Notes and problems on compactness

Let \mathcal{O} be a collection of open sets in \mathbb{R}^n. Then \mathcal{O} is an open cover of a set $A \subset \mathbb{R}^n$ if $A \subset \bigcup_{U \in \mathcal{O}} U$.

A set K is compact if every open cover has a finite subcover. That is K is compact if for every open cover \mathcal{O} there are sets $U_1, \ldots, U_k \in \mathcal{O}$ such that

$$K \subset \bigcup_{i=1}^k U_i.$$

Theorem 1 A compact set is closed.

Proof. We will prove the contrapositive. Assume that A is not closed. We will construct an open cover that has no finite subcover. Since A is not closed there exists a sequence $\{x_i\}$ in A that converges to some $x \not\in A$. Note that

$$\left(\bigcup_{i=1}^{\infty} \{x_i\} \right) \cup \{x\}$$

is closed set so its complement, which we denote U, is open. Let \mathcal{O} be the collection of balls $B_{d(x_i,x)/2}(x_i)$ and the set U. Then \mathcal{O} is an open cover of A. We will show that \mathcal{O} has no finite subcover.

Let \mathcal{O}' be a finite subcollection of the open sets in \mathcal{O}. Since \mathcal{O}' contains only finite many sets there exists an N such that if $i > N$ then $B_{d(x_i,x)/2}(x_i)$ is not in \mathcal{O}'. Let $\epsilon = \min\{d(x_1,x)/2, \ldots, d(x_N,x)/2\}$. Since $x_i \to x$ there exists an n_0 such that $d(x_{n_0},x) < \epsilon$. By the triangle inequality $d(x_i,x) \leq d(x_i,x_{n_0}) + d(x_{n_0},x)$ and after rearranging this becomes $d(x_i,x_{n_0}) \geq d(x_i,x) - d(x_{n_0},x)$. If $i \leq N$ then $d(x_i,x) \geq 2\epsilon$ so we have $d(x_i,x_{n_0}) > 2\epsilon - \epsilon = \epsilon$. In particular $x_{n_0} \not\in B_{d(x_i,x)/2}(x_i)$. Since x_{n_0} is also not in U the open sets in \mathcal{O}' cannot cover A and \mathcal{O} has no finite subcover. \qed

Theorem 2 If A is a subset of K, A is closed and K is compact then A is compact.

Proof. Let \mathcal{O} be an open cover of A. Let \mathcal{O}' be all of the open sets in \mathcal{O} and the open set A^c. Then \mathcal{O}' is an open cover of K and therefore there are finitely many open sets U_1, \ldots, U_n each in \mathcal{O}', that cover K. If A^c is not one of the U_i then all of the U_i are in \mathcal{O} and they are a finite subcover. If A^c is one of the U_i, say U_n, then U_1, \ldots, U_{n-1} are all in \mathcal{O}. But U_1, \ldots, U_{n-1} are also a finite subcover of A because if $x \in A \subset K$ then $x \in U_i$ for some i since the U_i cover K. Since $x \not\in U_n = A^c$ we must have $x \in U_i$ for some $i \leq n - 1$ and therefore the U_1, \ldots, U_{n-1} cover A. \qed
Theorem 3 Let K_i be non-empty compact sets with $K_{i+1} \subset K_i$. Then
\[\bigcap_{i=1}^{\infty} K_i \neq \emptyset. \]

Proof. We assume the intersection is empty and we will obtain a contradiction. The sets K_i are closed and hence compact so the sets $U_i = K_i^c$ are open. Since
\[\bigcup_{i=1}^{\infty} U_i = \bigcup_{i=1}^{\infty} K_i^c = \left(\bigcap_{i=1}^{\infty} K_i \right)^c = \emptyset^c = \mathbb{R}^n \supset K_1, \]
the collection $\{U_i\}$ is an open cover of K_1. Since
\[\bigcup_{i=1}^{n} U_i = U_n = (K_n)^c \]
no finite subcollection of the U_i covers K_1. This contradicts the compactness of K_1 so the intersection must be non-empty. \qed

Theorem 4 Let $I_n = [a_n, b_n]$ be a sequence of nested intervals, i.e. $I_{n+1} \subset I_n$ for all n. Show that
\[\bigcap_{n=1}^{\infty} I_n \neq \emptyset. \]

Proof. Let n and m be positive integers with $n \leq m$. Then $I_n \subset I_m$ so $a_n \leq a_m \leq b_m \leq b_n$. In particular $a_i < b_j$ for all i and j. This implies that
\[a = \sup\{a_i\} \leq b_i \]
for all i. By the definition of the supremum we also have $a \geq a_i$ for all i so $a \in I_i$ for all i and the intersection is non-empty. \qed

A closed n-cell is a product of closed intervals. That is
\[Q = [a_1, b_1] \times \cdots \times [a_n, b_n] \]
is a closed n-cell.

Problem 1 Show that a nested family of closed n-cells has a non-empty intersection.
Theorem 5 A closed n-cell Q is compact.

Proof. We will assume Q is not compact. Then there exists an open cover, \mathcal{O}, of Q that contains no finite subcover. We will construct a sequence of nested, closed n-cells $Q_0 \supset Q_1 \supset Q_2 \ldots$ with the property that for each Q_i the collection \mathcal{O} is a cover with no finite subcover and such that diam$(Q_i) \to 0$.1

Assuming we have constructed the Q_i, we can finish the proof. By Problem 1 the intersection

$$Q_\infty = \bigcap_{i=0}^{\infty} Q_i$$

is non-empty. We claim that Q_∞ contains only one point. Let x and y be points in Q_∞. Since diam$(Q_i) \to 0$ for $\epsilon > 0$ there exists an k such that diam$(Q_k) < \epsilon$. Both x and y are in Q_k so $d(x, y) < \epsilon$ and as ϵ is arbitrary we must have $d(x, y) = 0$. Therefore $x = y$ and Q_∞ contains only one point which we label q.

Let U be an open set in the collection \mathcal{O} with $q \in U$. Since U is open there exists a $\delta > 0$ such that $B_\delta(q) \subset U$. Again using the fact that diam$(Q_i) \to 0$ we can find an m such that diam$(Q_m) < \delta$. By the definition of diameter, if A is a set with $d >$ diam(A) and $x \in A$ then $A \subset B_d(x)$. In particular, $Q_m \subset B_\delta(q) \subset U$. This gives us a contradiction since $\{U\}$ is a finite subcover of Q_m.

Now we need to construct the Q_i. We will do so inductively. We begin by setting $Q_0 = Q$. By assumption \mathcal{O} has no finite subcover of Q_0. The n-cell Q_0 is the product of n-intervals. We can assume the longest interval has length ℓ.

Now assume we have constructed nested, closed n-cells $Q_0 \subset Q_1 \subset \cdots \subset Q_{k-1}$ such that \mathcal{O} has no finite subcover on any of the Q_i and the length of the longest side of Q_i is $2^{-i}\ell$. To choose Q_n we subdivide Q_{k-1} into 2^n closed n-cells which we label $Q_{k,1}, \ldots, Q_{k,2^n}$. The $Q_{k,i}$ are of the following form. The n-cell Q_{n-1} is the product of n intervals, $[a_1, b_1], \ldots, [a_n, b_n]$. Let c_i be the midpoint of $[a_i, b_i]$. Then each $Q_{k,i}$ is a product $I_1 \times \cdots \times I_n$ with each I_j either the interval $[a_j, c_j]$ or the interval $[c_j, b_j]$. For each I_j there are two choices of intervals and there are n intervals I_j so there are exactly 2^n possible $Q_{k,i}$. Note that $Q_{k-1} = \bigcup Q_{k,i}$ so if \mathcal{O} has a finite subcover for each the $Q_{k,i}$ then \mathcal{O} has a finite subcover on Q_{k-1}. Since we are assuming this is not true there is some Q_{k,i_k} such that \mathcal{O} doesn’t have a finite subcover on Q_{k,i_k}. Let $Q_k = Q_{k,i_k}$.

To finish the construct of the Q_i we need to calculate the length of the longest interval in product Q_k. This is easy to do since the length of the intervals in the product that forms Q_k are exactly half the length of the intervals in Q_{k-1}. Therefore the length of the longest interval is $2^{-1} \times 2^{-(k-1)}\ell = 2^{-k}\ell$ and we have inductively found nested, closed n-cells Q_i with the length of the longest interval in each Q_i exactly $2^{-i}\ell$. An application

\footnote{The diameter of a set A is defined to be diam$(A) = \inf\{d|f(x, y) \in A \text{ then } d(x, y) \leq d\}$.
of the triangle inequality shows that \(\text{diam}(Q_i) \leq n2^{-i}\ell\) so \(\text{diam}(Q_i) \to 0\) as \(i \to \infty\).

Problem 2 Let \(x_n\) be a sequence with no convergent subsequence. Show that the set \(\{x_1, x_2, \ldots\}\) is closed.

Problem 3 A point \(x\) is isolated in a set \(A \subset \mathbb{R}^n\) if there exists an \(\epsilon > 0\) such that \(B_\epsilon(x) \cap A = \{x\}\). Show that \(x\) is isolated if and only if there doesn’t exist a sequence of distinct points \(x_i \in A\) with \(x_i \to x\).

Theorem 6 Let \(K\) be a subset of \(\mathbb{R}^n\). The following are equivalent:

1. \(K\) is closed and bounded;
2. \(K\) is compact;
3. Every sequence in \(K\) has a subsequence that converges in \(K\).

Proof. (1 \(\Rightarrow\) 2) A bounded set is contained in some closed \(n\)-cell \(Q\). By Theorem 5, Since \(K\) is a closed subset of a compact set \(K\) is compact by Theorem 2.

(2 \(\Rightarrow\) 3) Let \(x_n\) be a sequence in \(K\). If the sequence has a convergent subsequence then the limit is in \(K\) since \(K\) is compact and therefore closed. In this case we are done.

Now we assume the sequence has no convergent subsequence and we will obtain a contradiction. Then by Problem 2 the set \(C = \{x_1, x_2, \ldots\}\) is closed. By Theorem 2, \(C\) is also compact. Problem 3 implies that every point in \(C\) is isolated. In particular, for each \(x_i\) there is an \(\epsilon_i\) such that \(B_{\epsilon_i}(x_i) \cap C = \{x_i\}\). The collection \(\mathcal{O} = \{B_{\epsilon_i}(x_1), B_{\epsilon_2}(x_2), \ldots\}\) is an open cover of \(C\). However if we remove any of the \(B_{\epsilon_i}(x_i)\) from \(\mathcal{O}\) we no longer have an open cover since \(x_i\) is not in any of the open subsets. Therefore \(\mathcal{O}\) has no finite subcover, contradicting the compactness of \(C\).

(3 \(\Rightarrow\) 1) We will prove the contrapositive. If \(K\) is not closed there exists a sequence \(\{x_i\}\) in \(K\) such that \(x_i \to x\) but \(x \notin K\). Every subsequence \(\{x_i\}\) will then also converge to \(x\) so \(\{x_i\}\) has no subsequence that converges in \(K\).

If \(K\) is not bounded, for each \(i\) we can find an \(x_i \in K\) such that \(d(x_i, 0) > i\). Given an \(i\) choose \(j\) such that \(j_0 > d(x_i, 0) + 1\). Then for all \(j > j_0\), \(d(x_i, x_j) \geq d(x_j, 0) - d(x_i, 0) > j_0 - d(x_i, 0) > 1\). This implies that \(\{x_i\}\) has no Cauchy, and therefore no convergent, subsequence.
We now define the Cantor set, C, in a way somewhat different than was done in class. Define

$$C = \left\{ x \in [0,1] | x = \sum_{i=1}^{\infty} \frac{a_i}{3^i} \text{ where } a_i \in \{0,2\} \right\}.$$

Some examples of points in C are $2/3$ and $2/9$. It is less obvious, but $1/3$ is also in C since $1/3 = \sum_{i=2}^{\infty} 2/3^i$.

Problem 4 Show that the Cantor set is:

1. closed;
2. has no interior;
3. has no isolated points;
4. is uncountable.