
Final exam notes for Math 3210

Limits. Let {an} be a sequence. Then

lim an = a

if for all ε > 0 there exists an N such that if n > N then |an − a| < ε. If no such a exists then
the sequence is divergent. The sequence an is Cauchy if for all ε > 0 there exists an N > 0 such
that if n, m > N then |an − am| ≤ ε.

Theorem 0.1 A sequence is convergent if and only if it is Cauchy.

Theorem 0.2 Every bounded sequence of real numbers has a convergent subsequence.

Theorem 0.3 Suppose an → a, bn → b, c is a real number and k a natural number. Then

1. can → ca;

2. an + bn → a + b;

3. anbn → ab;

4. an/bn → a/b if b 6= 0 and bn 6= 0 for all n;

5. ak
n → ak;

6. a
1/k
n → a1/k if an ≥ 0 for all n.

If A is a subset of R the a = supA if a ≥ x for all x ∈ A and a′ ≥ x for all x ∈ A then
x ≤ y. We define inf A be reversing the inequalities. If we allow +∞ and −∞ the supA and
inf A always exist.

Let {an} be a sequence and define in = inf{ak : k ≥ n} and sn = sup{ak : k ≥ n}. Then

lim inf an = lim in

and
lim sup an = lim sn.

Continuity. Let f : D −→ R be a function defined on a domain D ⊂ R. Then

lim
x→a

f = b

if for all ε > 0 there exists a δ > 0 such that if for all x ∈ D with 0 < |x − a| < δ then
|f(x)− b| < ε. The function f is continuous at a if

lim
x→a

f = f(a)

There is a theorem similar Theorem 0.3 for limits of functions.
The function f is uniformly continuous if for all ε > 0 there exists a δ > 0 such that if x, y ∈ D

and |x− y| < δ then |f(x)− f(y)| < ε.
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Theorem 0.4 Let f : [a, b] −→ R be continuous. Then there exits a c and d in [a, b] such that
f(x) ≤ f(c) and f(x) ≥ f(d) for all x ∈ [a, b].

Theorem 0.5 (Intermediate Value Theorem) Let f : [a, b] −→ R be continuous. If y is
between f(a) and f(b) then there exists a x ∈ [a, b] such that f(c) = y.

Theorem 0.6 Let f : [a, b] −→ R be continuous. Then f is uniformly continuous.

A sequence of functions fn : D −→ R converges uniformly to f : D −→ R if for all ε > 0 there
exists an N > 0 such that if n > N then |fn(x)− f(x)| < ε for all x ∈ D.

Theorem 0.7 Let fn : D −→ R be continuous. If fn → f uniformly then f is continuous.

Derivatives. Define the derivative f ′(a) of the function f at a by

f ′(a) = lim
x→a

f(x)− f(a)
x− a

if it exists.
Differentiation rules (abbreviated):

1. (f + g)′(a) = f ′(a) + g′(a);

2. (fg)(a) = f ′(a)g(a) + f(a)g′(a);

3. (f/g)(a) = f ′(a)g(a)−f(a)g′(a)
g2(a) ;

4. (f ◦ g)′(a) = f ′(g(a))g′(a)

Theorem 0.8 (Mean Value Theorem) Let f : [a, b] −→ R be continuous on [a, b] and differ-
entiable on (a, b). Then there exists a c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Theorem 0.9 (L’Hôpital’s Rule) If f(x), g(x) → 0 or f(x), g(x) →∞ as x → a then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.
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Integrals. Let P = {x0 = a < x1 < · · · < xn−1 < xn = b} be a partition of [a, b] and for
k = 1, . . . , n set

Mk = sup{f(x) : x ∈ [xk−1, xk]} and mk = inf{f(x) : x ∈ [xk−1, xk]}.

We then define the upper and lower sums for P by

U(f, P ) =
n∑

k=1

Mk(xk − xk−1)

and

L(f, P ) =
n∑

k=1

mk(xk − xk−1).

We define the upper and lower integrals by

U b
a(f) = inf{U(f, P ) : P is a partition of [0, 1]}

and
Lb

a(f) = sup{L(f, P ) : P is a partion of [0, 1]}.

Then f is integrable if Lb
a(f) = U b

a(f) and we write∫ b

a

f(x)dx = Lb
a(f) = U b

a(f).

Theorem 0.10 f is integrable ⇐⇒ for all ε > 0 there exist a partition P such that U(f, P )−
L(f, P ) < ε ⇐⇒ there exists partitions Pn such that U(f, Pn)− L(f, Pn) → 0.

Properties of integrals (abbreviated):

1.
∫

cf = c
∫

f if c ∈ R;

2.
∫

f +
∫

g =
∫

f + g;

3. |
∫

f | ≤
∫
|f |;

4.
∫ b

a
f(g(t))g′(t)dt =

∫ g(b)

g(a)
f(u)du;

5.
∫ b

a
f(x)g′(x)dx = f(b)g(b)− f(a)g(a)−

∫ b

a
f ′(x)g(x)dx

Theorem 0.11 (Fundamental Theorems of Calculus)

1. ∫ b

a

f ′(x)dx = f(b)− f(a)
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2. Define

F (x) =
∫ x

a

f(t)dt.

If f is continuous at x then F ′(x) = f(x).

Series. Let {an} be a sequence. Then the series
∑∞

k=0 ak converges if the sequence of partial
sums sn =

∑n
k=0 ak converges. If

∑∞
k=0 |ak| converges then the series

∑∞
k=0 ak converges abso-

lutely. If
∑∞

k=0 |ak| doesn’t converge but
∑∞

k=0 ak does then the series converges conditionally.
Tests for convergence and divergence:

1. If
∑∞

k=0 an converges then an → 0.

2. If an ≥ |bn| and
∑∞

k=0 ak converges then
∑∞

k=0 bk converges absolutely.

3. Let {an} be a sequence with 0 ≤ an+1 ≤ an and let f : [0,∞) −→ R be a non-increasing
function such that f(n) = an. Then

∑∞
k=1 ak converges ⇐⇒∫ ∞

1

f(t)dt

converges. If
∑∞

k=1 ak converges then∫ ∞

1

f(x)dx− a1 ≤
∞∑

k=1

ak ≤
∫ ∞

1

f(x)dx.

4. Let ρ = lim sup |an|1/n. Then
∑∞

k=0 ak converges absolutely if ρ < 1 and diverges if ρ > 1.

5. Let ρ = lim |an+1|/|an| if it exists. Then
∑∞

k=0 ak converges absolutely if ρ < 1 and diverges
if ρ > 1.

6. Let {an} be a sequence with 0 ≤ an+1 ≤ an. Then
∑∞

k=0(−1)kak converges ⇐⇒ an → 0.

Let
∑∞

k=0 ck(x− a)k be a power series and let

R =
1

lim sup |ck|1/k
.

Then the power series converges on any interval (r − a, r + a) where r < R.
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