Notes on length and conformal metrics

We recall how to measure the Euclidean distance of an arc in the plane. Let « :
[a,b] — R? be a smooth (C') arc. That is a(t) = (x(t),y(t)) where z(t) and y(t) are
smooth real valued functions. Then the length of « is the integral
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Note that if « is only piecewise smooth we can still define |a|. In particular if « is
piecewise smooth the derivative o’ will be defined at all but finitely many points in the
interval [a, b] so the above integral still makes sense.

Many formulas become simpler by using complex notation. That is we think of « as
a map to C by setting a(t) = z(t) + wy(t). Then o/(t) = 2/(t) + 2/ (¢) is also a complex
number. Thought of as a complex number the absolute value of «(t) gives us the same
answer: |o/(t)] = v/2'(t)? + 1/ (t). Note that the using the books notation we have
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Let € be an open subset of R? that contains the image of o and let f : O — R?
be a smooth function. We then have a new path define by & = f o . To calculate the
length of & we use the chain rule. In particular, if f(z,y) = (u(z,y),v(x,y)) then &'(¢),
written as a column vector, is
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We can think of f has a complex function by setting z =z + 1y and f = u +w. If
f is holomorphic we really see the advantage of using complex notation. The Cauchy-

Riemann equations tell us that u, = v, and v, = —u,. Furthermore the complex
derivative of f is f’ = u, + w,. If we treat @'(t) as a complex number we see that

a = ugr’ — vy +(ver + ugy’)
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That is we have &' (t) = f/(a(t))’(t). This gives a very simple formula for the length of
a: ,
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We say that f is an isometry of the Euclidean metric if the length of every path «
is equal to the length of the path @ = f o a. Clearly f is an isometry if |f/| = 1. In fact



it is not hard to see that this is also a necessary condition since if |f’(2)] < 1 at z then
by continuity this will be true in a neighborhood U of z. For any path a whose image
is contained in U we will then have that & is shorter than o. We can make a similar
argument if |f'(z)| > 1 at z.

In a homework problem we saw that any holomorphic function that had a constant
absolute vale must be constant. In class we will soon see that the derivative, f’, of
a holomorphic function is also holomorphic. For now we take this as an assumption.
Therefore if |f'(z)] = 1 then f’(z) = ¢ where |¢] = 1 and f must be of the form
f(2) = ez + d where d is an arbitrary complex number.

It is often useful to use alternative definitions of a distance. In particular if €2 is again
an open subset of R? let \ : Q — R be a positive function. We can define the length of
«a with respect to A\ by
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If we have two different metrics defined by functions A and p we can then discuss
whether f is an isometry from the A-metric to the p-metric. To measure the length & in
the p-metric we have the formula
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For this to be the same as the A-length of « for all paths a we need to have

[ (a(®)lp(f(e(t))) = Ma(t))
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Note that this formula gives us a way for defining a metric. In particular if p = 1 then
the p-metric is just the standard Euclidean metric. If we define A by setting

Az) = [f'()]

then f will be an isometry from the A-metric to the Euclidean metric. If we define A by

A=) =1f"(2)lp(f(2))

then f is an isometry from A-metric to the p-metric.
One very useful metric that we will work with is the hyperbolic metric. It is defined
on the upper half plane of C which we define as

H? ={2€C:Imz > 0}.



The hyperbolic metric is Ag2(z) = . The isometries of the hyperbolic metric are

linear fractional transformations that preserve the upper half plane. Namely let
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where a,b,c,d € R and ad — bc = 1. Then
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We also need to calculate Im 7'(2):
2ImT(z) = T(z)—T(z)
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so T'(z) is an isometry for the hyperbolic metric.
We can use the metric A to define a distance function on the region Q. Let P(zo, 21)
be the set of piecewise smooth paths in 2 from zy to z1. We then define

dx(zp,21) = inf aly.
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It is easy to check that d) satisfies the properties of a distance function:



1. Clearly dy(z0,21) = da(z1, 20) since by reversing directions any path from zy to z;
becomes a path from z; to zy of the same length.

2. Tt is also easy to check the triangle inequality. (Here it is important that we are
allowing piecewise smooth paths.) If we concatenate a path from zy to z; with a
path from z; to z; we obtain a path from zy to z9. In particular if there is a path
of length ¢y from zg to z; and a path of length ¢; from 21 to z9 then there is a path
of length ¢y + ¢1 from 2y to z1. This implies that

dx (20, 22) < d(z0,21) + d(21, 22).

3. Finally we need to see that d(zp,z1) = 0 iff zp = z;. The function A is continuous
and positve so for any zp there is an € > 0 and an r > 0 so that on the Euclidean
disk of radius r such that A > € on the disk. Let a be a path from zy to z1. If a is
contained in this Euclidean disk then |a|y > €|la| > ed(z0,21) > 0 if 29 # z1. If «
is not contained in the disk there is a sub-path o’ connecting 2y to the boundary
of the disk so |a|y > |&/[x > er > 0. In particular if z; # 2; is in the disk then
dx(z0,21) > €d(z0,21) > 0 and if z; is not in the disk then d(zp,21) > er > 0 so
d(zo,21) > 01if z9 # z1. It is clear that d(zp,21) = 0 if 21 = zp.

The distance function makes (€2, dy) into a metric space and we will be able to use
all the properties of metric spaces to study it. We also note if p < A defines another
metric on €2 then d,(20,21) < dx(20,21) for all points zg, 21 € Q.

Problems

1. Let A be the unit disk in C. Construct a linear fraction transformation S : C — C
that takes A to the upper half plane.
2. Define a metric p on A by the formula
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Show that S is an isometry from the p-metric to the hyperbolic metric Agz. In
particular, the metric p on A is another representation of the hyperbolic metric.
To emphasize this we write p as ppz2.

3. The f(z) = 2% take A to itself. Show that for any two points zg # 21 in A we have

dpys (f(20), f(21)) < dpys (20, 21)-



4. Define a metric on C by o(z) = Given a point z € C find a linear fractional
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transformation R with R(0) = z, R(co) = —1 and such that R is an isometry for

o-metric.

Comments: Problem 3 is an example of a very important and much more general
phenomenom. In particular any holomorphic map that takes A into itself will be a
contraction of the hyperbolic metric. This is essentially the Schwarz Lemma which we
will (soon!) prove in class.



