Midterm 1 notes for Math 3210

Peano Axioms. The set of natural numbers \(\mathbb{N} \) satisfy the following properties:

N1. There is an element 1 \(\in \mathbb{N} \).
N2. There is a successor function \(s : \mathbb{N} \to \mathbb{N} \).
N3. 1 \(\not\in s(\mathbb{N}) \).
N4. The successor function \(s \) is injective. That is if \(s(n) = s(m) \) then \(n = m \).
N5. If \(A \subset \mathbb{N} \) contains 1 and \(s(A) \subset A \) then \(A = \mathbb{N} \).

Rings and fields. A field \(F \) is a set with operations of additions and multiplication that satisfy:

A1. \(x + y = y + x \) for all \(x, y \in F \).
A2. \((x + y) + z = x + (y + z) \) for all \(x, y, z \in F \).
A3. There exists a 0 \(\in F \) such that \(x + 0 = x \) for all \(x \in F \).
A4. For all \(x \in F \) there exists and \(-x \in F \) such that \(x + (-x) = 0 \).
M1. \(xy = yx \) for all \(x, y \in F \).
M2. \((xy)z = x(yz) \) for all \(x, y, z \in F \).
M3. There exists a 1 \(\in F \) such that \(x \cdot 1 = x \) for all \(x \in F \).
M4. For all \(x \in F \) with \(x \neq 0 \), there exists an \(x^{-1} \in F \) with \(xx^{-1} = 1 \).
D. \(x(y + z) = xy + xz \) for all \(x, y, z \in F \).

Dedekind cuts. A set \(L \subset \mathbb{Q} \) is a Dedekind cut if
(a) \(L \neq \emptyset, \mathbb{Q} \).
(b) There does not exists a \(r \in L \) such that \(r \geq x \) for all \(x \in L \). (\(L \) has no largest element.)
(c) If \(x \in L \) then for all \(y \in \mathbb{Q} \) with \(y < x \), \(y \in L \).