Notes and problems on the topology of \mathbb{R}^n

Let X be a set and $d : X \times X \to [0, \infty)$ a function with:
1. $d(x, y) = 0$ if and only if $x = y$;
2. $d(x, y) = d(y, x)$;
3. $d(x, y) + d(y, z) \geq d(x, z)$.

Then d is a metric on X and the pair (X, d) is a metric space. Property (3) is the triangle inequality.

Define a $d : \mathbb{R}^n \times \mathbb{R}^n \to [0, \infty)$ by setting

$$d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

where $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$.

Problem 1 Show that d is a metric on \mathbb{R}^n.

The open ball of radius r centered at x is the set

$$B_r(x) = \{y | d(x, y) < r\}.$$

The triangle inequality implies that if $r_0 < r_1$ then $B_{r_0}(x) \subset B_{r_1}(x)$.

A subset $U \subset \mathbb{R}^n$ is open if for every $x \in U$ there is an $\epsilon > 0$ such that $B_\epsilon(x) \subset U$.

Theorem 1 The open subsets of \mathbb{R}^n satisfy the following properties:

1. \mathbb{R}^n and \emptyset are open.
2. If $\{U_\alpha\}$ is a collection of open sets then $\bigcup U_\alpha$ is open.
3. If U_1, \ldots, U_n are open then $\bigcap U_i$ is open.

Proof of 1. Obvious.

2. If $x \in \bigcup U_\alpha$ then $x \in U_\alpha$ for some α. Since U_α is open there exists an ϵ such that $B_\epsilon(x) \subset U_\alpha$. But U_α is contained in $\bigcup U_\alpha$ so we also have $B_\epsilon(x) \subset \bigcup U_\alpha$ and $\bigcup U_\alpha$ is open.

3. If $x \in \bigcap U_i$ then $x \in U_i$ for all $i = 1, \ldots, n$ so there exists ϵ_i with $B_{\epsilon_i}(x) \subset U_i$. Let $\epsilon = \min\{\epsilon_1, \ldots, \epsilon_n\}$. Since $B_\epsilon(x) \subset B_{\epsilon_i}(x)$ for all $i = 1, \ldots, n$ we have $B_\epsilon(x) \subset U_i$ for all i. Therefore $B_\epsilon(x) \subset \bigcap U_i$ and $\bigcap U_i$ is open.

1
A subset U of \mathbb{R}^n is closed if $U^c = \mathbb{R}^n \setminus U$ is open.

Problem 2 Prove that the closed subsets of \mathbb{R}^n satisfy the following properties:

1. \mathbb{R}^n and \emptyset are closed.
2. If $\{U_\alpha\}$ is a collection of closed sets then $\bigcap U_\alpha$ is closed.
3. If U_1, \ldots, U_n are closed then $\bigcup U_i$ is closed.

Here is another characterization of a closed set.

Theorem 2 A set U is closed if and only if for every sequence $\{x_i\}$ in U with x_i converging to some $x \in \mathbb{R}^n$ then $x \in U$.

The interior of a set U, denoted $\text{int}U$, is the union of all open set contained in U.

Problem 3 Show that $\text{int}U = \{x \in U \mid \text{there exists } \epsilon > 0 \text{ with } B_\epsilon(x) \subset U\}$.

The closure of U, denoted \bar{U}, is the intersection of all closed sets that contain U. Let A be a subset of B. Then A is dense in B if $A \supset B$.

Problem 4 Show that \mathbb{Q} is dense in \mathbb{R}. More generally show that \mathbb{Q}^n is dense in \mathbb{R}^n.

Let B_Q be the collection of balls $B_r(x)$ with $x \in \mathbb{Q}^n$ and $r \in \mathbb{Q}$.

Problem 5 Show that B_Q is countable.

Theorem 3 If U is an open set define

$$U_Q = \bigcup_{B \in B_Q \text{ and } B \subset U} B.$$

Then $U = U_Q$.

Proof. Clearly $U_Q \subset U$ so we only need to show that $U \subset U_Q$. If $x \in U$ there exists an $\epsilon > 0$ such that $B_\epsilon(x) \subset U$. Since \mathbb{Q} is dense in \mathbb{R}^n there exists $y \in \mathbb{Q}^n \cap B_{\epsilon/3}(x)$. Again using the density of \mathbb{Q} in \mathbb{R} we can find an $r \in (\epsilon/3, \epsilon/2) \cap \mathbb{Q}$. Then $B_r(y) \subset B_Q$. Since $d(x, y) \leq \epsilon/3$ we also have $x \in B_r(y)$. Furthermore if $z \in B_r(y)$ then by the triangle inequality

$$d(x, z) \leq d(x, y) + d(y, z) \leq \epsilon/3 + r \leq \epsilon/3 + \epsilon/2 < \epsilon$$

and therefore $B_r(y) \subset B_\epsilon(x) \subset U$. Hence $x \in U_Q$ and $U \subset U_Q$ as desired.