Name:

Midterm 2, Math 3210
February 28, 2018
You must write in complete sentences and justify all of your work. All 4 problems will be equally weighted.

Problem	1	2	3	4
Score				

1. Let $a_{n}=\frac{4 n-1}{2 n+1}$.
(a) Fix $\epsilon>0$ and show that if $n>\frac{3}{2 \epsilon}$ then $\left|a_{n}-2\right|<\epsilon$.
(b) Directly using the definition of a limit show that $\lim _{n \rightarrow \infty} a_{n}=2$.
2. Let $\left\{a_{n}\right\}$ be a sequence. If $b_{n}=n a_{n}$ converges show that $\lim _{n \rightarrow \infty} a_{n}=0$.
3. Let $a_{n}=(-1)^{n}+1 / n$.
(a) Find $\limsup a_{n}$ and $\liminf _{n \rightarrow \infty} a_{n}$.
(b) Is $\left\{a_{n}\right\}$ a Cauchy sequence? Make sure to justify your answer.
4. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a function such that there exists an $M>0$ such that $|f(x)|<M$ for all $x \in(0, \infty)$. Define $g:[0, \infty) \rightarrow \mathbb{R}$ by

$$
g(x)=\left\{\begin{array}{ccc}
x f(1 / x) & \text { if } & x>0 \\
0 & \text { if } & x=0
\end{array}\right.
$$

Show that g is continuous at $x=0$.

Scratchwork

Notes

Limits. Let $\left\{a_{n}\right\}$ be a sequence. Then

$$
\lim a_{n}=a
$$

if for all $\epsilon>0$ there exists an N such that if $n>N$ then $\left|a_{n}-a\right|<\epsilon$. If no such a exists then the sequence is divergent. The sequence a_{n} is Cauchy if for all $\epsilon>0$ there exists an $N>0$ such that if $n, m>N$ then $\left|a_{n}-a_{m}\right| \leq \epsilon$.

Theorem 0.1 A sequence is convergent if and only if it is Cauchy.

Theorem 0.2 Every bounded sequence of real numbers has a convergent subsequence.

Theorem 0.3 Suppose $a_{n} \rightarrow a, b_{n} \rightarrow b, c$ is a real number and k a natural number. Then
(a) $c a_{n} \rightarrow c a$;
(b) $a_{n}+b_{n} \rightarrow a+b$;
(c) $a_{n} b_{n} \rightarrow a b$;
(d) $a_{n} / b_{n} \rightarrow a / b$ if $b \neq 0$ and $b_{n} \neq 0$ for all n;
(e) $a_{n}^{k} \rightarrow a^{k}$;
(f) $a_{n}^{1 / k} \rightarrow a^{1 / k}$ if $a_{n} \geq 0$ for all n.

If A is a subset of \mathbb{R} the $a=\sup A$ if $a \geq x$ for all $x \in A$ and $a^{\prime} \geq x$ for all $x \in A$ then $x \leq y$. We define $\inf A$ be reversing the inequalities. If we allow $+\infty$ and $-\infty$ the $\sup A$ and $\inf A$ always exist.
Let $\left\{a_{n}\right\}$ be a sequence and define $i_{n}=\inf \left\{a_{k}: k \geq n\right\}$ and $s_{n}=\sup \left\{a_{k}: k \geq n\right\}$. Then

$$
\liminf a_{n}=\lim i_{n}
$$

and

$$
\limsup a_{n}=\lim s_{n} .
$$

If $x \neq 1$ then

$$
\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x}
$$

Continuity. Let $f: D \longrightarrow \mathbb{R}$ be a function defined on a domain $D \subset \mathbb{R}$. Then

$$
\lim _{x \rightarrow a} f=b
$$

if for all $\epsilon>0$ there exists a $\delta>0$ such that if for all $x \in D$ with $0<|x-a|<\delta$ then $|f(x)-b|<\epsilon$. The function f is continuous at a if

$$
\lim _{x \rightarrow a} f=f(a)
$$

There is a theorem similar to Theorem 0.3 for limits of functions.

