
Hyperbolic geometry in dimensions 2 and 3

1 Conformal metrics in the plane

Let α : [a, b] → R
2 be a piecewise smooth arc. We can define the arc length of α by

L(α) =

∫ b

a
‖α′(t)‖dt

where ‖v‖2 = 〈v, v〉 is the usual Euclidean length of a vector in R
n. The are more general

ways of defining the length of such a path, the most common generalization being through
a Riemannian metric. Rather, than defining this we will stick to the simple notion of a
conformal metric.

Let U ⊂ R
2 be open. Then a conformal metric on U is simply a non-negative function

ρ : U → R. In most cases ρ will be smooth and strictly positive although there will be a
few places where we will want a more general class of functions. At each point x ∈ U we
use ρ to define new inner product on R

2 by setting 〈, 〉ρ(x) = ρ(x)2〈, 〉. The ρ(x)-length
of a vector is simply ‖v‖ρ(x) = ρ(x)‖v‖.

If ρ is constant then we are just rescaling the usual metric. Things are more inter-
esting when ρ varies. We then define the ρ-length of the arc α (assuming its image lies
in U) by

Lρ(α) =

∫ b

a
‖α′(t)‖ρ(α(t))dt.

Note that the length of the vector α′(t) depends on the basepoint of the vector α(t). We
will usually suppress this dependence on basepoint in our notation. That is instead of
writing 〈, 〉ρ(x) we will write 〈, 〉ρ, etc. Strictly speaking 〈, 〉ρ is not an inner product on

R
2 but a map from U to the space of inner products on R

2.
For i = 1, 2 let Ui be a domain with a conformal metric ρi. Then a diffeomorphism

f : U1 → U2 is an isometry if for every arc α1 in U1 we have Lρ1(α1) = Lρ2(f ◦α1 = α2).
Clearly this condition holds if ‖α′

1(t)‖ρ1 = ‖α′
2(t)‖ρ2 and if we make some assumptions

on the ρi (for example the ρi are continuous) then it is also necessary. For this equality
to hold we need that the derivative at x ∈ U1 is an isometry from the inner product
〈, 〉ρ1(x) to the inner product 〈, 〉ρ2(f(x)). That is we want

〈v,w〉ρ1(x) = 〈f∗(x)v, f∗(x)w〉ρ2(f(x)).

1



1.1 R2 v C

This last condition is easiest to characterize if we view R
2 as the complex plane C. There

is an obvious map φ from R
2 to C given by φ(x, y) = x + iy. Given an R-linear map

T : R2 → R
2 there exists Tx, Ty ∈ C such that φ ◦ T (x, y) = Txx + Tyy. The real parts

of Tx and Ty are the first row of T (in the usual basis) while the imaginary part is the
second row. If we also pre-compose with φ−1 we get a map from C to C. Here we have
Tz, Tz ∈ C such that φ ◦ T ◦ φ−1(z) = Tzz + Tzz. A calculation shows that

Tz =
1

2
(Tx − iTy) and Tz =

1

2
(Tx + iTy) .

From here on out we will suppress the map φ. The map T is C-linear if and only if
Tz = 0.

Given positive real numbers λ1 and λ2 we have the inner products 〈, 〉λi . The R-linear
map T is an isometry exactly if Tz = 0 and |Tz| = λ1/λ2. We now apply this to the
diffeomorphism f : U1 → U2 where we have conformal metrics ρi on Ui. At each point
z ∈ U1 the derivative f∗(z) is an R-linear map.

Let

fz =
∂f

∂z
=

1

2

(
∂f

∂x
− ı

∂f

∂y

)

and

fz =
∂f

∂z
=

1

2

(
∂f

∂x
+ ı

∂f

∂y

)
.

The fz(z) is the C-linear part of f∗(z) and fz(z) is the C-anti-linear part.
Let S : C → C be another R-linear map. For the chain rule it is useful to have a

formula for (S ◦ T )z and (S ◦ T )z. We see that

S ◦ T (z) = S(Tzz + Tzz)

= Sz(Tzz + Tzz) + Sz(Tzz + Tzz)

= (SzTz + SzTz)z + (SzTz + SzTz)z

and therefore (S ◦ T )z = SzTz + SzTz and (S ◦ T )z = SzTz + SzTz.

1.2 The hyperbolic plane

Let U = {z ∈ C| Im z > 0} be the upper half plane and let ρU(z) = 1/ Im z be a conformal
metric on U. The pair (U, ρU) is a model for the hyperbolic plane, H2. We begin by
studying isometries.

From complex analysis we know that conformal automorphisms of U are Möbius
transformations with real coefficients. This is exactly the group PSL2R. This is also
the group of orientation preserving isometries of H2.
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Proposition 1.1 PSL2R is the group of isometries of (U, ρU).

Proof. Any orientation preserving isometry φ : H2 → H
2 will be a holomorphic

map. By Schwarz reflection, φ extends to a conformal automorphism of the Riemann
sphere Ĉ and hence must be a Möbius transformation. The coefficients of this Möbius
transformation need not be real. However they are only determined up to multiplication
by elements of C× = C\{0} and by using that the image of 0, 1 and ∞ are real we can
see that the coefficients can be chosen to be real so φ ∈ PSL2R.

Now assume that φ(z) = az+b
cz+d is in PSL2R. Note that we can scale the coefficients

so that ad − bc = 1 (which uniquely determines the coefficients up to sign). With this
normalization the derivative of φ is φz(z) = 1

(cz+d)2 . For φ to be an isometry we need

|φz(z)|ρU(φ(z)) = ρU(z). We leave this computation to the reader. 1.1

1.2.1 Geodesics

A path α : I → U is a geodesic if for all s, t ∈ I and all piecewise smooth paths β : [a, b] →
U with β(a) = α(s) and β(b) = α(t) we have

• LρU(α|[s,t]) = t− s;

• LρU(β) ≥ t− s

We will first show that vertical lines, suitable parameterized are geodesics.

Lemma 1.2 Define r : U → U by r(z) = ı|z|. Then for all vectors v we have ‖r∗(z)v‖ρU ≤
sin(arg z)‖v‖ρU .

Proof. To calculate r∗(z) we first take the z and z derivatives. We have rz(z) =
ı
2

√
z
z = ıe−ı arg z

2 and rz =
ı
2

√
z
z = ıeı arg z

2 . We can identify vectors with complex numbers

and we then have that

r∗(z)v = rz(z)v + rz(z)v̄

=
ı

2

(
e−ı arg zv + e−ı arg zv

)

= ıRe(e−ı arg zv)

and therefore ‖r∗(z)v‖ ≤ ‖v‖ and ‖r∗(z)v‖ρU ≤ (ρU(r(z))/ρU(z))‖v‖ρU . Since
ρU(r(z))/ρU(z) = Im z/|z|

= |z| sin(arg z)/|z|
= sin(arg z)

the lemma follows. 1.2
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Theorem 1.3 The curve α : R → U given by α(t) = ıet is a geodesic.

Proof. Note that LρU(α|[s,t]) = t − s so the first condition holds. Assume that
β : [a, b] → U is a piecewise smooth path with β(a) = ıes and β(b) = ıet. If there is
some point in the image of β that doesn’t lie on the imaginary axis then by Lemma
1.2 LρU(r ◦ β) < LρU(β) so we can assume that the image of β lies on the imaginary
axis. Furthermore we can assume that β is injective for it is not then we can replace
it with an injective path that is at most as long as the original path. Then β is a just
reparameterization of α|[a,b] and will have the same length. 1.3

Corollary 1.4 Any vertical line or semi-circle in U that is orthogonal to the real axis
is the image geodesic.

Corollary 1.5 There is a unique geodesic between any two points in (U, ρU) and any
pair of geodesics will intersect at most once.

1.2.2 Area

Let (U, ρ) be a conformal metric on a domain U ⊂ R
2 = C. If V ⊂ U is open then

Areaρ(V ) =
∫ ∫

V ρ
2dxdy.

Proposition 1.6 If f : (U1, ρ1) → (U2, ρ2) is an isometry and V1 ⊂ U1 is open then
Areaρ1(V1) = Areaρ2(f(V1)).

1.2.3 Triangles

A geodesic in (U, ρU) is uniquely determined by pairs of distinct points in R ∪ {∞}.
Three distinct points in R∪ {∞} determine three distinct geodesics and the region they
bound is an ideal triangle.

Proposition 1.7 Any two ideal triangles are isometric.

Proof. Given oriented triples {x0, x1, x2} and {y0, y1, y2} there is a (unique) φ ∈
PSL2 R such that φ(xi) = yi. This φ is an isometry between the corresponding ideal
triangles. 1.7

More generally a triple of points in U∪(R∪∞) determines a triangle. Up to isometry
each such triangle is determined by its angles.

For each triangle T we can naturally associate an ideal triangle. First induce an
orientation on the boundary from the orientation of the triangle. Then extend each side
of the triangle in the positive direction to an infinite geodesic ray. These three rays will
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limit to a triple of distinct points in R ∪ ∞ which determines an ideal triangle I(T ).
Ideal vertices of T will be ideal vertices of I(T ). In particular, if T is an ideal triangle
the T = I(T ).

Proposition 1.8 A triangle Tθ with two ideal vertices is determined up to isometry by
the angle θ of the non-ideal vertex. We also have AreaρU(T ) = π − θ.

Proof. We can assume that I(Tθ) has vertices {1,−1,∞} with 1 and ∞ being
vertices of Tθ. The non-ideal vertex lies on the semi-circle of radius one centered at
0 ∈ C. Two of the sides of Tθ will also be sides of I(Tθ) and the third side will be a
vertical geodesic from the the non-ideal vertex to ∞. This non-ideal vertex will have
x-coordinate cosα for some angle α and the angle of the triangle at the non-ideal vertex
will be θ = π−α. Therefore Tθ is determined by the x-coordinate of its non-ideal vertex
which is determined by θ.

The area of Tθ is a double integral. We calculate

AreaρU(Tθ) =

∫ 1

cos(π−θ)

∫ ∞
√
1−x2

1

y2
dydx

=

∫ 1

cos(π−θ)

1√
1− x2

dx

= π − θ.

The first integral is straightforward. The second integral is also not difficult but perhaps
the easiest way to calculate it is to take the derivative of the expression in the second
line as a function of θ and see that this derivative is 1. 1.8

We can now prove the Gauss-Bonnet Theorem for hyperbolic triangles.

Theorem 1.9 Let T be a hyperbolic triangle with angles θ0, θ1 and θ2. Then AreaρU(T ) =
π −∑ θi.

Proof. The three rays that we used to define I(T ) divide I(T ) into 4 triangles with
disjoint interior. One of these triangles will be T . Three of these triangles will have two
ideal vertices. The non-ideal vertices will have angle that is complementary to one of the
vertices of T so the area of these triangles will be π − (π − θi) = θi. To get the area of
T we take the area of I(T ) (which is π) and subtract from it the are of the three other
triangles. The theorem follows. 1.9

Theorem 1.10 Let Tt be a one parameter family of hyperbolic triangles with angle sum
θt. Then Ȧ = −θ̇.
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This is the two-dimensional version of the Schlafli formula and it is trivial consequence
of the Gauss-Bonnet formula for triangles. In higher dimensions one replaces area with
volume and on the right one takes the product of the dihedral angle and volume of
co-dimension one faces and sums over all such faces.

Theorem 1.11 If P is an n-sided polygon then AreaρU = π(n− 2)−∑ θi.

This follows from dividing the polygon into triangles and applying Theorem 1.9.

Proposition 1.12 Given non-negative θ0, θ1, θ2 with
∑
θi < π there exists a unique

hyperbolic triangle (up to isometry) with the given angles.

Proof. If θi = 0 then the corresponding vertex vi will be ideal so if two or more of
the angles are zero then the proposition follows from Lemma 1.7 and Proposition 1.8. It
what follows we will assume that there is at most one ideal vertex.

Fix the vertex v0 to be the point ı ∈ U. Fix a ray r0 with endpoint v0 that has
ideal endpoint on the positive real axis and such that the angle from r0 to the imaginary
axis in the counter-clockwise is θ0. For each y ≥ 1 we similarly fix a ray ry2 except the
endpoint will be ıy and the angle will be π− θ2. Let p0 ∈ R

+ be the ideal endpoint of r0
and py2 ∈ R the ideal endpoint of ry2 . Since θ0+ θ2 < π we have θ0 < π− θ2 and therefore

p12 < p0. Furthermore if y < y′ then py2 < py
′

2 and py2 → ∞ as y → ∞. The map y 7→ py2 is
continuous so it follows that this is a homeomorphism from [1,∞) to [p12,∞) and there
is a unique y0 ∈ (1,∞) such that py02 = p0. For each y ∈ (p12, p

y0
2 ] the imaginary axis and

the rays r0 and ry2 form a triangle Ty. Two of the angles of this triangle will be θ0 and
θ2. Let θ(y) be the third angle. This is the angle between r0 and ry2 .

At this point one could do some sort of trigonometric computation to see that θ is a
bijection from (1, y0] to [0, π− (θ0 + θ2)) which would prove the proposition. The tricky
point is to see that as y → 1 that θ(y) → π − (θ0 + θ2). Instead of proving this directly
we will use Theorem 1.9. Let A(y) be the area of Ty. If y < y′ then Ty is proper subset of
Ty′ and A(y) < A(y′). By Theorem 1.9 this implies that y 7→ θ(y) = A(y)+π− (θ0+ θ2)
is injective. We also have A(y) → 0 as y → 1 so θ(y) → π − (θ0 + θ2) and therefore θ is
the desired bijection. 1.12

1.3 The disk model

Let U1, U2 ⊂ C and f : U1 → U2 a conformal diffeomorphism. A conformal metric ρ2 on
U2 can pull backed to a conformal metric on U1 by ρ1(z) = (f∗ρ2)(z) = |fz(z)|ρ2(f(z)).
Then f is an isometry from (U1, ρ1) to (U2, ρ2).
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Let ∆ = {z ∈ C||z| < 1} be the open unit disk. Define f : ∆ → U by f(z) = −ız+1
z−ı .

We want to calculate the pull-back ρ∆ = f∗ρU. Since fz(z) =
−2

(z−ı)2 we have |fz(z)| =
2

|z−i|2 . We also need to Im f(z). For this we have

2ı Im f(z) = f(z)− f(z)

=
(−ız + 1)(z + ı)− (ız + 1)(z − ı)

|z − ı|2

=
2ı(1− |z|2)
|z − ı|2

so

ρ∆(z) =
2

|z − ı|2
|z − ı|2
1− |z|2 =

2

1− |z|2 .

The pair (∆, ρ∆) is the Poincare Disk Model for the hyperbolic plane. The disk and the
upper half plane are the two models we will generally use for the hyperbolic plane. For
doing calculations each has it own uses. We denote (H2, ρH2) as the hyperbolic plane
without reference to a specific model. We also let dH2(z0, z1) be the minimal length of
path between the points z0, z1 ∈ H

2. Note that such a minimal length path exists since
there is a geodesic between any two points in H

2. It is easy to check that (H2, dH2) is a
metric space.

The (orientation preserving) isometries of the disk model are Möbius transformations
that preserve ∆. This group is, of course, isomorphic to PSL2R and the two groups are
conjugate subgroups in PSL2(C), the group of all Möbius transformations.

1.3.1 Classification of isometries

Given φ ∈ PSL2R we define the translation length of φ by

τ(φ) = inf{dH2(x, φ(x))|x ∈ H
2}.

We use τ to classify isometries:

• φ is hyperbolic if τ(φ) > 0;

• φ is elliptic if τ(φ) = 0 and there exists an x ∈ H
2 with φ(x) = x;

• φ is parabolic if τ(φ) = 0 and dH2(x, φ(x)) > 0 for all x ∈ H
2.

The trace of an element in PSL2R is well defined up to sign. This classification can
also be given in terms of the trace.

Proposition 1.13 Let φ ∈ PSL2 R. Then φ is
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1. hyperbolic if | tr φ| > 2;

2. elliptic if | tr φ| < 2;

3. parabolic if | tr φ| = 2.

Proof. As a Möbius transformation φ(z) = az+b
cz+d with a, b, c, d ∈ R and ad− bc = 1.

For the moment assume that c 6= 0. To find the fixed points of φ we set φ(z) = z
and see that this equation is equivalent to finding zeros of the quadratic polynomial
− cz2 + (a− d)z + b. The discriminant of this polynomial is (a− d)2 +4bc = | trφ|2 − 4.
When | trφ| < 2, the discriminant is negative and the quadratic polynomial with real
coefficients will have two complex zeros that are conjugate to each other. In particular,
φ will have exactly one fixed point in U = H

2 and is therefore elliptic.
If | trφ| ≥ 2 then the zeros of the polynomial will be real and hence the fixed points of

φ will lie on the real axis. We can then conjugate φ (which won’t change the trace) so that
one this fixed points is at infinity. We then have c = 0 and are left to examine this case. If
| tr φ| = 2, then a = d = ±1 and the only fixed point of φ is at ∞. To calculate d(z, φ(z))
exactly is a bit of work so instead we find an upper bound. Note that Im z = Imφ(z)
(since b ∈ R) and therefore there is a horizontal line of Euclidean length |b| between z and
φ(z). The hyperbolic length of this path is |b|/ Im z so d(z, φ(z)) ≤ |b|/ Im z. Therefore
as Im z → ∞, we have d(z, φ(z)) → 0 and φ is parabolic.

We now assume that | tr φ| > 2. Then φ will have one fixed point at ∞ and another
in R. we can further conjugate φ so that this second fixed point is at zero. Then b = 0
and φ(z) = λz with λ = a/d. If Re z = 0 then Reφ(z) = 0 so by Theorem 1.3 we
have d(z, φ(z)) = | log λ|. For z ∈ U that is not necessarily on the imaginary axis we use
the map r : U → U from Lemma 1.2. By that lemma d(z, φ(z)) ≥ d(r(z), r(φ(z)) but
since r and φ commute we have d(r(z), r(φ(z))) = d(r(z), φ(r(z))) = | log λ|. Therefore
d(z, φ(z)) ≥ | log λ| so τ(φ) = | log λ| and φ is hyperbolic. 1.13

Up to conjugacy, the trace essentially characterizes elements of PSL2 R. More ex-
plicitly if

• φ is hyperbolic then it is conjugate to z 7→ λz with λ ∈ (1,∞);

• φ is elliptic then it is conjugate to z 7→ cos(θ)z+sin(θ)
− sin(θ)z+cos(θ) for some θ ∈ (0, 2π);

• φ is parabolic then it is conjugate to z 7→ z + 1.

A geodesic g is an axis for φ if it is φ-invariant. Note that φ will fix the two endpoints
of g so if φ has an axis it must be hyperbolic. It is easy to check that this is also a sufficient
condition. (For example we can check this for z 7→ λz in the upper half space model.)
Furthermore if g is the axis for φ the for all z ∈ g we have d(z, φ(z)) = τ(φ).
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1.3.2 The Schwarz-Pick Lemma

Recall the Schwarz Lemma:

Lemma 1.14 Let f : ∆ → ∆ be holomorphic with f(0) = 0. Then |f ′(z)| ≤ 1 with
equality if and only if f(z) = λz with |λ| = 1.

Proof. The function g(z) = f(z)/z extends to a holomorphic function on ∆. Apply
the maximum principal to g on ∆r = {z ∈ C||z| ≤ r} to see that |g(z)| ≤ 1/r for all
r ∈ (0, 1) and therefore |f ′(0)| = |g(0)| ≤ 1. If |f ′(0)| = |g(z)| = 1 then |g(z)| achieves
its maximum and is therefore constant (with absolute value one) so f(z) = zg(z) = λ
with |λ| = 1. 1.14

This very simple lemma is extremely powerful!

Lemma 1.15 Let f : ∆ → ∆ be holomorphic. Then for all z ∈ ∆ and v ∈ Tz∆ we have
‖v‖ρ∆ ≤ ‖f∗(z)v‖ρ∆ with equality if and only f is an isometry (and the restriction of a
Möbius transformation).

Proof. Let φi : ∆ → ∆ be isometries such that φ1(0) = z and φ2(f(z)) = 0. Then
apply Lemma 1.14 to φ2 ◦ f ◦ φ1. 1.15

Corollary 1.16 A conformal automorphism of the disk is the restriction of a Möbius
transformation.

Proof. Let φ : ∆ → ∆ be holomorphic, diffeomorphism. Then both φ and φ−1 are
(not necessarily strict) contractions of the hyperbolic so φ must be an isometry. The
corollary then follows from Lemma 1.15. 1.16

2 Surfaces

Let Σ be a surface. There are various ways to add structure to Σ by fixing an atlas
where the transitions maps have some extra property. We will be mostly interested in
two cases: hyperbolic structures and complex structures. The Uniformization Theorem
provides a bijection between these two types of structures but we will get to this later.

A hyperbolic structure on Σ is an atlas of charts to H
2 where the transition maps are

restrictions of hyperbolic isometries.
A complex structure on Σ is an atlas of charts to C where the transition maps are

holomorphic. A surface with a complex structure is usually referred to as a Riemann
surface.
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If we identify H
2 with the unit disk ∆ (or the upper half plane U) then hyperbolic

isometries are holomorphic so a hyperbolic structure induces a complex structure. The
difficult part of the Uniformization Theorem is to show that a complex structure induces
a hyperbolic structures.

A parameterized curve on a hyperbolic surface is a geodesic if it is a geodesic when
restricted to any chart. We will often refer to the image of a geodesics as a geodesic.

A closed curve on surface is the continuous image of S1. Again we won’t distinguish
between the map and its image. A closed curve is simple if the map is also injective.
A closed curve is essential if it cannot be homotoped to a point, or equivalently, the
map on π1 is non-trivial (and hence, since Σ is orientable, injective). We will often be
interested in closed geodesics and simple closed geodesics. Note that a closed geodesic
is always essential for if not it would lift to a closed geodesic in H

2.
The hyperbolic metric on Σ always us to measure the length of piecewise smooth

curves and the area of open subsets.

2.1 π1(Σ) = Z

This simplest example of hyperbolic surface is H
2 itself. One step up is surfaces with

π1(Σ) = Z. These are constructed by taking the quotient of H
2 by a hyperbolic or

parabolic isometry.

Lemma 2.1 Let Γφ be the group generated by a hyperbolic φ ∈ Isom+(H2). Then the
quotient H

2/Γφ is a hyperbolic annulus and contains a single closed geodesic of length
τ(φ). Every simple closed curve on the surface is homotopic to a power of the closed
geodesic.

Proof. The axis of φ will descend to a closed geodesic on the quotient of length
τ(φ). Conversely, the pre-image of any closed geodesic on the quotient will be an axis
for φ. Since φ has a unique axis there is a unique closed geodesic on the quotient. The
quotient surface also deformation retracts to the closed geodesic and this deformation
retract will take every closed curve to a power of the closed geodesic. 2.1

A horocycle in H
2 is a (Euclidean) circle in the disk model that is tangent to the

circle at infinity. In the upper half space model horocycles are circles tangent to R or a
horizontal line. There is an isometry between any two horocycles and if φ is a parabolic
isometry then the horocycles tangent to the fixed point of φ are φ-invariant. An intrinsic
characterization of a horocycle is that it is a curve with geodesic curvature equal to 1.
A curve on a hyperbolic surface is a horocycle if it is a horocycle in a chart.

Lemma 2.2 Let Γφ be the group generated by a parabolic φ ∈ Isom+(H2). Then the
quotient H

2/Γφ is a hyperbolic annulus and for every L > 0 there is a simple closed
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horocycle of length L. Any two of these closed horocycles are disjoint but isotopic and
every closed curve on the surface is homotopic to the power of a closed horocycle.

Proof. We can work in the upper half space model and assume that φ(z) = z + 1.
Then the horizontal line at height 1/L descends to a closed horocycle of length L on the
quotient H2/Γφ. As above the quotient surface deformation retracts to any of the closed
horocycles so every closed curve is homotopic to a power of a horocycle. 2.2

2.2 The developing map

As we did for the hyperbolic plane we can use the hyperbolic metric on a surface Σ to
make the surface into a metric space. Namely, we let dΣ(z0, z1) be the infimum of the
length of all paths from z0 to z1. We say that Σ is complete hyperbolic surface if (Σ, dΣ)
is complete as metric space.

Theorem 2.3 If Σ is a complete simply connected hyperbolic surface then Σ = H
2.

We prove this by constructing a developing map D from Σ to H
2. The construction

of the map only requires that Σ is simply connected. We start with a basepoint p ∈ Σ
and a chart (U0, φ0) that contains p. Then on U we set D|U = φ. To define D at
an arbitrary p′ ∈ Σ we take an arc α : [0, 1] → Σ connecting p to p′. We then choose
0 = t0 < t1 < · · · < tn = 1 such that α([ti, ti+1]) is contained in a chart (Ui, φi). The
intersection Ui−1 ∩Ui and the transition map φi−1 ◦φ−1

i is the restriction of an isometry
γi ∈ Isom+(H2). We then define D(p′) = γ1 ◦ · · · ◦ γn ◦ φn(p′).

Two choices have been map in this definition: the choice of path and the decomposi-
tion of the path into subpaths that lie in charts. We need to see that D(p′) is independent
of these choices. Let α0 and α1 be two paths from p to p′ and assume that they have be
partitioned into subpaths as above and let D0(p

′) andD1(p
′) be the corresponding points

in H
2. We want to show that D0(p

′) = D1(p
′). Fix a homotopy α(s, t) between the two

paths with αi(t) = α(i, t). (It is exactly here that we use that Σ is simply connected.)
The map α is defined on a square which we can partition into rectangles whose α-image
is contained in a chart. Such a partition is given by partitioning each of the sides of the
rectangle and we label the rectangle whose whose upper right-hand corner is (si, tj), Rij .
The rectangles have horizontal and vertical sides. We label the horizontal side with left
endpoint (si, tj), hij and the vertical side with lower endpoint (si, tj), vij .

We have decomposed the square such that α(Rij) is contained in a chart (Uij , φij).
The transition map φ(i−1)j ◦φ−1

ij is the restriction of an element of Isom+(H2) which we

label γij . Similarly γij ∈ Isom+(H2) is the transition map φi(j−1) ◦ φ−1
ij . we make a few

observations:
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• The charts Uij, U(i−1)j and U(i−1)(j−1) all contain the point α(ti, sj) = pij (and

therefore an open neighborhood of pij) so φ(i−1)(j−1) ◦φ−1
ij = (φ(i−1)(j−1) ◦φ−1

(i−1)j)◦
(φ(i−1)j ◦ φ−1

ij ) on an open neighborhood. Therefore the map φ(i−1)(j−1) ◦ φ−1
ij is

the restriction of a hyperbolic isometry that is equal to γ(i−1)j ◦ γij on an open
neighborhood pij . Similarly φ(i−1)(j−1) ◦ φ−1

ij is equal to γi(j−1) ◦ γij on an open

of pij . Two elements of Isom+(H2) that are equal on an open neighborhood are
equal so we have γ(i−1)j ◦ γij = γi(j−1) ◦ γij .

• The maps φ(i−1)j ◦α (defined on R(i−1)j) and γij ◦φij ◦α (defined on Rij) agree on
hij and therefore together they define a continuous map on R(i−1)j ∪Rij. Similarly
φi(j−1) ◦ α and γij ◦ φij ◦ α define a continuous map on Ri(j−1) ∪Rij.

We can define a map F : [0, 1]2 → H
2 by setting F on Rij to be γ01 ◦ · · · ◦ γ0j ◦ γ1j ◦

· · · ◦ γij ◦ φij ◦ α. Note that if i = 0 then there are no γ’s with lower indices and if
j = 0 there are no γ’s with upper indices. We need to see that this map is continuous.
Lexigraphically order the pairs (i, j). Assume that F is continuous on the first (i, j − 1)
rectangles (assuming j > 1). We will show that F is also continuous on Rij . In fact it is
clear that F is continuous on each rectangle; the issue is that F may not be well defined
on the edges of the rectangles. In particular we need to see that the definition of F on
Ri(j−1) and Rij agree on vij. This follows from the second bullet. We also need to know
that F on R(i−1)j and Rij agree on hij . For this we use the first bullet to rewrite the
definition of F on Rij as γ10 ◦ · · · ◦ γi0 ◦ γi1 ◦ · · · ◦ γij ◦ φij ◦ α. The continuity along hij
now follows from the second bullet.

We have now finished the hard (or tedious) part of the construction. Note that α is
constant along {0}×[0, 1] and maps to p and is also constant along {1}×[0, 1] and maps to
p′. In particular F (0, 1) = F (1, 1). To finish the proof we need to show F (i, 1) = Di(p

′)
for i = 0, 1. Note that in the definition of D0(p

′) we partitioned the domain of α0 and
then chose a chart for the α0-image of each sub-interval in the partition. We can assume
that the partition of the vertical side of [0, 1] × [0, 1] is a refinement of the partition for
α0 and that the charts for the rectangles R0j are the same as the charts for α0. (We may
have to refine the partition of the horizontal side for this to be possible.) It follows that
F (0, 1) = D0(p

′). A similar process shows that F (1, 1) = D1(p
′). Therefore the map

D : Σ → H
2 is well defined.

In fact D is a local isometry. For this we just observe that in a neighborhood of p′, D
is given by γ1 ◦ · · · ◦γn ◦φn. At this point we have only used that Σ is simply connected.
In particular, developing maps exist for any simply connected hyperbolic surface. The
argument applies in even more generality to general (G,X)-structures. (Thurston’s book
or notes are a good reference for this.)

Where are now left to show thatD is a diffeomorphism. For this we will show thatD is
a covering map; as H2 is simply connected this will imply that D is a diffeomorphism. We
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will show that we can lift paths as local homeomorphism with the path lifting property is
a covering map. Let α : [0, 1] → H

2 be a continuous path and α̃(0) ∈ Σ with D(α̃(0)) =
α(0). We first show that α̃ can be extended to a lift of α on the entire interval [0, 1].
Let I ⊂ [0, 1] be the largest connected interval where the lift is defined. Since Σ is
complete and D is continuous this interval is closed. (Here we are using that for an
sequence ti converging to the right endpoint of I, α̃(ti) is Cauchy.) Since D is a local
homeomorphism the interval I is also open. Therefore I = [0, 1] and the path can be
lifted and D is a covering map.

Corollary 2.4 The universal cover of a complete hyperbolic surface is H
2.

Proof. Every cover of a complete hyperbolic surface is complete. (Check this!)
Therefore the universal cover is complete and we can apply Theorem 2.3. 2.4

The group Isom+(H2) is a Lie group. (For example it can be identified with PSL2 R.)
This give Isom+(H2) a topology. A subgroup is discrete if it is a discrete subspace in
this topology.

Corollary 2.5 Let Σ be a complete hyperbolic surface. Then there exist a discrete sub-
group Γ ⊂ Isom+(H2) such that Σ = H

2/Γ. Every non-trivial element of Γ is hyperbolic
or parabolic.

Proof. By Corollary 2.4, the universal cover of Σ is H
2 so the deck group is a

subgroup Γ of Isom+(H2) and we just need to check that it is discrete. If not there is a
sequence gi ∈ Γ such that gi → g ∈ Γ and gi 6= g. Fix a basepoint in z ∈ H

2. Since Γ
is a deck group, the orbit Γz is a discrete subset of H2 and distinct elements in Γ give
distinct translates of z. In particular gi(z) 6= g(z). But if gi → g in Isom+(H2) then
gi(z) → g(z), contradicting the discreteness of Γz.

An element of a deck group acts without fixed points so Γ cannot contain elliptics.
2.5

Corollary 2.6 Let Σ be a complete hyperbolic surface. Then an essential closed curve
γ on Σ is either homotopic to a unique closed geodesic or for all ǫ > 0, γ is homotopic
to a curve of length < ǫ.

Proof. On the level of π1, the inclusion of γ in Σ is a subgroup of π1(Σ) isomorphic
to π1(S

1) = Z. By Corollary 2.5 this group is generated by a hyperbolic or parabolic
isometry in Isom+(H2). Let Σγ be the corresponding cover. Then γ lifts homeomorphi-
cally to Σγ . If the subgroup is generated by a hyperbolic element then, by Lemma 2.1,
in the cover γ is homotopic to a closed geodesic which will descend to a homotopy to a
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geodesic in Σ. On the other hand, if γ is homotopic to two geodesics in Σ then there will
be two distinct geodesics in Σγ , a contradiction. If the group is generated by a parabolic
then by Lemma 2.2 in the cover γ is homotopic to a curve of length < ǫ. 2.6

The geometric intersection number, i(α, β), of two closed curves α and β is the
minimal intersection of all pairs of closed curves in the homotopy class of α and β.

Corollary 2.7 Let α and β be closed curves that are homotopic to geodesics α∗ and β∗.
Then i(α, β) is the intersection number of α∗ and β∗.

Proof. We lift the picture to the cover Σα. The geodesic α∗ lifts homeomorphically
to the unique closed geodesic in Σα. We abuse notation and also label this curve α∗. The
key is that the algebraic intersection of a closed curve and a properly embedded arc is
a homotopy invariant (as long as the homotopy is through proper arcs). The pre-image
(which we denote β̂) of β∗ in Σα will be a countable collection of complete geodesics
(which are properly embedded arcs). Let I be the number of points of intersection of α∗

and β∗ in Σ. As α∗ lifts homeomorphically to Σα the intersection number of α∗ with β̂
will also be I. Any complete geodesic in Σα will either be disjoint from the core geodesic
α∗ or will intersect it exactly once. In particular there will be exactly I components of
β̂ that have algebraic interesction ± 1 with α∗ and all other components are disjoint
from α∗. The curve β is homotopic to β∗ and this homotopy will lift to a homotopy

(through proper arcs) between
ˆ̂
β (the pre-image of β) and β̂. Therefore for each of

the I components of β∗ that intersects α∗ there is a disctinct component of
ˆ̂
β that has

algebraic intersection ± 1 with α∗. In particular this component will intersect α∗ so the

total intersection of
ˆ̂
β with α∗ will be at least I. As the intersection of β with α∗ in Σ

is equal to the intersection of
ˆ̂
β with α∗ in Σα we have that the former is at least I. 2.7

If α = β then i(α,α) is the self-intersection number of α. That is, it is the minimal
number of points of self-intersection over all closed curves homotopic to α. In this case,
the above proof shows that this is realized by the geodesic representative of α.

2.3 Ideal quadrilaterals

We start with a very simple problem; classifying ideal quadrilaterals. We will use this to
give a parameterization of ideal hexagons which will in turn give a parameterization of
right angled hexagons. Right angled hexagons will be our building blocks for hyperbolic
structures on surfaces.

A topological quadrilateral Q is a closed disk with four distinguished points V ⊂ ∂Q,
the vertices of Q. The sides of are the arcs in ∂Q between each vertex. An example
of a topological quadrilateral is an ideal quadrilateral in H̄

2 where the ideal vertices
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are included. To define the space of ideal quadrilaterals we fix an oriented topological
quadrilateral Q and let ĨQ be pairs (R, f) where R ⊂ H̄

2 is an ideal quadrilateral and
f : Q→ R is an orientation preserving homeomorphism taking vertices to vertices. This
is a huge space! To make it more tractable we say that two pairs (R0, f0) and (R1, f1)
are equivalent if there exists an isometry φ taking R0 to R1 and φ ◦ f0 is homotopic rel
vertices to f1 and IQ be the quotient space of marked ideal quadrilaterals.

We will parameterize IQ via the cross ratio. For any collection z0, z1, z2 ∈ Ĉ of three
distinct points three is a unique φ ∈ PSL2 C with φ(z0) = 0, φ(z1) = 1 and φ(z2) = ∞.
If we have a fourth point z3 ∈ Ĉ then the cross ratio is (z0 : z1 : z2 : z3) = φ(z3). The
cross ratio has many useful properties:

• For γ ∈ PSL2C, (z0 : z1 : z2 : z3) = (γ(z0) : γ(z1) : γ(z2) : γ(z3));

• The points z0, z1, z2, z3 lie on a circle if and only if (z0 : z1 : z2 : z3) ∈ R;

• If z0, z1, z2, z3 lie on a circle then (z0 : z1 : z2 : z3) ∈ R
− if and only if they are

cyclically ordered in the expected way.

• (z0 : z1 : z2 : z3) = (z2 : z3 : z0 : z1);

• (z0 : z1 : z2 : z3) =
(z1−z2)(z3−z0)
(z1−z0)(z3−z2) .

Proposition 2.8 The map λq : IQ→ R given by

λq([(R, f)]) = − log(−(f(v0) : f(v1) : f(v2) : f(v3)))

is well defined and a bijection.

The function λq can be interpreted as a certain hyperbolic length. The diagonal
in R connecting f(v0) to f(v2) divides R into two ideal triangles. While these two
ideal triangles are both isometric to the unique ideal triangle as the sides where they
are being glued to form the quadrilateral have infinite length there are an Rs worth
of possible gluings. There is a natural way to parameterized these gluings. An ideal
triangle has a unique inscribed circle which is tangent to each side. We label this point
of tangencey as the midpoint of the side. Then λ1([(R, f)]) is the signed distance between
the two midpoints on the diagonal from f(v0) to f(v2). The sign comes from the counter-
clockwise orientation on ideal triangles coming from the orientation of the triangles. This
signed distance is the shearing coordinate for the quadrilateral. We can then restate
Proposition 2.8 as:

Proposition 2.9 The space of of marked ideal quadrilateral is parameterized by a choice
(namely a choice of diagonal) of shearing coordinate.
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It is also useful to measure the distance between opposite sides of the ideal quadri-
laterals relative to the shearing coordinates. Define functions ℓ02 : IQ → R

+ and
ℓ13 : IQ → R

+ to be the distance between the sides {0, 1} and {2, 3} and the sides
{1, 2} and {3, 0}, respectively.

Lemma 2.10 Let λq : IQ → R be the shearing coordinate associated to the diagonal
{0, 2}. Then ℓ02 ◦ λ−1

q : R → R
+ is decreasing and a homeomorphism. The function

ℓ13 ◦ λ−1
q is an increasing homeomorphism.

Proof. We work in the upper half plane model. Let g be a vertical geodesic. Then
the R-neighborhood of g is bounded by the two rays with same basepoint as g that a
make an angle θ with g where θ is an increasing function of R with range from 0 to π/2.
If h a non-vertical geodesic that is disjoint from g then let r be the ray with basepoint
the same as g that is tangent to h. Then the distance between g and h is an increasing
function of θ. To apply this to our function we arrange the quadrilateral such that the
vertex v2 is at ∞ and v0 and v1 are fixed (say v0 is at 0 and v1 is at 1). In this picture g
will be the vertical geodesic with basepoint v3 and h will be the geodesic with endpoints
0 and 1. As the shearing coordinate increases the vertex v3 will increase from − ∞
to 0 so the angle θ will decrease 2π to 0. This proves that ℓ02 ◦ λ−1

q is a decreasing
homeomorphism.

For ℓ13 ◦ λ−1
q we fix v3 (at say − 1) and let v1 vary. The same argument then shows

that ℓ13 ◦ λ−1
q is an increasing homeomorphism. 2.10

2.3.1 Hexagons

We can define the space of (marked) ideal hexagons and right-angled hexagons just as
we did for ideal quadrilaterals. We first fix a topological oriented hexagon (defined in
the obvious way) H and let IH be equivalence class of marked pairs of ideal hexagons
and RH equivalence classes of marked pairs of right-angled hexagons.

There is a natural bijection from RH to IQ. If we fix three alternating sides of the
a right-angled hexagon we can extend the sides to complete geodesics. These geodesics
will be pairwise disjoint and will limit to six distinct endpoints in ∂H2. These six points
in ∂H2 determine an ideal hexagon. To define the bijection from RH to IQ we need to
also keep track of markings. This is a bit tedious (and I won’t do it here) but it is a
good idea to think through the details.

There are a natural collection of functions that we can define on both RH and IQ.
On RH, for each side si in H we let ℓi : RH → R

+ be the length of the ith side. For
ideal hexagons, all sides have infinite length so instead of measuring the length of a side
we measure the distance between distinct sides.
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Lemma 2.11 Under the bijection from RH to IQ, ℓi is the distance between the (i−1)st
and (i+ 1)st (measured mod 6) side.

Proof. The distance between two sets is the infimum of the distance between points
in the two sets. For complete geodesics there are three distinct possibilities:

• The geodesics intersect and the distance between them is zero.

• The geodesics are disjoint in H
2 but have a common endpoint in ∂H2. In this case

the distance is zero.

• There is a geodesic segment meeting both complete geodesics orthogonally. In
this case the geodesics are disjoint and have no endpoints in common. Then the
distance is the length of the segment.

If we extend the (i− 1)st and the (i + 1)st side to complete geodesics then the ith side
meets them both orthogonally. The lemma follows. 2.11

Our goal is the following parameterization of RH:

Theorem 2.12 The map ℓ : RH → (R+)3 given by ℓ = (ℓ0, ℓ2, ℓ4) is a bijection.

By Lemma 2.11 can prove this theorem by parameterizing IH via the corresponding
length functions. This is the approach we will take.

Any three of the ideal vertices of an ideal hexagon determine an ideal triangle. The
hexagon can be decomposed as the disjoint union of 4 ideal triangles by taking the trian-
gles with vertices {0, 2, 4}, {0, 1, 2}, {2, 3, 4} and {4, 5, 0}. The triangle is {0, 2, 4} is in
the center with side meeting one of the other three triangles. (Picture should be added.)
We will define a shear coordinate for each side of the central triangle. The orientation of
H

2 induces on orientation on the triangle which in turn induces an orientation on each
side. For each side the shear coordinate is the signed distance between the midpoint
of the central triangle and the midpoint of the adjacent triangle. This defines a map
λ̃ : ˜IH → R

3.

Lemma 2.13 The map λ is a homeomorphism R
3.

We will use these shear coordinates to give an alternate parameterization via the
distance between certain pairs of sides of the ideal hexagon. Define ℓ : IH → (R+)3 by
ℓ(H) = (ℓ2(H), ℓ4(H), ℓ6(H)) (where the ℓi are define in Lemma 2.11).

Theorem 2.14 The map ℓ is a homeomorphism.
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Proof. Using the the homeomorphism λ : IH → R
3 we can identify IH with R

3.
Note that IH and (R+)3 are homeomorphic and simply connected so to show that ℓ is a
homeomorphism we only need to show ℓ is a proper, local homeomorphism. The map ℓ
is continuous so, by invariance of domain, to show that it is a local homeomorphism we
only need to show that it is injective. We will do this by examining the behavior of the
functions ℓi on lines parallel to the axes of the shear coordinate parameterization of IH.
The key is observation is that as in the proof Lemma 2.10 we have for all (x1, x2, x3) ∈ R

3

the functions

t 7→ ℓ2(t, x2, x3)

t 7→ ℓ4(x1, t, x3)

t 7→ ℓ6(x1, x2, t)

t 7→ ℓ6(t, x2, x3)

t 7→ ℓ2(x1, t, x3)

t 7→ ℓ4(x1, x2, t)

are decreasing homeomorphisms. Let (x1, x2, x3) and (y1, y2, y3) be points in IH. Then
the triple (x1 − y1, x2 − y2, x3 − y3) has at least two coordinates with the same sign
(where one of the coordinates is allowed to be 0). For example, assume that the first
two coordinates are positive. Then ℓ2(x1, x2, x3) < ℓ2(y1, y2, y3). Other cases are similar
and it follows that ℓ is injective.

The proof of properness follows a similar strategy. Let xi ∈ IH ∼= R
3 be a divergent

sequence and assume (after possibly passing to a subsequence) that each coordinate con-
verges in the extended real line. Assume for example that the first coordinate converges
to + ∞ and the second coordinate either converge in R or converges to + ∞. Then
ℓ(xi) → 0. If we replace +∞ with −∞ then ℓ(xi) → +∞. The other cases are similar
and properness follows. 2.14

2.3.2 Pairs of pants

A pair of pants P is a genus zero surface with three boundary components. Up to
isotopy, there is a unique collection of disjoint arcs connecting pairs of distinct boundary
components. These three arcs decompose P into two topological hexagons. We will use
our parameterization of right-angled hexagons to build hyperbolic pairs of pants with
geodesic boundary. When doing so we will be able to arbitrarily choose the length of
the boundary component.

We need to first discuss hyperbolic surfaces with piecewise geodesic boundary and
how we can glue them together. Let Σ be a surface with boundary. A hyperbolic structure
with piecewise geodesic boundary is a hyperbolic atlas with the boundary components
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mapped to piecewise geodesics. We want to distinguish a certain collection of singular
points on the boundary. This will be a discrete set that includes all the points where
the boundary is not smooth. The sides of the boundary are the smooth geodesic arcs
between singular points or the components of the boundary that don’t contain a singular
point.To each singular point the geodesic boundary forms an angle between 0 and 2π.
If the singular component is actually a smooth point of the boundary then this angle
will be π. The purpose of allowing smooth points to be singular should be clear in the
following gluing theorem.

Theorem 2.15 Let Σ be an oriented (possibly disconnected) hyperbolic surface with
polygonal boundary and let P be the collection of singular points and S the collection
of oriented sides. A gluing G is a collection of pairs of sides along with an orientation
reversing isometry between them such that no side appears in more than one pair. Let
ΣG be corresponding quotient space. Then ΣG is an oriented surface with boundary. Let
PG be the image of singular points in ΣG. Assume that

1. if p ∈ PG is in the interior of ΣG then the sum of the angles is 2π;

2. if p ∈ PG is the boundary of ΣG then the sum of the angle is < 2π.

Then ΣG is a hyperbolic surface with piecewise geodesic boundary.

The proof of this theorem is straightforward but tedious; we’ll omit it. Our first
application is to find hyperbolic pairs of pants with geodesic boundary with prescribed
boundary lengths.

Let R be a hyperbolic structure on P with smooth geodesic boundary. If f : P → R
is a orientation preserving homeomorphisms then (R, f) is a marked hyperbolic structure
on P . We define an equivalence relation on pairs by (R0, f0) ∼ (R1, f1) if there is an
orientation preserving isometry φ : R0 → R1 with φ ◦ f0 homotopic to f1. We then let
T (P ) be the set of equivalence classes. We will define a topology later.

We can discuss the completeness of hyperbolic surfaces with boundary as before. We
need the following extension of Corollary 2.4.

Proposition 2.16 Let Σ be a compact hyperbolic surface with geodesic boundary. Then
Σ̃ is subspace of H2.

Proof. Let DΣ be the doubled surface. Then DΣ is compact and hence complete.
By Theorem 2.4 D̃Σ is H

2. Let Σ be a component of the pre-image of X in D̃Σ. We
claim that X is the universal cover of Σ. If X is not simply connected then it contains
a closed, essential curve γ. After performing surgery we can assume that γ is simple.
In H

2 the curve γ will bound a disk. Since γ doesn’t bound a disk in X, the disk must
contain a boundary component of ∂X. However, these are all complete geodesics and
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hence non-compact so we have a contradiction. Therefore X is simply connected and
X = Σ̃. 2.16

The assumption of compactness is not necessary. However, then it is a more work
to show that the doubled surface is complete. Note that if a component of ∂Σ is not
compact then one can glue to copies of Σ to itself and obtain non-complete surface.

We can also weaken the assumption of geodesic boundary to the assumption that the
boundary is locally convex. We may come back to this later.

Lemma 2.17 Let f : P → P be an orientation preserving homeomorphism that takes
each boundary component to itself. Then f is homotopic to the identity.

Proof. Let {a0, a1, a2} be disjoint properly embedded arcs connecting each pair of
boundary components. First assume the arcs ai and f(ai) are disjoint. Then for each
i the complement of ai and f(ai) has two components one of which is a disk and the
other will contain the third boundary component of P . We can then homotope f(ai) to
ai through the disk component. Once the map has been homotoped to be the identity
on the ai we can then homotope f to be the identity on the boundary. The complement
of the boundary and the three arcs {a0, a1, a2} is two disks. On the boundary of each
disk the map is the identity. The final step is to homotope the map to be the identity
on the two disks.

We are left to show that the map can be homotoped so that the arcs ai and f(ai)
are disjoint. This is a standard innermost disk argument. 2.17

Let ∂P = {b0, b1, b2}. We can then define length functions ℓbi : T (P ) → R
+ by

ℓbi([(R, f)]) to be the length of the boundary component f(bi) of R. We the define
ℓ∂P : T (P ) → (R+)3 by ℓ∂P = (ℓb0 , ℓb1 , ℓb2).

Theorem 2.18 The map ℓ∂P is a bijection.

Proof. Given (c0, c1, c2) ∈ (R+)3 by Theorem 2.12 there exist unique right angled
hexagon with the labeled sides having lengths (c0/2, c1/2, c2/2). Using Theorem 2.15 we
double the hexagon along the unlabeled sides to form a hyperbolic pair of pants R with
boundary lengths (c0, c1, c2). We then choose a homeomorphism f : P → R that takes
bi to the boundary component of length ci. This shows that ℓ∂P is surjective.

To prove that the map is injective we need to show that every hyperbolic pair of
pants can be built out of right angled hexagons. Let R be a hyperbolic pair of pants
with boundary lengths (c0, c1, c2) ∈ (R+)3. We then double R along its boundary to
form a genus two surface DR. In DR the arcs ai become simple closed curves Ai. These
curves are essential as they each transversely intersect two of the bj exactly once. The
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holonomy of these curves is also hyperbolic as DR is compact. Therefore the Ai are
homotopic to simple, mutually disjoint closed geodesics (which we still label Ai). The
doubled surface DR has orientation reversing involution that fixes the curves bi pointwise
and is an involution on each Ai. This implies that the Ai meet the bj orthogonally and
that in the original pair of pants R the ai are homotopic to disjoint geodesic arcs that
meet the boundary orthogonally. Cutting open R along these arcs produces two right
angled hexagons. H1 and H2. These hexagons have three side lengths in common so by
uniqueness part of Theorem 2.12 we have that H1 and H2 are isometric. The conclusion
is that there is an isometry between two hyperbolic pairs of pants with boundary lengths
equal.

Now assume that ℓ∂P ([(R0, f0)]) = ℓ∂P ([(R1, f1)]). Then, by the above paragraph,
there is an isometry φ : R0 → R1. The map (f1)

−1◦φ◦f0 maps each boundary component
in ∂P to itself and therefore is homotopic to the identity. It follows that φ ◦ f0 and f1
are homotopic so [(R0, f0)] = [(R1, f1)] and ℓ∂P is injective. ??

2.4 Collars

An extremely useful fact is that simple closed geodesics of collars of definite width that
only depends on the length of the curve. Furthermore for disjoint simple closed geodesics
we can choose the widths so that the collars of the two geodesics are disjoint.To state
the theorem we define W : R+ → R

+ such that W (ℓ) is the hyperbolic distance, in the
upper half space model, between the imaginary axis and the geodesic with endpoints x
and eℓx where x ∈ R\{0}. Note that W (ℓ) doesn’t depend on the choice x and that this
map is an decreasing homeomorphism.

Theorem 2.19 Let Σ be a complete hyperbolic surface and γ0 and γ1 simple closed
geodesics of length ℓ0 and ℓ1. Then the collars of width W (ℓ0) about γ0 and γ1 are
embedded and disjoint.

Proof. If the collar of width W (ℓ0) about γ0 is not embedded then there is an
essential arc connecting γ0 to itself of length < W (ℓ0). If the collars of widths W (ℓ0)
and W (ℓ1) about γ0 and γ1 intersect then there is an arc from γ0 to γ1 of length <
W (ℓ0)/2 +W (ℓ1)/2 ≤ max{W (ℓ0),W (ℓ1)}. Note that in both cases the arc will lift in
the universal cover Σ̃ to an arc connecting distinct components of the pre-image Γ ⊂ Σ̃
of γ0∪γ1. We will show that if B is a component of Γ that maps to γi then any arc from
B to another component of Γ will have length > W (ℓi). The theorem will then follow.

We work in the upper half space model and arrange that B is the imaginary axis.
Since B covers bi the deck group will contain the element z 7→ eℓi . All of the components
of Γ are disjoint, complete geodesics in H

2 and this set is invariant under the action of the
deck group. The only element of Γ that will be fixed by z 7→ eℓiz is B. If B′ is another
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component then both its endpoints will be in R
+ or R− for otherwise B′ would intersect

B. Assume it is the former and label the left endpoint x− ∈ R
+ and right endpoint

x+. Then we must have x+ < eℓix− for otherwise B′ would intersect its translate. The
geodesic from x− to eℓix− will have distance W (ℓi) from B and this will be less than the
distance from B′. This completes the proof. 2.19

Given a simple closed geodesic γ of length ℓ on a complete hyperbolic surface we let
C(γ) be the collar of widthW (ℓ). The proposition implies that for any disjoint collection
of simple closed geodesics these collars are embedded and disjoint.

Note that the geometry of this collar doesn’t depend on the surface Σ and only on
the length ℓ of γ. We let C(ℓ) be this annulus.

Lemma 2.20 Each component of ∂C(ℓ) has length ℓ

√
coth2(ℓ/2)

4 − 1
2 > 1.

Proof. The universal cover of a collar of width 2R can be identified with the subspace
in the upper half plane between the two rays based at the origin that make an angle
θ with the imaginary axis where cos θ = sechR. From this we can compute that the
length of the boundary of the collar of width 2R about a geodesic of length ℓ is ℓ coshR
by calculating the length of the path eteı(π/2−θ) with t ∈ [0, ℓ].

Rather than compute the length of ∂C(ℓ) we will compute the length of the boundary
of a collar of width 2W (ℓ). For this we observe that in the universal cover the boundary
of the collar of width 2W (ℓ) will be tangent to a geodesic of distance W (ℓ) from the core
geodesic. If the lift of the core geodesic is the imaginary axis then the boundary will be
the ray with angle θ where cos θ = tanh(ℓ/2) so the length of a boundary component of
a collar of width 2W (ℓ) is ℓ coth(ℓ/2) so ℓ cosh(W (ℓ)) = ℓ coth(ℓ/2).

We need to compute ℓ cosh(W (ℓ)/2). Standard identities give the result. 2.20

2.5 Teichmüller space

We are now ready to discuss Teichmüller space! Fixed a compact surface without bound-
ary Σ and assume that the genus of Σ is ≥ 2. Exactly as for a pair of pants we can
define a marked hyperbolic structure on Σ with an equivalence relation between pairs.
Then the Teichmüller space of hyperbolic structures on Σ, denote T (Σ) is the set of
equivalence classes. We will see that this space has a natural topology and that in this
topology T (Σ) is homeomorphic to R

6g−6.
We first need to discuss length functions. Let γ be a closed, homotopically non-trivial

curve on Σ. Then for each pair (R, f) the curve f(γ) is homotopic to a geodesic on R.
The length of this geodesic will only depend on the equivalence of (R, f) so we have a
well defined map ℓγ : T (Σ) → R

+ which assigns to each pair the length of γ.
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A pants decomposition P of Σ is a maximal collection of essential, homotopicilly
distinct, disjoint simple closed curves on Σ. A simple Euler characteristic count show
that P contains 3g − 3 curves. We then have a function ℓP : T (Σ) → (R+)3g−3 which
takes each pair to its 3g − 3-tuple of lengths. Using Theorem 2.18 it is not hard to
see that this map is onto. However, it is very much not injective. Our next goal is to
understand this lack of injectivity.

Given a complete hyperbolic surface R and a pants decomposition P we let C(P, R)
be the standard collar neighborhoods of the geodesic representatives of P and V (P, R)
the complement of the collars. Note that if R0 and R0 are two hyperbolic surfaces and
the pants decomposition P has the same length on both then corresponding collars and
complementary pairs of pants are each isometric. However, there still may not be an
isometry between the entire surfaces. Furthermore, if the surfaces are marked, it is
possible that there are isometries between the surfaces but the isometry may not be in
the homotopy class given by the marking.

Lemma 2.21 Given pairs (R0, f0) and (R1, f1) with ℓP(R0, f0) = ℓP(R1, f1) there exists
a homeomophism φ : R0 → R1 such that

• φ ◦ f0 is homotopic to f1;

• φ restricts to an isometry from V (P, R0) to V (P, R1).

Furthermore any such map is equivalent to φ on V (P, R0).

Proof. We only sketch the proof. The key is Lemma 2.17. Start with an arbitrary
map ψ : R0 → R1 such that ψ ◦ f0 ∼ f1. For each component X0 of V (P, R0) there is a
corresponding component X1 of V (P, R1) and we lift the map to the covers associated to
π1(X0) and π1(X1). In this cover we can use Lemma 2.17 to homotopy the lifted map to
be an isometry from X0 to X1. We can further assume that this homotopy is supported
on small neighborhood of X0 and therefore will descend to a homotopy of ψ that is also
supported on a small neighborhood of X0. In particular, the homotopy won’t affect the
other components of V (P, R0) and we can independently do such a homotopy on each
component of V (P, R0) such that the resulting map is an isometry on V (P, R0).

At this point the map may not be a homeomorphism as we have not controlled its
behavior on the collars C(P, R0). On the boundary of the collars the map is already
well behaved isometry so we just need to perform the homotopy on the interior. Again
we can do this by lifting to the corresponding covers. 2.21

Identify S1 with the group R/Z. We to describe a certain homotopy class of maps of
the annulus A = S1 × [0, 1] to itself. Define tws : A→ A by tws(θ, x) = (θ + sx, x).
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Lemma 2.22 Let f : A → A be a homotopy equivalence such that f is the identity on
S1 × {0} and a rotation on S1 × {1}. Then there is a unique s ∈ R such that f is
homotopic to tws relative to a homotopy that is stationary on ∂A.

Furthermore if f0, f1 : A → A are homotopy equivalences that are the identity on
S1 × {0} and rotations on S1 × {1} with twist numbers si then the twist number for
f0 ◦ f1 is s0 + s1.

Proof. The universal cover Ã is naturally identified with R × [0, 1] and there is a
unique lift of f̃ of f that is the identity on R×{0}. On R×{1}, f̃ will acts as a translation
by some s ∈ R. We will show that f is homotopic to tws by a homotopy that is stationary
on the boundary. Let t̃ws be the lift of tws that is the identity on the boundary. Then
t̃ws is translation of R × {1} by s. There is then a “straight line” homotopy taking f̃
to t̃ws that is stationary on the boundary and descends to a homotopy taking f to tws.
Namely define F̃ by F̃ (θ, x, λ) = λf̃(θ, x) + (1− λ)t̃ws(θ, x).

For uniqueness we observe that tws is homotopic to tws′ by a homotopy that is
stationary on the boundary if and only if s− s′.

Since fi ∼ twsi we have f0 ◦ f1 ∼ tws0 ◦ tws1 (where all homotopies are stationary on
the boundary). Since tws0 ◦ tws1 = tws0+s1 we have f0 ◦ f1 ∼ tws0+s1 . 2.22

Recall that C(ℓ) is the standard collar about a simple closed geodesic of length ℓ. We
will implicitly identify each C(ℓ) with the annulus A from Lemma 2.22. In particular
rotations of A will correspond to isometries of C(ℓ). This identification is unique up to
isometries of C(ℓ) which preserve the boundary components.

We are now ready to describe the fibers of the map ℓP. In what follows we will
suppress the map in our pairs (R, f). When we write φ : R0 → R1 we will implicitly
assume that φ is in the homotopy class such that φ ◦ f0 ∼ f1.

Given L ∈ (R+)3g−3 let FL = ℓ−1
P

(L). For R0, R1 ∈ FL let φ : R0 → R1 be the map
given by Lemma 2.21. If γi is a component of P of length ℓi then there is are isometries
λj : C(ℓi) → Rj for j = 0, 1 that take C(ℓi) to the collars about γi in each surface. By
Lemma 2.22, there exists a unique s such that tws is homotopic, holding the boundary
stationary, to λ−1

1 ◦ φ ◦ λ0. Define Twγi : FL × FL → R to be Twγi(R0, R1) = si and
TwP(R0, R1) = (s1, . . . , s3g−3). To see that this map doesn’t depend on the choice of φ
we note that if φ0 and φ1 both satisfy the conditions given by Lemma 2.21 then not only
do they agree on V (P, R0) but there is a homotopy from φ0 to φ1 that is stationary on
V (P, R0). In particular, the homotopy class of the map φ on the collars is well defined.

The following lemma is a direct consequence of Lemma 2.22.

Lemma 2.23 Given R0, R1, R2 ∈ FL we have

TwP(R0, R2) = TwP(R0, R1) + TwP(R1, R2).
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To show that the map TwP is surjective we need to define a Dehn twist. This a purely
topological construction. Let Σ be an oriented surface and γ and essential, simple closed
curve on Σ. We identify a collar of neighborhood of γ with A and defineDγ : Σ → Σ to be
the identity outside of A and tw1 on A. Note that tw1 fixes both boundary components
of A so that this map is continuous and in fact a homeomorphism.

Any homeomorphism ψ of Σ acts on T (Σ) by taking a pair (R, f) to (R, f ◦ ψ−1).
Again we will often suppress the map f and write ψ∗R for the pair (R, f ◦ ψ−1). Note
that we compose with ψ−1 so that (ψ0 ◦ ψ1)∗R = (ψ0)∗(ψ1)∗R. Note that the map ψ∗
on T (Σ) only depends on the homotopy class of ψ.

Lemma 2.24 Given R ∈ T (Σ) and an essential simple closed curve γ on Σ, ℓγ(R) =
ℓγ((Dγ)∗R). Furthermore if γi ∈ P then Twγi(R, (D

n
γi)∗R) = −n.

Proof. The boundary of the annulus A is fixed by Dγ so Dγ(γ) is freely homotopic
to γ and it follows that ℓγ(R) = ℓγ((Dγ)∗R).

For the second fact we observe that we can choose A such that f(A) = C(γi, R)
where f is the marking map. In fact we can do this in such a way that f ◦D−n

γ = φ ◦ f
where φ is the identity on the complement of C(γi, R) and is the twist map tw−n on the
collar. The second equality follows. 2.24

Given L ∈ R
3g−3 there is a nearly canonical way to build an unmarked hyperbolic

structure with pants curves having length L. We start with a collection of hyperbolic
pairs of pants that have the correct boundary lengths. On each pair of pants there
are three geodesic arcs connecting distinct pairs of boundary components that meet the
boundary component orthogonally. On each boundary component of each pair of pants
there are the feet of two of these arcs. We pick one for each boundary component. (This
choice is why the construction is not canonical.) We then glue the pants together so
that each of the chosen feet are identified in the gluing and label the resulting surface
XL. In XL the arcs orthogonal to curves in P be come a collection of simple closed
geodesics which we label P⊥. Note that the complement of P∪P⊥ in XL is a collection
of right-angled hexagons. In particular they are disks.

Now pick an 3g− 3-tuple t ∈ (R/Z)3g−3. We also orient each curve γi ∈ P. We then
construct an unmarked surface Xt

L
such that the chosen feet at γi differ by a twist of

size ti. We then have the following lemma.

Lemma 2.25 Choose markings f : Σ → XL and ft : Σ → Xt
L
so that the P is taken to

the corresponding geodesics. Then TwP((XL, f), (X
t
L
, ft)) is equal to t modulo 1.

Corollary 2.26 Fix R ∈ FL. Given s ∈ R
3g−3 there exists a unique R′ ∈ FL such

TwP(R,R
′) = s.
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Proof. Using Lemma 2.25 we can find an S ∈ FL such TwP(R,S) is s modulo 1.
We can then us Lemmas 2.23 and 2.24 to apply Dehn twists to S to find R′. 2.26

.
Given s ∈ R

3g−3 we define a map Tws
P
: T (Σ) → T (Σ) as follows. For R ∈ FL

let Tws
P
(R) be the unique point in FL such that TwP(R,Tw

s
P
(R)) = s. This defines

an action of R3g−3 on T (Σ). This would natural make T (Σ) a principal R3g−3-bundle
except that we have not yet given T (Σ) at topology. We do that now.

We will do this by defining a map from (R+)3g−3 to T (Σ) such that the composition
with ℓP is the identity.

Recall that for each L ∈ (R+)3g−3 we have define a hyperbolic surface XL. Fixing
a basepoint L ∈ (R+)3g−3 for all L′ ∈ (R+)3g−3 we have a canonical (up to homotopy)
map ψL,L′ : XL → XL′ . This map is determined by the property that it takes each
component of P in XL to the corresponding component of P in XL′ and similarly with
P⊥. Since the complement of P ∪P⊥ is disks this map is well defined up to homotopy.
These surfaces are still unmarked. To mark them we fix a map fL : Σ → XL that maps
P in Σ to P in XL and define fL′ = φL,L′ ◦ fL. Let RL′ = [(XL′ , fL′)].

We define σ : (R+)3g−3 → T (Σ) by σ(L′) = RL′ . We would like to say that σ is
continuous but to do so we first need to give T (Σ) a topology! In fact, we will use σ to
do this. Namely, we define a bijection from (R+)3g−3×R

3g−3 by (L′, s) 7→ Twx
P
(σ(Bl′)).

These are Fenchel-Nielsen coordinates for T (Σ) and they give T (Σ) a topology. Note
that the R

3g−3 action is continuous in these coordinates. However, we also observe that
the coordinates depend on the choice P. To see that the topology doesn’t depend on P
we need a more canonical way of defining it.

2.6 Quasiconformal maps

Let f : Ω0 → Ω1 be an orientation preserving between domains in C. At each point
the derivative of f is a R-linear map between tangent spaces (which are canonically
isomorphic to C). We would like to measure how far f is from being conformal. We
begin with some linear algebra.

Let T : C → C be R-linear. An R-linear map takes round circles to ellipses and we
consider the ratio of the outradius to the inradius our measure of how far T is from a
conformal map. This the dilatation of T . Recall that we can write Tz = Tzz+Tzz where
Tz, Tz ∈ C. Let µ = Tz/Tz. This is the Beltrami differential of T and it contains much

information about the geometry of T . For now the most important thing is that 1+|µ|
1−|µ| is

the dilatation of T . (If |µ| = 1 then T is not invertible. If |µ| > 1 then T is orientation
reversing.)

We now apply this to our map f . Let µ(z) = fz(z)
fz(z)

. Since f is orientation preserving,

|µ| < 1. We say that f is K-quasiconformal if ‖µ‖∞ = K−1
K+1 < 1 where ‖µ‖∞ is the
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sup-norm of µ.
Now let f : X0 → X1 be a smooth, orientation preserving map between Riemann

surfaces. We would like to define the Beltrami coefficient for f . If we apply the previous
paragraphs via charts our answer will depend on the choice of charts. To account for
this we need to understand how µ changes if we pre or post compose with a conformal
map.

This is a problem in linear algebra. Let T : C → C be R-linear and S : C → C be
conformal (or equivalently C-linear). From earlier we have that (S ◦ T )z = SzTz and
(S ◦ T )z = SzTz (since Sz = 0) and therefore (S ◦ T )z/(S ◦ T )z = Tz/Tz .

If we pre-compose with S then things are more complicated. In this case (T ◦ S)z =
TzSz and (T ◦ S)z = TzS̄z and (T ◦ S)z/(T ◦ S)z = Tz

Tz
S̄z

Sz
. In this case the Beltrami

coefficient of T and T ◦ S aren’t identical but they have the same norm.
This creates the following problem. We can take the Beltrami differential of f by

choosing charts in X0 and X1. If we do this the differential won’t depend on the choice of
chart in X1 but it will depend on the choice of chart in X0. Because of this the Beltrami
differential is not a function on X0 but instead it is a section of a certain complex line
bundle. We will come back to this later. For now the we will just observe that the
absolute value of the Beltrami differential does not depend on the choice of chart on
either surface.

More explicitly: Fix a point z ∈ X0 and choose charts (U0, ψ0) and (U1, ψ1) such
that z ∈ U0 and f(z) ∈ U1. Then define |µ|(z) = (ψ1 ◦ f ◦ (ψ0)

−1)z(ψ(z))/(ψ1 ◦ f ◦
(ψ0)

−1)z(ψ(z)). The function |µ| does not depend on the choice of charts. Furthermore
if f is smooth (or just has continuous first derivatives) then |µ| is a continuous function
on X0. The map f is K-quasiconformal if ‖µ‖∞ = K−1

K+1 . Since |µ(z)| is continuous and
< 1 if X0 is compact then f will be K-quasiconformal for some K. We want to minimize
K.

We can use this notion to define a metric on T (Σ). Namely, given R0, R1 ∈ T (Σ)
define

dT (R0, R1) = log inf{K|there exists a K-quasiconformal map f : R0 → R1}.

We need to check that this is a metric. If we knew there was a map f such that f was
K-quasiconformal and dT (R0, R1) = logK then the proof that dT is a metric would
reduce to understanding composition rules for Beltrami differentials. However, the only
time such a map will exist is when R0 = R1. To find a minimizing map in general we
need to expand our definition of quasiconformal map. In particular we need to allow
maps that aren’t differentiable. There are two approaches, a geometric one and and
analytic one. We’ll begin with the geometric definition.
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2.6.1 The modulus of a quadrilateral

We have already defined a topological quadrilateral. We now want to emphasize it’s
complex structure. Let Q be a closed (topological) disk in C with four distinguished
points (vertices) and cyclically ordered points in ∂Q. Label the points {v0, v1, v2, v3}.
Then there is a unique rectangle R = [0,K]×[0, 1] ⊂ C such that there exists a conformal
map φ : Q→ R with φ(v0) = 0 ∈ C and all other vertices of Q are taken to vertices of R.
(This requires some “classical” but non-elmentary complex analysis.) Then the modulus
of Q is m(Q) = K.

We can now give the geometric definition of a K-quasiconformal map. Let f : Ω0 →
Ω1 be an orientation preserving homeomorphism. Then f is K-quasiconformal if for all
quadrilaterals Q ⊂ Ω0 we have

m(f(Q))/K ≤ m(Q) ≤ Km(f(Q)).

We emphasize that we are not assuming that f is differentiable. If we let Q′ be the
quadrilateral Q with vertices rotated by one then m(Q′) = m(Q)−1 so if m(f(Q))/K ≤
m(Q) for all quadrilaterals Q then f is K-quasiconformal.

The first thing to observe is that a smooth K-quasiconformal map as defined earlier
is also K-quasiconformal with this new definition.

Lemma 2.27 Let f : [0,K0]× [0, 1] → [0,K1]× [0, 1] be a smooth K-quasiconformal map
with K0 ≤ K1. Then K ≥ K1/K0 with equality if and only if f(z) = Kx+ ıy.

Proof. We first integrate f along horizontal lines and apply the fundamental theorem
of calculus:

K1 =

∫ K0

0
fx(x, y)dx

for all y ∈ [0, 1]. Using that fx = fz + fz and taking absolute values we have

K1 ≤
∫ K0

0
(|fz|+ |fz|)dx.

Next we integrate in the y-direction:

K1 ≤
∫ 1

0

∫ K0

0
(|fz|+ |fz|)dxdy.

We can rewrite the inside as
√

|fz|+ |fz|
|fz| − |fz|

√
|fz|2 − |fz|2 =

√
1 + |µ|
1− |µ|

√
|fz|2 − |fz|2
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The term in the left square root is the dilatation and is bounded by K. The term under
the right square root is the Jacobian.

Squaring both sides of the inequality and applying the Cauchy-Schwarz inequality
we have

K2
1 ≤

(∫ 1

0

∫ K0

0

1 + |µ|
1− |µ|dxdy

)(∫ 1

0

∫ K0

0
(|fz|2 − |fz|2)dxdy

)
.

The integral on the left bounded by K times the area of the rectangle [0,K0] × [0, 1].
This product is KK0. The right integral is the area of the rectangle [0,K1]× [0, 1] so we
have

K2
1 ≤ (KK0)(K1)

and rearranging we have K ≥ K1/K0.
For equality we need each inequality to be an equality. For the first inequality we

observe that if

fx = |fz|+ |fz| =
1

2
|fx − ıfy|+

1

2
|fx + ıfy|

then fx is real and non-negative and fy is imaginary. For such a map the directions of
maximal and minimal stretch will be the x and y-axes. Since f is orientation preserving
we must have that − ıfy is real and positive. The dilatation is the max{ıfx/fy, ıfy/fx}
and the Jacobian is − ıfxfy. For the Cauchy-Schwarz inequality to be an equality both
functions need to be constant. This implies that fx and fy are constant and f is an
affine map. 2.27

Corollary 2.28 Let f : Ω0 → Ω1 is a diffeomorphism and let K = 1+‖µ‖∞
1−‖µ‖∞ . Then f is

K-quasiconformal (in the geometric definition).

Proof. Let Q be a quadrilateral in Ω0. We can pre- and post-compose f with
conformal maps such that the composition is a map between rectangles as in Lemma 2.27.
Note that the norm of the Beltrami differential of the composed map doesn’t change.
Then m(Q) = K0 and m(f(Q)) = K1. We need to show that m(f(Q))/K ≤ m(Q). If
K1 ≤ K0 this follows automatically. If not we apply Lemma 2.27. 2.28

However, there are quasiconformal maps under the geometric definition that are not
smooth. We would like to weaken the analytic definition to allow this possibility but we
need to be careful. For example we could look at maps f that are differentiable almost
everywhere. Then the Beltrami differential µ would be defined almost everywhere and
we could ask if ‖µ‖∞ < 1. The following example shows that this definition is to weak.

Let C ⊂ [0, 1] be the usual Cantor set. Then the Lesbegue measure of C is zero. Fix
K > 1 and let ν be a measure on C without atoms such that ν(C) = K − 1. Let µ be
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the sum of ν and Lesbegue measure and define

f0(x) =

∫ x

0
dµ.

Then f0 is a homeomorphism from [0, 1] to [0,K] and (f0)
′(x) = 1 on [0, 1]\C. We then

define a homeomorphism f : [0, 1] × [0, 1] → [0,K] × [0, 1] by f(x, y) = (f0(x), y). The
Lesbesgue measure of C × [0, 1] is still zero so f is differentiable almost everywhere. In
fact, fz = 0 almost everywhere. This example shows that between any to quadrilaterals
there is a homeomorphism that is conformal almost everywhere. Such a map would not
be quasiconformal by the geometric definition.

The problem in the example is that the map f0 is not absolutely continuous. Ab-
solutely continuous functions are differentiable almost everywhere and obey the funda-
mental theorem of calculus.

Theorem 2.29 Let f : [a, b] → R be absolutely continuous. Then f is differentiable
almost everywhere and ∫ b

a
f ′(x)dx = f(b)− f(a).

We say that a function f : Ω0 → Ω1 is absolutely continuous on lines (or ACL) if f
restricted to almost every horizontal or vertical line is absolutely continuous. By Fubini’s
theorem this implies that fx and fy (and hence fz and fz) exist almost everywhere.
We can now give the analytic definition of K-quasiconformal. The homeomorphism
f : Ω0 → Ω1 is analytically K-quasiconformal if

1. f is ACL;

2. |fz| ≤ k|fz| almost everywhere with K = 1+k
1−k .

We have the following important theorem:

Theorem 2.30 The analytic and geometric definitions of K-quasiconformality are equiv-
alent.

We can now see that Lemma 2.27 holds for general K-quasiconformal maps. We use
the analytic definition.

There are two places that the proof of Lemma 2.27 fails in our bad example. The
first is the very first equality

K1 =

∫ K0

0
fx(x, y)dx
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which is the fundamental theorem of calculus. For an ACL function this inequality holds
for almost every y. This is enough to carry through the rest of the proof until we get to
the area integral ∫ 1

0

∫ K0

0
(|fz|2 − |fz|2)dxdy

that appears in the Cauchy-Schwarz inequality. This integral should be the area of the
second rectangle but in our example it will be the area of the first integral. However, for
quasiconformal maps we have the following result (which we will not prove).

Proposition 2.31 Let f : Ω0 → Ω1 be a quasiconformal map. Then

∫

Ω0

(|fz|2 − |fz|2)dxdy

is the Euclidean area of Ω1.

Assuming this we have:

Lemma 2.32 Lemma 2.27 holds for analytically K-quasiconformal maps.

Note that this implies that the analytic definition implies the geometric definition.

2.7 Riemann surfaces from polygons

Let P be a finite collection of disjoint polygons in the C with side pairings given by
pure translations or rotations by π. Then the quotient space is a Riemann surface X.
Let V ⊂ X be the image of the vertices of P in X. Outside of V , X has a Euclidean
structure. At each point in V the metric is singular. It will be a cone point with cone
angle πn for some n ∈ Z

+. We assume that n ≥ 2. We will say more about Euclidean
cone-structures below.

Given K ≥ 1 we let fK : C → C be the affine map fK(x + ıy) = Kx + ıy and let
PK = fK(P ). The conjugation of pure translations and rotations by π by fK will again
be pure translations or π-rotations so the side pairing for P conjugate to side pairing for
PK which determines a new Riemann surface XK . The map fK descends to a map from
X to XK .

Theorem 2.33 Let f : X → XK be a K ′-quasiconformal map that is homotopic to fK .
Then K ≤ K ′ with equality if and only if f = fK .

Proof. After some setup we will see the proof is almost the same as the proof of
Lemma 2.27. The one place where we will need a new idea is in the proof of the first
inequality; after that the proof is exactly the same.
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We start with the setup. We can normalize the area of the polygons so that the total
area of P is one. Then the area of PK will be K. Next we observe that the map f can be
thought of as a map between the polygons P and PK . This map may not be continuous
as f may not map sides of P (as arcs in X) to sides of PK . However, this discontinuity
will occur on a set of measure zero. As a map on P ⊂ C to PK ⊂ C we can take the
derivative fx, fz and fz. Exactly as in the proof of Lemma 2.27 we have

(∫ ∫

P
|fx|dxdy

)2

≤
∫ ∫

P

1 + |µ|
1− |µ|dxdy

∫ ∫

P
(|fz|2 − |fz|2)dxdy

≤ (area(P )K ′) area(PK) = KK ′.

To finish the proof we need to show that

area(PK) ≤
∫ ∫

P
|fx|dxdy.

This will require a new approach.

A Euclidean structure on a surface is an atlas of charts to R
2 = C with transition

maps Euclidean isometries. Note that this is also defines a conformal structure on the
surface. A Euclidean structure is very restrictive; the only compact, oriented surface
that supports one is the torus. To allow more general surfaces we need to allow cone
points. We begin by defining a cone point. Let C∞ be the universal cover C× = C\{0}.
Complex multiplication gives C× a group structure and this lifts to a group structure on
C∞. On C

×, arg z is only define modulo 2π while in C∞ arg z is a real number. On C
×

multiplication by eıθ is determined by θ modulo 2π while on C∞ it is determined by θ in
R. The Euclidean metric on C pulls back to a metric on C∞ and multiplication by eıθ

is an isometry. We let Cθ be the metric completion of C∞/〈eıθ〉. The metric completion
will contain one more point than C∞/〈eıθ〉; label this point pθ.

A Euclidean cone metric on a surface Σ with a discrete set of points V is a Euclidean
structure on Σ\V such that each v ∈ V has a neighborhood isometric to a neighborhood
of pθ for some θ ∈ R

+. Then θ is the cone angle at v. The surface we constructed at
the beginning of this section is an example of a Euclidean cone metric. Note that it has
extra structure as the transition maps are pure translations or π-rotations.

Lemma 2.34 Assume that X has a Euclidean cone metric with an atlas such all tran-
sition maps are pure translations or π-rotations. Then all cone angles are multiples of
π.

Theorem 2.35 Let P be a polygon in R
2 with angles {θ1, . . . , θk}. Then

∑
(π−θi) = 2π.
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We will be especially interested in cone metrics where all cone angles are ≥ 2π. In
many ways these surfaces behave like hyperbolic surfaces.

Given a piecewise smooth path γ : I → X we can measure its length in the usual way
on the non-singular part of the surface and we let this be the length of the path and
denote it LX(γ). We can the define a metric dX on the surface, again in the usual way.
We say that γ is a geodesic if every t ∈ I has a neighborhood It ⊂ I such that for all
a, b ∈ It we have dX(γ(a), γ(b)) = |a− b|.

Note that if we have two Euclidean rays in Cθ that are based at pθ they make two
angles, one in the clockwise direction and one in the counter clockwise direction.

Lemma 2.36 A path γ on a Euclidean cone metric is a geodesic if and only if in each
Euclidean chart it is a straight line and the two angles at each cone point are ≥ π.

We need to generalize this theorem to Euclidean polygons with cone points.

Theorem 2.37 Let P be a polygon with cone points of angles {α1, . . . , αk} and angles
{θ1, . . . , θj}. Then

∑
(2π − αi) +

∑
(π − θi) = 2π.

Proof. Triangulate P such that all the cone points and then double to form a
triangulated sphere S. Let V,E and T be the number of vertices, edges and triangles
in the triangulation. Then E = 3T/2 and V − E + T = 2. Together this implies that
2V = 4 + T . Let βji be the angles at the jth vertex. Note that the total sum of all the
angles is πT . Therefore

∑

j

(
2π −

∑

i

βji

)
= 2πV − πT

= π(4 + T − T )

= 4π.

There are three types of vertices: vertices corresponding to cone points of P , vertices
on the interior of P that are not cone points and vertices on the boundary of P . For
each cone vertex of P there will be two vertices in S. For each interior vertex the sum
2π −∑i β

j
i is zero. Each boundary vertex of P will appear only once in S. Therefore

we have
∑

(2π − αi) +
∑

(π − θi) =
1

2

∑

j

(
2π −

∑

i

βji

)
= 2π.

2.37
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Theorem 2.38 Let X be a complete Euclidean cone metric with all cone angles ≥ 2π.
Then every arc on X is homotopic (rel endpoints) to a unique geodesic.

Proof. We can assume that X is simply connected. If not we replace X with its
universal cover which will also be complete. Every arc downstairs will lift to an arc in
the universal cover and if we can homotop it to a geodesic in the cover we can do so
downstairs also. Furthermore in the universal cover there is a unique homotopy class of
arcs between any two points.

We first show that geodesics exist. This is a standard argument that needs to be
slightly modified to account for the cone points. In general, on a complete Riemannian
manifold, a point and a unit tangent vector determines a unique complete (defined for
all R) geodesic. On a cone-manifold this uniqueness fails when the geodesic hits a cone
point.

We begin with the standard argument. For every z ∈ X there is an ǫ > 0 such
that the ǫ-neighborhood of z is standard ball either in C or if z is a smooth point or an
ǫ-neighborhood of pθ in Cθ if z is a cone point of angle θ. In particular there is a unique
geodesic between every point in this ball and z. Now let z0 and z1 be points in X. Let
S be the sphere bounding the ǫ-ball centered at z0. Note that if dX(z0, z1) ≤ ǫ then we
are done. If not there is a unique z ∈ S that is closest to z1. Let γ be the geodesic ray
based at z0 that goes through z and extend this ray as far as possible until it either hits
z1, in which case we stop, or a cone point. Every time that the ray hits a cone point we
repeat the construction replacing z0 with the cone point.

We claim that this path is a geodesic and that it will eventually hit z1. To see this
let I ⊂ [0, d(z0, z1)] be the largest interval, with left endpoint 0, such that for t ∈ I,
d(γ(t), z1) = d(z0, z1)− t. We first observe that I contains [0, ǫ] and, since the distance
function is continuous, I is closed. We need to show that I is also open. For this we pick
a t ∈ I and construct a geodesic ray β, as we constructed γ, with z0 replaced with γ(t).
As for γ, for s in a neighborhood of 0 we have d(β(s), z1) = d(β(0), z1) − s. If we can
show that γ(s) = β(s− t) then we have d(γ(s), z1) = d(z0, z1)−s for s in a neighborhood
of t and I is open. If γ(t) is a cone point then by construction γ(s) = β(s − t). When
γ(t) is not a cone point we need to show that the angle between γ and β at γ(t) is π. If
this is not the case then we can shorten the path γ|[0,t] ∪ β to see that for s < t near t,
d(γ(s), z1) < d(z0, z1)− s, contradicting s ∈ I.

The more interesting part of the proof is uniqueness. Let γ0 and γ1 be two geodesic
connecting z0 and z1. After a surgery argument we can assume that they intersect only
at z0 and z1. Since they are homotopic rel endpoints the will then bound a polygon P
with cone points. Except for possibly the angles at z0 and z1 (which we label θ0 and θ1)
all other angles will be ≥ π. The cone angles in the interior of P are all ≥ 2π so in
the formula from Theorem 2.37 all terms are ≤ 0 except for possible terms with θ0 and
θ1 so we have (π − θ0) + (π − θ1) ≤ 2π. Since θ0, θ1 ≥ 0 this implies that θ0 = θ1 = 0.
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Therefore γ0 and γ1 agree in a neighborhood of z0 and z1, a contradiction. 2.38

We now return to our surfaces X and XK that we defined at the beginning of the
section. A horizontal geodesic is a geodesic that is parallel to the x-axis in every chart.
(This is well defined since transition maps are pure translations or π-rotations which
take lines parallel to the x-axis to lines parallel to the x-axis.)

Lemma 2.39 Let f : X → XK be a homeomorphism homotopic to fK . Then there
exists an M =M(f) such that for all horizontal geodesics γ on X we have

LXK
(f ◦ γ) ≥ KLX(γ)−M.

Proof. We first observe that for horizontal geodesics LXK
(fK ◦ γ) = KLX(γ).

We work in the universal cover where there is a unique homotopy class of arc between
any two points.

The homotopy from f to fK lifts to the universal covers X̃ and X̃K . In particular
there are lifts f̃ and f̃K that are equivariantly homotopic. Therefore the function z̃ 7→
dX̃K

(f̃(z̃), f̃K(z̃)) is a continuous equivariant function X̃ which descends to a function
on the compact surface X. This implies that the function is bounded by some constant,
say M/2.

Let γ̃ be a lift of γ to X̃. Then γ̃ is the unique geodesic between its endpoints
which we label z0 and z1 so LX(γ) = LX̃(γ̃) = dX̃(z0, z1). We also have LXK

(fK ◦ γ) =
LX̃K

(f̃K ◦γ) = dX̃(f̃K(z0), f̃K(z1)). We can now apply the triangle inequality to see that

dX̃K
(f̃K(z0), f̃K(z1)) ≤ dX̃K

(f̃K(z0), f̃(z0)) + dX̃K
(f̃(z0), f̃ (z1)) + dX̃K

(f̃(z1), f̃K(z1)).

The first and last term on the right are bounded by M/2 and dX̃K
(f̃(z0), f̃(z1)) ≤

LX̃K
(f ◦ γ̃) = LXK

(f ◦ γ). Combining this last sentence with the previous inequality
gives the lemma. 2.39

We can now complete the proof of Theorem 2.33. Let X̂ be the set of horizontal unit
tangent vectors on X. Then X̂ is a double cover of the non-singular part of X. (In fact
X̂ could just be two copies of X.) There is a natural flow Ft : X̂ → X̂. We define Ft
as follows. Each v ∈ X̂ is a horizontal unit tangent vector at a point z ∈ X. There is
a unique horizontal geodesic γ on X with γ(0) = z and γ′(0) = v. Generically, γ will
be defined for all R but there will be a measure zero set where the horizontal geodesic
limits in the forward or backward (or both) directions to a cone point. Ignoring this set
of measure zero we define Ft(v) to be the tangent vector of γ at γ(t).

The Euclidean structure on X lifts to a Euclidean structure on X̂. We have the
following lemma:
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Lemma 2.40 The flow Ft is area preserving.

Proof. Let R ⊂ X̂ be a rectangle with sides horizontal and vertical geodesics and
assume the interior of R doesn’t contain cone points. In X̂ all cone points will have cone
angles that are multiples of 2π (instead of π as in X). If the cone angle is 2πn then
there will be n horizontal geodesics that flow forward into the cone point. If we flow
backwards from the cone points for time t we will form horizontal geodesics of length t
(or less if the backwards flow hits a cone point). If there are k cone points of cone angle
2πni then total number of geodesic segments will be

∑
ni and the total length will be

(at most t
∑
ni). Therefore the intersection of these segments with R will have finitely

many components: There can be at must
∑
ni segments that don’t cross the entire

rectangle. The number for segments that do bound the entire rectangle is bounded by
t
∑
ni divided by the horizontal length of the rectangle.
We extend those components of the intersection with R that don’t cross the rectangle

so that they do. This now splits the rectangle into finitely many rectangles with disjoint
interior whose areas sum to the area of R. For each of these smaller rectangles Ft is an
isometry, and hence area preserving, on the interior. This implies that area(Ft(R)) =
area(R) and the lemma follows. 2.40

We are interested in the integral

∫ ∫

X
|fx|dxdy.

Let f̂ be the lift of the function |fx| to X̂ . Then

∫ ∫

X̂
f̂ dxdy = 2

∫ ∫

X
|fx|dxdy.

We will bound below the integral on the left. Since Ft is area preserving for all t ∈ R we
have ∫ ∫

X
f̂ ◦ Ftdxdy =

∫ ∫

X
f̂dxdy.

If we integrate the left hand integral with respect to t from −D to D we have

∫ D

−D

(∫ ∫

X
f̂ ◦ Ftdxdy

)
dt = 2D

∫ ∫

X
f̂dxdy.

We will change the order of integration so that we are integrating with respect to t first.
Before we do this we observe that if γ : [a, b] → X is a horizontal geodesic with v the
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tangent vector at γ(0) then

LXK
(γ ◦ f) =

∫ b

a
|fx ◦ γ(t)|dt

=

∫ b

a
f̂ ◦ Ft(v)dt.

Since LX(γ) = b− a for almost every v ∈ X̂ we have

2DK −M ≤
∫ D

−D
f ◦ Ft(v)dt.

We now put everything together

4D

∫ ∫

X
|fx|dxdy =

∫ D

−D

(∫ ∫

X
f̂ ◦ Ftdxdy

)
dt

=

∫ ∫

X̂

(∫ D

−D
f ◦ Ft(v)dt

)
dxdy

≥
∫ ∫

X̂
(2DK −M)dxdy

= 2(2DK −M).

Dividing both sides by D and taking the limit as D → ∞ we have
∫ ∫

X
|fx|dxdy ≥ K.

This is exactly the inequality we need to complete the proof of Theorem 2.33. 2.33

2.7.1 (p, q)-differentials

Let I be the index set of an atlas A for a Riemann surface X. A (p, q)-differential
is a collection of functions Φ = {φα}α∈I where φα are functions on ψα(Uα) ⊂ C

and on ψβ(Uα ∩ Uβ) we have φα ◦ ψαβ(z)(ψαβ)pz(z)(ψαβ)qz(z) = φβ(z). (Or we could

write φ(z)dzpdzq in z-coordinates becomes φ(z(w))z′(w)pz′(w)
q
dwpdw̄q in w-coordinates

where we view z as a holomorphic function in w.)

Proposition 2.41 Let Φ = {φα}α∈I be a (p, q)-differential and Θ = {θα}α∈I a (r, s)-
differential. Then

1. ΦΘ = {φαθα}α∈I is a (p+ r, q + s)-differential;
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2. Φ/Θ = {φα/θα}α∈I is a (p − r, q − r)-differential;

3. Φ̄ = {φ̄α}α∈I is a (q, p)-differential;

4. if p = 0 then Φz = {(φα)z}α∈I is a (1, q)-differential;

5. if q = 0 then Φz = {(φα)z}α∈I is a (p, 1)-differential.

The (p, q)-differentials form a vector space. By changing the class of functions
that we allow the φα to be we can get different spaces. For example in the case of
(2, 0)-differentials we will restrict to holomorphic functions. This space of holomorphic
quadratic differentials is extremely important in Teichmüller theory.

There are some important relationships between vector fields and differential forms
and with (p, q)-differentials.

Lemma 2.42 • A vector field is a (−1, 0)-differential.

• A 1-form is a (1, 0)-differential.

• A 2-form is a (1, 1)-differential.

• A Beltrami differential is (−1, 1)-differential.

2.7.2 Quadratic differentials

Let Φ be a holomorphic (1, 0)-form. (Φ is an Abelian differential.) Given a piecewise
smooth path γ : [a, b] → X we can take the integral

∫
γ Φ. In local coordinates this is

just a contour integral. In particular if the image of a γ is contained in a chart (U,ψ)
and φ : ψ(U) → C is the function representing Φ in the chart then

∫

γ
Φ =

∫

ψ◦γ
φ(z)dz.

In general we calculate
∫
γ Φ by breaking the arc into sub-arcs that lie in charts.

Lemma 2.43 Let γ0 and γ1 be arcs in X that are homotopic rel endpoints. Then∫
γ0
Φ =

∫
γ1
Φ.

Proof. This is essentially Cauchy’s theorem. The homotopy from γ0 to γ1 is a map
on a square S into X where two of the parallel sides represent to the two arcs. The map
is constant on the other two sides of the square since the homotopy is rel endpoints. If
we orient ∂S so that it traverses the γ0-side in the positive direction and the γ1-side in
the negative direction we have

∫

∂S
Φ =

∫

γ0

Φ−
∫

γ1

Φ
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since the integral on the two sides where the map is constant is zero.
We now break the square into rectangles with disjoint interior so that each rectangle

is contained in a chart. By Cauchy’s theorem, the integral around the perimeter of each
rectangle is zero. The integral

∫
∂S Φ is the sum of the integrals around the perimeter

(suitably oriented) of each rectangle. The lemma follows. 2.43

On simply connected neighborhood U ⊂ X, all arcs with the same endpoints are
homotopic rel endpoints. After fixing a basepoint we can use this to define a function on
U . If Φ is holomorphic then this function will be holomorphic and we can understand its
local behavior through the zeros of its derivative. Note that the zeros (and their order)
of Φ (or any (p, q)-differential) are well defined independent of chart. If Φ is holomorphic
and non-constant (and X is connected) then the zeros are isolated.

Lemma 2.44 Let U ⊂ X be simply connected and open and z0 ∈ U a basepoint. For
z ∈ U let γz be an arc in U from z0 to z. Then

z 7→
∫

γz

Φ

is a holomorphic function. The derivative of the function has a zero of order n at z if
and only if Φ has a zero of order n at z.

The key point is that where Φ is non-zero we can use it define an atlas where the
translations maps are pure translations of the Euclidean metric. For each z ∈ X where
Φ is non-zero we choose a a neighborhood Ux that is simply connected such that the
function ψz from Lemma 2.44 is injective on Uz. Let Az = {(Uz, ψz)} where z varies
over the points in X where Φ is non-zero.

Proposition 2.45 Let Φ be a (non-constant) holomorphic quadratical differential on X
and let V ⊂ X be the zeros of Φ. Then there is a conformal atlas A for X\V such that
for each chart (Uα, ψα) ∈ A we have φα ≡ 1. The transition maps for A are restrictions
of pure translations or π-rotations.

Proof. Given a point z0 ∈ X\V choose a chart (Uβ, ψβ) that contains z0. We can
assume that Uβ is simply connected and disjoint from V . (If not we just shrink Uβ .) Let
φβ be the function representing Φ on (Uβ, ψβ). Then define ψα : Uβ → C as follows. Fix
a branch of the square root on ψβ(Uβ) so that

√
φβ is well defined and for each z ∈ Uβ

choose an arc γ in U connecting z0 to z1. Then let

ψα(z) =

∫

ψβ◦γ

√
φβ(w)dw.
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By Lemma 2.43, ψ(z) doesn’t depend on the choice of γ and will be a holomorphic
function with non-zero derivative at z0. Therefore we can choose a neighborhood Uα ⊂
Uβ of z0 where ψα is injective so (Uα, ψα) is a chart. The derivative of ψα ◦ ψ−1

β at

z ∈ φβ(U) is
√
φβ(z) so we have

φα(ψα ◦ ψ−1
β (z))

(√
φβ(z)

)2

= φβ(z)

and therefore φα ≡ 1 and we have constructed the required atlas.
For any atlas that supports a quadratic differential where all functions are ≡ 1 the

square of the derivative of the transition map will be ≡ 1 so the derivative itself is
≡ ±1. This implies that the transition maps are restrictions of pure translations or
π-rotations. 2.45

This defines a Euclidean metric on X\V . We need to show that this a cone-metric.

Proposition 2.46 Let z0 ∈ V be a zero of Φ of order n. Then the Euclidean metric on
X\V extends to a cone-point of angle (n+ 2)π at z0.

Proof. Choose a chart (U,ψ) with z0 ∈ U , ψ(z0) = 0 and Φ in (U,ψ) given by the

function φ(z) =
(
n
2 + 1

)2
zn. We can assume that φ(U) is an open disk centered at 0 of

radius ǫ which we label ∆ǫ. Let ∆×
ǫ = ∆ǫ\{0} and let π : ∆̃×

ǫ → ∆×
ǫ be the universal

cover. Note that ∆̃×
ǫ is homeomorphic to R

2 but it is natural to give ∆̃×
ǫ coordinates

(0, ǫ
α
2π ) × R so that π(r, θ) = r

2π
α eı2πθ/α where α = (n + 2)π. In these coordinates the

deck transformations are generated by the map (r, θ) 7→ (r, θ + α).

The surface ∆̃×
ǫ has a conformal structure lifted from the conformal structure on ∆×

ǫ .
For this lifted conformal structure the covering map will always be locally conformal
(holomoprhic and locally injective). We can also lift the quadratic differential Φ to a

quadratic differential Φ̃ on ∆̃×
ǫ . We would like to find an atlas for ∆̃×

ǫ where the quadratic
differential is identically one. To do so we define a map ψ̃(r, θ) = reıθ. This map is locally
conformal. To see this we observe that for any simple connected neighborhood in ∆×

ǫ

and any inverse of π on this neighborhood ψ̃ ◦ π−1 is holomorphic. In particular it is a
branch of the map z 7→ z

α
2π .

We can use the map ψ̃ to define charts on ∆̃×
ǫ by restricting ψ̃ to neighborhoods in

∆̃×
ǫ where ψ̃ is injective. On such charts we will show that Φ̃ is identically one. For

charts given by the covering map π, Φ̃ is
(
n
2 + 1

)2
zn. The transition map is given by

z 7→ z
α
2π = z

n
2
+1 so the derivative of the transition map is

(
n
2 + 1

)
z

n
2 . (This expression

is well defined up to sign.) Therefore Φ̃ in a chart coming from the map ψ̃ is a function
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φ̃ with

φ̃(z)
((n

2
+ 1
)
z

n
2

)2
=
(n
2
+ 1
)2
zn

which implies that φ̃(z) = 1.

The holomorphic quadratic differential Φ̃ on ∆̃×
ǫ defines a Euclidean metric on ∆̃×

ǫ .
The map π (which we can view as a map to X\V ) will be a local isometry to the
Euclidean metric on X\V given by Φ. The map ψ̃ is a local isometry to the Euclidean
metric on C

× ⊂ C.
∆̃×
ǫ is naturally a subspace of C∞ where we give C∞ coordinates R

+ × R. The
quotient map C∞ 7→ C∞/〈eıα〉 can be written as a composition of π and a injective
map from ∆×

ǫ to Cα. This last map must be an isometry (as the other two maps are)
completing the proof of the proposition. 2.46

Let Φ be a non-constant holomorphic quadratic differential on X with V ⊂ X the
set of zeros. Recall that X is an atlas on the topological surface Σ where the transition
maps are conformal. By Proposition 2.45 the quadratic differential Φ defines an atlas
A on Σ\V that is a conformal atlas for X\V . We define a new atlas AK on Σ\V by
taking each chart (Uα, ψα) and post-composing ψα with the map x + ıy 7→ Kx + ıy to
form a new chart (Uα, ψ

K
α ). The transition maps for this new atlas will be restrictions

of translations and π-rotations. In particular this defines a conformal structure on Σ\V .
We also have a map fK : X\V → XK given by taking the identity map on Σ\V . Of
course this maps extends to all of Σ and we can use this to extend XK to a conformal
structure on all of Σ.

Theorem 2.47 Let Φ be a holomorphic quadratic differential on X. Let f : X → XK

be K ′-quasiconformal and assume that f ∼ fK . Then K ′ ≥ K with equality if and only
if f = fK .
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