Name:

Midterm 3, Math 3210
April 6, 2018
You must write in complete sentences and justify all of your work. All 4 problems will be equally weighted.

Problem	1	2	3	4	Total
Score					

1. Show that the following functions are uniformly continuous on the given domain or prove that they are not:
(a) $f(x)=x^{2}$ with domain $[0,1]$.
(b) $g(x)=1 / x$ with domain $(0,1]$.
2. Let $f:(-1,1) \rightarrow \mathbb{R}$ be a continuous (but not necessarily differentiable) function with $f(0)=1$ and let $g(x)=x f(x)$. Show that $g^{\prime}(0)=1$. (In particular show that $g^{\prime}(0)$ exists.)
3. Let $f(x)=\sqrt{x+1}$ and show that $f^{\prime}(x) \leq \frac{1}{2}$ if $x \geq 0$. Use this and the Mean Value Theorem to show that $\sqrt{x+1} \leq 1+\frac{x}{2}$ if $x \geq 0$.
4. Let $f(x)=1 / x$ with domain $[1,2]$.
(a) Let $P=\{1<3 / 2<2\}$ be a partition and calculate the upper and lower sums $U(f, P)$ and $L(f, P)$.
(b) Use the previous problem to give upper and lower bounds for the integral

$$
\int_{1}^{2} f(x) d x
$$

Scratchwork

