
E(n) Equivariant Graph Neural Networks and
Normalizing Flows

Shih-Hsin Wang

Bwang-Team
Scientific Computing and Imaging Institute

University of Utah

Bi-weekly Meeting, Oct. 14, 2022

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 1 / 26

Outline

1 Background

2 E(n) Equivariant Graph Neural Networks

3 E(n) Equivariant Normalizing flows

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 2 / 26

Outline

1 Background

2 E(n) Equivariant Graph Neural Networks

3 E(n) Equivariant Normalizing flows

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 3 / 26

Definition of a Group

Definition

A group consists of a set G and a binary operation · : G × G → G , called
the group product that satisfies the following axioms:

Identity: there exists an identity element e ∈ G s.t.

e · g = g = g · e for any g ∈ G

Inverse: for any g ∈ G , there exists an inverse element g−1 ∈ G s.t.

g · g−1 = e = g−1 · g

Associativity: for any g , h, i ∈ G we have

(g · h) · i = g · (h · i)

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 4 / 26

Examples of Groups

For any vector space V , the general linear group GL(V) is the group
of all bijective linear transformations from V to itself.

If V ∼= Rn, we may write GL(n) = GL(V) and it is clear that
GL(n)= {all invertible n × n matrices}
The orthogonal group O(n) = {Q ∈ GL(n)|QTQ = QQT = I} is a
subgroup of GL(n) containing all the rotations (detQ = 1) and
reflections (detQ = −1)

The Euclidean group E(n) is a group consisting of all isometries of the
Euclidean space Rn (e.g. the transformations of Rn that preserve
the Euclidean distance)
Clearly, O(n) is also a subgroup of E(n)

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 5 / 26

Examples of Groups

Indeed, E(n) is parametrized by (Q, g) where Q ∈ O(n), g ∈ Rn and
the group product and inverse are defined by

(Q, g) · (Q ′, g ′) := (QQ ′,Qg ′ + g)

(Q, g)−1 := (Q−1,Q−1g)

In this way, we see that each element (Q, g) in E(n) induces a
bijective transformation T (Q, g) of Rn

T (Q, g) : Rn → Rn

x 7→ Qx + g

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 6 / 26

Group Representation

Definition

A representation of a group G on a vector space V is a map
ρ : G → GL(V) such that

ρ(g · h) = ρ(g)ρ(h) for any g , h ∈ G

In particular, we say that ρ is a trivial representation if ρ sends all the
elements of G to the identity mapping of V .

For example, ρ : E (n) → GL(n + 1) defined by

(Q, g = (g1, g2, · · · , gn)) 7→

1 0 · · · 0 g1
0 1 · · · 0 g2
...

...
. . .

...
...

0 0 · · · 1 gn
0 0 · · · 0 1

[
Q 0
0 1

]

is a representation of E(n) on Rn

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 7 / 26

Group Action

Definition

A morphism (or a function) from a set X to itself is call an endomorphism
of X . We denote the set of all endomorphisms of X by End(X).
Let G be a group with identity e. A group action α of G on X , which will
be written as G⟲X is a function α : G → End(X) such that

α(e) = IX , α(gh) = α(g) ◦ α(h) for any g , h ∈ G

Without ambiguity, we may say ”G acts on X”. Moreover, we say that α
is trivial if α sends all the elements of G to the identity mapping IX of X .

For example, αE(n) : E (n) → End(Rn) defined by sending (Q, g) to
T (Q, g) is a group action of E(n) on Rn

Also, it is clear that a representation of a group G on a vector space
V is also a group action of G on V

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 8 / 26

Equivariance and Invariance

Definition

Let αV : G → GL(V) and αW : G → GL(W) be the group actions of G
on two sets V and W , respectively.
A (nonlinear) function ϕ : V → W is said to be equivariant if

ϕ(αV (g)(x)) = αW (g)(ϕ(x)) for any g ∈ G , x ∈ X ,

that is, we have the following commutative diagram for any g ∈ G

V V

W W

ϕ

αV (g)

ϕ

αW (g)

In particular, we say that ϕ is invariant when αW is a trivial group action.

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 9 / 26

Equivariance and Invariance

Consider the group action αE(n) of E(n) on Rn. We see that the
identity map I : Rn → Rn is equivariant.

Consider the group action ρ̃ = ρ⊕ ρ of E(n) on Rn × Rn which acts
on the copies of Rn separately. Then the function d : Rn × Rn → R
defined by the distance d(x , y) = ||x − y ||2 is invariant.

On the other hand, the function f : Rn × Rn → R defined by
f (x , y) = x − y is neither equivariant nor invariant.

Indeed, f is invariant under the translations and is equivariant under
the rotations and reflections.

Remark

Indeed, αE(n) is a map from E(n) to bijective endomorphisms of Rn. So
when ϕ is an equivariant function, the transformation of the output is
predictable with the understanding of the transformation on the input - no
information gets lost when the input is transformed.

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 10 / 26

Outline

1 Background

2 E(n) Equivariant Graph Neural Networks

3 E(n) Equivariant Normalizing flows

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 11 / 26

Graph Neural Networks

Given a graph G = (V, E) with nodes vi ∈ V and edges eij ∈ E
Let M = |V| be the number of nodes

Graph Convolutional Layer [Gilmer et al., 2017]

mij = ϕe(hl
i ,h

l
j , aij)

mi =
∑

j∈N (i)

mij

hl+1
i = ϕh(hl

i ,mi)

(1)

hl
i ∈ Rnf is the feature embedding of node vi at layer l

aij are the edge attributes

N (i) represents the set of neighbors of node vi

ϕe ,ϕh are the edge and node operations (approximated by MLPs)

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 12 / 26

Equivariant Graph Neural Networks

Equivariant Graph Convolutional Layer (EGCL)
[Satorras et al., 2021b]

mij = ϕe(hl
i ,h

l
j , ∥x l

i − x l
j ∥2, aij)

x l+1
i = x l

i + C
∑
j ̸=i

(x l
i − x l

j)ϕx(mij)

mi =
∑
j ̸=i

mij

hl+1
i = ϕh(hl

i ,mi)

(2)

x l
i ∈ Rn is the coordinate embedding of node vi at layer l

C is chosen to be 1/(M − 1) that computes the average of the sum

ϕx : Rnf → R is a learnable function (approximated by MLPs)

We may simply write

x l+1,hl+1 = EGCL(x l ,hl) (3)

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 13 / 26

Equivariant Graph Neural Networks

EGCL including momentum [Satorras et al., 2021b]

v l+1
i = ϕv (hl

i)v
init
i + C

∑
j ̸=i

(x l
i − x l

j)ϕx(mij)

x l+1
i = x l

i + v l+1
i

(4)

Note that if v init = 0 then this is exactly Equation 3.

ϕv : Rnf → R is a learnable function (approximated by MLPs)

Inferring the edges

In order to deal with the scalability, we can rewrite the aggregation in the
following way:

mi =
∑

j∈N (i)

mij =
∑
j ̸=i

eijmij . (5)

eij is approximated by a soft embedding ϕinf (mij) (ϕinf : Rn → [0, 1])

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 14 / 26

EGCL Equivariance

To show that EGCL is equivariant, it suffices to prove that for any
Q ∈O(n), g ∈ Rn, we have

Qx l+1 + g ,hl+1 = EGCL(Qx l + g ,hl)

where E(n) acts on the feature hl trivially and acts on the coordinate
x l of each nodes separately.

Recall that the EGCL is given by

mij = ϕe(hl
i ,h

l
j , ∥x l

i − x l
j ∥2, aij)

x l+1
i = x l

i + C
∑
j ̸=i

(x l
i − x l

j)ϕx(mij)

mi =
∑
j ̸=i

mij

hl+1
i = ϕh(hl

i ,mi)

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 15 / 26

EGCL Equivariance

Proof

Clearly, the first equation is invariant (since all the inputs are invariant)
which implies the last two equations are also invariant.
Moreover, we can show that the second equation that updates the position
is equivariant.

(Qx l
i + g) + C

∑
j ̸=i

[(Qx l
i + g)− (Qx l

j + g)]ϕx(mij)

=Qx l
i + g + QC

∑
j ̸=i

(x l
i − x l

j)ϕx(mij)

=Q(x l
i + C

∑
j ̸=i

(x l
i − x l

j)ϕx(mij)) + g

=Qx l+1
i + g

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 16 / 26

Outline

1 Background

2 E(n) Equivariant Graph Neural Networks

3 E(n) Equivariant Normalizing flows

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 17 / 26

Normalizing flows

We are going to introduce a generative model for E(n) Equivariant data.
Before that, let’s see the central idea behind the model, called the
normalizing flows. Given the following settings:

pX (x): unknown underlying distribution of datapoints where X is the
corresponding random variable

pZ (z): a simple base distribution (such as a normal distribution)
where Z is the corresponding random variable

Goal

Find an invertible transformation gθ s.t. X ≈ gθ(Z)

Then we can generate a sample from pZ and then map the sample via
the invertible transformation gθ to a new datapoint

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 18 / 26

Normalizing flows

We restrict gθ to be invertible, i.e. fθ = g−1
θ exists

Then the inverse function fθ flows in the normalizing direction: from
a complicated data distribution towards the simpler and more
“normal” distribution pZ

And we have the change of variables formula:

pX (x) ≈ pZ (z)| det Jfθ(x)| (6)

where Jfθ is the Jacobian matrix of fθ

Also, we have the change of variables formula for the log density:

log pX (x) ≈ log pZ (z) + log | det Jfθ(x)|

However, computing the log determinant has a time cost of O(D3)
where f : RD → RD

Refer to [Kobyzev et al., 2020] for more details

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 19 / 26

Continuous Normalizing flows

[Chen et al., 2018] defines a generative model similar to those based on 6
which replaces the warping function with an integral of continuous-time
dynamics (approximated by a neural network)

z = x +

∫ 1

0
ϕ(x(t))dt (7)

where x(0) = x and x(1) = z

x(t) is redefined to be a function on time that joins x to z

the first derivatives of x is predicted by a neural network

d

dt
x(t) ≈ ϕθ(x(t))

where only require ϕθ to be Lipschitz and continuously differentiable

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 20 / 26

Continuous Normalizing flows

Then we have the instantaneous change of variables formula for the
change in log-density

d

dt
log pX (x(t)) ≈ −Tr Jϕθ

(x(t)) (8)

That is,

log pX (x) ≈ log pZ (z) +

∫ 1

0
Tr Jϕθ

(x(t))dt (9)

Remark

Continuous-time normalizing flows are desirable because the constraints
that need to be enforced on ϕθ are relatively mild: ϕθ only needs to be
high order differentiable and Lipschitz continuous, with a possibly large
Lipschitz constant.

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 21 / 26

E(n) Equivariant Normalizing flows

Let (x , h) be a datapoint from the distribution pX (x , h) where x is the
coordinate of a node and h is the feature of a node.
Consider the functions x(t), h(t) on time s.t. x(0) = x , h(0) = h
The algorithm of Equivariant Normalizing flows is as follows
[Satorras et al., 2021a]:

Fix a latent distribution pZ (zx , zh) where zx , zh are the latent
representations of position and feature, respectively.

Approximate the first derivative by a L−layers EGNN with initial
parameter θ0

d

dt
x(t),

d

dt
h(t) ≈ xL(t)− x(t), hL(t)

where
xL(t), hL(t) = EGNN[x(t), h(t)]

Solve the ODE with the initial condition x(0) = x , h(0) = h

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 22 / 26

E(n) Equivariant Normalizing flows

Compute zx = x(1), zh = h(1)

Approximate log pX (x , h) by

log pX (x , h) ≈ log pZ (zx , zh) +

∫ 1

0
Tr Jϕθ

(x(t), h(t))dt (10)

where the trace of Jϕθ
has been approximated with the Hutchinson’s

trace estimator

if there is a set of datapoints {(xi , hi)}mi=1, the objective is set up to

maximize the log-likelihood
m∑
i=1

log pX (xi , hi)

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 23 / 26

E(n) Equivariant Normalizing flows

Some remarks

switch from discrete-time dynamics to continuous-time dynamics
reduces the computation cost from O(D3) to O(D) (refer to
[Grathwohl et al., 2018])

a modification of EGNN has been done to make it stable when
applied in ODE

x l+1
i = x l

i +
∑
j ̸=i

(x l
i − x l

j)

||x l
i − x l

j ||+ C
ϕx(mij)

where they set C to be 1 (to ensure the differentiability)

the main contribution in [Satorras et al., 2021a] is preserving the
equivariance while using an EGNN in continuous normalizing flows

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 24 / 26

Reference

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018).

Neural ordinary differential equations.

Advances in neural information processing systems, 31.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017).

Neural message passing for quantum chemistry.

In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, page 1263–1272. JMLR.org.

Grathwohl, W., Chen, R. T., Bettencourt, J., Sutskever, I., and Duvenaud, D.
(2018).

Ffjord: Free-form continuous dynamics for scalable reversible generative models.

arXiv preprint arXiv:1810.01367.

Kobyzev, I., Prince, S. J., and Brubaker, M. A. (2020).

Normalizing flows: An introduction and review of current methods.

IEEE transactions on pattern analysis and machine intelligence, 43(11):3964–3979.

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 25 / 26

Reference

Satorras, V. G., Hoogeboom, E., Fuchs, F. B., Posner, I., and Welling, M. (2021a).

E (n) equivariant normalizing flows.

arXiv preprint arXiv:2105.09016.

Satorras, V. G., Hoogeboom, E., and Welling, M. (2021b).

E (n) equivariant graph neural networks.

In International conference on machine learning, pages 9323–9332. PMLR.

Shih-Hsin Wang (Bwang-Team) Bi-weekly Meeting Oct. 14, 2022 26 / 26

	Background
	E(n) Equivariant Graph Neural Networks
	E(n) Equivariant Normalizing flows

