Let \(\{ C_i \} \) be a collection of abelian groups indexed by the non-negative integers and \(\partial_i : C_i \to C_{i-1} \) homomorphisms with \(\partial_i \circ \partial_{i+1} = 0 \). For convenience we assume that \(\partial_0 = 0 \). Then \(C = \{(C_i, \partial_i)\} \) is a chain complex. For each \(i \) we define subgroups of \(C_i \) by

\[
Z_i(C) = \ker \partial_i \quad \text{and} \quad B_i(C) = \im \partial_{i+1}.
\]

The \(Z_i \) is the subgroup of cycles and \(B_i \) is the subgroup of boundaries. An element of \(C_i \) is a chain. The condition that \(\partial_i \circ \partial_{i+1} = 0 \) implies that \(B_i(C) \subset Z_i(C) \). We then define the homology groups by

\[
H_i(C) = Z_i(C)/B_i(C).
\]

Two cycles \(z_0, z_1 \in Z_i(C) \) are homologous if they differ by a boundary; that is there exists a \(b \in B_i(C) \) such that \(b = z_0 - z_1 \) or, equivalently, there exists a chain \(c \in C_{i+1} \) such that \(\partial_{i+1}c = z_0 - z_1 \). If \(z \in Z_i(C) \) is a cycle then \([z]\) will represent the homology class in \(H_i(C) \).

1. Calculate \(H_2(C) \), \(H_1(C) \) and \(H_0(C) \) if

 (a) \(\partial_2 \) is an isomorphism;

 (b) \(\partial_2 \) is the zero map;

 (c) \(\partial_2 \) is multiplication by \(n \).

A chain map \(\phi: A \to C \) be chain complexes \(A \) and \(C \) is a collection of homomorphisms \(\phi_i: A_i \to C_i \) such that \(\phi_{i-1} \circ \partial_i = \partial_i \circ \phi_i \).

2. Show that \(\phi_i(Z_i(A)) \subset Z_i(C) \).

3. Show that if \(z_0, z_1 \in Z_i(A) \) are homologous then \(\phi_i(z_0) \) and \(\phi_i(z_1) \) are homologous.

4. Show that there is a well defined homomorphism \((\phi_i)_*: H_i(A) \to H_i(C) \) given by \((\phi_i)_*([z]) = [\phi_i(z)] \).

Now let \(A_i \) be family of abelian groups and \(\phi_i: A_i \to A_{i-1} \) homomorphisms. This sequence is exact if \(\im \phi_i = \ker \phi_{i+1} \). A sequence that is indexed by non-negatives integers is typically called a long exact sequence. A sequence of length five where the starting and
ending groups are trivial is a \textit{short exact sequence}. If \(A, B \) and \(C \) are chain complexes and \(\phi: A \to B \) and \(\psi: B \to C \) are chain maps then

\[
0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0
\]

is a short exact sequence of chain complexes if for each \(i \) we have that

\[
0 \to A_i \xrightarrow{\phi_i} B_i \xrightarrow{\psi_i} C_i \to 0
\]

is a short exact sequence.

A fundamental result is that a short exact sequence of chain complexes determines a long exact sequence of homology groups. This is called the “snake lemma” and the proof follows from “diagram chasing”.

5. Show that \(\text{im}(\phi_i)_* \subset \ker(\psi_i)_* \).

6. Show that if \(\beta \in B_i \) is a cycle and \(\psi_i(\beta) = 0 \) then there exists a cycle \(\alpha \in A_i \) with \(\phi_i(\alpha) = \beta \). Conclude that \(\text{im}(\phi_i)_* = \ker(\psi_i)_* \).

7. Given a cycle \(\gamma \in C_i \) show that there exists a chain \(\beta \in B_i \) with \(\psi_i(\beta) = \gamma \) and a \(\alpha \in A_{i-1} \) such that \(\phi_{i-1}(\alpha) = \partial_i \beta \).

For the below problems assume that \(\alpha \in A_{i-1}, \beta \in B_i \) and \(\gamma \in C_i \) with \(\phi_{i-1}(\alpha) = \partial_i \beta \) and \(\psi_i(\beta) = \gamma \).

8. Show that if \(\gamma = 0 \) then \(\alpha \) is a boundary. Conclude that if \(\beta_0, \beta_1 \in B_i \) with \(\psi_i(\beta_j) = \gamma \) and \(\alpha_0, \alpha_i \in A_{i-1} \) with \(\phi_{i-1}(\alpha_j) = \partial_i \beta_j \) then \(\alpha_0 \) and \(\alpha_1 \) are homologous.

9. If \(\gamma \) is a boundary show that \(\beta \) can be chosen to be a boundary. Use this and (8) to show that if \(\gamma_0, \gamma_1 \in C_i \) are homologous, \(\beta_0, \beta_1 \in B_i \) with \(\psi_i(\beta_j) = \gamma_j \) and \(\alpha_0, \alpha_1 \in A_{i-1} \) with \(\phi_{i-1}(\alpha_j) = \partial_i \beta_j \) then \(\alpha_0 \) and \(\alpha_1 \) are homologous.

10. Conclude that there is a well defined homomorphism \(\delta_i: H_i(C) \to H_{i-1}(A) \) given by \(\delta_i([\gamma]) = [\alpha] \).

11. If \(\beta \) is a cycle show that \(\alpha = 0 \) and conclude that \(\text{im}(\psi_i)_* \subset \ker \delta_i \).

12. If \(\alpha \) is a boundary show that \(\beta \) can be chosen to be a cycle. Conclude that \(\ker \delta_i \subset \text{im}(\psi_i)_* \) and therefore \(\ker \delta_i = \text{im}(\psi_i)_* \).

13. By the definition of \(\alpha \) we have that \(\psi_{i-1}(\alpha) = \partial_i \beta \) is a boundary. Conclude that \(\text{im} \delta_i \subset \ker(\psi_{i-1})_* \).
14. Given a cycle $\alpha' \in A_{i-1}$ such that $\phi_{i-1}(\alpha')$ is a boundary show that there exists a $\beta' \in B_i$ and a cycle $\gamma' \in C_i$ with $\psi_i(\beta') = \gamma'$ and $\phi_{i-1}(\alpha') = \partial_i \beta'$. Conclude that $\ker(\psi_{i-1})_* \subset \text{im} \delta_i$ and therefore $\ker(\psi_{i-1})_* = \text{im} \delta_i$.

Congratulations! You have proved the snake lemma!

There are some important examples. Let C be a chain complex. If $B_i \subset C_i$ are subgroups with $\partial_i(B_i) \subset B_{i-1}$ then $B = \{ (B_i, \partial_i) \}$ is a sub-chain complex. The quotient groups C_i/B_i also form a chain complex:

15. Let $c_0, c_1 \in C_i$ be chains such that $c_1 - c_0 \in B_i$. Show that $\partial_i c_0 - \partial_i c_1 \in B_{i-1}$.

Conclude that ∂_i descends to a map $C_i/B_i \to C_{i-1}/B_{i-1}$.

16. Show that

$$0 \to B \to C \to C/B \to 0$$

is a short exact sequence of chain complexes.

Another natural example comes from a chain complex C and two subcomplexes $A, B \subset C$ such that for each i, A_i and B_i generate C_i. That is every element c can be written as a sum $c = a + b$ where $a \in A_i$ and $b \in B_i$.

17. Let $D_i = A_i \cap B_i$ and show that $D = \{ (D_i, \partial_i) \}$ is a subcomplex of C.

18. Show that $A \bigoplus B = \{ (A_i \bigoplus B_i, \partial_i \oplus \partial_i) \}$ is a chain complex.

19. Let ι_A and ι_B be the inclusion maps of D in A and B, respectively. Show that these are chain maps and the map $D \to A \bigoplus B$ given by $d \mapsto (\iota_A(d), -\iota_B(d))$ is a chain map.

20. Let j_A and j_B be the inclusion maps of A and B into C. Show that the map $(a, b) \mapsto j_A(a) + j_B(b)$ is a chain map from $A \bigoplus B \to C$.

21. Show that

$$0 \to D \xrightarrow{\iota_A - \iota_B} A \bigoplus B \xrightarrow{j_A + j_B} C \to 0$$

is a short exact sequence of chain complexes.

Simplicial complexes

Let S be a set. Then $\mathbb{Z}(S)$ is the group of formal sums of S with \mathbb{Z}-coefficients. That is an element of $n \in \mathbb{Z}(S)$ is an assignment to each $s \in S$ an integer n_s such that at but finitely many of the coefficients in n are zero. The group operation is then adding coefficients.

If S is a finite set (as it will be for our examples) then the last condition automatically holds. However, there are many natural situations (often arising in topology) where S can be an infinite set. One can also replace the group \mathbb{Z} with an arbitrary group. Common examples are \mathbb{R} or more generally an arbitrary field but we will stick to \mathbb{Z}.
1. Show that $\mathbb{Z}(S)$ is a group.

2. Let \mathcal{R} be another set. Show that any map of \mathbb{R} to $\mathbb{Z}(S)$ extends to a unique homomorphism from $\mathbb{Z}(\mathcal{R})$ to $\mathbb{Z}(S)$.

Now let S be a finite ordered set with $n + 1$ elements. Let $S^{(k)}$ be the set of subsets of S with $k + 1$ elements. Note that $S^{(k)}$ will have $\binom{n+1}{k+1}$ elements.

Let $\{v_0, \ldots, v_k\}$ be an element in $S^{(k)}$, where the indices indicate the order, and define $\partial_k: S^{(k)} \to \mathbb{Z}(S^{(k-1)})$ by

$$\partial_k \{v_0, \ldots, v_k\} = \sum_{i=0}^{k} (-1)^i \{v_0, \ldots, \hat{v_i}, \ldots, v_k\}.$$

Here, the $\hat{v_i}$ indicates that v_i has been removed from the set.

By (2) this extends to a homomorphism $\partial_k: \mathbb{Z}(S^{(k)}) \to \mathbb{Z}(S^{(k-1)})$.

3. Show that $\partial_{k-1} \circ \partial_k = 0$ so that $\{\mathbb{Z}(S^{(k)}), \partial_k\}$ is a chain complex.

Now let X be a collection of subsets of S with the property that if $A \in X$ and B is a subset of A then $B \in X$. Then X is an abstract simplicial complex. We let $X^{(k)} = X \cap S^{(k)}$ be those subsets in X that have $k + 1$ elements.

4. If X is an abstract simplicial complex show that $\partial_k (\mathbb{Z}(X^{(k)})) \subset \mathbb{Z}(X^{(k-1)})$ and therefore $\{\mathbb{Z}(X^{(k)}), \partial_k\}$ is sub-chain complex of $\{\mathbb{Z}(S^{(k)}), \partial_k\}$.

A topological simplicial complex is a topological space X that is a union of simplices such that the intersection of any two simplices is a single simplex.

5. Let X be a topological simplicial complex. Let $X^{(0)}$ be the set of vertices of X and give this set an order. Let $X^{(k)}$ be the subsets of $X^{(0)}$ with $k + 1$ elements that span a k-simplex in X. Show that $\cup X^{(k)}$ is an abstract simplicial complex.

6. Show that any abstract simplicial complex can be realized as a topological simplicial complex.