Let $\left\{C_{i}\right\}$ be a collection of abelian groups indexed by the non-negative integers and $\partial_{i}: C_{i} \rightarrow C_{i-1}$ homomorphisms with $\partial_{i} \circ \partial_{i+1}=0$. For convenience we assume that $\partial_{0}=0$. Then $C=\left\{\left(C_{i}, \partial_{i}\right)\right\}$ is a chain complex. For each i we define subgroups of C_{i} by

$$
Z_{i}(C)=\operatorname{ker} \partial_{i} \text { and } B_{i}(C)=\operatorname{im} \partial_{i+1}
$$

The Z_{i} is the subgroup of cycles and B_{i} is the subgroup of boundaries. An element of C_{i} is a chain. The condition that $\partial_{i} \circ \partial_{i+1}=0$ implies that $B_{i}(C) \subset Z_{i}(C)$. We then define the homology groups by

$$
H_{i}(C)=Z_{i}(C) / B_{i}(C)
$$

Two cycles $z_{0}, z_{1} \in Z_{i}(C)$ are homologous if they differ by a boundary; that is there exists a $b \in B_{i}(C)$ such that $b=z_{0}-z_{1}$ or, equivalently, there exists a chain $c \in C_{i+1}$ such that $\partial_{i+1} c=z_{0}-z_{1}$. If $z \in Z_{i}(C)$ is a cycle then [z] will represent the homology class in $H_{i}(C)$.

Lets begin with some examples. In what follows assume that $C_{i}=0$ for $i>2$ and $i=0$ and $C_{1}=C_{2}=\mathbb{Z}$. Then we must have $\partial_{i}=0$ if $i \neq 2$.

1. Calculate $H_{2}(C), H_{1}(C)$ and $H_{0}(C)$ if
(a) ∂_{2} is an isomorphism;
(b) ∂_{2} is the zero map;
(c) ∂_{2} is multiplication by n.

A chain map $\phi: A \rightarrow C$ be chain complexes A and C is a collection of homomorphisms $\phi_{i}: A_{i} \rightarrow C_{i}$ such that $\phi_{i-1} \circ \partial_{i}=\partial_{i} \circ \phi_{i}$.
2. Show that $\phi_{i}\left(Z_{i}(A)\right) \subset Z_{i}(C)$.
3. Show that if $z_{0}, z_{1} \in Z_{i}(A)$ are homologous then $\phi_{i}\left(z_{0}\right)$ and $\phi_{i}\left(z_{1}\right)$ are homologous.
4. Show that there is a well defined homomorphism $\left(\phi_{i}\right)_{*}: H_{i}(A) \rightarrow H_{i}(C)$ given by $\left(\phi_{i}\right)_{*}([z])=\left[\phi_{i}(z)\right]$.

Now let A_{i} be family of abelian groups and $\phi_{i}: A_{i} \rightarrow A_{i-1}$ homomorphisms. This sequence is exact if $\operatorname{im} \phi_{i}=\operatorname{ker} \phi_{i+1}$. A sequence that is indexed by non-negatives integers is typically called a long exact sequence. A sequence of length five where the starting and
ending groups are trivial is a short exact sequence. If A, B and C are chain complexes and $\phi: A \rightarrow B$ and $\psi: B \rightarrow C$ are chain maps then

$$
0 \longrightarrow A \xrightarrow{\phi} B \xrightarrow{\psi} C \longrightarrow 0
$$

is a short exact sequence of chain complexes if for each i we have that

$$
0 \longrightarrow A_{i} \xrightarrow{\phi_{i}} B_{i} \xrightarrow{\psi_{i}} C_{i} \longrightarrow 0
$$

is a short exact sequence.
A fundamental result is that a short exact sequence of chain complexes determines a long exact sequence of homology groups. This is called the "snake lemma" and the proof follows from "diagram chasing".
5. Show that $\operatorname{im}\left(\phi_{i}\right)_{*} \subset \operatorname{ker}\left(\psi_{i}\right)_{*}$.
6. Show that if $\beta \in B_{i}$ is a cycle and $\psi_{i}(\beta)=0$ then there exists a cycle $\alpha \in A_{i}$ with $\phi_{i}(\alpha)=\beta$. Conclude that $\operatorname{im}\left(\phi_{i}\right)_{*}=\operatorname{ker}\left(\psi_{i}\right)_{*}$.
7. Given a cycle $\gamma \in C_{i}$ show that there exists a chain $\beta \in B_{i}$ with $\psi_{i}(\beta)=\gamma$ and a $\alpha \in A_{i-1}$ such that $\phi_{i-1}(\alpha)=\partial_{i} \beta$.

For the below problems assume that $\alpha \in A_{i-1}, \beta \in B_{i}$ and $\gamma \in C_{i}$ with $\phi_{i-1}(\alpha)=\partial_{i} \beta$ and $\psi_{i}(\beta)=\gamma$.
8. Show that if $\gamma=0$ then α is a boundary. Conclude that if $\beta_{0}, \beta_{1} \in B_{i}$ with $\psi_{i}\left(\beta_{j}\right)=\gamma$ and $\alpha_{0}, \alpha_{i} \in A_{i-1}$ with $\phi_{i-1}\left(\alpha_{j}\right)=\partial_{i} \beta_{j}$ then α_{0} and α_{1} are homologous.
9. If γ is a boundary show that β can be chosen to be a boundary. Use this and (8) to show that if $\gamma_{0}, \gamma_{1} \in C_{i}$ are homologous, $\beta_{0}, \beta_{1} \in B_{i}$ with $\psi_{i}\left(\beta_{j}\right)=\gamma_{j}$ and $\alpha_{0}, \alpha_{1} \in A_{i-1}$ with $\phi_{i}\left(\alpha_{j}\right)=\partial_{i} \beta_{j}$ then α_{0} and α_{1} are homologous.
10. Conclude that there is a well defined homomorphism $\delta_{i}: H_{i}(C) \rightarrow H_{i-1}(A)$ given by $\delta_{i}([\gamma])=[\alpha]$.
11. If β is a cycle show that $\alpha=0$ and conclude that $\operatorname{im}\left(\psi_{i}\right)_{*} \subset \operatorname{ker} \delta_{i}$.
12. If α is a boundary show that β can be chosen to be a cycle. Conclude that $\operatorname{ker} \delta_{i} \subset \operatorname{im}\left(\psi_{i}\right)_{*}$ and therefore $\operatorname{ker} \delta_{i}=\operatorname{im}\left(\psi_{i}\right)_{*}$.
13. By the definition of α we have that $\psi_{i-1}(\alpha)=\partial_{i} \beta$ is a boundary. Conclude that $\operatorname{im} \delta_{i} \subset \operatorname{ker}\left(\psi_{i-1}\right)_{*}$.
14. Given a cycle $\alpha^{\prime} \in A_{i-1}$ such that $\phi_{i-1}\left(\alpha^{\prime}\right)$ is a boundary show that there exists a $\beta^{\prime} \in B_{i}$ and a cycle $\gamma^{\prime} \in C_{i}$ with $\psi_{i}\left(\beta^{\prime}\right)=\gamma^{\prime}$ and $\phi_{i-1}\left(\alpha^{\prime}\right)=\partial_{i} \beta^{\prime}$. Conclude that $\operatorname{ker}\left(\psi_{i-1}\right)_{*} \subset \operatorname{im} \delta_{i}$ and therefore $\operatorname{ker}\left(\psi_{i-1}\right)_{*}=\operatorname{im} \delta_{i}$.
Congratulations! You have proved the snake lemma!
There are some important examples. Let C be a a chain complex. If $B_{i} \subset C_{i}$ are subgroups with $\partial_{i}\left(B_{i}\right) \subset B_{i-1}$ then $B=\left\{\left(B_{i}, \partial_{i}\right)\right\}$ is a sub-chain complex. The quotient groups C_{i} / B_{i} also from a chain complex:
15. Let $c_{0}, c_{1} \in C_{i}$ be chains such that $c_{1}-c_{0} \in B_{i}$. Show that $\partial_{i} c_{0}-\partial_{i} c_{1} \in B_{i-1}$. Conclude that ∂_{i} descends to a map $C_{i} / B_{i} \rightarrow C_{i-1} / B_{i-1}$.
16. Show that

$$
0 \longrightarrow B \longrightarrow C \longrightarrow C / B \longrightarrow 0
$$

is a short exact sequence of chain complexes.
Another natural example comes from a chain complex C and two subcomplexes $A, B \subset C$ such that for each i, A_{i} and B_{i} generate C_{i}. That is ever element c can be written as a sum $c=a+b$ where $a \in A_{i}$ and $b \in B_{i}$.
17. Let $D_{i}=A_{i} \cap B_{i}$ and show that $D=\left\{\left(D_{i}, \partial_{i}\right)\right\}$ is a subcomplex of C.
18. Show that $A \bigoplus B=\left\{\left(A_{i} \bigoplus B_{i}, \partial_{i} \oplus \partial_{i}\right)\right\}$ is a chain complex.
19. Let ι_{A} and ι_{B} be the inclusion maps of D in A and B, respectively. Show that these are chain maps and the map $D \rightarrow A \oplus B$ given by $d \mapsto\left(\iota_{A}(d),-\iota_{B}(d)\right)$ is a chain map.
20. Let j_{A} and j_{B} be the inclusion maps of A and B into C. Show that the map $(a, b) \mapsto j_{A}(a)+j_{B}(b)$ is a chain map from $A \bigoplus B \rightarrow C$.
21. Show that

$$
0 \longrightarrow D \xrightarrow{\left(\iota_{A},-\iota_{B}\right)} A \bigoplus B \xrightarrow{j_{A}+j_{B}} C \longrightarrow 0
$$

is a short exact sequence of chain complexes.

Simplicial complexes

Let \mathcal{S} be a set. Then $\mathbb{Z}(\mathcal{S})$ is the group of formal sums of \mathcal{S} with \mathbb{Z}-coefficients. That is an element of $\mathbf{n} \in \mathbb{Z}(\mathcal{S})$ is an assignment to each $s \in \mathcal{S}$ and integer n_{s} such that at but finitely many of the coefficients in \mathbf{n} are zero. The group operation is then adding coefficients.

If \mathcal{S} is a finite set (as it will be for our examples) then the last condition automatically holds. However, there are many natural situations (often arising in topology) where \mathcal{S} can be an infinite set. One can also replace the group \mathbb{Z} with an arbitrary group. Common examples are \mathbb{R} or more generally an arbitrary field but we will stick to \mathbb{Z}.

1. Show that $\mathbb{Z}(\mathcal{S})$ is a group.
2. Let \mathcal{R} be another set. Show that any map of \mathbb{R} to $\mathbb{Z}(\mathcal{S})$ extends to a unique homomorphism from $\mathbb{Z}(\mathcal{R})$ to $\mathbb{Z}(\mathcal{S})$.

Now let \mathcal{S} be a finite ordered set with $n+1$ elements. Let $\mathcal{S}^{(k)}$ be the set of subsets of \mathcal{S} with $k+1$ elements. Note that $\mathcal{S}^{(k)}$ will have $\binom{n+1}{k+1}$ elements.

Let $\left\{v_{0}, \ldots, v_{k}\right\}$ be an element in $\mathcal{S}^{(k)}$, where the indices indicate the order, and define $\partial_{k}: \mathcal{S}^{(k)} \rightarrow \mathbb{Z}\left(\mathcal{S}^{(k-1)}\right)$ by

$$
\partial_{k}\left\{v_{0}, \ldots, v_{k}\right\}=\sum_{i=0}^{k}(-1)^{i}\left\{v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{k}\right\} .
$$

Here, the \hat{v}_{i} indicates that v_{i} has been removed from the set.
By (2) this extends to a homomorphism $\partial_{k}: \mathbb{Z}\left(\mathcal{S}^{(k)}\right) \rightarrow \mathbb{Z}\left(\mathcal{S}^{(k-1)}\right)$.
3. Show that $\partial_{k-1} \circ \partial_{k}=0$ so that $\left\{\mathbb{Z}\left(\mathcal{S}^{(k)}\right), \partial_{k}\right\}$ is a chain complex.

Now let X be a collection of subsets of \mathcal{S} with the property that if $A \in X$ and B is a subset of A then $B \in X$. Then X is an abstract simplicial complex. We let $X^{(k)}=X \cap \mathcal{S}^{(k)}$ be those subsets in X that have $k+1$ elements.
4. If X is an abstract simplicial complex show that $\left.\partial_{k}\left(\mathbb{Z}\left(X^{(k)}\right)\right)\right) \subset \mathbb{Z}\left(X^{(k-1)}\right)$ and therefore $\left\{\mathbb{Z}\left(X^{(k)}\right), \partial_{k}\right\}$ is sub-chain complex of $\left\{\mathbb{Z}\left(\mathcal{S}^{(k)}\right), \partial_{k}\right\}$.

A topological simplicial complex is a topological space X that is a union of simplices such that the intersection of any two simplices is a single simplex.
5. Let X be a topological simplicial complex. Let $X^{(0)}$ be the set of vertices of X and give this set an order. Let $X^{(k)}$ be the subsets of $X^{(0)}$ with $k+1$ elements that span a k-simplex in X. Show that $\cup X^{(k)}$ is an abstract simplicial complex.
6. Show that any abstract simplicial complex can be realized as a topological simplicial complex.

