Notes and problems on infinite sets and countability

A set X is *infinite* if there exists a map from X to X that is injective but not surjective.

Theorem 1 If X is infinite there is an injective map from \mathbb{N} to X.

Proof. Let $\phi : X \to X$ be injective but not surjective. We inductively define an injective map $\psi : \mathbb{N} \to X$ as follows. Define $\psi(1)$ to be an element of $X \setminus \phi(X)$. Now assume ψ has been defined on $\{1, \ldots, n\}$ and that $\psi(k) \in \phi^{k-1}(X) \setminus \phi^{k}(X)$ for $k \in \{1, \ldots, n\}$. Now define $\psi(n + 1)$ to be an element of $\phi^{n}(X) \setminus \phi^{n+1}(X)$.

This defines ψ on all of \mathbb{N}. The map is injective since

$$(\phi^{n}(X) \setminus \phi^{n+1}(X)) \cap (\phi^{m}(X) \setminus \phi^{m+1}(X)) = \emptyset$$

if $n \neq m$. \qed

A set X is *countable* if there exists a bijection from \mathbb{N} to X.

Problem 1 Show that:

- \mathbb{Z} is countable.
- The union of two countable sets is countable.

Theorem 2 The product of two countable sets is countable.

Proof. We just need to show that $\mathbb{N} \times \mathbb{N}$ is countable. We can write $\mathbb{N} \times \mathbb{N}$ in a list:

$$(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (4, 1), (2, 3), (3, 2), (4, 1), \ldots$$

\qed

Problem 2 Explicitly write down a bijection from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$.

Theorem 3 An infinite subset of a countable set is countable.
Proof. We can assume that the countable set is \(\mathbb{N} \). Let \(A \) be an infinite subset of \(\mathbb{N} \). Every subset of \(\mathbb{N} \) has a least element. We use this fact to inductively define a bijection \(\psi : \mathbb{N} \to A \).

Define \(\psi(1) \) to be the least element of \(A \) and let \(A_1 = A \setminus \{ \psi(1) \} \). Now assume we have defined \(\psi(k) \) and \(A_k \) for \(k \in \{1, \ldots, n\} \). Then we inductively define \(\psi(n+1) \) to be the least element of \(A_n \) and define \(A_{n+1} = A_n \setminus \{ \psi(n) \} \). This define an injective map \(\psi \) from \(\mathbb{N} \) to \(A \).

We need to show that \(\psi \) is surjective. We claim that \(\psi(n) \geq n \). We again use induction. Clearly \(\psi(1) \geq 1 \) since 1 is the least element of \(\mathbb{N} \) and \(\psi(1) \in A \subseteq \mathbb{N} \). Now assuming that \(\psi(n) \geq n \) we will show that \(\psi(n+1) \geq n + 1 \). Note that \(\psi(n) \) is strictly less than any element of \(A_n \) so \(\psi(n) < \psi(n+1) \) or \(\psi(n) + 1 \leq \psi(n+1) \). Since \(\psi(n) \geq n \) we have \(\psi(n+1) \geq n + 1 \) as desired.

Since \(\psi(n) \geq n \) for all \(n \in \mathbb{N} \) we have \(n \not\in A_m \) for \(n \leq m \). If \(n \in A \) and \(n \not\in A_n \) then we must have \(\psi(m) = n \) for some \(m < n \) proving that \(\psi \) is surjective.

Theorem 4 Let \(S(X) \) be the set of all subsets of a set \(X \). Then there is an injective map from \(X \) to \(S(X) \) but there is no surjective map from \(X \) to \(S(X) \). In particular there are infinite sets that are not countable.

Proof. The map \(x \mapsto \{ x \} \) is an injective map from \(X \) to \(S(X) \).

Now we see there is no surjective map. Let \(\psi : X \to S(X) \) be a map and define a susbset \(A \) by

\[
A = \{ x | x \not\in \psi(x) \}.
\]

We claim that \(A \) is not in the image of \(\psi \).

We work by contradiction and suppose there is an \(x \in X \) such that \(\psi(x) = A \). There are two cases.

Case 1: Suppose \(x \) is in \(A \). Then \(x \in \psi(X) = A \) so \(x \not\in A \) which is a contradiction.

Case 2: Suppose \(x \) is not in \(A \). Then \(x \not\in \psi(X) = A \) so \(x \in A \) which is again a contradiction.

Therefore there does not exist an \(x \in X \) with \(\psi(x) = A \) and \(\psi \) is not surjective.

We’d also like to prove that the real numbers are not countable. We first give a definition of a real numbers. Our definition is not the usual one but it is convenient for showing that \(\mathbb{R} \) is not countable.

A real number is a function \(f : \mathbb{Z} \to \{0, 1, \ldots, 9\} \) with the following properties:

1. There exits an \(N > 0 \) such \(f(n) = 0 \) if \(n > N \);
2. For every \(n \) such that \(f(n) = 9 \) there is an \(m < n \) such that \(f(m) \neq 9 \).
Here is an example. There real number 32.71 is represented by the function f with $f(1) = 3$, $f(0) = 2$, $f(-1) = 7$, $f(-2) = 1$ and $f(n) = 0$ for $n \not\in \{0, -1, -2\}$. A more complicated example is the number $1/7$. This number is represented by a function f with $f(-1) = 1$, $f(-2) = 4$, $f(-3) = 2$, $f(-4) = 8$, $f(-5) = 5$, $f(-6) = 7$, $f(n) = f(n + 6)$ if $n < -6$ and $f(n) = 0$ if $n \geq 0$.

Theorem 5 \mathbb{R} is uncountable.

Proof. Let ϕ be a map from \mathbb{N} to \mathbb{R} and let $f_n = \phi(n)$. We will show that ϕ is not surjective. Define $g \in \mathbb{R}$ by setting $g(n)$ to be some element of $\{0, 1, \ldots, 8\} \setminus \{f_n(n)\}$ if $n < 0$ and $g(n) = 0$ if $n \geq 0$. Then $g \neq f_n$ for any $n \in \mathbb{N}$ since $g(n) \neq f_n(n)$. Therefore ϕ is not surjective.

The number $f \in \mathbb{R}$ **eventually periodic** if there exists and $N \in \mathbb{Z}$ and a $k \in \mathbb{N}$ such that $f(n) = f(n - k)$ if $n < N$. The **period** of f is k.

Problem 3 Show that f is rational if and only if f is eventually periodic. (**Hint:** To show that and eventually periodic f is rational show $10^k f - f$ is rational where k is the period of f. It is harder to show that a rational number has a eventually periodic decimal expansion is harder.)

If f and g are real numbers we define $f > g$ if there exists an $n_0 \in \mathbb{Z}$ such that $f(n) = g(n)$ for all $n > n_0$ and $f(n_0) > g(n_0)$.

Problem 4 Let f_0 and f_1 be real numbers. Show that there exists a rational number g_0 and an irrational number g_1 such that $f_0 < g_i < f_1$ for $i = 1, 2$.

3