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Why causal inference?

Why association/correlation alone is not good enough?

Example (Simpson’s paradox)

Question: Is the treatment effective?
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Simpson’s paradox in regression

Hypothetically, consider the following data where the x axis is the
placement of Ads on the Google search page, y -axis is the number of
clicks, and the data is grouped by different device types.

(a) Positive correlation among full
population

(b) Negative correlation within each
subgroup
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Simpson’s paradox in regression

(a) Positive correlation among full
population

(b) Negative correlation within each
subgroup

What are the possible explanations for Simpson’s paradox?
1 Not enough data?
2 Imbalanced data distribution? (Randomization)
3 Some unknown effects? (Confounders: a third variable that influences

both the exposure and outcome)
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General picture of causal inference

Causal inference is about1

1 Build a framework and define causal effects under general scenarios

2 Specify assumptions under which one can declare/identify causation
from association

3 Assess the sensitivity to the causal assumptions and find ways to
mitigate

In this brief introduction, we will see some aspects of items 1 and 2.

1Fan Li. STA 640: Causal Inference. 2022. url:
https://www2.stat.duke.edu/~fl35/CausalInferenceClass.html
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Languages for causality

We will talk about two languages for causal inference with an emphasis on
the first one, and give motivations for the second one.

1 Potential outcome: Easy to incorporate additional assumptions;
Convenient statistical inference; Not as convenient if the system is
complex.

2 Causal graphs: Easy to visualize the causal assumptions; Difficult for
statistical inference because the model is nonparametric. 2

3 Structural equations: Bridge between graphs and potential
outcomes

2Qingyuan Zhao. Lecture Notes on Causal Inference. May 2022. url:
http://www.statslab.cam.ac.uk/~qz280/teaching/causal-2022/notes_2021.pdf
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Some basic notions for studying treatment effects

Treatment assignment mechanism

Suppose there are n units. (1, 2, . . . , n.)

For the i-th unit, some covariates Xi is observed prior to treatment
assignments. (Let A[n] := (A1,A2, . . . ,An))

Binary treatments: Ai ∈ {0, 1} (Ai = 1 is treated, Ai = 0 is control).

The assignment mechanism is the conditional distribution:

P
(
A[n] = a[n] | X[n] = x[n]

)
= π

(
a[n] | x[n]

)
,

where the function π
(
a[n] | x[n]

)
is prespecified.

Example: Bernoulli trial with covariates

π
(
a[n] | x[n]

)
=
∏n

i=1 µ(xi )
ai (1− µ(xi ))

1−ai where 0 < µ(x) < 1 is a
function in covariate x .

Qingsong Wang Causal inference Oct 28, 2022 8 / 41



Some basic notions for studying treatment effects

After treatment assignment, an outcome variable Yi is measured for each
unit i .

Usual statistical estimatation/ machine learning prediction

1 Compare the conditional expectations E [Y | A = 0] with
E [Y | A = 1].

2 Compare the conditional distributions P(Y ≤ y | A = 0) with
P(Y ≤ y | A = 1).

3 Further condition on X and compare E [Y | A = 0,X = x ] with
E [Y | A = 1,X = x ] or the conditional distributions.

Difficult to obtain reasonable causal inference especially when the
treatment assignment is not i.i.d.
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How to correctly estimate the treatment effect?

Ideal scenario

For the same unit (patient), ideally, we want to measure the treatment
effect as the difference in his responses between receiving and not
receiving the treatment.

Remark

1 Causal effects are defined by counterfactual contrasts

2 In practice, the individual treatment effect is hardly accessible

Next, we will introduce the Neyman-Rubin’s potential outcome causal
model.
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Potential outcomes (or counterfactuals)

Let a[n] be a treatment assignment (for all units). The potential outcome
of unit i under a[n] is given as Yi (a[n]).

The potential outcome is linked with the observed outcome Yi via the
following assumptions.

Consistency assumption

Let A[n] be the observed treatment assignment. Then Yi = Yi (A[n]) for all
i ∈ [n]

No inference assumption

Yi (a[n]) = Yi (ai ) for all i ∈ [n] and a[n] ∈ {0, 1}n.

The above two assumptions together are commonly denoted as stable unit
treatment value assumption (SUTVA).
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Stable unit treatment value assumption (SUTVA)

Under the stable unit treatment value assumption (SUTVA), each unit
only has two potential outcomes Yi (1),Yi (0) and

If Ai = 1 then Yi = Yi (1)

If Ai = 0 then Yi = Yi (0)

or equivalently: Yi = AiYi (1) + (1− Ai )Yi (0).

Remark

The SUTVA is not always satisfied in practice, for example, one’s exposure
risk to Covid is influenced by other people.
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Fundamental problem of causal inference

Some more notations

1 individual treatment effect: Yi (1)− Yi (0)

2 population average treatment effect (PATE): EYi
(Yi (1)− Yi (0))

Fundamental problem of causal inference

We most of the time can observe at most one of the potential outcomes
for each unit, the other(s) are missing/counterfactual

Under the potential outcome framework, causal inference is a missing data
problem.

Question

Can we provide a reasonable estimate of PATE even though not all
potential outcomes are observed?

One must make more assumptions.
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Fundamental problem of causal inference

Question

Can we provide a reasonable estimate of PATE even though not all
potential outcomes are observed?

One approach: Close substitutes

1 the same unit took two different treatments at different times (and no
inference involved)

2 finds two identical units that take different treatments.

The existence of close substitutes requires strong assumptions. In the next
few slides, we will see that PATE can be estimated if the treatment is
randomized.
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The role of randomization

Randomization (ignorability) assumtpion

A[n] ⊥⊥ Y[n]

(
a[n]
)
| X[n] for a[n] ∈ {0, 1}n.

That means when conditioned on the covariate X[n], the assignment of the
treatment is independent of the potential outcome. (The treatment
assignment is random within subpopulation conditioned by values of
observed covariates)

1 The key is to rule out unobserved confounders.

2 Well-designed randomized control trials (RCT) should satisfy this
assumption

3 Untestable in most observational studies, e.g. a patient may have a
preference for a certain treatment based on his expected potential
treatment effectiveness which is not captured in X[n]
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Positivity assumption

To identify causal effects in randomized experiments, we also need the
following assumption:

Overlap (or positivity) assumption

P(A = a|X = x) > 0,∀a ∈ A, x ∈ X

Remark

1 the positivity assumption requires, for all possible values of the
covariate, there are both treated and control units.

2 the positivity assumption can be directed checked from data (unlike
the ignorability assumption)

3 ignorability and positivity jointly define the “strong ignorability”
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Causal identification

Causal identification under “strong ignorability”

Under the “strong ignorability” assumption, one has:

PATE := EYi
[Yi (1)− Yi (0)] = EX{EI [Yi | A = 1,X ]− E [Yi | A = 0,X ]}

Proof:

For any y ∈ R, a ∈ {0, 1} and x , the strong ignorability implies

P(Yi (a) ≤ y | X = x) = P(Yi (a) ≤ y | X = x ,A = a) (strong ignorability)

= P(Yi ≤ y | X = x ,A = a) (Consistency)

Then averaging Yi over all units and taking the expectation over X .
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More on potential outcome framework

If we back to Simpson’s paradox, we know that the data does not resemble
a nicely conducted randomized control trial. If we assume the strong
ignorability holds, then certain weighted average among subgroups will
give a better estimate of the treatment effect.

1 In general one needs to balance covariates (both measured and
unmeasured confounders)

Measured covariate can be summarized into propensity score:

e(X ) = P(A = 1 | X )

Therefore, instead of balancing all covariates, one can balance the
propensity score.
for unmeasured confounders, one approach is to use an instrumental
variable ((i.e. IV) that influences treatment assignment but is
independent of unmeasured confounders and has no direct effect on the
outcome except through its effect on treatment)
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A diagram for instrumental variable

The instrumental variable ((i.e. IV) is a variable that influences treatment
assignment but is independent of unmeasured confounders and has no
direct effect on the outcome except through its effect on treatment)
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Directed acyclic graphs (DAG)

Path and directed path

Let G be a directed graph.

1 A path on G between vertices i and j are sequences of distinct
vertices k0 = i , k1, k2 . . . , km = j such that the consecutive vertices
are adjacent, that is (kl−1, kl) or (Kl , kl−1) is an edge for all
l = 1, 2, . . .m.

2 A directed path on G is a path where all arrows are going “forward”.

3 A cycle is a directed path such that the first and the last vertices are
the same.

Definition: DAG

A directed acyclic graph is a directed graph with no cycles.

1 Because causality implies ordering in time from cause to effect, cycles
are not possible
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Analysis causal effects using DAGs

Causal diagrams

A causal diagram is a DAG where the vertices are random variables and
edges represent the direct causes.

1 If there is a directed path from vertex vi to vertex vj , we say vi is a
cause of vj .

The causal diagram is linked with data by the following key assumption.

Causal Markov assumption (in terms of pdf)

Let G be a causal graph with m vertices {vj}mj=1. Then for any variable vi ,
when conditioned on its parents pa(vi ), vi is independent of any other
variable for which it is not a cause.
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Causal Markov assumption

Causal Markov assumption

The causal Markov assumption implies the following decomposition of the
density function pdf (v1, . . . , vm) of the joint distribution:

pdf (v1, . . . , vm) =
m∏
j=1

pdf (vj | pa(vj))

where pdf (vj | pa(vj)) is the density function of vj when conditioned on
its parent variables given by the graph G .
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Benifits of causal DAGs

1 Use causal DAGs to help understand possible bias when making
causal inferences but not meant to have an exact, accurate
representation of the world.

2 Every assumption in potential outcomes can be depicted using a
graph.
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An example: Estrogens and Uterine Cancer

We will use an example to show the effectiveness of using a causal graph. 3

In the 1970s, people were concerned about the possible link between
women receiving estrogens and an increased risk of getting cancer. There
were two explanations.

1 Estrogens cause cancer

2 Estrogens accelerate the diagnosis silent cancer due to uterine
bleeding

3https:

//www.edx.org/course/causal-diagrams-draw-your-assumptions-before-your,
adapted from a course by Miguel Hernán
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An example: Estrogens and Uterine Cancer

1 Estrogens cause cancer
2 Estrogens accelerate the diagnosis of silent cancer due to uterine

bleeding

Figure: Causal graphs of two explanations
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An example: Estrogens and Uterine Cancer

To test the correctness of explanation 2, two investigators from Yale
proposed to restrict the data analysis to women who bleed,
whether they are taking estrogens or not.

Claim: If the use of estrogen still correlates with the diagnosis of
cancer, then estrogen must have been more directly causing cancer.

Figure: Causal graphs of two explanations
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An example: Estrogens and Uterine Cancer

1 However, scholars from Boston and Harvard disagree and argue that
an association between estrogen use and the cancer diagnosis can
arise in analyses restricted to women who bleed, even if estrogens
don’t cause cancer.

Figure: Causal graphs of two explanations
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Three basic (local) causal graphs

Chain

1 A affects both B and Y .
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Three basic (local) causal graphs

Chain

1 A and Y are independent when conditioned on B (path is blocked)
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Three basic (local) causal graphs

Fork/confounder

1 A is dependent on Y due to the common cause
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Three basic (local) causal graphs

Fork/confounder

1 A and Y are independent when conditioned on L
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Three basic (local) causal graphs

Collider

1 A and L are independent.
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Three basic (local) causal graphs

Collider

1 A and Y are dependent when conditioned on L. (think A: generic,
Y environmental covariates, L is cancer)
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Three basic (local) causal graphs

Collider

1 A and Y are dependent when conditioned on common effects.
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Back to estrogens example

What happens when we restrict to patients with uterine bleeding as
suggested by scholars from Yale?

Question

Is it true that if we condition on C on the proposed causal graph (from
explanation 2), A and Y will be independent?

This is not true, as we know that C is a collider and condition on C will
create an association between A and U and hence between A and Y .
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Back to estrogens example

A causally correct approach: Instead of restricting on uterine bleeding, we
should sample data screening for cancer regardless of bleeding or not.

Figure: Randomized screening
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d-separation

On a DAG, our previous knowledge about chain, fork, and collider can be
generalized to more general paths.

Definition

Given a DAG G , a path is said to be blocked by K ⊆ V if there exists a
vertex k on the path such that either

1 k is not a collider on this path and k ∈ K ; or

2 k is a collider on this path and k /∈ K and all its descendants are not
in K ;

For disjoint subsets of nodes I , J,K ⊂ V , we say I and J are d-separated
by K , written as I ⊥⊥ J | K [G ], if all paths from a vertex in I to a vertex in
J are blocked by K .
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d-seperation and causal discovery

With certain assumptions, we can infer the graphic model (d-seperation)
from the conditional independence in the observed data.

Faithfulness assumption

We say a distribution P of X that factorizes according to G is faithful to
G if I ⊥⊥ J |K [G ] ⇐⇒ XI ⊥⊥ XJ |XK for all disjoint I , J,K ⊂ V .

That is, sometimes the data cannot faithfully represent the causal effect.
(Say A affects each unit in B but on average the effect is canceled.)
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Next step: Causal structure model

So far in the causal graph,

1 arrow only represents direct causal effect but not any specific data
generation mechanism

2 we haven’t incorporated unobserved variables and counterfactuals into
the graphs.

The definition of the causal structural model is lengthy and out of the
scope of this introduction. (cf. Chapter 5 in Qingyuan Zhao. Lecture
Notes on Causal Inference. May 2022. url:
http://www.statslab.cam.ac.uk/~qz280/teaching/causal-

2022/notes_2021.pdf)
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Causal inference and machine learning

Machine learning in general can make very good predictions. However,
most ML models fall inside the statistical inference region and often require
the training and testing data coming from the same i.i.d. distribution.

Benifits from including causal structure into ML models

1 Robustness

2 Learning reusable mechanism (adaptation to a new environment)

3 Correctly applies to data where requires causal perspective (Health
data, economic data)

For more discussion: see Bernhard Schölkopf et al. “Toward causal
representation learning”. In: Proceedings of the IEEE 109.5 (2021),
pp. 612–634.
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Causal inference and machine learning

Machine learning models can also help causal inference, for example,
instead of being restricted to working with average treatment effects, the
prediction power provided by the ML model can work with individual
treatment effects.

Some Challenges for using ML models for causal inference

1 Cross-validation is difficult due to no access to the true causal effect

2 Good performance at predicting (fitting) the observed outcomes does
not necessarily translate into good performance in causal estimation.

Useful links

Mihaela van der Schaar’s Lab at Cambridge and UCLA

Kun Zhang’s group at CMU
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Sparse, Multivariate Functional Outcome Data

Given that,

1 Ni (t): the assessment time process.

2 Yi (t): the repeated measure which follows a Gauss process
GP(µ(t),C (s, t)) + ϵ.

3 λ(t): the intensity for the recurrent event Ni (t).

Assumption on indensitiy funciton

λ(t) = λ0(t) exp{α(t) + h(Y (t))}

where λ0(t) is the baseline intensity function at time t, α(t) can be
considered as the exponential mean effect.
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Sparse, Multivariate Functional Outcome Data

Likehood of intensity function approach

LN|Y (θ,N|Y )

=
∏
i

{(∏
i

[exp{αi (t) + h(Yi (t))}λ0(t)]
∆Ni (t)

)

× exp

[
−
∫ τ

0
Gi (t) exp{αi (t) + h(Yi (t))}dA0(t)

]}
Where, A0(t) =

∫ t
0 λ0(u)du is the cumulative baseline intensity and Gi (t)

denotes whether subject i is available for assessment at time t
(G (t) = I (C ≥ t)).
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Sparse, Multivariate Functional Outcome Data

Event rate function when Assume the event process if a Poisson process
when given information on Yi (t).

r∗i (t) = E [r0(t) exp{α(t) + h(Y (t))}]

Maximum likelihood of rate function approach

n∏
i=1

mi∏
j=1

r∗i (tij)∑n
k=1 Gk(tij)r

∗
k (tij)

Which is maximized at the solution of

n∑
i=1

mi∑
j=1

(
r∗i (tij)

′

r∗i (tij)
−
∑n

k=1 Gk(tij)r
∗
i (tij)

′∑n
k=1 Gk(tij)r

∗
k (tij)

)
= 0

where r∗k (tij) denotes the first derivative taken on subject k ’s conditional
rate function at time tij
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Sparse, Multivariate Functional Outcome Data

Formula of r∗i (t)

r∗i (t) = r0(t) exp{α(t)}E (exp{h(Yi )} | Yi ) = r0(t) exp{α(t)} exp{h(Yi )}

Then we obtain

Conditional partial likelihood

n∏
i=1

mi∏
j=1

r0(tij) exp{α(tij)} exp{h(Yi )}∑n
k=1 Gk(tij)r0(tij) exp{α(tij)} exp{h(Yk)}

=
n∏

i=1

mi∏
j=1

exp{h(Yi )}∑n
k=1 Gk(tij) exp{h(Yk)}
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