Name:

Midterm 1, Math 3210 February 2, 2018 You must write in complete sentences and justify all of your work. All 3 problems will be equally weighted.

Problem	1	2	3	Total
Score				

1. Use induction to prove that

$$2^n < 3^n$$

for all $n \in \mathbb{N}$. You can use all of the usual properties of addition, multiplication and order for the natural numbers (but not properties of exponents).

- 2. For the following you should assume that x, y and z are elements of a field F as defined in the book and notes.
 - (a) Prove that if xz = yz and $z \neq 0$ then x = y.
 - (b) Prove that xy = 0 then either x = 0 or y = 0.

In your proofs you can only use the properties of a field given in the notes along with the following two results we proved in class:

- (i) If x + z = y + z then z = y.
- (ii) $x \cdot 0 = 0$.

3. If L is a Dedekind cut show that the set

$$K = \{ x \in \mathbb{Q} | \exists y \in L \text{ with } x = y + 1 \}$$

is a Dedekind cut.

Peano Axioms. The set of natural numbers \mathbb{N} satisfy the following properties:

- **N1.** There is an element $1 \in \mathbb{N}$.
- **N2.** There is a *successor* function $s : \mathbb{N} \to \mathbb{N}$.
- N3. $1 \notin s(\mathbb{N})$.
- N4. The successor function s is injective. That is if s(n) = s(m) then n = m.
- **N5.** If $A \subset \mathbb{N}$ contains 1 and $s(A) \subset A$ then $A = \mathbb{N}$.

Rings and fields. A field F is a set with operations of additions and multiplication that satisfy:

A1. x + y = y + x for all $x, y \in F$.

A2.
$$(x+y) + z = x + (y+z)$$
 for all $x, y, z \in F$.

- **A3.** There exists a $0 \in F$ such that x + 0 = x for all $x \in F$.
- **A4.** For all $x \in F$ there exists and $-x \in F$ such that x + (-x) = 0.
- **M1.** xy = yx for all $x, y \in F$.
- **M2.** (xy)z = x(yz) for all $x, y, z \in F$.
- **M3.** There exists a $1 \in F$ with $1 \neq 0$ such that $x \cdot 1 = x$ for all $x \in F$.
- **M4.** For all $x \in F$ with $x \neq 0$, there exists an $x^{-1} \in F$ with $xx^{-1} = 1$.
- **D.** x(y+z) = xy + xz for all $x, y, z \in F$.

Dedekind cuts. A set $L \subset \mathbb{Q}$ is a Dedekind cut if

- (a) $L \neq \emptyset, \mathbb{Q}.$
- (b) There does not exists a $r \in L$ such that $r \ge x$ for all $x \in L$. (L has no largest element.)
- (c) If $x \in L$ then for all $y \in \mathbb{Q}$ with $y < x, y \in L$.

Scratch Work