Let \(\{C_i\} \) be a collection of abelian groups indexed by the non-negative integers and \(\partial_i: C_i \rightarrow C_{i-1} \) homomorphisms with \(\partial_i \circ \partial_{i+1} = 0 \). For convenience we assume that \(\partial_0 = 0 \). Then \(C = \{(C_i, \partial_i)\} \) is a chain complex. For each \(i \) we define subgroups of \(C_i \) by

\[
Z_i(C) = \ker \partial_i \quad \text{and} \quad B_i(C) = \im \partial_{i+1}.
\]

The \(Z_i \) is the subgroup of cycles and \(B_i \) is the subgroup of boundaries. An element of \(C_i \) is a chain. The condition that \(\partial_i \circ \partial_{i+1} = 0 \) implies that \(B_i(C) \subset Z_i(C) \). We then define the homology groups by

\[
H_i(C) = Z_i(C) / B_i(C).
\]

Two cycles \(z_0, z_1 \in Z_i(C) \) are homologous if they differ by a boundary; that is there exists a \(b \in B_i(C) \) such that \(b = z_0 - z_1 \) or, equivalently, there exists a chain \(c \in C_{i+1} \) such that \(\partial_{i+1} c = z_0 - z_1 \). If \(z \in Z_i(C) \) is a cycle then \([z]\) will represent the homology class in \(H_i(C) \).

Let's begin with some examples. In what follows assume that \(C_i = 0 \) for \(i > 2 \) and \(i = 0 \) and \(C_1 = C_2 = \mathbb{Z} \). Then we must have \(\partial_i = 0 \) if \(i \neq 1 \).

1. Calculate \(H_2(C) \), \(H_1(C) \) and \(H_0(C) \) if
 (a) \(\partial_1 \) is an isomorphism;
 (b) \(\partial_1 \) is the zero map;
 (c) \(\partial_1 \) is multiplication by \(n \).

A chain map \(\phi: A \rightarrow C \) be chain complexes \(A \) and \(C \) is a collection of homomorphisms \(\phi_i: A_i \rightarrow C_i \) such that \(\phi_i \circ \partial_{i+1} = \partial_i \circ \phi_i \).

2. Show that \(\phi_i(Z_i(A)) \subset Z_i(C) \).

3. Show that if \(z_0, z_1 \in Z_i(A) \) are homologous then \(\phi_i(z_0) \) and \(\phi_i(z_1) \) are homologous.

4. Show that there is a well defined homomorphism \((\phi_i)_*: H_i(A) \rightarrow H_i(C) \) given by \((\phi_i)_*[z] = [\phi_i(z)] \).

Now let \(A_i \) be family of abelian groups and \(\phi_i: A_i \rightarrow A_{i-1} \) homomorphisms. This sequence is exact if \(\im \phi_i = \ker \phi_{i+1} \). A sequence that is indexed by non-negative integers is typically called a long exact sequence. A sequence of length five where the starting and
ending groups are trivial is a short exact sequence. If \(A, B \) and \(C \) are chain complexes and \(\phi: A \to B \) and \(\psi: B \to C \) are chain maps then

\[
0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0
\]

is a short exact sequence of chain complexes if for each \(i \) we have that

\[
0 \to A_i \xrightarrow{\phi_i} B_i \xrightarrow{\psi_i} C_i \to 0
\]

is a short exact sequence.

A fundamental result is that a short exact sequence of chain complexes determines a long exact sequence of homology groups. This is called the “snake lemma” and the proof follows from “diagram chasing”.

5. Show that \(\text{im}(\phi_i)_* \subset \ker(\psi_i)_* \).

6. Show that if \(\beta \in B_i \) is a cycle and \(\psi_i(\beta) = 0 \) then there exists a cycle \(\alpha \in A_i \) with \(\phi_i(\alpha) = \beta \). Conclude that \(\text{im}(\phi_i)_* = \ker(\psi_i)_* \).

7. Given a cycle \(\gamma \in C_i \) show that there exists a chain \(\beta \in B_i \) with \(\psi_i(\beta) = \gamma \) and a \(\alpha \in A_{i-1} \) such that \(\phi_{i-1}(\alpha) = \partial_i \beta \).

For the below problems assume that \(\alpha \in A_{i-1}, \beta \in B_i \) and \(\gamma \in C_i \) with \(\phi_{i-1}(\alpha) = \partial_i \beta \) and \(\psi_i(\beta) = \gamma \).

8. Show that if \(\gamma = 0 \) then \(\alpha \) is a boundary. Conclude that if \(\beta_0, \beta_1 \in B_i \) with \(\psi_i(\beta_j) = \gamma \) and \(\alpha_0, \alpha_1 \in A_{i-1} \) with \(\phi_{i-1}(\alpha_j) = \partial_i \beta_j \) then \(\alpha_0 \) and \(\alpha_1 \) are homologous.

9. If \(\gamma \) is a boundary show that \(\beta \) can be chosen to be a boundary. Use this and (8) to show that if \(\gamma_0, \gamma_1 \in C_i \) are homologous, \(\beta_0, \beta_1 \in B_i \) with \(\psi_i(\beta_j) = \gamma_j \) and \(\alpha_0, \alpha_1 \in A_{i-1} \) with \(\phi_{i-1}(\alpha_j) = \partial_i \beta_j \) then \(\alpha_0 \) and \(\alpha_1 \) are homologous.

10. Conclude that there is a well defined homomorphism \(\delta_i: H_i(C) \to H_{i-1}(A) \) given by \(\delta_i([\gamma]) = [\alpha] \).

11. If \(\beta \) is a cycle show that \(\alpha = 0 \) and conclude that \(\text{im}(\psi_i)_* \subset \ker \delta_i \).

12. If \(\alpha \) is a boundary show that \(\beta \) can be chosen to be a cycle. Conclude that \(\ker \delta_i \subset \text{im}(\psi_i)_* \) and therefore \(\ker \delta_i = \text{im}(\psi_i)_* \).

13. By the definition of \(\alpha \) we have that \(\psi_{i-1}(\alpha) = \partial_i \beta \) is a boundary. Conclude that \(\text{im} \delta_i \subset \ker(\psi_{i-1})_* \).
14. Given a cycle $\alpha' \in A_{i-1}$ such that $\phi_{i-1}(\alpha')$ is a boundary show that there exists a cycle $\beta' \in B_i$ and a cycle $\gamma' \in C_i$ with $\psi_i(\beta') = \gamma'$ and $\phi_{i-1}(\alpha') = \partial_i \beta'$. Conclude that $\ker(\psi_{i-1})_* \subset \im \delta_i$ and therefore $\ker(\psi_{i-1})_* = \im \delta_i$.

Congratulations! You have proved the snake lemma!
What does this have to do with topology? We’ll see this next....