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Topics of this course

1. Linear models for regression and classification.

2. First-order optimization methods for data science. (GD, Proximal GD, SGD,
Acceleration)

3. Neural networks (CNN, RNN, GNN, Transformers).

4. Clustering and dimension reduction (k-means, spectral clustering, PCA, CS, ...).

5. Nonparametric models. (kNN,...)

6. Basics of learning theory. (PAC, NTK, ...)



Basic Information

Instructor: Bao Wang

Meeting Time: TuTh 12:25pm - 1:45pm, WEB L120

Office Hours: WF 2:00pm - 3:30pm.

Email: bwang@math.utah.edu
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Grades

Lecture notes scribe 20%: We will present the lecture using slides and each team
needs to scribe each lecture and submit one copy of the lecture notes in PDF along
with the latex source. We will provide a latex template.
Course projects 50%: There will be three projects in total, and the lowest score will
be dropped. For each project you will need to write a report and submit it along with
the source code.
Final project 30%: Each team needs to propose one project related to the course
material and conduct reasonably in-depth research. Each team will present their final
project.
Course grade:

P 90 85 80 77 70 68 66 50 45 40
Grade A A- B+ B B- C+ C C- D+ D

Team: 3-5 students in a team.



Important Dates

Last day to register is Sep 3

Last day to drop class is Oct 22

Holidays: There will be no class on Sep 6 (Labor Day), Oct 10-17 (Fall break), Nov
25-28 (Thanksgiving).



Machine Learning

Conference on Neural Information Processing Systems (NeurIPS)

International Conference on Learning Representations (ICLR)

International Conference on Machine Learning (ICML)



Application: Computer Vision

Conference on Computer Vision and Pattern Recognition (CVPR)

International Conference on Computer Vision (ICCV)

European Conference on Computer Vision (ECCV)



Application: Natural Language Professing

Annual Meeting of the Association for Computational Linguistics (ACL)

Empirical Methods in Natural Language Processing (EMNLP)



Regression problem

Given {xn, tn}Nn=1 where xn is the observation and tn is the corresponding target.

How to find t that corresponds to the other x?

Construct a function y(x) based on the given dataset {xn, tn}Nn=1.



Linear basis function models

Linear regression model

y(x ,w) = w0 + w1x1 + · · ·+ wDxD , x = (x1, · · · , xD)>. (1)

We can extend the model (1) by considering linear combinations of fixed nonlinear
functions of the input variables, of the form

y(x ,w) = w0 +
M−1∑
j=1

wjφj(x), (2)

where φj(x) are known as basis functions.



Linear basis function models

It is often convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x ,w) =
M−1∑
j=0

wjφj(x) = w>φ(x), (3)

where w = (w0, · · · ,wM−1)> and φ = (φ0, · · · , φM−1)>.

Note y(x ,w) is a nonlinear function of the input vector x .



Basis functions

1. Polynomial basis: φj(x) = x j .

2. Gaussian basis: φj(x) = exp
{
− (x−µj )2

2s2

}
, where µj govern the locations of the

basis functions in input space, and the parameter s governs their spatial scale.

3. Sigmoidal basis: φj(x) = σ
(
x−µj
s

)
, where σ(a) = 1

1+exp(−a) is the logistic sigmoid
function.

Figure: Left: polynomial basis; Middle: Gaussian basis; Right: Sigmoidal basis.



Linear regression

Given the N observation {xn, tn}Nn=1, we can define the following loss function

L(w) =
1
2

N∑
n=1

(
tn −w>φ(xn)

)2
, (4)

which can be written in the following compact form

L(w) =
1
2
‖t − Φw‖2, (5)

where

Φ =


φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) · · · φM−1(xN)

 . and t =

 t1
...
tN

 , (6)

where Φ is called the design matrix, whose elements are given by Φnj = φj(xn).



Linear regression

Note L(w) is a quadratic function of w , let dL(w)/dw = 0, we have

0 =
dL(w)

dw
= Φ>(Φw − t),

therefore,
wML = (Φ>Φ)−1Φ>t. (7)

The quantity Φ† ≡ (Φ>Φ)−1Φ> is known as the Moore-Penrose pseudo-inverse of the
matrix Φ.



Overfitting

How to select M?
Let us consider a given set of data, which is sampled from sin(2πx) with noise.

Figure: Plots of polynomials having various orders M, shown in red curves, fitted to a dataset
sampled, with noise, from sin(2πx). Overfitting happens when M is large!



Why overfitting?

Figure: Table of the coefficients w∗ for polynomials of various order. The magnitude of the
coefficients increases dramatically as the order of the polynomial increases.



Why overfitting?

Figure: Table of the coefficients w∗ for polynomials of various order. The magnitude of the
coefficients increases dramatically as the order of the polynomial increases.

Regularization is all you need!



Regularization

L2-regularization:

L2(w) =
1
2

N∑
n=1

(
tn −w>φ(xn)

)2
+
λ

2
‖w‖22, (8)

where ‖w‖22 ≡ w>w = w2
0 + w2

1 + · · ·+ w2
M−1.

> λ governs the relative importance of the regularization term compared with the
sum-of-squares error term.

> This is also known in the statistics literature as parameter shrinkage method
because they reduce the value of the coefficients. The particular case of quadratic
regularizer is called ridge regression. In the context of neural networks, this approach
is known as weight decay.



Regularization

Lq-regularization:

1
2

N∑
n=1

(
tn −w>φ(xn)

)2
+
λ

2

M∑
j=1

|wj |q. (9)

q = 1 corresponds to Lasso regression.



Lagrange Multipliers

Lagrange multipliers are used to find the stationary points of a function subject to one
or more constraints. Consider

max
x1,x2

f (x1, x2) s.t. g(x1, x2) = 0.

Let the Lagrangian function defined by

L(x , λ) ≡ f (x) + λg(x). (10)

Thus to find the maximum of a function f (x) subject to the constraint g(x) = 0, we
define the Lagrangian function given by (10) and we then find the stationary point of
L(x , λ) with respect to both x and λ.



KKT conditions

The solution to the problem of

max f (x) s.t. g(x) ≥ 0

is obtained by optimizing the Lagrange function

L(x , λ) = f (x) + λg(x),

with respect to x and λ subject to the conditions

g(x) ≥ 0; λ ≥ 0; λg(x) = 0. (11)

If we wish to minimize the function f (x) s.t. g(x) ≥ 0, then we minimize the
Lagrangian function L(x , λ) = f (x)− λg(x) w.r.t. x , again subject to λ ≥ 0.



Sparsity due to the L1-regularization

Lasso: q = 1 in (9), when λ is sufficiently large, some of the coefficients wj are driven
to zero, leading to a sparse model in which the corresponding basis functions play no
role. Minimizing (9) is equivalent to minimizing the unregularized sum-of-squares error
subject to the constraint

M∑
j=1

|wj |q ≤ η (12)

for an appropriate value of the parameter η, where the two approaches can be related
using Lagrange multipliers.



Sparsity due to the L1-regularization

Figure: Plot of the contours of the unregularized error function (blue) along with the constraint
region for the quadratic regularizer q = 2 on the left and the lasso regularizer q = 1 on the
right, in which the optimum value for the parameter vector w is denoted by w∗. Lasso gives
w∗

1 = 0.



Solution to the L1-regularized regression

Lasso regularization problem has the following compact form

L(w) =
1
2
‖t − Φw‖22 + γ‖w‖1, (13)

where γ = λ/2. Consider a simple case first, where Φ is orthogonal.

Expanding (13) and excluding irrelevant terms, we have the equivalent form

min
w

(
− t>Φw +

1
2
‖w‖2

)
+ γ‖w‖1.



Solution to the L1-regularized regression

Let t>Φ := β = (β0, · · · , βM−1), the previous problem can be rewritten as

min
w

M−1∑
i=0

−βiwi +
1
2
w2
i + γ|wi |.

Fix a certain i , we want to minimize

Li = −βiwi +
1
2
w2
i + γ|wi |.

If βi > 0, then we must have wi ≥ 0. why?



Solution to the L1-regularized regression

If βi > 0, then we must have wi ≥ 0. Otherwise, let w∗i < 0 minimizes Li , the −w∗i
enables even smaller Li .

If βi < 0, then we must choose wi ≤ 0.



Solution to the L1-regularized regression

Li = −βiwi +
1
2
wi + γ|wi |.

> If βi > 0, since wi ≥ 0,

Li = −βiwi +
1
2
w2
i + γwi ,

and differentiating this with respect to wi and setting equal to zero, we get

w∗i = βi − γ,

and this is only feasible if the right-hand side is nonnegative (we require wi ≥ 0), so in
this case the actual solution is

w∗i = sgn(βi )(|βi | − γ)+. Note that βi , γ > 0 and βi − γ ≥ 0.



Solution to the L1-regularized regression

Li = −βiwi +
1
2
wi + γ|wi |.

> If βi ≤ 0. This implies we must have wi ≤ 0 and so

Li = −βiwi +
1
2
w2
i − γwi .

Differentiating with respect to wi and setting equal to zero, we get

w∗i = sgn(βi )(|βi | − γ).

But again, to ensure this is feasible, we need wi ≤ 0, which is achieved by taking

w∗i = sgn(βi )(|βi | − γ)+.



Solution to the L1-regularized regression

L(w) =
1
2
‖t − Φw‖22 + γ‖w‖1,

Shrink:
w∗i = sgn(βi )(|βi | − γ)+.


