1. Use induction to prove that
\[2^n < 3^n \]
for all \(n \in \mathbb{N} \). You can use all of the usual properties of addition, multiplication and order for the natural numbers (but not properties of exponents).

Solution: Let \(P_n \) be the statement that \(2^n < 3^n \). When \(n = 1 \), \(P_1 \) is true since \(2 < 3 \).

Now assume that \(P_n \) is true. Therefore \(2^n < 3^n \). Since \(2 < 3 \) we have \(2 \cdot 2^n < 3 \cdot 3^n \).

This is equivalent to \(2^{n+1} < 3^{n+1} \) so \(P_{n+1} \) is true.

Therefore by induction \(P_n \) is true for all \(n \in \mathbb{N} \).

2. For the following you should assume that \(x, y \) and \(z \) are elements of a field \(F \) as defined in the book and notes.

 (a) Prove that if \(xz = yz \) and \(z \neq 0 \) then \(x = y \).

 (b) Prove that \(xy = 0 \) then either \(x = 0 \) or \(y = 0 \).

In your proofs you can only use the properties of a field given in the notes along with the following two results we proved in class:

 (i) If \(x + z = y + z \) then \(z = y \).

 (ii) \(x \cdot 0 = 0 \).

Solution (a): Since \(z \neq 0 \) there exists a \(z^{-1} \in F \) with \(z \cdot z^{-1} \) by M4. Multiplying both sides of the equation \(xz = yz \) by \(z^{-1} \) we have \((xz)z^{-1} = (yz)z^{-1} \). By M2 this becomes \(x(z \cdot z^{-1}) = y(z \cdot z^{-1}) \) which simplifies to \(x = y \).

Solution (b): Assume that \(x \neq 0 \). Then by M4 and M1 there exists an \(x^{-1} \) with \(x \cdot x^{-1} = x^{-1} \cdot x = 1 \). Multiplying on the left by \(x^{-1} \) we have \(x^{-1}(xy) = x^{-1} \cdot 0 = 0 \) where the last equality holds by (ii). Applying M2 we also have \(x^{-1}(xy) = (x^{-1} \cdot x)y = 1 \cdot y = y \). Therefore \(y = 0 \).

Since \(xy = yx \) by M2, a similar argument shows that if \(y \neq 0 \) then \(x = 0 \) so if \(xy = 0 \) either \(x = 0 \) or \(y = 0 \).

3. If \(L \) is a Dedekind cut show that the set
\[K = \{ x \in \mathbb{Q} \mid \exists y \in L \text{ with } x = y + 1 \} \]
is a Dedekind cut.

Solution: Since L is a Dedekind cut by (a) there exists a $y \in L$ and therefore $y + 1 \in K$ and $K \neq \emptyset$.

Also by (a) there exists a $y' \notin L$. We claim that $y' + 1 \notin K$ for if it was there would be a $y'' \in L$ with $y' + 1 = y'' + 1$ which would imply that $y' = y''$, a contradiction. Therefore K satisfies (a).

Next we show that K has no largest element. If $x \in K$ there exists a $y \in L$ such that $x = y + 1$. By (b), L has no largest element and there exists a $y' \in L$ with $y < y'$. Then $y' + 1 \in K$ and $x = y + 1 < y' + 1$ so K satisfies (b).

Finally we show that if $x \in K$ and $x' < x$ then $x' \in K$. Since $x \in K$ there exists $y \in L$ with $x = y + 1$. Note that $x' = y' + 1$ for some $y' \in \mathbb{Q}$. Since $x' < x$ we have $x' - 1 = y' < y = x - 1$ and therefore by (c), $y' \in L$ and $x' = y' + 1 \in K$. This shows that K satisfies (c).

As K satisfies (a), (b) and (c) it is a Dedekind cut.