > 0 we have

P
{ n∑

i=1

Xi > t
}

= P{eλ
∑

Xi > eλt} ≤ E[eλ
∑

Xi ]

eλt
= e−λt

n∏
i=1

E[eλXi ].

The following calculation reveals the source of the improvement over Hoeffding’s
inequality:



E[eλXi ] = E
[
1 + λXi +

∞∑
m=2

λmXm
i

m!

]
≤ 1 +

∞∑
m=2

λmam−2σ2

m!

= 1 +
σ2

a2

∞∑
m=2

(λa)m

m!
= 1 +

σ2

a2

(
eλa − 1− λa

)
.

Therefore,

P
{ n∑

i=1

Xi > t
}
≤ e−λt

[
1 +

σ2

a2 (eλa − 1− λa)
]n
.

We will use a few simple inequalities (that can be easily proved with calculus) such as
1 + x ≤ ex , for all x ∈ R. This means that

1 +
σ2

a2 (eλa − 1− λa) ≤ e
σ2

a2
(eλa−1−λa),

which readily implies

P
{ n∑

i=1

Xi > t
}
≤ e−λte

nσ2

a2
(eλa−1−λ).



As before, we try to find the value of λ > 0 that minimizes

min
λ

{
− λt +

nσ2

a2 (eλa − 1− λa)
}
.

Differentiation gives

−t +
nσ2

a2 (aeλa − a) = 0,

which implies that the optimal choice of λ is given by

λ∗ =
1
a

log
(
1 +

at

nσ2

)
.

If we set
u =

at

nσ2 , (22)

then λ∗ = 1
a log(1 + u).



Now, the value of the minimum is given by

−λ∗t +
nσ2

a2 (eλ
∗a − 1− λ∗a) = −nσ2

a2 [(1 + u) log(1 + u)− u].

This means that

P
{ n∑

i=1

Xi > t
}
≤ exp

(
− nσ2

a2 {(1 + u) log(1 + u)− u}
)
.

The rest of the proof follows by noting that, for every u > 0,

(1 + u) log(1 + u)− u ≥ u
2
u + 2

3
, (23)

which implies

P
{ n∑

i=1

Xi > t
}
≤ exp

(
− nσ2

a2
u

2
u + 2

3

)
= exp

(
− t2

2nσ2 + 2
3at

)
.



The Geometry of the Hypercube Revisited



Theorem 18. Almost all the volume of the high-dimensional cube is located in its
corners.

Remark. The proof of this statement will be based on a probabilistic argument, thereby
illustrating (again) the nice and fruitful connection between geometry and probability in
high dimension. Pick a point at random in the box [−1, 1]d . We want to calculate the
probability that the point is also in the sphere.



Let x = (x1, · · · , xd) ∈ Rd and each xi ∈ [−1, 1] is chosen uniformly at random. The
event that x also lies in the sphere means

‖x‖2 =

√√√√ d∑
i=1

x2
i ≤ 1.

Let zi = x2
i and note that

E[zi ] =
1
2

∫ 1

−1
t2dt =

1
3
⇒ E[‖x‖22] =

d

3
; Var(zi ) =

1
2

∫ 1

−1
t4dt−(

1
3

)2 =
1
5
− 1
9
≤ 1

10
.

Using Hoeffding’s inequality,

P(‖x‖22 ≤ 1) = P(
d∑

i=1

x2
i ≤ 1) = P(

d∑
i=1

(zi−E[zi ]) ≤ 1−d

3
) ≤ exp

[
−

(d3 − 1)2

2d(2
3)2

]
≤ exp(−d

9
),

for sufficiently large d .



Since this value converges to 0 as the dimension d goes to infinity, this shows random
points in high cubes are most likely outside the sphere. In other words, almost all the
volume of a hypercube concentrates in its corners.



Remark. Since we now have gained a better understanding of the properties of the cube
in high dimensions, we can use this knowledge to our advantage. For instance, this
“pointines” of the hypercube (in form of the `1-ball) turns out to very useful in the
areas of compressive sensing and sparse recovery.



How to Generate Random Points on a Sphere



How can we sample a point uniformly at random from Sd−1? The first approach that
may come to mind is the following method to generate random points on a unit circle.
Independently generate each coordinate uniformly at random from the interval [−1, 1].
This yields points that are distributed uniformly at random in a square that contains the
unit circle. We could now project all points onto the unit circle. However, the resulting
distribution will not be uniform since more points fall on a line from the origin to a
vertex of the square, than fall on a line from the origin to the midpoint of an edge due
to the difference in length of the diagonal of the square to its side length.

To remedy this problem, we could discard all points outside the unit circle and project
the remaining points onto the circle. However, if we generalize this technique to higher
dimensions, the analysis in the previous slides has shown that the ratio of the volume of
Sd−1(1) to the volume of Cd(1) decreases rapidly. This makes this process not
practical, since almost all the generated points will be discarded in this process and we
end up with essentially no points inside (and thus, after projection, on) the sphere.



Instead we can proceed as follows. Recall that the multivariate Gaussian distribution is
symmetric about the origin. This rotation invariance is exactly what we need. We
simply construct a vector in Rd whose entries are independently drawn from a
univariate Gaussian distribution. We then normalize the resulting vector to lie on the
sphere. This gives a distribution of points that is uniform over the sphere.

Picking a point x uniformly at random on the sphere Sd−1 is not too different from
picking a vector at random with entries of the form (± 1√

d
, · · · ,± 1√

d
), since every point

on the sphere has to fulfill x2
1 + · · ·+ x2

d = 1, hence the “average magnitude” of xi will
be 1√

d
.

Having a method of generating points uniformly at random on Sd−1 at our disposal, we
can now give a probabilistic proof that points on Sd−1 concentrate near its equator.
W.L.O.G. we pick an arbitrary unit vector x1 which represents the “north pole”, and the
intersection of the sphere with the plane x1 = 0 forms our equator. We extend x1 to an
orthonormal basis x1, · · · , xd .



We create a random vector by sampling (Z1, · · · ,Zd) ∼ N (0, Id) and normalize the
vector to get X = (X1, · · · ,Xd) = 1∑d

k=1 Z
2
k

(Z1, · · · ,Zd). Because X is on the sphere, it

holds that
∑d

k=1〈X , xk〉2 = 1. Note that we also have E[
∑d

k=1〈X , xk〉2] = E[1] = 1.
Thus, by symmetry, E[〈X , x1〉2] = 1

d . Applying Markov’s inequality (11) gives

P(|〈X , x1〉| > ε) = P(〈X , x1〉2 > ε2) ≤ E(〈X , x1〉2)

ε2
=

1
dε2

.

For fixed ε we can make this probability arbitrarily small by increasing the dimension d .
This proves our claim that points on the high-dimensional sphere concentrate near its
equator.



Random Vectors in High Dimensions



Two basic geometric questions from a probabilistic point of view are:

• What length do we expect a random vector x ∈ Rn to have?

• What angle do we expect two random vectors x , y ∈ Rn to have?



Suppose that the coordinates x1, · · · xn of x are independent random variables with zero
mean and unit variances (and similarly for y). It holds that

E‖x‖22 = E
[ n∑
k=1

|xk |2
]

=
n∑

k=1

E[|xk |2] = n.

Hence, we expect the typical length ‖x‖2 of x to be approximately
√
n. But how well

does the length of a random vector concentrate around its “typical length”?



Assume for instance the entries xk ∼ N (0, 1). In this case we can use the
χ2-concentration bound (19), which gives

P
(∣∣∣1

n
‖x‖22 − 1

∣∣∣ ≥ t
)
≤ 2 exp

(
− n

8
min(t, t2)

)
. (24)

This represents a concentration inequality for ‖x‖22, but we aim for a concentration
inequality for the length ‖x‖. To do this, we use the following elementary observation
that holds for all z ≥ 0:

|z − 1| ≥ δ implies |z2 − 1| ≥ max(δ, δ2).

Using this observation we obtain for any δ > 0 that

P
(∣∣∣ 1√

n
‖x‖22 − 1

∣∣∣ ≥ δ) ≤ P
(∣∣∣1

n
‖x‖22 − 1

∣∣∣ ≥ max(δ, δ2)
)
≤ 2e−nt

2/8, (25)

where we have used t = max(δ, δ2) in (24).
With some minor modifications of these steps (and a slightly different constant) one can extend this
result to random vectors with sub-Gaussian coordinates.



We now turn our attention to the expected angle between two random vectors. We will
show that two randomly drawn vectors in high dimensions are almost perpendicular.
The following theorem quantifies this statements. We denote the angle θd between two
vectors x , y by θx ,y and recall that cos θx ,y = 〈x ,y〉

‖x‖2‖y‖2 .

Theorem 19. Let x , y ∈ Rd be two random vectors with i.i.d. Rademacher variables,
i.e. the entries xi , yi take values ±1 with equal probability. Then

P
(
| cos θx ,y | ≥

√
2 log d

d

)
≤ 2

d
. (26)



Proof. Note that 〈x , y〉 =
∑

i xiyi is the sum of i.i.d. Rademacher variables. Hence,
E[〈x , y〉] =

∑
i E[xiyi ] = 0. Therefore, we can apply Hoeffding’s inequality. For any

given t > 0

P(|〈x , y〉| ≥ t) = P
( |〈x , y〉|
‖x‖2‖y‖2

≥ t

d

)
≤ 2 exp

(
− t2

2d

)
.

To establish the bound (26), we set t =
√
2d log d and obtain

P
(
| cos θx ,y | >

√
2 log d

d

)
= P

( |〈x , y〉|
d

≥
√

2 log d

d

)
≤ 2 exp(− log d) =

2
d
.



Remark. It is not surprising that a similar result holds for Gaussian random vectors in
Rd or random vectors chosen from the sphere Sd−1. Indeed, even more is true. While
we can have only d vectors that are exactly orthogonal in Rd , for large d we can have
exponentially many vectors that are almost orthogonal in Rd . To see this we return to
the setting of Theorem 19, choosing m random vectors x1, · · · , xm with i.i.d.
Rademacher variables as their entries. We proceed as in the proof of Theorem 19 but
let t =

√
2d log c where c > 0 is a constant. This yields

P
(
| cos θxi ,xj | ≥

√
2 log c

d

)
≤ 2

c
.

Note that we need to consider θxi ,xj for (m2 −m)/2 such pairs (xi , xj). To make things
concrete, we can set for instance m =

√
c/4. Using the union bound we obtain that

with probability at least 7/8 it holds that

max
i ,j ,i 6=j

| cos θxi ,xj | ≤
√

2 log c

d
.

Choose e.g. c = ed/200 and obtain that we have exponentially many (w.r.t. d) vectors
in Rd that are almost orthogonal in the sense that the cosine of their pairwise angle is
at most 1/200.


