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HYPERBOLIC CONE-MANIFOLDS, SHORT GEODESICS,
AND SCHWARZIAN DERIVATIVES

K. BROMBERG

With his hyperbolic Dehn surgery theorem and later the orbifold theorem,
Thurston demonstrated the power of using hyperbolic cone-manifolds to under-
stand complete, non-singular hyperbolic 3-manifolds. Hodgson and Kerckhoff in-
troduced analytic techniques to the study of cone-manifolds that they have used
to prove deep results about finite volume hyperbolic 3-manifolds. In this paper
we use Hodgson and Kerckhoff’s techniques to study infinite volume hyperbolic
3-manifolds. The results we will develop have many applications: the Bers density
conjecture, the density of cusps on the boundary of quasiconformal deformations
spaces, and for constructing type preserving sequences of Kleinian groups.

The simplest example of the problem we will study is the following: Let M be a
hyperbolic 3-manifold and c a simple closed geodesic in M . Then the topological
manifold M\c also has a complete hyperbolic metric which we call M̂ . How does
the geometry of M compare to that of M̂? Before attempting to answer such a
question, we need to note that if M has infinite volume, the hyperbolic structure
will not be unique. If we do not make further restrictions on the choice of M̂ ,
then there is no reason to expect that M and M̂ will be geometrically close. If
M is convex co-compact, there is a natural choice to make for M̂ . Namely M is
compactified by a conformal structure X . We then choose M̂ to be the unique
geometrically finite hyperbolic structure on M\c with conformal boundary X .

We can now return to our question: How do the geometry of M and M̂ compare?
We will quantify this question in two ways. We will measure the length of geodesics
inM and M̂ and we will measure the geometry of the ends ofM and M̂ by bounding
the distance between the projective structures on their boundaries. What we will
see is that the change in geometry is bounded by the length of the geodesic c in the
original manifold M .

Results of this type were first obtained by McMullen [Mc], in the case of a
quasifuchsian manifold, where the geodesic c is also short on a component of the
conformal boundary. This work has been extended to arbitrary geometrically finite
manifolds by Canary, Culler, Hersonsky and Shalen [CCHS]. Their techniques are
entirely different from ours and one goal of this paper is to give new proofs of their
estimates. These estimates are a key step in proving the density of cusps in the
boundary of quasiconformal deformation spaces of hyperbolic 3-manifolds.
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Our original motivation was another application, the density conjecture. In [Br2]
we construct a family of quasifuchsian cone-manifolds, with cone-angle 4π, approx-
imating any singly degenerate hyperbolic manifold with arbitrarily short geodesics.
The estimates developed here imply that the quasifuchsian cone-manifolds are ge-
ometrically close to smooth quasifuchsian manifolds which will approximate the
degenerate manifold. This is a special case of the Bers density conjecture.

In a joint work with Brock [BB] we extend the results of this paper. In particular
we show that there is a diffeomorphism from M\c to M̂ that is bi-Lipschitz outside
of a tubular neighborhood of c where the bi-Lipschitz constant is bounded by a
constant depending only on the length of the c. Using this result we are able to
prove the density conjecture for all freely indecomposable Kleinian groups without
parabolics.

Another question is the following: Assume Γ is a Kleinian group and Γi is a
sequence of geometrically finite Kleinian groups such that Γi → Γ, algebraically.
Does there exist a type preserving sequence Γ′i of geometrically finite groups also
converging to Γ? Here type preserving means that if elements γi converge to γ,
then γ is parabolic if and only if the γi are parabolic. In a joint work with Brock,
Evans and Souto [BBES] we show that the answer to the question is yes and the
type preserving sequence can be constructed by pinching the short geodesics in the
Γi to cusps. The estimates developed here and extended in [BB] can then be used
to show that the new sequence has the same limit. This question is important
because in many cases the work of Anderson and Canary [AC1, AC2] implies that
type preserving sequences are strong. Work of Evans [Ev], expanding on work of
Canary and Minsky [CM], then implies that the limit is tame.

The starting point for this paper is the local parameterization of hyperbolic
cone-manifolds developed by Hodgson and Kerckhoff for finite volume manifolds
in [HK1] and [HK3] and extended to geometrically finite cone-manifolds in [Br1].
These local results tell us that we can make a small decrease in the cone-angle. To
decrease the cone-angle to zero, we need to ensure that there are no degenerations.
There are three possible types of degenerations that need to be avoided. First,
we need to make sure that the cone-singularity does not develop a point of self
intersection. Second we must show that there is a lower bound for the injectivity
radius of the cone-manifold. Finally the geometry of the geometrically finite ends
must be controlled. The first two problems are taken care of by work of Hodgson
and Kerckhoff. It is the last problem that is the main work of this paper.

We now outline the remainder of the paper.
In §1 we make enough definitions to state our main theorems.
In §2 we review background material on projective structures, hyperbolic cone-

manifolds and deformations thereof.
In §3 we describe some of Hodgson and Kerckhoff’s results on tubes in cone-

manifolds. In particular, they derive estimates on the radius of embedded tubes
about the cone-singularity. We also use these ideas to show that embedded hy-
perbolic half spaces are disjoint from these tubular neighborhoods of the cone-
singularity.

In §4 we use the analytic deformation theory of cone-manifolds to control the
length of geodesics as the cone-angle decreases (Theorem 1.4). Again the key esti-
mates are work of Hodgson and Kerckhoff.
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§5 is the heart of the paper. In this section we show that the L2-norm of the
cone-manifold deformation bounds the change in projective structure (Theorem
1.3). We first do this for a hyperbolic half space and then use the work from §3 to
find a large embedded half space in each geometrically finite end which allows us
to globally bound the deformation of the entire projective structure.

The final step is to understand the geometric limit of a sequence of cone-mani-
folds. Our approach is essentially the same as in [HK4] although a bit of extra care
is needed to take care of the geometrically finite ends. Under certain conditions we
then show that given a geometrically finite cone-manifold, there is a one-parameter
family of cone-manifolds decreasing the cone-angle to zero (Theorem 1.2).

Although all the results of this paper hold for manifolds with rank two cusps,
they are, as is often the case, an annoyance and distraction from the main line of
argument. For this reason we defer the discussion of rank two cusps until §7 where
we show how the L2-norm bounds control the shape of the cusp. We then outline
how this result can be used to finish the proof of the main theorems for manifolds
with rank two cusps.

In §8 we derive our versions of the estimates of McMullen and Canary et al.
mentioned above.

In the appendix we recount mean value theorems for harmonic vector and strain
fields that Hodgson and Kerckhoff proved in an early version of [HK4].

Acknowledgments. As should be obvious to the reader of the above outline,
none of the results in this paper would be possible without the important work of
Hodgson and Kerckhoff on hyperbolic cone-manifolds. Their analysis of harmonic
forms in a neighborhood of the cone-singularity underlies all the estimates derived
in this paper.

I would also like to thank Jeff Brock who originally suggested to me that cone-
manifolds could be used to measure the effect of drilling short geodesics in hyper-
bolic 3-manifolds and the referee whose detailed comments have vastly improved
the exposition of the paper.

Much of the work in this paper was done while I was a post-doc at the University
of Michigan. I would like to thank the department for its hospitality.

1. Geometrically finite hyperbolic cone-manifolds

Before we state the main theorems, we need to define the main object of study,
geometrically finite hyperbolic cone-manifolds. Let N be a compact, differentiable,
3-manifold with boundary, let C be a collection of simple closed curves in the interior
of N and let M be the interior of N\C. A hyperbolic cone-metric is a complete
metric g on the interior of N that restricts to a Riemannian metric with constant
sectional curvature equal to −1 on M ; i.e., a hyperbolic metric. At all components
c of C the metric will be singular; in cylindrical coordinates (r, θ, z) the metric will
locally have the form

dr2 + sinh2 rdθ2 + cosh2 rdz2

where θ is measured modulo the cone-angle α. In this coordinate system the singular
locus will be identified with the z-axis. Note that the cone-angle will be constant
along each component of the cone-singularity.

A complex projective structure on a surface is an atlas of charts to Ĉ with tran-
sition maps Möbius transformations. A hyperbolic cone-metric g is geometrically



786 K. BROMBERG

finite without rank one cusps if it extends to a projective structure on the non-
toroidal components ∂0N of ∂N . To state this more precisely, we recall that hy-
perbolic 3-space H3 is naturally compactified by the Riemann sphere Ĉ. Then g
is geometrically finite if each p ∈ ∂0N has a neighborhood V in N and a map
φ : V −→ H3 ∪ Ĉ such that φ restricted to V ∩ intN is an isometry into H3 and
φ restricted to V ∩ ∂0N defines an atlas for a projective structure on ∂0N . As we
will not discuss rank one cusps in this paper (except briefly in §8), we simply refer
to such metrics as geometrically finite.

A projective structure on a surface S also determines a conformal structure on S.
Moreover, for a fixed conformal structure there will be many projective structures.
We will often need to distinguish between the projective boundary and conformal
boundary of a geometrically finite hyperbolic manifold.

If ∂N contains a torus T , the behavior near infinity is different. A neighborhood
of T in M will be foliated by Euclidean tori of a fixed conformal class with area
decreasing exponentially as the tori exit the end. Such a neighborhood is a rank
two cusp. More explicitly every rank two cusp is the quotient of a subspace of H3

(in the upper half space model) of the form {(z, t)|t ≥ t0} by parabolic isometries
z 7→ z+ 1 and z 7→ z+ τ where Im τ > 0. Note that τ is the Teichmüller parameter
of the tori that foliate the cusp.

As we mentioned in the introduction, we will postpone discussion of rank two
cusps whenever possible. However they cannot be completely avoided because as
the cone-angle limits to zero, a tubular neighborhood of the cone-singularity will
limit geometrically to a cusp. For this reason it is natural to think of a rank two
cusp as a cone-singularity with cone-angle zero. This is of particular importance
for the local parameterization for cone-manifolds that we are about to state.

Let GF(N, C) be the space of geometrically finite hyperbolic cone-metrics on the
interior of N with cone-singularity C and assume GF(N, C) has the compact-C∞

topology. Then GF (N, C) will be GF(N, C) modulo diffeomorphisms which are
isotopic to the identity and that fix each component of C. An equivalence class of
metrics [g] ∈ GF (N, C) assigns to each component of C a cone-angle and to ∂0N
a conformal structure in the Teichmüller space T (∂0N). If C has n components,
there is a map

Ψ : GF (N, C) −→ [0,∞)n × T (∂0N)
with Ψ([g]) = (α1, . . . , αn, X) where αi is the cone-angle of the ith component of
C and X is the conformal boundary. Note that as we discussed in the previous
paragraph, we have allowed the possibility for the cone-angle to be zero in which
case the cone-singularity becomes a rank two cusp. We then have the following
local parameterization:

Theorem 1.1 ([HK1], [HK3], [Br1]). Let [g] ∈ GF (N, C) be a geometrically fi-
nite hyperbolic cone-metric. Suppose the tube radius of the cone-singularity is
≥ sinh−1

(
1√
2

)
. Then Ψ is a local homeomorphism at [g].

Remark. Hodgson and Kerckhoff first proved Theorem 1.1 for finite volume cone-
manifolds with all cone-angles ≤ 2π without the restriction on the tube radius
([HK1]). More recently they have announced that the parameterization holds with
the tube radius condition we give here ([HK2, HK3]). (When the cone-angle is
zero, the tube radius is infinite and the result holds.) The parameterization was
extended to geometrically finite cone-manifolds in [Br1].
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Although it is not necessary, we simplify our notation by assuming that all
the cone-angles are equal to a single cone-angle α. By Theorem 1.1 there is a
neighborhood V of Ψ(g) where Ψ is invertible. Let [gt] = Ψ−1(V ∩ (t, . . . , t,X))
with [g] = [gα].

We set notation that we will use throughout the remainder of the paper. Let
Mt = (M, gt) be the one-parameter family of hyperbolic cone-manifolds coming
from the cone-metrics [gt]. Although the conformal boundary is a fixed confor-
mal structure X , the projective boundary will change. Let Σt denote the pro-
jective boundary of Mt. We label the connected components of the conformal
boundary X1, . . . , Xk and the corresponding components of the projective bound-
ary Σ1

t , . . . ,Σ
k
t .

If γ is a simple closed curve in M , then Lγ(g) = Lγ(g) + ıΘγ(g) is the complex
length of the geodesic representative (if it exists) of γ in (M, g) where Lγ(g) is the
length of γ and Θγ(g) is the twisting. Note that Θγ(g) is defined modulo the cone-
angle if γ is a component of the cone-singularity and modulo 2π if γ is a smooth
geodesic. For the one-parameter family of metrics gt we simplify notation and write
the complex length Lγ(t). We also simplify notation by setting LC(t) = Σ

c∈C
Lc(t).

We now state our first main result:

Theorem 1.2. Let Mα ∈ GF (N, C) be a geometrically finite hyperbolic cone-
metric with all cone-angles α. Suppose the tube radius of the cone-singularity is
≥ sinh−1

√
2. Then there exists an `0 depending only on α such that if Lc(α) ≤ `0

for all c ∈ C, then the one-parameter family of cone-manifolds Mt ∈ GF (N, C) is
defined for all t ≤ α.

Remark. The value sinh−1
√

2 is arbitrary. We have chosen it because it simplifies
some of the other constants that appear in the paper (see Theorem 3.5).

In our next result we control the geometry of the geometrically finite ends as
the cone-angle decreases. In particular we will measure the distance between the
projective boundaries of Mα and Mt. This distance is defined in the next section.
We also note that ‖Σiα‖F is the distance between Σiα and the unique fuchsian
projective structure with conformal structure X i. This is also defined in the next
section.

Theorem 1.3. There exists a C depending only on α, the injectivity radius of the
unique hyperbolic metric on X i and ‖Σiα‖F such that

d(Σiα,Σ
i
t) ≤ CLC(α)

for all t ≤ α.

We can also control the complex length of geodesics in Mt.

Theorem 1.4. For each L > 0 there exists an ε > 0 and A > 0 such that if γ is a
simple closed curve in M with Lγ(α) ≤ L and Lc(α) ≤ ε for all c ∈ C, then

e−ALC(α)Lγ(α) ≤ Lγ(t) ≤ eALC(α)Lγ(α)

and
(1−ALC(α))Θγ(α) ≤ Θγ(t) ≤ (1 +ALC(α))Θγ(α)

for all t ≤ α.
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We note that Theorems 1.3 and 1.4 are proved before Theorem 1.2 at least for
all t ≤ α where Mt is known to exist. In fact these results are used in the proof of
Theorem 1.2.

2. Deforming (PSL2C, X)-structures

Although there is a very general theory of (G,X)-structures, for simplicity we
will restrict ourselves to (PSL2C, X)-structures here. In fact for our purposes X
will either be Ĉ or H3. Then a (PSL2C, X)-structure on a manifold is an atlas of
charts to X with transition maps in PSL2C; i.e., either a 2-dimensional projective
or a 3-dimensional hyperbolic structure. We use the (PSL2C, X) notation simply
so that we can develop together the common elements of the deformation theory of
projective and hyperbolic structures.

An equivalent way to define a (PSL2C, X)-structure is through a developing
map and holonomy representation. A developing map D is a local diffeomorphism
from the universal cover M̃ to X that commutes with a holonomy representation
ρ : π1(M) −→ PSL2C. That is

(2.1) D(γ(x)) = ρ(γ)(D(x))

for all γ ∈ π1(M) and x ∈ M̃ .
Let D(M) be the space of developing maps for M which we topologize with the

compact-C∞ topology. We also define an equivalence relation for developing maps.
We say D1 ∼ D2 if there exists a diffeomorphism ψ : M −→ M isotopic to the
identity and element α ∈ PSL2C such that D1 = α ◦D2 ◦ ψ̃ where ψ̃ is the unique
lift of ψ that is equivariantly isotopic to the identity. Let D(M) be the quotient
space D(M)/ ∼.

To study one-parameter families of (PSL2C, X)-structures we need to make
a definition about vector fields on X and M . We say a vector field v on X is
geometric if the homeomorphisms in the one-parameter flow it defines are elements
of PSL2C. As is well known, the space of geometric vector fields is the Lie algebra
sl2C. Geometric vector fields are analytic in the sense that any geometric vector
field is determined uniquely by its germ at a single point. If M has a (PSL2C, X)-
structure, then a vector field v on M is geometric if for every chart φ, φ∗v is
geometric.

A one-parameter family Mt of (PSL2C, X)-structures on M can be defined
through a one-parameter family of developing maps Dt and holonomy represen-
tations ρt. By taking the derivative of Dt, we can define a family of vector fields
vt on the universal covers M̃t. More precisely, if x is a point in M̃ , then Dt(x) is
a smooth path in X . The derivative D′t(x) will be a tangent vector to the path at
Dt(x). We pull back this tangent vector to TxM̃ via Dt to define the vector field
vt at x.

Although these vector fields are defined on the differentiable manifold M̃ , the
vector field vt has a special automorphic property in the (PSL2C, X)-structure on
Mt. Explicitly, by differentiating (2.1), we see that for each γ ∈ π1(M) the vector
field v − γ∗v is a geometric on M̃t. We say that any vector field that satisfies
this relationship is automorphic. To see how an automorphic vector field describes
the infinitesimal change in geometry, we need to discuss projective structures and
hyperbolic structures separately.
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2.1. Projective structures. A (PSL2C, Ĉ)-structure on a surface S is usually
called a projective structure. As we noted when we first defined projective struc-
tures, a projective structure also defines a conformal structure on S and a fixed
conformal structure X will have many distinct projective structures. We let P (X)
denote the space of projective structures on S with conformal structure X . P (X)
inherits a topology as a subspace of the space of developing maps D(S). We will
only be interested in projective structure deformations contained in P (X), i.e., de-
formations preserving a given conformal structure X . This greatly simplifies the
theory.

The objects that distinguish different projective structures in P (X) are holo-
morphic quadratic differentials. In a local, conformal chart for X a holomorphic
quadratic differential Φ has the form Φ(z) = φ(z)dz2 where φ is a holomorphic func-
tion. On this local chart a conformal metric is determined by a positive, real valued
function σ and has the form σ(z)2dzdz. On a Riemann surface there is at most one
complete, conformal hyperbolic metric and this will always be the metric we will
use. In particular if σ is the hyperbolic metric on X , then ‖Φ(z)‖X = σ−2|φ(z)| is
a well-defined function on S which we define to be the point-wise norm of Φ with
respect to the σ metric. When it is clear which conformal structure is determining
the metric, we will drop the subscript and write the norm ‖Φ(z)‖.

Our first construction of a holomorphic quadratic differential will come from a
conformal vector field v on a projective structure Σ. In a local chart, v has the form
v(z) = g(z) ∂∂z . Since v is conformal, g is a holomorphic function. The Schwarzian
derivative Sv of v is a quadratic differential defined in a local projective chart by

Sv(z) = gzzz(z)dz2.

Note that this will only be a well-defined quadratic differential if the derivative
of g is taken in projective charts. If it is taken in an arbitrary conformal chart,
the equation will not define a quadratic differential. For projective structures a
geometric vector field is usually called projective. As is well known, v will be
projective if and only if g(z) is a quadratic polynomial in z. In particular, Sv ≡ 0
if and only if v is a projective vector field. The flow of a projective field preserves
the projective structure so the Schwarzian measures the infinitesimal change in
projective structure.

Note that there are no global conformal vector fields on a closed Riemann surface
of genus > 1. The conformal vector fields we will be interested in are automorphic
vector fields v on the universal cover Σ̃ of our projective structure Σ. Then Sv
will be a holomorphic quadratic differential on Σ̃. However, by the automorphic
property, Sv will be equivariant and will descend to a quadratic differential on Σ.

The second holomorphic quadratic differential we will construct will measure the
distance between two projective structures Σ0 and Σ1 in P (X). There is an obvious
map f between Σ0 and Σ1, namely the unique conformal map. It is the existence
of this map that simplifies the deformation theory of projective structures in P (X).
The Schwarzian derivative of f , defined using projective charts for Σ0 and Σ1, is
the quadratic differential

(2.2) Sf =

[(
fzz
fz

)
z

− 1
2

(
fzz
fz

)2
]
dz2.

Again we must use projective charts for this equation to give a well-defined qua-
dratic differential.
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Conversely given any projective structure Σ0 ∈ P (X) and any holomorphic
quadratic differential Φ on X , there exists a unique projective structure Σ1 in P (X)
such that Φ = Sf . In particular, after fixing Σ0 as a basepoint, there is a canonical
isomorphism from P (X) to Q(X), the space of holomorphic quadratic differentials
on X . The space Q(X) is a finite dimensional vector space. The L∞-norm on
quadratic differentials makes Q(X) a normed vector space. The identification of
P (X) with Q(X) gives P (X) a euclidean metric which will not depend on the choice
of basepoint. In this metric the distance between two projective structures Σ0 and
Σ1 will be d(Σ0,Σ1) = ‖Sf‖∞.

A projective structure is fuchsian if its developing map is a homeomorphism
onto a round disk in Ĉ. The uniformization theorem implies that there is a unique
fuchsian projective structure in P (X). As we will frequently need to know the dis-
tance between an arbitrary projective structure Σ ∈ P (X) and the unique fuchsian
element ΣF , we define ‖Σ‖F = d(Σ,ΣF ).

A vector space is its own tangent space so the derivative of a smooth path Σt in
P (X) = Q(X) will also be a smooth path of holomorphic quadratic differentials Φt
on X . To see this more explicity, we let X̃ be the universal cover of the conformal
structure X and choose conformal developing maps Dt : X̃ −→ Ĉ. The vector
fields vt obtained by differentiating Dt will be conformal and automorphic on Σ̃t;
therefore Svt will be a holomorphic quadratic differential on X . By noting that on
suitably chosen local charts ft = Dt ◦D−1

0 and differentiating (2.2), we see that Svt
is exactly Φt. This implies the following proposition:

Proposition 2.1. The length of a smooth path, Σt with a < t < b, in P (X) is∫ b

a

‖Φt‖∞dt.

2.2. Hyperbolic structures. For a family of hyperbolic structures there is no
obvious choice of maps between the structures that plays the role of the conformal
map in the deformation theory of projective structures. However, recent work has
shown that there is a canonical choice of an automorphic vector field describing
an infinitesimal deformation of the hyperbolic structure. We describe this in more
detail below. Our review will be brief. See [HK1] for more details.

Assume M has a fixed hyperbolic metric coming from a developing map D with
holonomy ρ. In hyperbolic space a geometric vector field is an infinitesimal isometry
or Killing field. Let E and Ẽ be the bundles over M and M̃ , respectively, of germs
of Killing fields. For M̃ the developing map identifies germs of Killing fields at
a point in M̃ with a Killing field on H3 so Ẽ has a global product structure, i.e.
Ẽ ∼= M̃×sl2C. Then E is the quotient of Ẽ by the action of π1(M) where the action
on the first factor is by deck transformations and on the second by the holonomy
representation. The product structure on Ẽ defines a flat connection which descends
to the quotient E. This flat connection has a covariant derivative d which we use
to define the deRham cohomology groups Hi(M ;E). As we shall see next, an
automorphic vector field on M̃ determines a cohomology class in H1(M ;E).

Given a vector field v on M (or M̃), the canonical lift s of v is the section of
E (or Ẽ) determined by the relationship that s(p) is the unique Killing field that
agrees with v at p and whose curl agrees with the curl of v at p. If a section s of
Ẽ is the canonical lift of an automorphic vector field on M̃ , then s− γ∗s will be a
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constant section. Therefore ω = ds will descend to a closed E-valued 1-form on M
which determines a cohomology class in H1(M ;E).

If we let st be the canonical lift of vt, then ωt = dst is a family of Et-valued
1-forms. Furthermore if the paths Dt and D′t are equivalent in D(M), the ωt
and ω′t will be cohomologous. Therefore the derivative of a path in D(M) is a
one-parameter family of cohomology classes in H1(Mt;Et). This cohomology class
plays the role of the holomorphic quadratic differential in the study of projective
structures.

For many calculations we will take advantage of the complex structure on E. In
particular, the Lie algebra sl2C has a complex structure that can be interpreted
geometrically. If v is a Killing field on H3, then curl v is also a Killing field and
curl curl v = −v. Therefore taking the curl of v is equivalent to multiplying by ı. For
a section s of E this leads us to define ıs by the relationship ıs(p) = curl(s(p)). We
make a similar definition for E-valued n-forms. A section s of E is real if the Killing
field ıs(p) is zero at p, while s is imaginary if s(p) is zero at p. Every section s has a
unique decomposition into a real section Re s and an imaginary section Im s. A real
section determines a vector field by the formula v(p) = (s(p))(p) and vice versa. If
s is an imaginary section, then ıs is a real section so the formula v(p) = (ıs(p))(p)
also identifies each imaginary section with a vector field. Returning to a general
section s, we have a map s 7→ (Re s, Im s). If we view both Re s and Im s as vector
fields, this defines an isomorphism E −→ TM ⊕TM . The canonical lift of a vector
field v is then (v,− curl v) under this isomorphism.

This identification of E with TM ⊕TM gives E a natural metric; we simply use
the hyperbolic metric on each copy of TM . This metric defines an isomorphism
from E to the dual bundle E∗. For an E-valued k-form α we let α] be the image
of α in E∗ under this isomorphism, while if α is an E∗-valued k-form, we let α[

be the image of α under the inverse of the isomorphism. The bundle E∗ has a flat
connection d∗ and we define ∂α = (d∗α])[. The formal adjoint for d defined on
k-forms is δ = (−1)k ∗ ∂∗ where ∗ is the Hodge star operator. We also define the
Laplacian ∆ = dδ + δd.

In §1 of [HK1] there are explicit formulas for d and δ in local coordinates in
terms of the Riemannian connection ∇ and algebraic operators. Let {ei} be an
orthonormal frame field with dual co-frame field {ωi}. Then

(2.3) d =
∑
i

ωi ∧ (∇ei + ad(Ei))

and

(2.4) δ =
∑
j

i(ej)(∇ej − ad(Ej)).

Here i( ) is the interior product on forms. The operator ad(Ei) takes a Killing
field Y to the Killing field [Ei, Y ]. We also decompose d and δ into the real and
imaginary parts. Namely we let D = Re d, T = Im d, D∗ = Re δ and T ∗ = Im δ.
Formulas for D, T , D∗ and T ∗ follow easily from (2.3) and (2.4) since ∇ei is a real
operator and ad(Ei) is an imaginary operator. In particular T and T ∗ are algebraic
operators and therefore are easy to calculate. It is also worth noting that ∂ = D−T .
That is, the flat connection on E∗ is the “conjugate” of the flat connection on E.

We make three more definitions that will be useful later. Let

‖α‖2 = α ∧ ∗α].
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Strictly speaking, ‖α‖2 is a real valued 3-form while ∗(α ∧ ∗α]) is a function. We
will abuse notation and use ‖α‖2 to refer to both the 3-form and the function. It
will be clear from the context which meaning is correct. A vector field v is harmonic
if ∆s = 0 where s is the canonical lift of v. A closed E-valued 1-form ω on M is
a Hodge form if it is the projection from M̃ to M of ds, where s is the canonical
lift of a harmonic, automorphic, divergence free vector field on M̃ . By the work in
§2 of [HK1] ω is a Hodge form if and only if ω is closed and co-closed and the real
and imaginary parts of ω are symmetric and traceless vector valued 1-forms.

There is a nice formula for the L2-norm of a Hodge form:

Theorem 2.2 ([HK1]). Let ω be an E-valued Hodge form on a compact hyperbolic
3-manifold M with boundary. Then

2
∫
M

‖ω‖2 =
∫
∂M

ıω ∧ ω]

where ∂M is oriented with inward pointing normal.

2.3. Extending deformations to the projective boundary. Let M be a hy-
perbolic 3-manifold with projective boundary Σ. Together M and Σ form a differ-
entiable 3-manifold with boundary so if v is a vector field on M , we can discuss its
continuous extension to Σ and vice versa. We will always want the extended vector
field to be tangent to the boundary. We will use this notion to discuss extending
E-valued 1-forms on M to holomorphic quadratic differentials on Σ. Essentially an
E-valued 1-form extends continuously to a holomorphic quadratic differential if the
vector field that generates the 1-form extends continuously to a vector field that
generates the quadratic differential.

Our vector fields will in general be automorphic vector fields on the universal
cover. However, the extension property is a local one so we will work in a neigh-
borhood V in H3 ∪ Ĉ. We assume that V ∩ Ĉ is an open disk and that V ∩ H3 is
a topological ball. Let ω be a closed E-valued 1-form on V ∩ H3 and let Φ be a
holomorphic quadratic differential on V ∩ Ĉ. Since V is simply connected, ω = ds
where s is an E-valued section on V and Φ = Sv∞ where v∞ is a conformal vector
field on ∂V . Neither s nor v∞ are uniquely determined; we can add a constant sec-
tion to s and a projective vector field to v∞. We say that ω extends continuously to
Φ if s and v∞ can be chosen such that Re s extends continuously to v∞ and − Im s
extends continuously to ıv∞.

Returning to our hyperbolic 3-manifold M with projective boundary Σ, the E-
valued 1-form ω extends continuously to the holomorphic quadratic differential Φ
if it does so in a neighborhood of every point on Σ. In general, an E-valued 1-form
is conformal at infinity if it is cohomologous to a 1-form that extends continuously
to a holomorphic quadratic differential on Σ.

Recall the one-parameter family of cone-manifolds Mt that we defined in the
previous section. The derivative of this path will be a path of cohomology classes
[ωt] in H1(Mt;Et). The derivative of the projective boundary will be a path of
holomorphic quadratic differentials Φt in P (X). The following Hodge theorem is
Theorem 4.3 in [Br1] plus Theorem 9.5 in the appendix of this paper.

Theorem 2.3. The cohomology class [ωt] is represented by a Hodge form ωt which
extends continuously to Φt on Σt. Furthermore the Hodge form will be in L2 outside
a neighborhood of the singular locus.
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Theorem 2.2 tells us how to calculate the L2-norm of a Hodge form on a compact
hyperbolic 3-manifold with boundary. We will need to calculate the L2-norm of
conformal Hodge forms on geometrically finite manifolds.

Theorem 2.4. Let M be a hyperbolic 3-manifold with boundary such that the
union of M with its projective boundary is compact. If ω is an L2 Hodge form
that extends continuously to a holomorphic quadratric differential on the projective
boundary, then

2
∫
M

‖ω‖2 =
∫
∂M

ıω ∧ ω]

where ∂M is oriented with inward pointing normal.

Note that ∂M is the hyperbolic boundary of M and does not include the pro-
jective boundary Σ. That is, M is a smooth manifold with boundary. Its interior
has a hyperbolic metric that extends to a smooth metric on ∂M . In the previous
theorem the disjoint union M ∪ Σ is a smooth, compact manifold with boundary
and the hyperbolic metric naturally extends to a projective structure on Σ.

3. Tubes and half spaces

In this section we make a digression from studying families of cone-manifolds
to prove some results about a single hyperbolic cone-manifold Mα = (M, g) with
cone-metric g and all cone-angles α. Our goal is to find a constant `0 such that
if the length of the cone-singularity is less than `0, it will have a “large” tubular
neighborhood and this neighborhood will be disjoint from any embedded half space
in the geometrically infinite ends. We will prove a succession of results, each pro-
ducing its own constant. At the end of the section we will simply take the minimum
of these constants to find a single constant which will be used throughout the rest
of the paper.

We first review an estimate of Hodgson and Kerckhoff on the size of embedded
tubes about the cone-locus. These should be thought of as cone-manifold versions
of the Margulis lemma with explicit constants. The main difficultly is of course the
cone-singularity. As a first stab at proving these results, one might hope to smooth
the cone-metric and then apply the Margulis lemma for manifolds with pinched
negative curvature. There are two problems with this approach. If the cone-angles
are < 2π, then it may not be possible to smooth the metric to a negatively curved
metric. On the other hand if there are cone-angles > 2π, we can always smooth the
metric to one that is negatively curved; however we cannot bound the amount of
negative curvature required even if all the cone-angles are bounded. To get around
both of these problems, we assume a priori that the cone-singularity has a tubular
neighborhood of definite size. In practice this is not much of a restrictions since
in most applications the hyperbolic cone-manifolds arise from smooth hyperbolic
structures where the standard Margulis lemma applies.

Proposition 3.1. Given an α > 0 and an R > 0, there exists an `1 > 0 such that
the following holds. Let (M, g) be a hyperbolic cone-manifold with all cone-angles
less than α and let γ be a closed non-singular geodesic in (M, g). Suppose the tube
radius of the cone-singularity is ≥ R. If Lγ(g) ≤ `1 and Lc(g) ≤ `1 for all c ∈ C,
then γ has an embedded tube of radius R which is disjoint from the R-neighborhood
of the cone singularity.
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Proof. We can construct a complete Riemannian metric h on M such that h agrees
with g outside the R/2-neighborhood of the cone-singularity and such that h has
pinched negative sectional curvature (see [Ko2], Theorem 1.2.1). If Lγ(g) ≤ R/2,
then γ will be disjoint from the R neighborhood of C and therefore γ will also be
a geodesic in the h metric with Lγ(g) = Lγ(h). Furthermore there is a universal
bound on the sectional curvature of h depending only on our choice of tube radius
R/2.

Let M ε
h be the ε-thin part of M for the h metric. That is, M ε

h is the subset of M
consisting of those points whose injectivity radius is < ε. By the Margulis lemma
([BGS]) there is an ε0, depending only on the curvature bounds, such that each
component of M ε0

h has virtually nilpotent fundamental group. Since M is an ori-
entable, hyperbolizable 3-manifold, the only possible virtually nilpotent subgroups
of M are Z and Z⊕ Z, and the second case will only occur at peripheral tori.

Let c be a component of C and let Vc be the R-neighborhood of c in the g metric.
Choose δ1 such that if Lc(g) ≤ δ1, then Vc will be contained in the ε0-thin part
of the g metric. This is the one place where our choice depends on α for as the
cone-angle increases, δ1 will decrease. The h metric will decrease the injectivity
radius in Vc so Vc will also be contained in M ε0

h .
Next choose δ2 such that if Lγ(g) ≤ δ2, then the R-neighborhood Vγ of γ in the

h metric is also contained in M ε0
h . Note that δ2 will only depend on the curvature

bounds and not on the cone-angle. Any component of M ε0
h with fundamental

group Z⊕Z does not contain any closed geodesics; therefore the component of M ε0
h

containing γ must be a solid torus with fundamental group Z. This implies that
Vγ is a solid torus and is disjoint from Vc. Since Vγ is disjoint from Vc, the g and
h metrics agree on Vγ so γ has an embedded tubular neighborhood of radius R in
the original metric if Lγ(g) ≤ `1 where `1 = min{R/2, δ1, δ2}. �

Combining this proposition with Theorem 4.4 in [HK4] we have

Proposition 3.2. Let (M, g) be a hyperbolic cone-manifold with all cone-angles
less than α and γ a closed geodesic in Mα. Suppose the tube radius of the cone-
singularity is ≥ R, Lc(g) ≤ `1 for each c ∈ C and Lγ(g) ≤ `1. Then for each c ∈ C,
c and the geodesic γ have disjoint tubular neighborhoods such that the area of the
boundary tori is ≥ 1.6978 sinh2 R

cosh(2R) .

We next prove similar results for hyperbolic half spaces.

Lemma 3.3. Let D be an embedded round disk in the projective boundary of a
hyperbolic cone-manifold (M, g). Then there is an embedded hyperbolic half space
H in M whose projective boundary is D.

Proof. In general a hyperbolic half space H is bounded by a hyperbolic plane P
and its projective boundary, a round disk D. The half space is foliated by planes
Pd of constant curvature where Pd is the set of points a distance d from P . If D is
an embedded round disk on the boundary of a geometrically finite cone-manifold,
then the planes Pd will be embedded for large d. Let d′ be the inf of all such d.
If d′ > 0, then the metric closure of

⋃
d>d′

Pd will have strictly concave boundary so

M ′ = M\
⋃
d>d′

Pd will have strictly convex boundary Pd′ . This implies that Pd′ is

embedded; hence we must have d′ = 0. The only way P0 cannot be embedded is for
it to intersect an element c of the cone-singularity. In this case c must be tangent to
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P0 and therefore be contained in P0. Since P0 does not contain a closed geodesic,
it cannot intersect c. Therefore P0 and hence all of H must be embedded. �

Next we see that these embedded half spaces do not intersect the tubular neigh-
borhood of the cone-singularity if it is sufficiently short.

Proposition 3.4. Given an α > 0 and an R > 0, there exists an `2 > 0 such that
the following holds. Let (M, g) be a hyperbolic cone-manifold with all cone-angles
less than α. Suppose that the tube radius of the cone-singularity is ≥ R and that
Lc(g) ≤ `2 for all c ∈ C. Then each c ∈ C has a tubular neighborhood V disjoint
from any embedded half space H with area(∂V ) ≥ 1.6978 sinh2 R

cosh(2R) .

Proof. We first show that `2 can be chosen such that if Lc(g) ≤ `2 for all c ∈ C,
then H does not intersect the R-neighborhood of the cone-singularity. We need the
following simple geometric fact. If U is a tube of radius R′ > R and H intersects
the R-neighborhood of the core curve of the tube, then the area of the intersection
of H with ∂U is bounded below by a function A(R′) with A(R′)→∞ as R′ →∞.
Note that area(∂U) > A(R′).

Choose R′ such that A(R′) = 1.6978 sinhR
cosh(2R) and choose δ such that

αδ sinhR′ coshR′ = 1.6978
sinhR

cosh(2R)
.

Then let `2 = min{`1, δ}. If Lc(g) ≤ `2 for all c ∈ C, then by Proposition 3.2 the
R′-neighborhood of each c ∈ C will be an embedded tube U . Furthermore

area(∂U) = αLc(g) sinhR′ coshR′ ≤ 1.6978
sinhR

cosh(2R)
.

If H intersect the R-neighborhood of c, then

area(∂U) > A(R′) = 1.6978
sinhR

cosh(2R)
.

This contradiction implies that H does not intersect the R-neighborhood.
The rest of the proof is similar to the proof of Theorem 4.4 in [HK4] and we

will only sketch it. Define Rm to be the maximal radius such that the tube Um
of radius Rm about c is embedded and disjoint from H . We can assume that
T = ∂Um intersects the hyperbolic plane P = ∂H for otherwise we can simply
apply Proposition 3.2. Except for possible self-tangencies T will be embedded and
P will be tangent to T at a point p. Let B be the ball of radius R contained in H
and tangent to T at p.

We now lift to the universal cover. Since M is hyperbolizable, any component
(again ignoring self-tangencies) T̃ of the pre-image of T in M̃ will be a topological
plane and the stabilizer of T̃ will be a Z⊕Z subgroup ΓT of π1(M). Let p̃ be a point
in the pre-image of p contained in T̃ and let B̃ be the component of the pre-image B
that is tangent to T̃ at p̃. Let C be the orthogonal projection of B̃ onto T̃ . One needs
to be careful here to make sure that the cone-singularity does not interfere with this
orthogonal projection. It is at this point that we refer to Hodgson and Kerckhoff.
In particular they show that C is well defined and disjoint from its translates under
the action of ΓT . This implies that area(T ) ≥ area(C). Hodgson and Kerckhoff also
show area(C) ≥ 1.6978 sinh2 R

cosh(2R) . Therefore area(T ) ≥ 1.6978 sinh2 R
cosh(2R) as desired. �
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We now define two constants determined by a cone-metric g. For c ∈ C let Rcg
be chosen such that

αLc(g) sinhRcg coshRcg =
1
2
.

Similarly if γ is a closed geodesic, let Rγg be chosen such that

2πLγ(g) sinhRγg coshRγg =
1
2
.

Let U cg and Uγg be the Rcg and Rγg neighborhoods of c and γ, respectively, and let
UCg =

⋃
c∈C

U ct . Note that the area of both ∂U cg and ∂Uγg is 1
2 . The value of 1

2 is essen-

tially arbitrary. We could have chosen any constant less than lim
R→∞

1.6978 sinh2R
cosh(2R) =

1.6978
2 .
In our next result we summarize the work of this section for a fixed choice of

minimal tube radius. Our choice, although essentially arbitrary, will simplify some
of the constants in the rest of the paper.

Theorem 3.5. Given an α > 0, there exists an `0 > 0 such that the following
holds. Let (M, g) be a hyperbolic cone-manifold with all cone-angles less than α

and assume that the tube radius of the cone-singularity is greater than sinh−1
√

2.
If Lc(g) ≤ `0 for all c ∈ C, then the U cg are embedded tubular neighborhoods, each
pairwise disjoint and disjoint from any embedded half space and Rcg ≥ sinh−1

√
2.

Furthermore if γ is a closed geodesic with Lγ(g) ≤ `0, then Uγg is also an embedded
tubular neighborhood disjoint from the U cg .

Proof. Let `1 and `2 be the constants given by Propositions 3.2 and 3.4, respectively,
with R = sinh−1

√
2. Choose `3 such that

α`3 sinhR coshR = α`3(
√

2)(
√

3) =
1
2
.

Then `0 = min{`1, `2, `3} is the desired constant. �

For each point p in the projective boundary we will also need to estimate the
size of the largest embedded round disk containing p. Here size will be measured
by comparing the hyperbolic metric on the round disk to the hyperbolic metric on
the entire projective boundary. By the Schwarz lemma the metric will always be
bigger on the disk so we want to find a disk where we can bound the ratio of the two
metrics. This bound will depend both on the injectivity radius of the hyperbolic
metric and on the deviation of the projective boundary from a fuchsian projective
structure.

We begin with a simple lemma about hyperbolic geometry.

Lemma 3.6. Let D be a round disk in Ĉ with hyperbolic metric σ. Let γ be an
isometry of H2 with translation length ≥ `. For every z ∈ D there exists a round
disk D′ ⊂ D such that D′ ∩ γ(D′) = ∅ and σ′(z) = coth(`/4)σ(z), where σ′ is the
hyperbolic metric for D′.

Proof. Without loss of generality we assume that D = ∆, the unit disk in C,
and z = 0. Then let D′ be the euclidean disk of radius tanh(`/4) centered at 0.
The hyperbolic diameter of D′ in the σ metric is `/2 so D′ ∩ γ(D′) = ∅. Finally
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σ(z) = 2
1−|z|2 while σ′(z) = 2 tanh(`/4)

tanh2(`/4)−|z|2 so

σ′(0) = coth(`/4)σ(0)

as desired. �
Next, we use the previous lemma to estimate the size of embedded round disks

in a projective structure.

Proposition 3.7. Let Σ be a projective structure, σ the hyperbolic metric on Σ
and κ the injectivity radius of σ. Then every z ∈ Σ is contained in an embedded
round disk D in Σ such that

σD(z) < σ(z) coth(κ/2)
√

1 + 2‖Σ‖F
where σD is the hyperbolic metric on D.

Proof. Let X be the conformal structure induced by Σ and let ΣF be the unique
fuchsian structure in P (X). Then Σ̃F is projectively isomorphic to D and the group
of deck transformations Γ satisfies the conditions of Lemma 3.6. In particular for
each z ∈ Σ̃0 there is a round disk D′ containing z such that for each γ ∈ Γ,
D ∩ γ(D) = ∅ and

(3.1) σD′ (z) = coth(κ/2)σ(z)

where σD′ is the hyperbolic metric on D′. Therefore D′ descends to an embedded
round disk in ΣF .

Let f be the unique conformal map from ΣF to Σ. Then f(D′) will be an
embedded topological disk but not a round disk in the projective structure Σ.
However by Theorem 4.2 in [And] there exists a round disk in D ⊂ f(D′) in Σ with
z ∈ D such that

σD(z) ≤ σD′ (z)
√

1 + 2‖Sf‖D′,∞.
By the Schwarz Lemma σD′ > σ so ‖Sf‖D′,∞ < ‖Sf‖Σ,∞ = ‖Σ‖F . Combining the
two inequalities with (3.1) gives

σD(z) < σ(z) coth(κ/2)
√

1 + 2‖Σ‖F . �

4. Bounding the length of geodesics

We can now return to investigating the one-parameter family of hyperbolic cone-
manifolds Mt. As we shall see, the estimates we derive are simple consequences of
the work of Hodgson and Kerckhoff.

Recall that the derivative of the path Mt is a cohomology class in H1(Mt;Et)
represented by a Hodge form ωt. Throughout this section we assume that the
one-parameter family is defined for t in a half-open interval (α′, α] and that at the
starting structure Lc(α) ≤ `0 and Rcα > sinh−1

√
2 for all c ∈ C. Here `0 is the

constant given in Theorem 3.5.
In our first result we show that the tube radius does not decay and we bound

the length of the cone-singularity.

Proposition 4.1. For all c ∈ C, Lc(t) ≤ Lc(α) ≤ `0, Rct > sinh−1
√

2 and

(4.1)
tLc(α)

α+ 2Lc(α)(α2 − t2)
≤ Lc(t) ≤

tLc(α)
α− 2Lc(α)(α2 − t2)

if t ∈ (α′, α].
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Proof. Before we begin, note that the expression on the far right of (4.1) is positive
since Lc(α) ≤ `0 and by the proof of Theorem 3.5, `0 ≤ 1

2
√

6α
< 1

2α .

By assumption Lc(α) ≤ `0 and Rcα > sinh−1
√

2. We will show that these two
properties hold for all t ∈ (α′, α]. If the tube radius condition does not hold, by
the continuity of Rct , there exists a largest value T < α such that RcT = sinh−1

√
2.

We will work by contradiction and show that such a T cannot exist.
To do so, we show that Lc(t) ≤ `0 for t ∈ [T, α], also working by contradiction.

If this does not hold, there exists a T ′ with Lc(T ′) = `0, dLcdt (T ′) < 0 and Lc(t) ≤ `0
if t ∈ [T ′, α]. Theorem 3.5 implies that the tubular neighborhood of c of radius Rct
is embedded for t ∈ [T, α] and therefore by an estimate of Hodgson and Kerckhoff
(Theorem 2.7 of [HK4]) we have

(4.2)
Lc(t)
t

(
1− 1

sinh2Rct

)
≤ dLc

dt
(t) ≤ Lc(t)

t

(
1 +

1
sinh2Rct

)
.

Since 1
sinh2Rct

≤ 1
2 , the left-hand side of (4.2) implies dLc

dt (T ′) > 0. This contradic-
tion implies that Lc(t) ≤ `0 for all t between α and T . Since TLc(T ) sinhRcT coshRcT
= 1

2 , our choice of `0 implies that RcT > sinh−1
√

2. Again, this is a contradiction
and hence Rct > sinh−1

√
2 for all t ∈ (α′, α]. The previous argument also shows

that dLc
dt (t) > 0 and therefore Lc(t) ≤ Lc(α) ≤ `0 for all t ∈ (α′, α].

Next we combine the inequality
1

sinh2Rct
≤ 2

sinhRct coshRct
and the equality

tLt(c) sinhRct coshRct =
1
2

with (4.2) to obtain

(4.3)
Lc(t)
t

(1− 4tLc(t)) ≤
dLc
dt

(t) ≤ Lc(t)
t

(1 + 4tLc(t)) .

To prove (4.1), we need to integrate this inequality. To do so we make the substi-
tution y(t) = Lc(t)

t . Then the first inequality of (4.3) becomes

y + t
dy

dt
≥ y(1− 4t2y).

Rearranging and integrating, we get∫ α

T

1
y2

dy

dt
dt ≥ −

∫ α

T

4tdt,

− 1
y(α)

+
1

y(T )
≥ 4(T 2 − α2)

2
,

T

Lc(T )
≥ 2(T 2 − α2) +

α

Lc(α)
.

As we remarked at the start of the proof, the right-hand side of the final inequality
is positive since Lc(α) < 1

2α . This final inequality is equivalent to the second
inequality of (4.1). The other inequality is derived similarly. �

Recall that in §3 we made a standard choice of tubular neighborhoods of the
singular locus in Mt. We labeled the union of these neighborhoods UCt (see the
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paragraph proceeding Theorem 3.5). The L2-norm of ωt will be infinite on all of
Mt. However if we let M ′t = Mt\UCt , then the L2-norm will be bounded on M ′t.

Proposition 4.2. ∫
M ′t

‖ωt‖2 ≤ LC(t)2.

Futhermore for any A and R there exists a K such that if for each c ∈ C, V c is
a tubular neighborhood of c with the area(∂V c) ≥ A and the radius of V c greater
than R, then ∫

Mt\V C
‖ωt‖2 ≤ K2LC(t)2

where V C =
⋃
c∈C

V c.

Proof. By Proposition 4.1, Rct > sinh−1
√

2 for all c ∈ C and t ∈ (α′, α]. By
Theorem 3.5 the tube U ct of radius Rct about c is embedded. Using Theorem 2.4
along with the work of Hodgson and Kerckhoff (see (17) on p. 14 of [HK4]), we see
that ∫

M ′t

‖ωt‖2 ≤
∑
c∈C

coshRct area(∂U ct )
t2 sinh3Rct (2 cosh2Rct + 1)

.

From the area formula for the tube boundary and our definition of Rct , area(∂U ct ) =
tLt(c) sinhRct coshRct = 1

2 . Using this and also the fact that sinhRct >
√

2, we have

coshRct area(∂U ct )
t2 sinh3Rct(2 cosh2Rct + 1)

=
2Lc(t)2 cosh3Rct

sinhRct (2 cosh2Rct + 1)
≤ Lc(t)2

and therefore ∫
M ′t

‖ωt‖2 ≤
∑
c∈C

Lc(t)2 ≤ LC(t)2.

The proof of the more general inequality is essentially the same. �

Remark. In [HK4] instead of using the cone-angle as the parameter for the family
of the hyperbolic cone-manifolds, they use the cone-angle squared. This accounts
for the difference in the constants in their paper and the constants in this paper.

We can also bound the length of short curves that are not part of the cone-
singularity:

Proposition 4.3. If γ is a simple closed curve in M with Lγ(T ) ≤ e−4α`0`0 for
some T ∈ (α′, α], then

(4.4) e−4αLC(α)Lγ(α) ≤ Lγ(t) ≤ e4αLC(α)Lγ(α)

and

(4.5) (1− 4`0LC(α)) Θγ(α) ≤ Θγ(t) ≤ (1 + 4`0LC(α)) Θγ(α)

for all t ∈ (α′, α].
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Proof. By Proposition 4.1, Rct > sinh−1
√

2 for all c ∈ C and t ∈ (α′, α]. Therefore
by Theorem 3.5, if Lγ(t) ≤ `0, the tube Uγt is embedded and contained in M ′t.

We need to show that the L2-norm of ωt on Uγt is bounded by the derivative
L′γ(t). The essential estimates again come from §2 of [HK4]. In particular they
decompose a Hodge form in a tubular neighborhood of a component of the singular
locus as the sum of certain Hodge forms of standard type and a correction term. To
apply this decomposition to our situation, we view γ as a component of the singular
locus with cone-angle 2π. According to this decomposition, in the complement of
γ on Uγt

ωt = Cmωm + Clωl + ωc

where ωm and ωl are radially symmetric Hodge forms with Cm and Cl complex
constants while ωc represents a trivial cohomology class on Uγt \γ.

The constants Cm and Cl are determined by the derivatives of the complex
lengths of the meridian and longitude (recall that we are viewing γ as a component
of the singular locus). The complex derivative of the meridian is zero since the

cone-angle is fixed at 2π. By Lemma 2.1 in [HK4], Cm = 0 and Cl =
L′γ(t)

2Lγ(t) . That
is,

ωt =
L′γ(t)
2Lγ(t)

ωl + ωc.

For an explicit description of ωl see p. 9 of [HK4]. For our purposes we only need
the following two facts. First, by Lemma 2.5 in [HK4]∫

Uγt

‖ωt‖2 =
( |L′γ(t)|

2Lγ(t)

)2 ∫
Uγt

‖ωl‖2 +
∫
Uγt

‖ωc‖2

and second, by the formulas on p. 14 of [HK4]∫
Uγt

‖ωl‖2 =
sinhRγt
coshRγt

(
2 +

1
cosh2 Rγt

)
area(∂Uγt ).

Together this implies∫
Uγt

‖ωt‖2 ≥
sinhRγt
coshRγt

(
2 +

1
cosh2Rγt

)( |L′γ(t)|
2Lγ(t)

)2

area(∂Uγt ).

Since sinhRγt >
√

2 and area(∂Uγt ) = 1
2 ,

sinhRγt
coshRγt

(
2 +

1
cosh2Rγt

)
area(∂Uγt ) ≥

√
2√
3

(
2 +

1
3

)(
1
2

)
>

1
4
.

We also know that ∫
M ′t

‖ωt‖2 ≥
∫
Uγt

‖ωt‖2.

By Proposition 4.2

LC(t)2 ≥
∫
M ′t

‖ωt‖2.

By combining these four inequalities, we have

LC(t)2 ≥
( |L′γ(t)|

4Lγ(t)

)2
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which rearranges to give

(4.6) |L′γ(t)| ≤ 4Lγ(t)LC(t)

if Lγ(t) ≤ `0.
Next we show that if Lγ(T ) ≤ e−4α`0`0, then Lγ(t) ≤ `0 for all t ∈ (α′, α]. Let

I be the largest interval containing T such that Lγ(t) ≤ `0 if t ∈ I. We will show
that I is an open and closed subset of (α′, α]. By the continuity of the Lγ(t), I
is closed. Furthermore if T ′ is the right endpoint of I, then either Lγ(T ′) = `0 or
T ′ = α. Since |L′γ(t)| ≤ |L′γ(t)| and LC(t) ≤ LC(α), (4.6) becomes

(4.7) |L′γ(t)| ≤ 4Lγ(t)LC(α)

if t ∈ I. By integrating (4.7) from T to T ′, we get

(4.8) e−4|T ′−T |LC(α)Lγ(T ) ≤ Lγ(T ′) ≤ e4|T ′−T |LC(α)Lγ(T ).

Since |T ′ − T | ≤ α with equality only holding if T ′ = α and T = 0, the right-hand
side of (4.8) implies that either Lγ(T ′) < `0, which contradicts the definition of I, or
T ′ = α. A similar argument shows that the left endpoint of I is α′ and I = (α′, α].
Therefore we can integrate (4.7) to get (4.4).

To prove (4.5), we note that (4.6) implies that

|Θ′γ(t)| ≤ 4Lγ(t)LC(t) ≤ 4`0LC(α).

Integrating this inequality gives (4.5). �

Recall that the injectivity radius at a point x in a Riemannian manifold is the
radius of the largest embedded ball centered at x or equivalently half the length
of the shortest geodesic arc with both endpoints at x. We define injx(t) to be the
injectivity radius at x for the gt metric on M . Recall that M ′t = M\UCt is the
complement of the tubular neighborhoods of the singular locus. We then have the
following proposition.

Proposition 4.4. The injectivity radius injx(t) is bounded away from zero on M ′t
for all t ≤ α.

Proof. Note that the function injx(t) measures the injectivity of x in all of M but
we are only showing that it is bounded below on M ′t. Clearly as t → 0 there will
be points xt ∈ UCt such that injxt(t)→ 0.

If the injectivity radius is not bounded below, there are two possibilities.
First, there could be a simple closed curve γ in M such that Lγ(t)→ 0. This is

not possible by (4.4).
The second possibility is that there are points xt ∈ ∂U ct for some c ∈ C such that

injxt(t)→ 0 as t→ 0. The tori ∂U ct have an induced Euclidean metric and it is not
hard to see that the hyperbolic injectivity radius will decay to zero if and only if
the Euclidean injectivity radius decays to zero.

The Euclidean metric on ∂U ct can be constructed by gluing together (possi-
bly with a twist) the boundary components of a Euclidean cylinder of height
Lc(t) coshRct and radius t sinhRct . The area of this cylinder tLc(t) sinhRct coshRcT
is always 1

2 so the injectivity radius will be bounded below if and only if the
height H(t) is bounded above and below. By (4.1), Lc(t)

t is bounded above and
below. Since Rct ≥ sinh−1

√
2, coshRct

sinhRct
is also bounded above and below and there-

fore so is Lc(t) coshRct
t sinhRct

. Finally by multiplying the numerator and denominator by
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Lc(t) coshRct , we have that

(Lc(t) coshRct)
2

tLc(t) sinhRct coshRct
= 4H(t)2

is also bounded above and below, as desired. �

We can also bound the length of arbitrary geodesics although the estimates are
slightly different.

Lemma 4.5. Let (M, g) be a hyperbolic cone-manifold. For each c ∈ C assume
that U cg is an embedded tubular neighborhood with Rcg > sinh−1

√
2 and assume that

Lc(g) ≤ `0. For each L > 0 there exits an ε > 0 such that if γ is a closed geodesic
in M with ε < Lγ(g) < L, then γ is disjoint from the M ε

g , the ε-thin part of (M, g).

Proof. Given our upper and lower bounds for Lc(g) and Rcg, respectively, there
exists a “Margulis constant” ε0 depending only on α such that M ε0

g consists of
tubes and rank two cusps. Furthermore for any K > 0 we can choose an ε(K) < ε0

such that the distance between ∂M ε0
g and ∂M ε(K)

g is greater than K. The number
ε(K) will only depend on α and K. Let ε = ε(L/2). Therefore if γ intersects M ε

g ,
it will be entirely contained in a component of M ε0

g . The only closed geodesic in a
component of M ε0

g will be a core curve of one of the tubes; hence Lγ(g) ≤ ε. �

Lemma 4.6. Let γ be a closed, non-singular geodesic in Mt such that ‖ωt(p)‖ ≤ K
for all p ∈ γ. Then

|L′γ(t)| ≤
√

2
3
KLγ(t).

Proof. Let Mγ
t be the cover of Mt associated to γ. For small values of R, γ will

have an embedded tubular neighborhood U(R) of radius R in Mγ
t . The E-valued

1-form ωt lifts to Mγ
t and let K(R) be an upper bound for ‖ωt(p)‖ for all p ∈ U(R).

Then K(R) is continuous and K(0) = K. As we noted in the proof of Proposition
4.3, Hodgson and Kerckhoff show that∫

U(R)

‖ωt‖2 ≥
sinhR
coshR

(
2 +

1
cosh2R

)( |L′γ(t)|
2Lγ(t)

)2

area(∂U(R)).

We also know that∫
U(R)

‖ωt‖2 ≤ K(R)2

∫
U(R)

dV = K(R)2πLγ(t) sinh2R

and
area(∂U(R)) = 2πLγ(t) sinhR coshR.

Together this implies that

K(R)2 ≥ 2
(

2 +
1

cosh2R

)( |L′γ(t)|
2Lγ(t)

)2

.

Taking the limit of both sides as R → 0 and rearranging terms gives the desired
inequality. �

We are now ready to prove one of our main theorems, stated in the introduction.
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Theorem 1.4. For each L > 0 there exists an ε > 0 and an A > 0 such that if γ
is a simple closed curve in M with Lγ(α) ≤ L and Lc(α) ≤ ε for all c ∈ C, then

e−ALC(α)Lγ(α) ≤ Lγ(t) ≤ eALC(α)Lγ(α)

and
(1−ALC(α))Θγ(α) ≤ Θγ(t) ≤ (1 +ALC(α))Θγ(α)

for all t ≤ α.

Proof. We begin by noting that if Lγ(t) ≤ e−4α`0`0 for any t ≤ α, then the theorem
follows from Proposition 4.3 with ε = `0 and A = 4LC(α). Therefore we will assume
for the remainder of the proof that Lγ(α) ≤ L but Lγ(t) > e−4α`0`0 for all t ≤ α.

By Lemma 4.5 there exists a δ > 0 such that if δ < Lγ(t) ≤ 2L, then the geodesic
representative γt of γ in Mt is disjoint from M δ

t . We assume that δ ≤ e−4α`0`0.
We need to bound the pointwise norm of ωt on the geodesic γt. To do so, we

bound the L2-norm of ωt using Proposition 4.2 and then apply the mean value
theorem developed in the appendix.

Choose ε1 > 0 such that if Lc(t) < ε1, then Rct > 3L. Then if Lγ(t) < 2L, γt
will not intersect the radius Rct/3 tube about c. In fact any ball Bδ centered at a
point p on γt will not intersect this tube. Furthermore, since Rct > sinh−1

√
2, the

area of the boundary of this tube will be universally bounded below and therefore
by Proposition 4.2 there exists a K1 such that∫

Bδ

‖ωt‖2 ≤ (K1LC(α))2.

Let

K =
3
√

2 vol(Bδ)K1

2π(cosh(δ) sin(
√

2δ)−
√

2 sinh(δ) cos(
√

2δ))
.

Then the norm bound and Theorem 9.9 imply that

‖ωt(p)‖ ≤ KLC(t)
and therefore

|L′γ(t)| ≤
√

2
3
KLC(α)Lγ(t)

if δ < Lγ(t) ≤ 2L. Next we choose ε2 such that

e
√

2
3Kε2 ≤ 2

and we let ε = min{ε1, ε2} and A =
√

2
3K. The rest of the argument is a repeat of

the proof of Proposition 4.3. In particular we can first show that Lγ(t) ≤ 2L for
all t ≤ α and then integrate the derivative bound to get the final estimate. �

5. Bounding the Schwarzian derivative

Recall that Σit is the projective boundary of Mt corresponding to a component
of ∂N . The Hodge forms ωt extend to a holomorphic quadratic differential Φit on
Σit. We now use our bound on the L2-norm of ωt to bound the L∞-norm of Φit.
To do so, we first need a local result: given a bound on the L2-norm of a Hodge
form on a half space H , we bound the L∞-norm of the quadratic differential on the
projective boundary, a round disk D.

We begin with a lemma from complex analysis.
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Lemma 5.1. Let Φ be a holomorphic quadratic differential on a round disk D.
Then

‖Φ‖2 ≥ 2
√
π

3
‖Φ(z)‖

for all z ∈ D.

Proof. Without loss of generality we assume that D is the unit disk ∆ in C and
z = 0. The hyperbolic metric on ∆ is σ(z) = 2

1−|z|2 and the area form in polar
coordinates is σ2rdrdθ. Then Φ = φdz2 where φ is a holomorphic function on ∆.

Let φ(z) =
∞
Σ
n=0

anz
n be the Taylor series for φ so ‖Φ(0)‖ = |a0|

4 . We then calculate

‖Φ‖22 =
∫

∆

|φ|2σ−4dA

=
∑
n,m

∫ 1

0

∫ 2π

0

anamr
n+meı(n−m)θσ−2rdθdr

=
π

2

∑
n

|an|2
∫ 1

0

(1 − r2)2r2n+1dr

≥ π

2
|a0|2

∫ 1

0

(1 − r2)2rdr

=
π

12
|a0|2

=
4π
3
‖Φ(0)‖2.

�

Next we construct an extension of a holomorphic quadratic differential Φ on D to
an E-valued 1-form ωΦ on H . We will use a non-standard model for H3. Namely,
let H3 = D × R with the Riemannian metric σ2 cosh2 tdx2 + σ2 cosh2 tdy2 + dt2

where σ is the hyperbolic metric on D. Then H = D × [0,∞) is then a half
space in H3 whose projective boundary is naturally identified with D. We also
fix an orthonormal framing of H3 by letting ω1 = σ cosh tdx, ω2 = σ cosh tdy and
ω3 = dt. Let e1, e2 and e3 be the vector fields dual to the ωi. Define Ei to be the
lift of ei to ReE.

The holomorphic quadratic differential Φ is the Schwarzian derivative of a con-
formal vector field v = f ∂

∂z where f is a holomorphic function with Φ = fzzzdz
2.

To extend Φ, we first use v to construct a section of E. At each point w = x + ıy
in D let

(5.1) s∞(w) =
[
f(w) + fz(w)(z − w) +

fzz(w)
2

(z − w)2

]
∂

∂z

be the projective vector field that best approximates v at w. A projective vector
field extends to a Killing field in H3 so the function s(w, t) = s∞(w) is an E-valued
section on H . The vector fields Re s and − Im s on H will extend continuously
to v and ıv on D so ωΦ = ds extends continuously to Φ. We will show that ωΦ

minimizes the L2-norm among all Hodge forms that extend continuously to Φ.
To do any calculations, we need to understand how a projective vector field on Ĉ

extends continuously to a Killing field on H3. It turns out that all projective fields
that appear in our calculations are parabolic. The parabolic vector field v = ∂

∂z
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has a very simple extension if we use the upper half space model of H3. That is, if
H3 = {(x, y, t)|t > 0}, then v extends to the Killing ∂

∂x (here z = x+ ıy).

To extend the parabolic vector field (z−w)2

2
∂
∂z to H3 in our unusual coordinate

system, we need to perform a change of coordinates. Let rw = {w}×R be a geodesic
in H3. The next lemma describes the extension of (z−w)2

2
∂
∂z to a Killing field on

the geodesic rw.

Lemma 5.2. The E-valued section −σ−1e−t(E1 + ıE2) evaluated on the geodesic
rw is a Killing field which extends to the projective vector field (z−w)2

2
∂
∂z on D.

Proof. Let v be the Killing field in H3 that continuously extends to (z−w)2

2 on D.
Then v restricted to rw will be −σ−1e−te1. We also know that curl v is the Killing
field that continuously extends to the projective vector field i(z−w)2

2
∂
∂z on D. From

this we see that curl v restricted to rw is the vector field σ−1e−te2.
The section −σ−1e−t(E1 + ıE2) evaluated at any point p is the unique Killing

field w with w(p) = −σ−1e−te1 and (curlw)(p) = σ−1e−te2. Therefore for p ∈ rw,
w = v, proving the lemma. �

Next we calculate the pointwise and L2-norms of ωΦ.

Lemma 5.3. If Φ is a holomorphic quadratic differential on D, then ωΦ is a Hodge
form. Furthermore the pointwise norm of ωΦ is

(5.2) ‖ωΦ(w, t)‖ = 2e−t sech t‖Φ(w)‖
while the L2-norm on H is

(5.3)
∫
H

‖ωΦ‖2 = 2‖Φ‖22.

Proof. Recall that Φ = φdz2 = fzzz
∂
∂z where f and hence φ are holomorphic

functions. Since s(w, t) = s∞(w),

ωΦ(w, t) = ds(w, t) = ds∞(w) =
[
φ(w)

(z − w)2

2
∂

∂z

]
dw.

Note that the last equality is obtained by differentiating (5.1) with respect to w.
We need to rewrite this expression in terms of Ei and ωi. We first note that
dw = dx+ ıdy = σ−1 sech t(ω1 + ıω2). From Lemma 5.2 we know that

(z − w)2

2
∂

∂z
= −σ−1e−t(E1 + ıE2).

Together this implies that

(5.4) ωΦ(w, t) = −σ−2e−t sech tφ(w)(E1 + ıE2)(ω1 + ıω2).

Next we show that ωΦ is a Hodge representative. First we know that ωΦ is closed
since dωΦ = d(dsΦ) = 0. To see that ωΦ is co-closed, we need to calculate δωΦ.
This can be done using the formula for δ given in §2. Finally, to see that s is the
canonical lift of a divergence free vector field, we note that ωΦ = ds is symmetric
and traceless. The result then follows from the work in §2 of [HK1].

To calculate the pointwise norm of ωΦ on H , we note that

‖(E1 + ıE2)(ω1 + ıω2)‖2 = 4ω1 ∧ ω2 ∧ ω3
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from which it follows that

‖ωΦ(w, t)‖2 = 4σ−4e−2t sech2 t|φ(w)|2ω1 ∧ ω2 ∧ ω3

= 4e−2t sech2 t‖Φ(w)‖2ω1 ∧ ω2 ∧ ω3.

Next we calculate the L2-norm:∫
H

‖ωΦ(w, t)‖2 =
∫
H

4e−2t sech2 t‖Φ(w)‖2ω1 ∧ ω2 ∧ ω3

=
(∫ ∞

0

4e−2tdt

)(∫
D

‖Φ(w)‖2σ2dxdy

)
= 2‖Φ‖22.

�

We can now show that ωΦ minimizes the L2-norm.

Theorem 5.4. Let ω be a Hodge form on H that extends continuously to a holo-
morphic quadratic differential Φ on D and assume that Φ extends to a neighborhood
of D in Ĉ. Then ∫

H

‖ω‖2 ≥
∫
H

‖ωΦ‖2 ≥
8π
3
‖Φ(z)‖2

for all z ∈ D.

Proof. Let p be a point on P and Ht the set of points in H that are within a
distance t from p. Then the boundary of Ht consists of a disk Pt in the plane P
and a hemisphere St. By Theorem 2.2

2
∫
Ht

‖ω‖2 =
∫
Pt∪St

ıω ∧ ω].

We first examine the integral over St. By definition of the Hodge star operator
ıω∧ω] = ∗∂(ıω ∧ω])dA where ∗∂ is the star operator for St and dA the area form,
while ω ∧ ∗ω] = ∗(ω ∧ ∗ω])dV where dV is the volume form. Both ∗∂(ıω ∧ ω]) and
∗(ω ∧ ∗ω]) are real valued functions with | ∗∂ (ıω ∧ ω])| ≤ ∗(ω ∧ ∗ω]). Since ω is in
L2 on H and dV = dAdt, we have∫ ∞

0

∫
St

∗(ω ∧ ∗ω])dAdt =
∫
H

ω ∧ ∗ω] ≤ ∞

and therefore

lim
t→∞

∫
St

∗(ω ∧ ∗ω])dA = 0.

Since | ∗∂ (ıω ∧ ω])| ≤ ∗(ω ∧ ∗ω]), we have

lim
t→∞

∫
St

| ∗∂ (ıω ∧ ω])|dA = 0

and ∫
H

‖ω‖2 = lim
t→∞

∫
Pt

ıω ∧ ω].

We now calculate the integral over the disk Pt. To do so, we decompose the
Hodge form ω as the sum of the model Hodge form ωΦ and a correction term dτ
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where τ is the canonical lift of a vector field w such that both w and curlw extend
to the zero vector field on D. Therefore∫

Pt

ıω ∧ ω] =
∫
Pt

ı(ωΦ + dτ) ∧ (ωΦ + dτ)]

=
∫
Pt

ıωΦ ∧ ω]Φ

+2
∫
Pt

ıdτ ∧ ω]Φ

+
∫
Pt

ıdτ ∧ dτ ].

By our previous remarks we know that

lim
t→∞

∫
Pt

ıωΦ ∧ ω]Φ =
∫
H

‖ωΦ‖2

and
lim
t→∞

∫
Pt

ıdτ ∧ dτ ] =
∫
H

‖dτ‖2

so we need to show that
lim
t→∞

∫
Pt

ıdτ ∧ ω] = 0.

Recall that d decomposes into its real and imaginary parts, D and T , respectively.
Then ∂ = D−T is the covariant derivative of the flat connection on E∗ conjugated
by the isomorphism between E and E∗. If α and β are E-valued forms with α a
k-form, then

d(α ∧ β]) = dα ∧ β] + (−1)kα ∧ (∂β)].
(On the left-hand side of this equation α ∧ β] is a real valued form and d is the
covariant derivative for real forms.) Therefore∫

Pt

ıdτ ∧ ω]Φ = −
∫
Pt

ıτ ∧ (∂ωΦ)] +
∫
∂Pt

ıτ ∧ ω]Φ.

To calculate ∂ωΦ, we recall that dωΦ = 0 and ∂ − d = −2T (see §2.2) so

∂ωΦ = −2TωΦ

= −σ−2e−t sech tφ(TE1 + ıTE2) ∧ (ω1 + ω2)
= −σ−2e−t sech tφ((E1 + ıE2)ω1 ∧ ω3 + (ıE1 − E2)ω2 ∧ ω3).

Since there are no ω1 ∧ ω2 terms in ∂ωΦ,∫
Pt

ıτ ∧ (∂ωΦ)] = 0.

To finish the proof, we need to calculate the boundary term. To do so, we use
the Poincare disk model for P with p the center of the disk. In particular we reset
our coordinates identifying the unit disk ∆ in C with the hyperbolic plane P . The
conformal factor of the hyperbolic metric on ∆ = P is σ(z) = 1

1−|z|2 . In these
coordinates (5.2) becomes

‖ωΦ(z)‖2 = 4‖Φ(z)‖2 = 4σ(z)−4|φ(z)|2

where φ is a holomorphic function on a neighborhood of ∆. In particular, |φ| is
bounded on ∆.
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We also know that τ is the canonical lift of a vector field w such that w and curlw
limit to zero on ∂P . Therefore the Euclidean length of these vector fields must decay
to zero at ∂P ; i.e., σ−1‖w‖ and σ−1‖ curlw‖ extend to the zero function on ∂P ,
where ‖w‖ and ‖ curlw‖ are hyperbolic lengths. So although ‖τ‖2 = ∗(τ ∧ ∗τ ]) =
‖w‖2 +‖ curlw‖2 may not decay to zero, there is a function g on P that does extend
continuously to zero on ∂P with ‖τ‖ = σg.

Putting this all together we have∫
∂Pt

ıτ ∧ ω]Φ ≤
∫
∂Pt

‖τ‖‖ωΦ‖dR

≤
∫
∂Pt

2σ−1g|φ|dR

≤
∫ 2π

0

2g|φ|dθ

and since g|φ| limits to zero on ∂P , we have

lim
t→∞

∫
∂Pt

ıτ ∧ ω]Φ = 0.

Therefore ∫
H

‖ω‖2 =
∫
H

‖ωΦ‖2 +
∫
H

‖dτ‖2 ≥ 2‖Φ‖22 ≥
8π
3
‖Φ(z)‖

for all z ∈ D. �

With this local result in place we can now bound the norm of Φit. The projective
structures Σit have a fixed conformal structure X i. Let κ be the injectivity radius
for the hyperbolic metric on X i.

Theorem 5.5. Assume that the tube radius of C in Mα is greater than sinh−1
√

2
and that LC(α) ≤ `0. Then

(5.5) LC(t) ≥ 2

√
2π
3

tanh2(κ/2)
1 + 2‖Σt‖F

‖Φit‖∞.

Proof. By Proposition 3.7, for each z ∈ Σt there exists an embedded round disk D
with hyperbolic metric σD such that

σD(z) ≤ σ(z) coth(κ/2)
√

1 + 2‖Σt‖F .
Therefore if we compare the norm of a holomorphic quadratic differential Φ in the
σD-metric to the norm in the σ-metric, we get

‖Φ(z)‖σD ≥
tanh2(κ/2)
1 + 2‖Σt‖F

‖Φ(z)‖σ.

Let H be the half space bounded by D on Σt. By Theorem 3.5, H is disjoint from
UCt and therefore

LC(t)2 ≥
∫
M ′t

‖ωt‖2 ≥
∫
H

‖ωt‖2.

By Theorem 5.4 ∫
H

‖ωt‖2 ≥
8π
3
‖Φt(z)‖2σD .
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Combing these three formulas, we have

LC(t)2 ≥
∫
H

‖ωt‖2

≥ 8π
3
‖Φt(z)‖2σD

≥ 8π
3

tanh4(κ/2)
(1 + 2‖Σt‖F )2

‖Φt(z)‖2σ

which implies the result. �

Next we use the bound on ‖Φit‖∞ to bound the distance between projective
structures Σiα and Σit. This is another of the main results mentioned in the intro-
duction.

Theorem 1.3. There exists a C depending only on α, the injectivity radius of the
unique hyperbolic metric on X i and ‖Σiα‖F such that

d(Σiα,Σ
i
t) ≤ CLC(α)

for all t ≤ α.

Proof. We will integrate (5.5). Let σ(T ) be the length, in P (X), of the path of
projective structures Σt with t ∈ [T, α]. Since Σt is a smooth path in P (X), σ(t)
will be a smooth function and by definition ‖Σt‖F ≤ ‖Σα‖F +σ(t). By Proposition
2.1, − dσdt (t) = ‖Φt‖∞. By Proposition 4.1, LC(α) ≥ LC(t) for all t ≤ α. Then by
(5.5)

− dσ

1/2 + ‖Σα‖F + σ
≤ KLC(α)dt

where K = 2
√

2π
3 coth2(κ/2). Integrating both sides, we have∫ α

T

− dσ

1/2 + ‖Σα‖F + σ
≤

∫ α

T

KLC(α)dt

log
(

1/2 + ‖Σα‖F + σ(T )
1/2 + ‖Σα‖F + σ(α)

)
≤ (α− T )KLC(α) ≤ αKLC(α)

1 +
σ(T )

1/2 + ‖Σα‖F
≤ eαKLC(α)

σ(T ) ≤ (1/2 + ‖Σα‖F )
(
eαKLC(α) − 1

)
.

There exists a C′ depending only on α andK (and hence κ) such that eαKLC(α)−1 ≤
C ′LC(α). Therefore

σ(t) ≤ C′LC(α)(1/2 + ‖Σα‖F ).

Since d(Σα,Σt) ≤ σ(t), we have

d(Σα,Σt) ≤ CLC(α)

where C = C′(1/2 + ‖Σα‖F ) depends only on κ, α and ‖Σα‖F . �

Corollary 5.6. The projective structures Σit converge to a projective structure Σiα′
as t→ α′.
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6. Geometric limits

We know that the projective boundary of Mt converges at α′. Now we need to
show that the entire cone-manifold converges. We will need to examine geometric
limits of hyperbolic cone-manifolds. Our approach will follow that of [HK4].

If X and Y are metric spaces and f : X −→ Y is a map, define lip(f) to be
the infimum of all K such that dY (f(x1), f(x2)) ≤ KdX(x1, x2). The bi-Lipschitz
distance betweenX and Y is bilip(X,Y ) = inf{| log lip(f)|+| log lip(f−1)||f : X −→
Y is bi-Lipschitz}. This defines the bi-Lipschitz topology on the set of metric spaces.

To show that a sequence of compact hyperbolic manifolds with boundary con-
verges, we need to control three quantities: the prinicipal curvatures of the bound-
ary, the injectivity radius and the width of collar neighborhoods of the bound-
ary. If M is a hyperbolic manifold, we let injM = inf{injx |x ∈ M}. We define
∂M(t) to be those points in M whose distance from ∂M is less than t. Then
width(∂M) = inf{t|∂M(t′) is a collar of M for all t′ < t}. The geometric conver-
gence theorem that follows is essentialy due to Kodani [Ko1](see the remarks on p.
20 of [HK4]):

Theorem 6.1. Let λ−, λ+, i0 and W be real constants with λ+ ≥ λ− and
i0,W > 0. Let Mn be a sequence of hyperbolic manifolds with boundary such that
the principal curvatures of ∂Mn are contained in the interval [λ−, λ+], injMn

≥ i0
and width(∂Mn) ≥ W . Then there exists a hyperbolic 3-manifold with boundary
M∞ and a subsequence {nk} such that Mnk → M∞ in the bi-Lipschitz topology.
Furthermore if all the Mn are diffeomorphic and have bounded volume (or diame-
ter), then M∞ is diffeomorphic to Mn.

We will apply this result to suitably chosen compact submanifolds of our hyper-
bolic cone-manifolds Mt.

6.1. Geometric limit of geometrically finite ends. To construct these compact
submanifolds, we remove a neighborhood of the geometrically finite ends. To do
this, we need to understand how the projective boundary determines the hyperbolic
geometry of the geometrically finite ends. This information comes from work of
Epstein ([Ep]) and Anderson ([And]) which we will review here.

We will use the same coordinates for H3 as we did in §5. In particular, let U be
the upper half space of C with hyperbolic metric σ. Then H3 = U ×R with metric

σ2 cosh2 tdx2 + σ2 sinh2 tdy2 + dt2.

Let Pd be the set of points of the form (z, d) in H3. Then P0 is a hyperbolic plane
and Pd is a constant curvature plane a (signed) distance d from P0.

Let ψ : U −→ Ĉ be a conformal, locally univalent map and let Φ = Sψ be its
Schwarzian derivative. The osculating Möbius transformation Mψ(z) is the unique
Möbius transformation whose two jet agrees with ψ at z. We define Ψ : H3 → H3

by
Ψ(z, d) = Mψ(z)(z, d).

Note that Ψ extends continuously to ψ on U .
The following two results can be found in §3 of [And].

Proposition 6.2. Let p = (z, d) be a point in H3. There exist an orthonormal
basis {e1, e2, e3} for TH3

p with e1 and e2 spanning the plane normal to Pd and an
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orthonormal basis for TH3
Ψ(p) such that dΨ at p in these coordinates is 1 + ‖Φ(z)‖

4ed cosh d
0 0

0 1− ‖Φ(z)‖
4ed coshd

0
0 0 1

 .

In particular if 4ed coshd > ‖Φ‖∞, then Ψ is an orientation preserving local diffeo-
morphism at p.

Remark. For each d the nearest point retraction πd defines a natural map from U
to Pd. In [And] what is actually calculated is the derivative of the composition
Ψ ◦ πd. Since the derivative of πd is easy to calculate, we can translate the work in
[And] to the above proposition.1

When Ψ is an immersion, there are also formulas for the curvature of the image
surface Ψ(Pd).

Proposition 6.3. Let p = (z, d) be a point on Pd and let k1 = − ‖Φ(z)‖
‖Φ(z)‖−1 and

k2 = − ‖Φ(z)‖
‖Φ(z)‖+1 . Then the principal curvatures (if defined) of Ψ(Pd) at Ψ(p) are

sinh d+ ki cosh d
coshd+ ki sinh d

for i = 1, 2.

Let Σ be a projective structure on a surface S with conformal structure X and
let ΣF be the fuchsian projective structure with conformal structure X . Then there
is a representation ρF : π1(S) −→ PSL2R such ΣF = U/ρF (π1(S)). Identifying U
with the universal cover S̃ and the deck transformations with ρF (π1(S)), there is
a conformal developing map ψ : U −→ Ĉ for Σ. In particular, Σ has a holonomy
representation ρ and ψ ◦ ρF (γ) = ρ(γ) ◦ ψ for all γ ∈ π1(S). As above ψ extends
to a map Ψ : H3 −→ H3. It is clear from the definition that this construction is
natural. That is, Ψ ◦ ρF (γ) = ρ(γ) ◦Ψ for all γ ∈ π1(S).

The group ρF (π1(S)) also acts on H3 with quotient homeomorphic to S × R.
We can therefore view H3 as the universal cover of S ×R, identifying S̃ ×{d} with
Pd in H3. Then Ψ is a map from S̃ × R to H3. Restricted to S̃ × [d,∞) where
ed >

√
2‖Σ‖F + 1, Ψ is a diffeomorphism. Let E(Σ, d) be the hyperbolic structure

on S × [d,∞) defined by this developing map. The hyperbolic structure E(Σ, d)
extends to the projective structure Σ on S×{∞} so E(Σ, d) is a geometrically finite
end with projective boundary Σ. The plane Pt descends to surfaces S(Σ, t) that
foliate E(Σ, d).

Proposition 6.4. The surfaces S(Σ, t) are convex in E(Σ, d) and are strictly convex
if t > 0.

Proof. This is a direct consequence of Proposition 6.3. �
The foliation of E(Σ, d) by convex surfaces implies that E(Σ, d) embeds in a

hyperbolic cone-manifold with projective boundary Σ. More precisely:

Proposition 6.5. If Σ is a component of the projective boundary of a hyperbolic
cone-manifold M , then E(Σ, d) embeds in M if d > 0.

1There is an error in the calculation of the eigenvalues on p. 35 of [And]. They should be 1
2

(1+

1/t)+‖Sf(0)‖/4t and 1
2

(1+1/t)−‖Sf(0)‖/4t not 1
2

(1+1/t)+‖Sf(0)‖ and 1
2

(1+1/t)−‖Sf(0)‖.
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Proof. The proof is the same as Lemma 3.3. �

Although E(Σ, d) embeds, it may intersect the tubes U ct . We need to show that
d can be chosen large enough so that this does not happen. To do this, we will use
an alternative construction of the surfaces S(Σ, d) as an envelope of horospheres.

For each p ∈ H3 the identification of the unit sphere in TpH3 with the ideal
boundary Ĉ of H3 determines a visual measure µp of Ĉ. Given a conformal metric
σ on a domain Ω ⊆ Ĉ and a point z ∈ Ĉ, the set of points in H3 whose visual
measure equals σ at z is a horosphere Hz,σ. This horosphere also has the following
property: A plane P in H3 limits to a round circle in Ĉ. This circle bounds two
disks and we assume one of these disks D contains z. Then hyperbolic metric σD
on D will agree with σ at z if and only if P is tangent to Hz,σ.

The envelope of this family of horospheres Hz,σ is a surface in H3. A similar
construction works in a geometrically finite end. In fact if σ is the hyperbolic metric
on Σ and σd = edσ, the envelope of the family of horospheres Hz,σd is the surface
S(Σ, d).

Theorem 6.6. Let κ be the injectivity radius of the hyperbolic metric on Σ. If
ed > coth(κ/2)

√
1 + 2‖Σ‖F , then E(Σ, d) is embedded and disjoint from UCt .

Proof. Since the envelope of the family of horospheres Hz,σd is the surface S(Σ, d),
the union of the horoballs bounded by Hz,σd is the entire end E(Σ, d). By Propo-
sition 3.7 there exists an embedded round disk D′ with hyperbolic metric σD such
that

σD′(z) < σ(z) coth(κ/2)
√

1 + 2‖Σ‖F .
By our choice of d there exists a round disk D ⊂ D′ such that σD(z) = σd(z). The
round disk D is the projective boundary of an embedded half space H which will
have hyperbolic boundary a plane P . The plane P will be tangent to Hz,σd so the
horoball bounded by Hz,σd will be contained in H . By Theorem 3.5, H is disjoint
from UCt and therefore the horoball bounded by Hz,σd is disjont from UCt , proving
the theorem. �

For each Σ the map Ψ canonically identifies E(Σ, d) as a Reimannian metric on
a fixed copy of S × [d,∞). We then have the following proposition:

Proposition 6.7. Let Σt be a sequence of projective structures which converge
to Σ∞ in P (X) and assume that ed >

√
2‖Σt‖F + 1 for all t. Then the metrics

E(Σt, d) converge to E(Σ,∞) in the compact-C∞ topology on metrics on S× [d,∞).

Proof. This is a simple consequence of the fact that the maps Ψ̃t depend continu-
ously on the projective structures Σt. In particular, if the Σt converge to Σ∞, then
Ψ̃t can be chosen to converge to Ψ̃∞ in the C∞-topology on maps from S̃ × [d,∞)
to H3 which implies that the metrics converge. �

On a compact manifold convergence in the compact-C∞ topology of a sequence
of metrics implies that the associated metric spaces converge in the bi-Lipschitz
topology. Since S × [d,∞) is non-compact, we only get bi-Lipschitz convergence
on compact submanifolds such as collars S × [d, d′]. This will be enough for our
applications.
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6.2. The Schläfli formula. We will need to bound the volume of the complement
of the geometrically finite ends in the cone-manifolds Mt. To do so, we will use the
generalized Schläfli formula of Rivin and Schlenker. Although their formula applies
in much greater generality, we will stick to the case of a 3-manifold with boundary
M and a smooth family of hyperbolic cone-metrics gt where t is the cone-angle. Let
I(t) and II(t) be the first and second fundamental forms for ∂M in the gt metric
and H(t) the mean curvature. Finally let V (t) be the volume of M in the gt metric.
The generalized Schäfli formula is then

Theorem 6.8 (Rivin and Schlenker [RS]).

−1
3
V ′(t) =

∫
∂M

(
H ′(t) +

1
2
〈I′(t), II(t)〉

)
dA+ LC(t).

We will use the following simple corollary of this result:

Corollary 6.9. Assume that the metrics gt are defined for a < t ≤ b and that as
t → a, gt converges in the C∞-topology on a collar neighborhood of ∂M . Further-
more assume that LC(t) is bounded. Then V (t) is bounded.

Proof. Since gt converges, the quantities H ′(t) and I′(t) and II(t) are all bounded
and therefore the integral ∫

∂M

(H ′ + 〈I′, II〉) dA

will be bounded. Since LC is bounded, Theorem 6.8 implies that V ′ is bounded
which in turn implies that

V (T ) =
∫ T

1

V ′dt+ V (1)

is bounded. �
Remark. This result could also have been proven using the standard Schläfli for-
mula for manifolds with polyhedral boundary. One simply needs to construct a
polyhedral approximation for the smooth boundary.

6.3. Geometric limits of cone-manifolds. By Corollary 5.6 we know that the
projective structures Σit converge to a projective structure Σiα′ as t→ α′. Therefore
there exists a d > 0 such that ed−1 >

√
2‖Σit‖F + 1 for all t ∈ (α′, α] and i =

1, . . . , n. We then let Mt be the closure of M ′t\
(

n⋃
i=1

E(Σit, d)
)

. The boundary of

Mt consist of the boundary ∂U ct of the tubes and the boundary S(Σit, d) of the
geometrically finite ends.

Theorem 6.10. There exists a sequence {tn} in (α′, α] with tn → α′ such thatMtn

converges in the bi-Lipschitz topology to a hyperbolic cone-manifoldMα′ homeomor-
phic to Mt.

Proof. We need to see that the conditions of Theorem 6.1 hold for the family
Mt. As we have already noted, the norms ‖Σit‖F are bounded since the projec-
tive structures converge. Proposition 6.3 then implies that the principal curva-
tures of S(Σit, d) are bounded above and below. Since the radii of the tubes U ct
are greater than sinh−1

√
2, the principal curvatures of ∂U ct are bounded between

coth(sinh−1
√

2) and tanh(sinh−1
√

2). We bounded the injectivity radius in Propo-
sition 4.4. Our choice of d guarantees that width(S(Σit, d)) ≥ 1. To see that the
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boundary components ∂U ct have a definite width, we note that the tubes U ct are
not maximal. In fact from Proposition 3.2 we see that there are disjoint embedded
tubes whose torus boundary has area 0.51. The difference between these tubes and
the U ct will be a collar of definite width for all t.

This is enough to obtain a limiting hyperbolic manifold Mα′ . To see that Mα′

is homeomorphic to the Mt, we need to bound the volume of the Mt. If we
consider theMt as a family of metrics on a fixed manifold, Proposition 6.7 implies
that we can choose these metrics such that they converge on a neighborhood of

each S(Σit, d). We then apply Corollary 6.9 to Mt\
(

n⋃
i=1

E(Σit, d)
)

to bound the

volume. �

Theorem 6.11. There exists an Mα′ ∈ GF (N, C) such that Mt →Mα′ .

Proof. The boundary of Mα′ consists of tori and higher genus surfaces. On a
collar of the higher genus ends, the manifolds Mtn converge to a collar of the
geometrically finite ends E(Σiα′ , d−1). Therefore we can glue the ends E(Σiα′ , d−1)
to the higher genus boundary components. It is shown in §3 of [HK4] that the
metric can be extended to a cone-singularity (or cusp if α′ = 0) at the torus
components of ∂Mα′ with cone-angle α′. In fact they show more than this. For
large n there are bi-Lipschitz diffeomorphisms fn from Mtn to Mα′ . For a fixed
c ∈ C, fn maps ∂U ctn to a fixed component ∂U cα′ of ∂Mα′ . The meridian of ∂U ctn is
the unique homotopy class a of non-trivial simple closed curve on ∂U ctn that bounds
a disk in U ctn . Hodgson and Kerckhoff further show that fn maps the meridians
to a fixed homotopy class on ∂U cα′ and this homotopy class is a meridian of the
cone-singularity in the extended structure.

The extended manifold Mα′ is then a geometrically finite cone-metric on a pair
(N̂ , Ĉ). Since the maps fn take meridians to meridians, the fn extend to homeo-
morphisms from (N, C) to (N̂ , Ĉ). These extensions of fn can also be chosen to be
conformal maps from the conformal boundaries of Mtn to Mα′ . By Theorem 1.1
in an open interval about α′ there exists a one-parameter family of cone-manifolds
M̂t with cone-angle t, conformal boundary X and M̂α′ = Mα′ . We need to show
that each fn is homotopic to an isometry from Mtn to M̂tn .

Let ρt and ρ̂t be the holonomy representations of Mt and M̂t, respectively. (Note
that they are representations of π1(N\C) ∼= π1(N̂\Ĉ) not of π1(N) ∼= π1(N̂).)
Convergence in the bi-Lipschitz topology implies that the representations (fn)∗ρtn
converge to ρ̂α′ . By Theorem 5.7 in [Br1] the space of conjugacy classes of rep-
resentations is locally parameterized by the complex length of the meridians and
the conformal boundary. This is a stronger version of Theorem 1.1 which allows
representations where the holonomy of the meridians is not elliptic. It implies that
ρ̂tn = (fn)∗ρtn for large n. By Theorem 1.7.1 of [CEG] onMtn the maps fn will be
homotopic to an isometric embedding ofMtn in M̂tn . Since Mtn extends to a ge-
ometrically finite cone-manifold, in a unique way this implies that fn is homotopic
to an isometry from all of Mtn to M̂tn .

To finish the proof, we choose a fixed large value of n and use the map fn to
pull back metrics in GF (N̂ , Ĉ) to metrics in GF (N, C). Under this identification
Mtn = M̂tn . Theorem 1.1 then implies that Mt = M̂t wherever both are defined.
Therefore Mt →Mα′ as desired. �
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We are now ready to prove Theorem 1.2.

Theorem 1.2. Let Mα ∈ GF (N, C) be a geometrically finite hyperbolic cone-metric
with cone-angle α. Suppose the tube radius of the cone-singularity is ≥ sinh−1

√
2.

Then there exists an `0 depending only on α such that if Lc(α) ≤ `0 for all c ∈ C,
then the one-parameter family of cone-manifolds Mt ∈ GF (N, C) is defined for all
t ≤ α.

Proof. By Theorem 1.1 the interval for which the family Mt is defined is open in
[0, α]. By Theorem 6.11 this interval is also closed. Therefore Mt is defined for all
t ∈ [0, α]. �

7. Rank two cusps

In this section we show how bounds on the L2-norm control the shape of a rank
two cusp. Recall that a rank two cusp is the quotient of a horoball, centered at
infinity in the upper half space model, by parabolic elements z 7→ z+1 and z 7→ z+τ
with Im τ > 0. The horoball is foliated by horospheres which are horizontal planes
in H3. The quotients of these planes are tori which foliate the rank two cusp. Each
tori will be conformally equivalent with τ , the Teichmüller parameter of the tori.
To normalize the cusp, we choose the horoball so that in the quotient the boundary
torus has area 1

2 .
We will use similar notation for cusps as we do for short geodesics and their

tubular neighborhoods. In particular if γ is a torus component of ∂N , then Uγt will
be the associated rank two cusp. We also let Lγ(t) be the Teichmüller parameter
of the cusp.

We do not know, a priori, that the cusps Uγt are embedded. The proof of this is
essentially the same as Theorem 3.5. In particular we have

Proposition 7.1. If the tube radius of the cone-singularity is greater than sinh−1
√

2
and if Lc(t) ≤ `0 for all c ∈ C, then the cusps Uγt are embedded and disjoint from
the tubes U ct for all c ∈ C.

Next we need to control the derivative of the Teichmüller parameter as t varies.
Note that Lγ(t) is a point in the Teichmüller space of a torus which is canonically
identified with H2 so we will measure the derivative L′γ(t) in the hyperbolic metric.
We then have

Theorem 7.2.

LC(α)2 ≥ |L′γ(t)|2.

Proof. The proof is similar to the proof Theorem 5.4.
On the rank two cusp the Hodge form ωt is a sum of a model deformation ωmt

and a correction term ωct . The model is constructed in §3.7 of [Br1]. The term ωct
is trivial in cohomology and therefore exact, so ωct = dψt where ψt is an E-valued
section on Uγt .

Recall that to calculate the L2-norm of ωt on U tγ we need to integrate ıωt ∧ ω]t
over the boundary torus ∂U tγ . As in the proof of Theorem 5.4 we expand ıωt ∧ ω]t
to get

ıωt ∧ ω]t = ıωmt ∧ (ωmt )] + 2ıωct ∧ (ωmt )] + ıωct ∧ (ωct )
].
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Using the integration by parts argument from Theorem 5.4, we have∫
∂Utγ

ıωct ∧ (ωmt )] = −
∫
∂Utγ

ıψt ∧ (∂ωmt )].

From the explicit form of ωmt we see that ∂ωmt has no terms tangent to ∂Uγt so∫
∂Uγt

ıψt ∧ (∂ωmt )] = 0

which implies that ∫
Utγ

‖ωt‖2 =
∫
Utγ

‖ωmt ‖2 +
∫
Utγ

‖ωct‖2.

We can also calculate the L2-norm∫
Utγ

‖ωmt ‖2 = |L′γ(t)|2.

By Propositions 4.2 and 7.1 we know that

LC(α)2 ≥
∫
Mt

‖ωt‖2 ≥
∫
Uγt

‖ωt‖2.

Combining this last inequality with the previous two equalities completes the proof.
�

As an immediate corollary we have

Corollary 7.3. The length of the path Lγ(t) with t ∈ (α′, α] is bounded and there-
fore Lγ(t) converges to Lγ(α′) as t → α′, where Lγ(α′) is a complex number with
ImLγ(α′) > 0.

The proofs of Theorems 1.3 and 1.4 do not change when rank two cusps are
allowed. To prove Theorem 1.2, we need to modify the geometric limit arguement.
When there are rank two cusps, we defineMt to be the complement of geometrically
finite ends, the tubes about the cone-singularity and the rank two cusps. Then just
as in Proposition 4.4, Corollary 7.3 implies that the injectivity radius of Mt is
bounded below. Once we have this, the geometric limit argument and the proof of
Theorem 1.2 follow as before.

8. Applications to Kleinian groups

As mentioned in the introduction, estimates similar to the ones in this paper
were first proven by McMullen as part of his proof of the density of cusps on the
boundary of a Bers slice [Mc]. His methods were entirely different then ours and in
this section we will compare the two results and show how our estimates can give a
new approach to the density of cusps. Later Canary, Culler, Hersonsky and Shalen
extended McMullen’s estimates to prove the density of cusps in a more general
setting. We will also discuss this generalization.

A Bers slice, T (X), is an embedding of the Teichmüller space T (S) in the space
of projective structures, P (X), on a fixed conformal structure X . In particular
for each Y ∈ T (S) there is a unique projective structure ΣY ∈ P (X) such that
the developing map for ΣY is a homeomorphism onto a Jordan domain in Ĉ. The
holonomy for ΣY acts as deck transformations on the complementary Jordan do-
main uniformizing Y . Most interestingly, T (X) is a bounded domain in P (X) so
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its closure U(X) is a compactification of Teichmüller space. Bers began a system-
atic study of this compactification in [Bers]. In this paper he made a number of
conjectures, one of which is the density of cusps which we are now discussing.

Projective structures on the boundary ∂T (X) = U(X)\T (X) will have discrete
and faithful holonomy. Hence the image of the holonomy is a Kleinian group whose
quotient hyperbolic 3-manifold will be homotopy equivalent to S. If the image of
the holonomy contains a parabolic, then the projective structure is a cusp. The
following theorem was conjectured by Bers:

Theorem 8.1 (McMullen [Mc]). Cusps are dense in ∂T (X).

The parabolics in a cusp correspond to a collection C of homotopically distinct,
disjoint and essential simple closed curves on S. For each such C there is a projective
structure for whose holonomy each curve in C is parabolic, and if C is maximal, there
is a unique such projective structure ΣC . In this case ΣC is a maximal cusp.

The first step in McMullen’s proof of the density of cusps is to find a dense set
of Σ ∈ ∂T (X) with the following property: There exists a sequence of Yi ∈ T (S)
and maximal curve collections Ci such that LCi(Yi) → 0 and ΣYi → Σ as i →
∞. The construction of the Yi is a fairly straightforward argument involving the
compactness of k-quasiconformal maps and Sullivan rigidity (see p. 221 of [Mc]).
The proof is then compeleted with the following estimate which is a combination
of Theorem 1.2 and Corollary 1.3 in [Mc]:

Theorem 8.2 (McMullen). Given a Bers slice T (X), there exists a k > 0 such
that if C is a maximal collection of simple closed curves on S and Y ∈ T (S) with
LC(Y ) ≤ 1/2, then the following hold:

(1) There exists a Y ′ ∈ T (S) with LC(Y ′) ≤ LC(Y )/2 and

d(ΣY ,ΣY ′) ≤ k(LC(Y ) log(1/LC(Y )))2.

(2) We can bound the distance between ΣY and the maximal cusp ΣC:

d(ΣY ,ΣC) ≤ k(LC(Y ) log(1/LC(Y )))2.

Note that (2) follows from (1) since for any sequence Zi ∈ T (S) with LC(Zi)→ 0
we have ΣZi → ΣC . Applying (2) to each element of the sequence Yi, we have
d(ΣYi ,ΣCi) ≤ k(LCi(Yi) log(1/LCi(Yi)))2. Therefore d(ΣYi ,ΣCi)→ 0 and ΣCi → Σ
as i → ∞. Since a dense set of Σ ∈ ∂T (X) is approximated by maximal cusps,
maximal cusps are dense in ∂T (X). This is, of course, stronger then Bers’ conjecture
that cusps are dense.

Theorem 8.2 bounds the effect of a quasiconformal deformation of a quasifuchsian
manifold. One obtains a bound on the distance between the quasifuchsian manifold
and the cusp by taking a limit of quasiconformal deformations. From Theorem
1.3 we can obtain similar estimates using hyperbolic cone-manifolds to interpolate
between manifolds.

Before describing these estimates, we need to reset our notation. Let M be a
complete, smooth hyperbolic 3-manifold and C a collection of disjoint simple closed
curves on the conformal boundary ∂M of M . Following [CCHS], the collection
C is pinchable if the curves in C are homotopically distinct in M and each c ∈ C
represents a non-trivial primitive element of π1(M). Then Lc(M) will be the length
of the geodesic representative of c in M and Lc(∂M) will be the length of the
geodesic representative of c for the hyperbolic metric on the conformal boundary.
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We need the following preliminary result which is a combination of theorems of
Canary (Theorem 5.1 in [Can]) and Otal (Theorem 3 in [Ot]).

Theorem 8.3. Let C be a collection of pinchable curves on ∂M . There exists an
ε0 > 0 such that if Lc(∂M) ≤ ε0 for each c ∈ C, then the geodesic representative
c∗ of c in M is isotopic to c on ∂M . Furthermore this isotopy is disjoint from the
geodesic representatives of the other curves in C.

With this result in hand we can now apply Theorem 1.3 to a manifold with
short curves on its boundary. The next result is our version of McMullen’s estimate
(Theorem 8.2).

Theorem 8.4. Assume M is a smooth geometrically finite hyperbolic 3-manifold
without rank one cusps and that C is a pinchable collection of curves on ∂M . There
exists an `′0 > 0 such that if Lc(∂M) ≤ `′0 for all c ∈ C, the following hold:

(1) There exists a smooth, geometrically finite hyperbolic structure M̂ homeo-
morphic to M with each curve c pinched to a rank one cusp.

(2) The components of the conformal boundaries of M and M̂ that are disjoint
from C are conformally equivalent.

(3) If X is a component of the conformal boundary disjoint from C and Σ and
Σ̂ are the projective boundaries on X for M and M̂ , respectively, then there
exists a C depending only on the injectivity radius of the hyperbolic metric
on X and ‖Σ‖F such that

d(Σ, Σ̂) ≤ CLC(∂M).

Furthermore if X is incompressible, then C depends only on the injectivity
radius of X and not on ‖Σ‖F .

Proof. Let `′0 = min{`0, ε0}. By Theorem 1.2 there exists a one-parameter family
of cone-manifolds Mt for t ∈ [0, 2π] with cone-singularity C∗ such that M2π = M .
By Theorem 8.3, the manifold M has a compact core M ′ which is disjoint from
C∗. Furthermore each c∗ will be isotopic to a curve on the boundary of M ′. Recall
that M0 is a complete hyperbolic structure on the topological manifold M\C. Then
the cover M̂ of M0 associated to the compact submanifold M ′ is the hyperbolic
manifold satisfying (1) and (2).

Finally, the first statement in (3) holds by Theorem 1.3. For the second statement
we note that if X is incompressible, then ‖Σ‖F ≤ 3/2 by Nehari’s Theorem and
therefore C only depends on the injectivity radius of X . �

If M is quasifuchsian, then (3) of Theorem 8.4 is essentially the same as (2) of
Theorem 8.2 although the bound in Theorem 8.4 is weaker.

We also remark that the only new part of Theorem 8.4 is (3). The existence of the
manifold M̂ given by (1) and (2) is a well-known consequence of Thurston’s hyper-
bolization theorem. In particular, if every component of the conformal boundary
contains a curve in C, then (3) is vacuous and Theorem 8.4 gives no new infor-
mation. Furthermore, even if the conformal boundary contains a component X
disjoint from C, unlike in the quasifuchsian case, the projective structure on X may
not determine the hyperbolic structures on M and M̂ . For these reasons it is often
more useful to bound the change in complex length of closed geodesics as short
curves are pinched on the conformal boundary. This is exactly what is done in the
next theorem. Note that Θγ(M) is the imaginary part of the complex length.
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Theorem 8.5. For each L > 0 there exists an ε > 0 and an A > 0 such that if γ
is a closed geodesic in M with Lγ(M) ≤ L and Lc(∂M) ≤ ε for all c ∈ C, then

e−ALC(∂M)Lγ(M̂) ≤ Lγ(M) ≤ eALC(∂M)Lγ(M̂)

and
(1−ALC(M))Θγ(M̂) ≤ Θγ(M) ≤ (1 +ALC(M))Θγ(M̂).

Proof. This follows immediately using the construction of M̂ in the previous result
and Theorem 1.4. �

This estimate should be compared to Proposition 5.1 of [CCHS] and Theorem 9.1
of [CH]. These results are essentially the same as Theorem 8.5 although they require
both an upper and lower bound on the length of γ. Their proof is a generalization
of McMullen’s methods.

The motivation for these results in [CCHS] and [CH] was to generalize the density
of cusps. A Bers slice is the simplest example of a quasiconformal deformation
space. For an arbitrary quasiconformal deformation space maximal cusps will not
be dense on the boundary. The best one can hope for is for geometrically finite
manifolds to be dense. This is shown in [CH]. Although this result of Canary and
Hersonsky follows from Theorem 8.5, in the next theorem we will restrict ourselves
to the class of quasiconformal deformation spaces where maximal cusps are dense.

Theorem 8.6 ([CCHS]). Let M be a geometrically finite hyperbolic 3-manifold
without rank one cusps and assume that the conformal boundary of M has exactly
one connected component. Then maximal cusps are dense on the boundary of the
space of quasiconformal deformations of M .

We remark that although a quasifuchsian manifold’s conformal boundary has
two components, a Bers slice behaves like the quasiconformal deformation space
of a manifold with one boundary component. This is because the quasiconformal
deformations in a Bers slice are supported on only one of the boundary components
while the other component is fixed.

The proof Theorem 8.6 follows the same outline as the density of cusps on the
boundary of a Bers slice. In the final step we replace the main estimate of [CCHS]
with Theorem 8.5. Let MP (M) be the space of quasiconformal deformations of
M . (MP (M) is the space of minimally parabolic and geometrically finite manifolds
homeomorphic to M .) Let M̂ be a hyperbolic manifold in ∂MP (M) whose limit
set is Ĉ. When the conformal boundary of M has exactly one component, such M̂
are dense in ∂MP (M). (The proof of this fact is more complicated than it is for
a Bers slice.) We can then find a sequence Ci of maximal collections of pinchable
curves on ∂M and Mi ∈ MP (M) such that Mi → M̂ and LCi(∂Mi)→ 0. (Again,
the construction of the manifolds Mi is more involved than it is for a Bers slice.
There are topological considerations in finding the pinchable curves Ci that do
not occur for quasifuchsian manifolds.) Let MCi by the hyperbolic manifolds in
∂MP (M) where the curves Ci have become rank one cusps. Since Mi → M̂ for
every simple closed curve γ we have Lγ(Mi)→ Lγ(M̂). Theorem 8.5 then implies
that Lγ(MCi)→ Lγ(M̂) from which it follows that MCi → M̂ . Once again we have
shown that a dense set of points in ∂MP (M) is limits of cusps and therefore cusps
are dense in ∂MP (M).
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9. Appendix: Mean value inequalities

In this appendix we prove mean value inequalities for harmonic vector and strain
fields. For strain fields this inequality was proved by Hodgson and Kerckhoff in
an early version of [HK4]. Their proof is not in the current version of [HK4] as
they have found a simpler proof of their main results which does not require the
inequality. With their permission we recount the result here.

We also prove a mean value inequality for vector fields v where ‖∆v‖ is bounded.
The proof is essentially the same as for strain fields, if not simpler. We will start with
the vector field inequality along with an application to Hodge forms on geometrically
finite ends.

Using the identification of the tangent bundle with the real part of E, a vector
valued k-form ω can be identified as a real E-valued k-form. Then ∆ω will be the
Laplacian associated to the bundle E. For a function u, ∆u will be the standard
Laplacian on functions. It will be clear from the context which Laplacian we are
using.

Lemma 9.1. If ‖∆v‖ ≤ b, then −(∆‖v‖+ 2‖v‖) ≥ −b.

Proof. For vector fields we have the Weitzenböck formula,

∆v = ∇∗∇v + 2v

where ∇ is the Riemannian connection and ∇∗ its adjoint (see §2 of [HK1]).
Let

∇2
XY = ∇X∇Y −∇∇XY .

Then ∇∗∇ = −Σi∇2
eiei , where {e1, e2, e3} is an orthonormal frame field on M .

For functions, ∆ = ∇∗∇. Using this formula, we see that for any tensor S on a
Riemannian manifold

∆‖S‖2 = 2〈∇∗∇S, S〉 − 2‖∇S‖2.
Combining this formula with the Weitzenböck formula for v, we have

(9.1) ∆‖v‖2 = 2〈∆v, v〉 − 4‖v‖2 − 2‖∇v‖2.
Let u = ‖v‖2. Applying the product formula for the Laplacian to u times itself

gives
∆(u2) = 2u∆u− 2‖∇u‖2.

Combining this formula with (9.1), we get

2u∆u− 2‖∇u‖2 = 2〈∆v, v〉 − 4u2 − 2‖∇v‖2

or
u∆u+ 2u2 = 〈∆v, v〉 + ‖∇u‖2 − ‖∇v‖2.

We also know that ‖∇v‖ ≥ ‖∇u‖ = ‖∇(‖v‖)‖ and −〈∆v, v〉 ≥ −‖∆v‖‖v‖ ≥ −bu.
Therefore

−u(∆u+ 2u) ≥ −bu.
If u 6= 0, we have

−(∆u+ 2u) ≥ −b.
On the other hand if u = 0, u has a local minimum so −∆u ≥ 0 and the inequality
still holds. �
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Define the operator L by L = −(∆ + 2). Let Br be a ball of radius r centered at
a point p. We first need a fundamental solution for L, that is, a radially symmetric,
smooth function v(r) on BR\p such that Lv = 0 and∫

BR

vLφdV = lim
ε→0

∫
BR\Bε

vLφdV = φ(p)

for all smooth functions φ with support in the interior of BR.

Lemma 9.2. The function

v(r) =
− cosh(

√
3r) + coth(

√
3R) sinh(

√
3r)

4π sinh r
is a fundamental solution for L. Furthermore, v(R) = 0, v(r) ≤ 0 for 0 < r < R
and

v′(R) =
√

3
4π sinh(R) sinh(

√
3R)

.

Proof. For any radial function

−∆f =
∂2f

dr2
+ 2 coth r

df

dr
.

Using this formula, it is easy to check that Lv = 0.
The operator L is self-adjoint so on any compact manifold M with boundary

∂M , L satisfies Green’s identity:∫
M

fLgdV =
∫
M

gLfdV +
∫
∂M

(
f
∂g

∂n
− g ∂f

∂n

)
dA

where f and g are smooth functions on M and ∂
∂n is the derivative in the direction

of the outward normal.
Applying Green’s identity to v and a test function φ, we have∫

BR\Bε
vLφdV =

∫
BR\Bε

φLvdV +
∫
∂BR

(
v
∂φ

∂n
− φ∂v

∂r

)
dA

−
∫
∂Bε

(
v
∂φ

∂n
− φ∂v

∂r

)
dA

=
∫
∂Bε

v′φdA−
∫
∂Bε

v
∂φ

∂n
dA.

Clearly, v(ε) ∼ − 1
4π sinhR for ε near 0 and it is easy to check that v′(ε) ∼ 1

4π sinh2 r
.

We also know that area(∂Bε) = 4π sinh2(ε) and therefore

lim
ε→0

∫
∂Bε

v′φdA = φ(p)

and

lim
ε→0

∫
∂Bε

v
∂φ

∂n
dA = 0.

Therefore ∫
BR

vLφdA = φ(p)

and v is our fundamental solution.
The other properties of v are a straightforward calculation. �
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Lemma 9.3. Let u be a smooth function on BR such that Lu ≥ −b. Then

u(p) ≤ 1√
vol(BR)

√∫
BR

u2dV + b/2.

Proof. We first apply Green’s identity on Br′\Bε:∫
Br′\Bε

vLudV =
∫
Br′\Bε

uLvdV +
∫
∂Br′

(
v
∂u

∂r
− u∂v

∂r

)
dA

−
∫
∂Bε

(
v
∂u

∂r
− u∂v

∂r

)
dA(9.2)

where v is the fundamental solution on the ball Br′ . Recall that Lv = 0, v(r′) = 0
and

lim
ε→0
−
∫
∂Bε

(
v
∂u

∂r
− u∂v

∂r

)
dA = u(p).

Therefore after taking the limit of (9.2) as ε→ 0 and rearranging terms, we have

u(p) =
∫
Br′

vLudV +
∫
∂Br′

uv′dA =
∫
Br′

vLudV + v′(R)
∫
∂Br′

udA.

By letting u ≡ −1/2 and solving the above equation for
∫
Br′

vLudV =
∫
Br′

vdV ,
we have

0 ≥
∫
Br′

vdV =
√

3
2

sinh r′

sinh(
√

3r′)
− 1

2
≥ −1

2
.

Now if u is any smooth function on Br′ with Lu ≥ −b, we have∫
Br′

vLudV ≤ b/2.

Therefore

u(p) ≤ b/2 +
√

3
4π sinh(r′) sinh(

√
3r′)

∫
∂B

udA.

Rearranging, we have
4π√

3
(u(p)− b/2)(sinh(

√
3r′) sinh r′) ≤

∫
∂Br′

udA.

Next we integrate both sides from 0 to R:

4π√
3

(u(p)− b/2)
∫ R

0

(sinh(
√

3r′) sinh r′)dr ≤
∫ R

0

(∫
∂Br′

udA

)
dr′ =

∫
BR

udV.

Since sinh r′ ≤ sinh(
√

3r′)/
√

3, we have

4π√
3

∫ R

0

(sinh(
√

3r′) sinh r′)dr′ ≤ 4π
∫ R

0

sinh2 r′dr′ = vol(BR).

By Holder’s inequality ∫
BR

udV ≤
√

vol(BR)

√∫
BR

u2dV .

Therefore

u(p) ≤ 1√
vol(BR)

√∫
BR

u2dV + b/2.

�
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The three previous lemmas easily lead to the following theorem:

Theorem 9.4. Let v be a vector field on BR and assume ‖∆v‖ < b. Then

‖v(p)‖ ≤ 1√
vol(BR)

√∫
BR

‖v‖2dV + b/2.

By Theorem 4.3 of [Br1] every cohomology class in H1(M ;E) that extends to
a conformal deformation Φ of the projective boundary is represented by a Hodge
form ω. However, it is not shown that ω extends continuously to Φ. We show this
now.

Theorem 9.5. The Hodge form ω extends continuously to the holomorphic qua-
dratic differential Φ.

Proof. We need to recall some of the proof of Theorem 4.3 in [Br1]. In the proof
ω = ωm + ωc where ωm is a model deformation that extends continuously to Φ
and the correction term ωc is a trivial deformation. Then ωm = dsm where sm
is the canonical lift of an automorphic vector field on M̃ while ωc = dsc where
sc is the canonical lift of a vector field on M . The model wm is an automorphic
vector field that is in a standard form on the geometrically finite ends and near the
cone-singularity. From this standard form we know that the norms ‖∆wm‖ and
‖∆(curlwm)‖ decay to zero at the projective boundary.

Since we know that ωm extends continuously to Φ, to prove the theorem we
need to show that wc and curlwc extend continuously to the zero vector field.
From the proof of Theorem 4.3 in [Br1] we know that both wc and curlwc are in
L2. We also know that ∆w = ∆(curlw) = 0 so ∆wc = −∆wm and ∆(curlwc) =
−∆(curlwm). Therefore the norms ‖∆wc‖ and ‖∆(curlwc)‖ decay to zero at the
projective boundary.

We now apply Theorem 9.4. Let pn be a sequence of points in M converging to
p∞ in Σ. For large values of n there will be balls Bn centered at pn and embedded
in M such that ‖∆wc‖ and ‖∆(curlwc)‖ are less than bn on Bn with bn → 0. Then
by Theorem 9.4

‖wc(pn)‖ ≤ 1√
vol(Bn)

√∫
Bn

‖wc‖2 + bn/2

and

‖ curlwc(pn)‖ ≤ 1√
vol(Bn)

√∫
Bn

‖ curlwc‖2 + bn/2.

Since both wc and curlwc are in L2, the right-hand side of these inequalities limits
to zero at n→∞. Therefore ‖wc(pn)‖ and ‖ curlwc(pn)‖ limit to zero on Σ. �
9.1. Strain fields. Next we prove a mean value inequality for Hodge forms. The
real and imaginary parts of a Hodge form are strain fields so this is equivalent to
proving a mean value inequality for harmonic strain fields.

We begin by defining a strain field. If v is a vector field on a Riemannian manifold
with covariant derivative ∇, then ∇v is a vector valued 1-form. The traceless
symmetric part of∇v is the strain str v of v which measures the conformal distortion
of v. The real and imaginary parts of an E-valued 1-form are vector valued 1-forms.
It is shown in [HK1] that if v is a harmonic, divergence free vector field and if ω is
the associated Hodge form, then Reω = str v and Imω = − str curl v.
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Lemma 9.6. If η is a strain field with ∆η = 0, then −∆‖η‖+ 2‖η‖ ≥ 0.

Proof. The proof is a bit more complicated than Lemma 9.1 because the Weitzen-
böck formula for strain fields is more involved. The Laplacian ∆ = dδ + δd for
E-valued forms has the decomposition ∆ = D∗D + DD∗ + T ∗T + TT ∗ where
d = D + T and δ = D∗ + T ∗ are the decomposition of d and δ into their real and
imaginary parts. We deal with the first two terms ∆D = D∗D+DD∗ and the last
two terms H = T ∗T + TT ∗ separately. For ∆D we have (see [Wu])

∆Dη = −
∑
i

∇2
eieiη −

∑
i,j

ωi ∧ (R(ei, ej)η)(ej).

Let
Rη = −

∑
i,j

ωi ∧ (R(ei, ej)η)(ej)

so
∆D = ∇∗∇+R.

Since R(ei, ej) is a tensor, R is purely algebraic and therefore easy to calculate.
Any strain field η can be written as a linear combination η =

∑
i,j

f lkek⊗ωl. Then

Rη =
∑
k,l

f lkR(ek ⊗ ωl) so we need to calculate

R(ek ⊗ ωl) =
∑
i,j

ωi ∧
(
ωl(ej)R(ei, ej)ek + (R(ei, ej)ωl)(ej)ek

)
.

To calculate these terms, we recall that for hyperbolic space

R(ei, ej)ek = δikej − δ
j
kei

where δij is the Kronecker delta function. For the first term we have

ωi ∧ ωl(ej)R(ei, ej)ek = δlj(δ
i
kej − δ

j
kei)⊗ ωi.

If k 6= l, this is only non-zero if i = j and k = l in which case we get el ⊗ ωk. If
k = l, there are two non-zero terms −ei ⊗ ωi when i = j 6= k. Therefore∑

i,j,k,l

f lkω
i ∧ ωl(ej)R(ei, ej)ek = ηT − tr ηI.

For the second term we calculate

(R(ei, ej)ωl)(ej) = ωl(−R(ei, ej)ej) = (1− δij)ωl(ei) = (1− δij)δli
so ∑

i,j

ωi ∧ (R(ei, ej)ωl)(ej)ek = 2ek ⊗ ωl.

Since η is a strain field, it is traceless and symmetric; therefore the two terms
combine to give

Rη = −3η.
For a harmonic strain field η it is shown that Hη = η in [HK1]. Combining our

work so far we have

∆η = ∇∗∇η +Rη +Hη = ∇∗∇η − 3η + η = 0

and therefore
∇∗∇η = 2η.
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The remainder of the proof is exactly like the proof of Lemma 9.1 and we will
not repeat it. Note that for a harmonic vector field ∇∗∇v = −2v which accounts
for the sign change from the bound we get for vector fields to the bound for strain
fields. �

Now let Lu = (−∆+2)u. We then can restate Lemmas 9.2 and 9.3 and Theorem
9.4 for this new definition of L. The proofs are so similar that we leave the details
to the reader.

Lemma 9.7. The function

v =
− cos(

√
2r) + cot(

√
2R) sin(

√
2r)

4π sinh r
is a fundamental solution for L if R < π√

2
. Furthermore v(R) = 0, v(r) ≤ 0 for

0 < r < R and

v′(R) =
√

2
4π sinh(R) sin(

√
2R)

.

Lemma 9.8. Let u be a smooth function on BR such that Lu ≥ 0. Then

u(p) ≤ 3
√

2 vol(BR)
4πf(R)

√∫
BR

u2dV

where f(R) = cosh(R) sin(
√

2R)−
√

2 sinh(R) cos(
√

2R) for R < π√
2

.

Using the fact that ‖ω(p)‖2 = ‖Reω(p)‖2 + ‖ Imω(p)‖2, we then have

Theorem 9.9. Let ω be a Hodge form on a ball BR of radius R centered at a point
p. Then

‖ω(p)‖ ≤ 3
√

2 vol(BR)
4πf(R)

√∫
BR

‖ω‖2dV

for R < π√
2

.
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[Br1] K. Bromberg. Rigidity of geometrically finite hyperbolic cone-manifolds. Geom. Dedicata

105(2004), 143–170. MR2057249

[Br2] K. Bromberg. Projective structures with degenerate holonomy and the Bers’ density
conjecture. 2002 preprint available at front.math.ucdavis.edu/math.GT/0211402.

[Can] R. D. Canary. The conformal boundary and the boundary of the convex core. Duke Math.
J. 106(2000), 193–207. MR1810370 (2001m:57024)

http://www.ams.org/mathscinet-getitem?mr=1400058
http://www.ams.org/mathscinet-getitem?mr=1400058
http://www.ams.org/mathscinet-getitem?mr=1760675
http://www.ams.org/mathscinet-getitem?mr=1760675
http://www.ams.org/mathscinet-getitem?mr=0823981
http://www.ams.org/mathscinet-getitem?mr=0823981
http://www.ams.org/mathscinet-getitem?mr=0297992
http://www.ams.org/mathscinet-getitem?mr=0297992
http://www.ams.org/mathscinet-getitem?mr=2031201
http://www.ams.org/mathscinet-getitem?mr=2057249
http://www.ams.org/mathscinet-getitem?mr=1810370
http://www.ams.org/mathscinet-getitem?mr=1810370


826 K. BROMBERG

[CCHS] R. D. Canary, M. Culler, S. Hersonsky, and P. B. Shalen. Approximation by maximal
cusps in the boundaries of quasiconformal deformation spaces. J. Diff. Geom. 64(2003),
57–109. MR2015044

[CEG] R. D. Canary, D. B. A. Epstein, and P. Green. Notes on notes of Thurston. In Analytical
and Geometric Aspects of Hyperbolic Space, pages 3–92. Cambridge University Press,
1987. MR0903850 (89e:57008)

[CH] R. D. Canary and S. Hersonsky. Ubiquity of geometric finiteness in boundaries of defor-
mation spaces of hyperbolic 3-manifolds. To appear Amer. J. of Math.

[CM] R. D. Canary and Y. N. Minsky. On limits of tame hyperbolic 3-manifolds. J. Diff. Geom.
43(1996), 1–41. MR1424418 (98f:57021)

[Ep] C. Epstein. Envelopes of horospheres and Weingarten surfaces in hyperbolic 3-space.
preprint.

[Ev] R. Evans. Tameness persists. To appear Amer. J. Math.
[HK1] C. Hodgson and S. Kerckhoff. Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn

surgery. J. Diff. Geom. 48(1998), 1–59. MR1622600 (99b:57030)
[HK2] C. Hodgson and S. Kerckhoff. Harmonic deformations of hyperbolic 3-manifolds. In

Kleinian Groups and Hyperbolic 3-manifolds. London Math Society Lecture Notes, Cam-
bridge University Press, 2003. MR2044544

[HK3] C. Hodgson and S. Kerckhoff. The shape of hyperbolic Dehn surgery space. In preparation.

[HK4] C. Hodgson and S. Kerckhoff. Universal bounds for hyperbolic Dehn surgery. 2002
preprint available at front.math.ucdavis.edu/math.GT/0204345.

[Ko1] S. Kodani. Convergence theorem for Riemannian manifolds with boundary. Compositio
Math. 75(1990), 171–192. MR1065204 (92b:53066)

[Ko2] S. Kojima. Deformations of hyperbolic 3-cone manifolds. J. Diff. Geom. 49(1998), 469–
516. MR1669649 (2000d:57023)

[Mc] C. McMullen. Cusps are dense. Annals of Math. 133(1991), 217–247. MR1087348
(91m:30058)

[Ot] J. P. Otal. Les géodésiques fermées d’une variété hyperbolique en tant que noeuds. In
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