Math 6220
Homework 2
February 7, 2007

Problem 1.2.4.2

The vertices of the cube on the unit sphere are the points $\left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}\right)$. Using the formula $(x, y, t) \rightarrow z=\frac{x+i y}{1-t}$, we see that the 8 vertices are mapped to $\frac{ \pm \frac{1}{\sqrt{3}} \pm i \frac{1}{\sqrt{3}}}{1 \pm \frac{1}{\sqrt{3}}}$.
Problem 2.1.2.1 We want to show that the composition of two differentiable functions has a derivative. Assume first that f is differentiable at a point z_{0} and g is differentiable at the point $w_{0}=f\left(z_{0}\right)$, and then define the following function:

$$
h(w)=\left\{\begin{array}{cl}
\frac{g(w)-g\left(w_{0}\right)}{w-w_{0}}, & \text { if } w \neq w_{0} \\
g^{\prime}\left(w_{0}\right), & \text { if } w=w_{0}
\end{array}\right.
$$

$h(w)$ is continuous when $w \neq w$, since g is differentiable, and it is also continuous at $w=w_{0}$ since by definition $g^{\prime}\left(w_{0}\right)=\lim _{w \rightarrow w_{0}} \frac{g(w)-g\left(w_{0}\right)}{w-w_{0}}$. Next, one may write the expression

$$
g(w)-g\left(w_{0}\right)=h(w)\left(w-w_{0}\right)
$$

Making the subsitution $w_{0} \mapsto f\left(z_{0}\right)$ and $w \mapsto f(z)$ and dividing both sides by $z-z_{0}\left(z \neq z_{0}\right)$ yields

$$
\frac{g(f(z))-g\left(f\left(z_{0}\right)\right)}{z-z_{0}}=h(f(z)) \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} .
$$

We may take the limit of both sides of the above, as $z \rightarrow z_{0}$, since h is a continuous function and because $g(z)$ is analytic. This yields the expression

$$
\lim _{z \rightarrow z_{0}} \frac{g(f(z))-g\left(f\left(z_{0}\right)\right)}{z-z_{0}}=\lim _{z \rightarrow z_{0}} h(g(z)) \lim _{z \rightarrow z_{0}} \frac{g(z)-g\left(z_{0}\right)}{z-z_{0}},
$$

where the limit distributes on the right hand side because both limits exist and are well defined. Using the definition of the derivative, the above expression is equivalent to $g(f(z))^{\prime}=g^{\prime}(f(z)) f^{\prime}(z)$, and of course since $g^{\prime}(f(z))$ and $f^{\prime}(z)$ are well defined, f composed with g has a well defined derivative and thus is analytic.

Problem 2.1.2.3

Put $u(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$. By calculation,

$$
\begin{array}{ll}
u_{x}=3 a x^{2}+2 b x y+c y^{2} & , \quad u_{x x}=6 a x+2 b y \\
u_{y}=3 d y^{2}+2 c x y+b x^{2}
\end{array} . \quad, \quad u_{y y}=6 d y+2 c x .
$$

By the requirment that u is harmonic, $\triangle u$ must be 0 or $u_{x x}+$ $u_{y y}=0$ for all $x, y \in \mathbb{R}$. It follows that $c=-3 a$ and $b=-3 d$ and u is rewritten as

$$
u(x, y)=a x^{3}-3 d x^{2} y-3 a x y^{2}+d y^{3} \quad a, d \in \mathbb{R}
$$

Now we determine v, the conjugate harmonic function of u
(i) By integration

Since $v_{y}=u_{x}=3 a x^{2}-6 d x y-3 a y^{2}, v$ has the form

$$
v(x, y)=3 a x^{2} y-3 d x y^{2}-a y^{3}+C(x)
$$

and since $v_{x}=-u_{y}$,

$$
6 a x y-3 d y^{2}+C^{\prime}(x)=-3 d y^{2}+6 a x y+3 d x^{2}
$$

therefore, $C(x)=d x^{3}+C$. It follows

$$
v(x, y)=d x^{3}+3 a x^{2} y-3 d x y^{2}-a y^{3}+C
$$

(ii) We find v by the fact that $f(z)=u+i v=2 u\left(\frac{z}{2}, \frac{z}{2 i}\right)$.

$$
\begin{aligned}
2 u\left(\frac{z}{2}, \frac{z}{2 i}\right) & =2\left(a \frac{z^{3}}{8}-3 d \frac{z^{2}}{4} \frac{z}{2 i}-3 a \frac{z}{2} \frac{z^{2}}{4 i^{2}}+d \frac{z^{3}}{8 i^{3}}\right) \\
& =\frac{z^{3}}{4}(a+3 d i+3 a+d i) \\
& =\left(x^{3}+3 i x^{2} y+3 x i^{2} y^{2}+i^{3} y^{3}\right)(a+d i) \\
& =\left(x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right)\right)(a+d i) \\
& =3 x^{3}-3 a x y^{2}-3 d x^{2} y+d y^{3}+i\left(d x^{3}-3 d x y^{2}+3 a x^{2} y-a y^{3}\right)
\end{aligned}
$$

Hence, $v(x, y)=d x^{3}+3 a x^{2} y-3 d x y^{2}-a y^{3}+C$.
Problem 2.1.2.4
Assume that f is analytic and $|f(z)|=c$ for all z where $c \neq 0 \in \mathbb{R}$. Note that you can assume that $c \neq 0$, since $|f(z)|=0$ implies that $z=0$. Notice that

$$
|f(z)|^{2}=c^{2} \Leftrightarrow f(z) \overline{f(z)}=c^{2} \Leftrightarrow \overline{f(z)}=\frac{c^{2}}{f(z)} .
$$

This shows that \bar{f} is analytic as long as f is analytic and nonzero. From this you can conclude that both f and \bar{f} satisfy the CauchyRiemann equations. Let $f(x, y)=u(x, y)+i v(x, y)$. You have that

$$
\begin{array}{ll}
u_{x}=v_{y} & u_{x}=-v_{y} \\
u_{y}=-v_{x} & u_{y}=v_{x} .
\end{array}
$$

The above implies that $u_{x}=u_{y}=0$ and $v_{x}=v_{y}=0$. Integrating u_{x} with respect to x yields:

$$
u(x, y)=\int 0 d x=\varphi(y)
$$

where φ is some real valued function of y. Now, differentiating with respect to y gives you $u_{y}=\varphi^{\prime}(y)$. Since this must be zero, you have that $\varphi(y)=a$ where $a \in \mathbb{R}$ and hence, $u(x, y)=a$. Using a similiar arguement, you can show that $v(x, y)=b$ where $b \in \mathbb{R}$. Therefore, $f(z)=a+b i$.
Problem 2.1.2.7 Show that a harmonic function satisfies the formal differential equation

$$
\frac{\partial^{2} u}{\partial z \partial \bar{z}}=0
$$

Let u be harmonic. Thus, $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$. Using the definitions for $\frac{\partial f}{\partial z}$ and $\frac{\partial f}{\partial \bar{z}}$ on page 27 of Ahlfors, we have

$$
\frac{\partial u}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial u}{\partial x}+i \frac{\partial u}{\partial y}\right),
$$

and so

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial z \partial \bar{z}} & =\frac{\partial}{\partial z}\left(\frac{\partial u}{\partial \bar{z}}\right) \\
& =\frac{\partial}{\partial z}\left(\frac{1}{2}\left(\frac{\partial u}{\partial x}+i \frac{\partial u}{\partial y}\right)\right) \\
& =\frac{1}{2} \frac{\partial}{\partial z}\left(\frac{\partial u}{\partial x}+i \frac{\partial u}{\partial y}\right) \\
& =\frac{1}{2} \cdot \frac{1}{2}\left(\frac{\partial}{\partial x}\left[\frac{\partial u}{\partial x}+i \frac{\partial u}{\partial y}\right]-i \frac{\partial}{\partial y}\left[\frac{\partial u}{\partial x}+i \frac{\partial u}{\partial y}\right]\right) \\
& =\frac{1}{4}\left(\frac{\partial^{2} u}{\partial x^{2}}+i \frac{\partial^{2} u}{\partial x \partial y}-i \frac{\partial^{2} u}{\partial y \partial x}+\frac{\partial^{2} u}{\partial y^{2}}\right) \\
& =0
\end{aligned}
$$

since $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ and $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$.
Problem 2.1.4.2
Since there are n distinct roots, then each root, α_{i}, is called a simple zero and is characterized by the condition $Q\left(\alpha_{i}\right)=0$ and $Q^{\prime}\left(\alpha_{i}\right) \neq 0$. So we have

$$
\frac{P(z)}{Q(z)}=\frac{P(z)}{\left(z-\alpha_{1}\right) \ldots\left(z-\alpha_{n}\right)}=\frac{A_{1}}{\left(z-\alpha_{1}\right)}+\ldots \frac{A_{n}}{\left(z-\alpha_{n}\right)}
$$

for $A_{1}, \ldots A_{n}$ unknown. Now notice,

$$
\begin{align*}
Q^{\prime}(z) & =\left[\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \ldots\left(z-\alpha_{i-1}\right)\left(z-\alpha_{i}\right)\left(z-\alpha_{i+1}\right) \ldots\left(z-\alpha_{n}\right)\right]^{\prime} \\
& =\left[\left(z-\alpha_{i}\right)\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \ldots\left(z-\alpha_{i-1}\right)\left(z-\alpha_{i+1}\right) \ldots\left(z-\alpha_{n}\right)\right]^{\prime} \\
& =\left(z-\alpha_{i}\right)^{\prime}\left[\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \ldots\left(z-\alpha_{i-1}\right)\left(z-\alpha_{i+1}\right) \ldots\left(z-\alpha_{n}\right)\right] \\
& +\left[\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \ldots\left(z-\alpha_{i-1}\right)\left(z-\alpha_{i+1}\right) \ldots\left(z-\alpha_{n}\right)\right]^{\prime}\left(z-\alpha_{i}\right) \\
\Rightarrow Q^{\prime}\left(\alpha_{i}\right) & =\left(\alpha_{i}-\alpha_{1}\right)\left(\alpha_{i}-\alpha_{2}\right) \ldots\left(\alpha_{i}-\alpha_{i-1}\right)\left(\alpha_{i}-\alpha_{i+1}\right) \ldots\left(\alpha_{i}-\alpha_{n}\right)
\end{align*}
$$

So we have

$$
\begin{aligned}
\frac{P(z)}{Q(z)} & =\frac{A_{1}}{\left(z-\alpha_{1}\right)}+\frac{A_{2}}{\left(z-\alpha_{2}\right)} \cdots \frac{A_{n}}{\left(z-\alpha_{n}\right)} \\
\Rightarrow P(z) & =\frac{A_{1} Q(z)}{\left(z-\alpha_{1}\right)}+\frac{A_{2} Q(z)}{\left(z-\alpha_{2}\right)} \cdots \frac{A_{n} Q(z)}{\left(z-\alpha_{n}\right)} \\
& =A_{1}\left(z-\alpha_{2}\right)\left(z-\alpha_{3}\right) \ldots\left(z-\alpha_{n}\right) \\
& +A_{2}\left(z-\alpha_{1}\right)\left(z-\alpha_{3}\right) \ldots\left(z-\alpha_{n}\right) \\
& \vdots \\
& +A_{n}\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \ldots\left(z-\alpha_{n-1}\right)
\end{aligned}
$$

To solve for A_{i} we evaluate $P\left(\alpha_{i}\right)$. Notice when we evaluate P at α_{i} we have

$$
\begin{aligned}
P\left(\alpha_{i}\right) & =A_{i}\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \ldots\left(z-\alpha_{i-1}\right)\left(z-\alpha_{i+1}\right) \ldots\left(z-\alpha_{n}\right) \\
& =A_{i} Q^{\prime}\left(\alpha_{i}\right) \quad(\text { by } \diamond) \\
\Rightarrow A_{i} & =\frac{P\left(\alpha_{i}\right)}{Q^{\prime}\left(\alpha_{i}\right)}
\end{aligned}
$$

This is true for every i s.t. $1 \leq i \leq n$ and so our claim is proven.

$$
\begin{aligned}
P(z) & =\frac{P\left(\alpha_{1}\right)}{Q^{\prime}\left(\alpha_{1}\right)\left(z-\alpha_{1}\right)}+\frac{P\left(\alpha_{2}\right)}{Q^{\prime}\left(\alpha_{2}\right)\left(z-\alpha_{2}\right)}+\cdots \frac{P\left(\alpha_{n}\right)}{Q^{\prime}\left(\alpha_{n}\right)\left(z-\alpha_{n}\right)} \\
& =\sum_{i=1}^{n} \frac{P\left(\alpha_{i}\right)}{Q^{\prime}\left(\alpha_{i}\right)\left(z-\alpha_{i}\right)}
\end{aligned}
$$

Problem 2.1.4.3
Proof: Using the conclusion of 2.1.4.2, let

$$
P(Z)=\sum_{k=1}^{n} \frac{C_{k}}{Q^{\prime}\left(\alpha_{k}\right)\left(Z-\alpha_{k}\right)} Q(Z)
$$

then $P\left(\alpha_{k}\right)=C_{k}$, and $\operatorname{deg}(P(Z))<n$. This proves the existence of such polynomial.

If there is another polynomial $G(Z)$, satisfying $G\left(\alpha_{k}\right)=C_{k}$, and $\operatorname{deg}(G(Z))<n$, then $P(Z)-G(Z)$ is a polynomial, whose degree is less than \mathbf{n} and has \mathbf{n} roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. So $P(Z)-G(Z)=0$. Hence $P(Z)=G(Z)$, which implies the uniqueness.

