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1 Introduction

Given a complete hyperbolic 3-manifold one often wants to compare the original metric
to a complete hyperbolic metric on the complement of some simple closed geodesic in the
manifold. In some cases this can be done by interpolating between the two metrics using
hyperbolic cone-manifolds. We refer to such a deformation as drilling and results which
compare the geometry of the original manifold to the geometry of the drilled manifold as
drilling theorems. The first results of this type are due to Hodgson and Kerckhoff ([HK2]).
Their work was extended from finite volume manifolds to geometrically finite manifolds in
[Br1]. In [BB] a strong version of the drilling theorem was proved that gave bi-Lipschitz
control between the geometry of the two manifolds. In this paper we prove a drilling theorem
that allows the geodesic to be arbitrarily long with the tradeoff that it must have a very
large tubular neighborhood.

We highlight two applications of this improved drilling theorem to classical conjectures
about Kleinian groups. In [BS] the drilling theorem is applied to give a complete proof
of the Bers-Sullivan-Thurston density conjecture. In [BBES] we give an alternate proof of
the Brock-Canary-Minsky ending lamination classification ([Min], [BCM2], [BCM1]) which
takes as its starting point Minsky’s a priori bounds theorem ([Min]). Note that there is
also an approach to the density conjecture via the ending lamination classification. One
can find a more complete history of these two conjectures in the papers cited above.

We now give a more explicit description of the problem. Let (M, g) be a complete
hyperbolic 3-manifold and γ a simple closed geodesic in M . Let M̂ = M\γ. Kerckhoff
has observed that one can apply Thurston’s hyperbolization theorem to find a complete
hyperbolic metric on M̂ (see [Ko]). If M is closed or finite volume then by Mostow-Prasad
rigidity this metric will be unique. If (M, g) has infinite volume the metric will not be
unique. To get a unique metric we need some extra structure. If (M, g) is geometrically
finite then the higher genus ends of M are naturally compactified by (noded) Riemann
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surfaces. There will then be a unique complete hyperbolic metric ĝ that is geometrically
finite and has the same conformal boundary as (M, g).

We can then ask how (M, g) compares to (M̂, ĝ). For instance there is an inclusion of
(M̂, ĝ) into (M, g). Can this map be made bi-Lipschitz? While this is clearly impossible
in a neighborhood of γ, outside of tubular neighborhood of the geodesic we can control the
geometry. Here is a special case of the main theorem of this paper.

Theorem 1.1 Given an L > 0 and a K > 1 there exists an R > 0 such that the following
holds. Let (M, g) be a geometrically finite hyperbolic 3-manifold and γ a closed geodesic
of length ≤ L with a tubular neighborhood U of radius R. Let (M̂, ĝ) be a geometrically
finite hyperbolic structure on M\γ with the same conformal boundary as (M, g). Then there
exists a K-bi-Lipschitz embedding

φ : M\U −→ M̂.

The following fact may convince the reader why such a theorem should be true. We can
produce a metric ĥ on M̂ of pinched negative curvature such that ĥ and g agree on M\U .
Furthermore for any ε > 0 there is an R > 0 such that if the radius of the neighborhood
U is greater than R then ĥ can be chosen to have curvature pinched between − 1 + ε and
− 1− ε. One might hope that there is a small deformation of ĥ to a hyperbolic metric.

While this last fact is true and is in fact a consequence of Theorem 1.1 the metric ĥ does
not play a role in the proof of the theorem. Instead the proof uses the deformation theory
of hyperbolic cone-manifolds as developed by Hodgson and Kerckhoff in a series of papers
([HK1, HK2, HK3]). While they only studied finite volume manifolds, there methods were
extended to infinite volume, but geometrically finite manifolds, in [Br2, Br1]. A version
of Theorem 1.1, where γ was assumed to be very short and the bi-Lipschitz constant K
depends on the length of γ, was proved in [BB]. We will use all of this work in this paper.

Here is a brief account of the proof. We view (M, g) is a hyperbolic cone-manifold with
singular locus γ. In the special case of Theorem 1.1 the cone-angle is 2π but in general we
will allow arbitrary cone angles. One then wants to see that there are local deformations
decreasing the cone angle. Conditions for such deformations to exist are given in [HK1, HK3]
for finite volume manifolds and this work was extended to the infinite volume case in [Br2].
The next step is to show that degenerations of the geometric structure don’t occur. For
instance we don’t want the injectivity radius to decay to zero (see [HK2]) or the infinite
volume ends to become degenerate (see [Br1]). Perhaps the most subtle issue is showing
that the singular locus doesn’t form self intersections. This was done in [HK2] using a
packing argument that only works when the singular locus is sufficiently short. This type of
argument isn’t applicable in the setting of this paper and we need to develop new methods
when the singular locus isn’t short. Once this is done the rest of the proof follows almost
exactly as is [BB].
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As the main work in this paper is preventing self-intersections of the singular locus we
will say a bit more about how this is done. The details are contained in section 4 and
the key estimate is Proposition 4.13. Self-intersections can be prevented by showing that,
throughout the deformation, the singular locus has a tubular neighborhood with radius
bounded uniformly from below by a positive constant. In such a tubular neighborhood
we can explicitly write down the hyperbolic metric and we can decompose an infinitesimal
version of the deformation into a model deformation, which can also be explicitly described,
and a correction term. As the model is explicit, a direct calculation yields how it changes
the tube radius. To analyze the correction term we decompose it into a Fourier series and
then derive bounds using brute force estimates. Together, these two things give the estimate
in Proposition 4.13.

Acknowledgements. Much of this paper was written while the author was visiting
IHES. He’d like to thank the Institute for its hospitality.

2 Background

Let N be a compact 3-manifold with boundary and C a collection of simple closed curves in
the interior of N . Let M be the interior of N\C. A hyperbolic cone-metric, g, is a complete
singular metric on the interior of N that satisfies the following properties. On M , g is a
Riemannian metric with sectional curvature − 1; i.e. a hyperbolic metric. At each point
p ∈ C the metric has the form

dr2 + sinh2 rdθ2 + cosh2 rdz2

where θ is measured modulo the cone-angle, α. Note that the cone-angle is constant along
each connected component of C. If the cone-angle is 2π for a component c of C the metric
is smooth at this component. For all other cone-angles the metric is singular.

A cone-metric g is a smooth, but incomplete, metric on the non-singular part M of N .
If the metric is actually complete in a neighborhood of a component c of C the we say that
the cone angle is zero at c. As we will see below a deformation that takes the cone angle to
zero will limit to a cone-metric with cone angle zero.

In this paper we will study the special class of geometrically finite hyperbolic cone-
manifolds. To define a geometrically finite cone-manifold we first need the notion of a
complex projective structure on a surface. Let S be a surface. A complex projective structure
is an atlas of charts to the Riemann sphere, Ĉ, where the transition maps are restrictions
of elements of PSL2C. Since PSL2C is the group of conformal automorphisms of Ĉ a
projective structure determines a conformal structure on S. Intuitively one can think of a
projective structure as a conformal structure with the added notion of round circles.

Let P (S) be the space of projective structures on S and T (S) the Teichmüller space
of conformal structures on S. There is then a map P (S) −→ T (S) which assigns to each
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projective structure its underlying conformal structure. Note that

dimC P (S) = 2 dimC T (S).

Both P (S) and T (S) have complex structures and the map P (S) −→ T (S) is a holomorphic
submersion.

The connection between projective structures on surfaces and hyperbolic structures
on 3-manifolds is that Ĉ compactifies hyperbolic 3-space, H3. The group of orientation
preserving isometries of H3, Isom+(H3), is isomorphic to PSL2C and isometries of H3

extended continuously to conformal automorphisms of Ĉ.
We are now ready to define a geometrically finite cone-manifold. Let ∂0N be the non-

toral components of ∂N . The idea is we want the hyperbolic structure to extend to a
projective structure on each component of ∂0N . Formally, we say that a hyperbolic cone-
metric g is a geometrically finite if each p ∈ ∂0N has a neighborhood U in N and a map
ψ : U −→ H3∪Ĉ such that ψ is a diffeomorphism onto its image and ψ restricted to U∩intN
is an isometry. Since isometries of H3 extend continuously to conformal automorphisms of
Ĉ the restriction of ψ to U ∩ ∂0N defines an atlas of charts for a projective structure on
∂0N .1

The projective structure determined by a geometrically finite cone-metric is the projec-
tive boundary. The corresponding conformal structure is the conformal boundary.

Let GF(N, C) be the space of geometrically finite hyperbolic cone-metrics on (N, C).
We say that two cone-metrics, g0 and g1, are equivalent if there is a diffeomorphism f :
(N, C) −→ (N, C), isotopic to the identity, such that g1 = f∗g0. Let GF (N, C) be space of
equivalence classes of metrics.

Let
Φ : GF (N, C) −→ [0,∞)|C| × T (∂0N)

be the map which assigns to each geometrically finite hyperbolic cone-manifold its cone-
angles and conformal boundary.

For finite volume cone-manifolds, the following theorem is due to Hodgson and Kerckhoff
([HK1, HK3]). It was extended to geometrically finite manifolds in [Br2].

Theorem 2.1 Let (M, g) be a geometrically finite hyperbolic cone-manifold. Assume that
all cone angles are ≤ 2π or that the singular locus has tube radius ≥ sinh−1 1√

2
. Then Φ

is a local diffeomorphism at (M, g).

Let (M, g) be a geometrically finite hyperbolic cone-manifold satisfying the conditions
of Theorem 2.1 and assume that all cone-angles are α and that the conformal boundary of
(M, g) is X. Set

Mt = Φ−1(t, . . . , t,X).
1Are definition of geometrically finite is non-standard as we are not allowing rank one cusps.
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By Theorem 2.1 we know that the one-parameter family is defined for some interval (α′, α].
There are various geometric quantities and objects that we need to keep track of in the

family Mt. Let Ut(R) be the radius R tubular neighborhood of the singular locus in Mt.
Let Tt(ε) be the tubular neighborhood of the singular locus whose boundary has injectivity
radius ε. Let Rmax(t) be the supremum of all R > 0 such that Ut(R) is a collection of
embedded tubes if R < Rmax(t). Let Lc(t) + ıτc(t) be the complex length of a component c
of the singular locus. Here Lc(t) is the length of c and τc(t) is the twisting. Note that the
twisting is only defined modulo the cone angle of c. We also set L(t) to be the sum of the
lengths of all the components of the singular locus.

We will use the following result to prevent degenerations as the cone angle decreases.

Theorem 2.2 ([Br1]) Let Mt be a one parameter family of hyperbolic cone-manifolds in
GF (N, C) defined for t ∈ (α′, α]. Assume that all cone angles are t and the the conformal
boundary of Mt is fixed. If L(t) is bounded above and the tube radius of the singular locus
is bounded away from zero then Mt limits to a cone-manifold Mα′ in GF (N, C) as t→ α′.

From this result we see that we need to get lower bounds on the tube radius and upper
bounds on the lengths of the singular locus. In [Br1] this we done when the singular locus
is sufficiently short.

Theorem 2.3 ([Br1]) Given α0 > 0 there exists an ` > 0 such that if Mα is a geomet-
rically finite hyperbolic cone-manifold with cone angles α ≤ α0, L(α) ≤ ` and Rmax(α) >
sinh−1 1√

2
then the one-parameter family Mt exists for all t ∈ [0, α].

3 Families of metrics

Let (M, gt) be a smooth one-parameter family of hyperbolic metrics. Define ηt ∈ Hom(TM,TM)
by

dgt(v, w)
dt

= 2gt(ηtv, w).

Note that ηt is symmetric since the metric is symmetric.
A family of metrics also determines a smooth family of developing maps and holonomy

representations. The developing map

Dt : (M̃t, g̃t) −→ H3

is a local isometry from the universal cover to H3. The holonomy representation

ρt : π1(M) −→ PSL2C

commutes with the developing map. That is

Dt ◦ γ = ρt(γ) ◦Dt (3.1)
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for all γ ∈ π1(M).
By differentiating the developing maps we get a family of vector fields on vt constructed

as follows. Let p be a point in M̃ . Then Dt(p) is a smooth path in H3. Let vt(p) be the
pullback, by Dt, of the tangent vector to this path at time t. By differentiating (3.1) we see
that vt − γ∗vt will be an infinitesimal isometry in the gt-metric. Another important point
is that sym∇tvt = ηt. This follows from the fact that dgt(v,w)

dt = Lvtgt(v, w) where L is the
Lie derivative.

The trace of ηt is the divergence of the vector field vt. It measures the volume change of
the metrics gt. The traceless part of ηt is the strain. It measures the change in conformal
structure of the family gt.

A vector field v on a hyperbolic manifold is harmonic if

∇∗∇v + 2v = 0.

Here ∇∗ is the formal adjoint of ∇. The factor of 2 is necessary if we want infinitesimal
isometries to be harmonic. It comes from the fact that the Ricci curvature of a hyperbolic
manifold is − 2. We say that η ∈ Hom(TM,TM) is a harmonic if η = sym∇v for a
harmonic vector field v. If v is also divergence free then η is a harmonic strain field. For
harmonic strain fields we have the following calculation of the L2-norm.

Proposition 3.1 ([HK1]) Let η be a harmonic strain field on a compact hyperbolic man-
ifold with boundary (M, g). Then∫

M
‖η‖2 + ‖∇η‖2 = −

∫
∂M

∗∇η ∧ η

where ∂M is oriented with the outward normal.

Bounds on the L2-norm of a harmonic vector or strain field can be used to give pointwise
norm bounds. These bounds are similar to the mean value theorem for harmonic functions.
They take a bound for the L2-norm on a ball a give back a bound on the pointwise norm
at the center of the ball.

Here is the version for harmonic vector fields:

Theorem 3.2 Let v be a harmonic vector field on a ball B with center p. Then

‖v(p)‖ ≤ 1√
vol(B)

√∫
B
‖v‖2dV .

The version for harmonic strain fields is more involved:
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Theorem 3.3 Let η be a harmonic strain field on a ball B of radius R and center p. Then

‖η(p)‖ ≤
3
√

2 vol(B)
4πf(R)

√∫
B
‖η‖2dV

where f(R) = cosh(R) sin(
√

2R)−
√

2 sinh(R) cos(
√

2R) for R < π√
2
.

The mean value theorem for strain fields was proven by Hodgson and Kerckhoff. A
proof can be found in [Br1]. The proof of the theorem for vector fields is an easier version
of the strain field proof and it can also be found in [Br1].

4 In a neighborhood of the singular locus

We will work in cylindrical coordinates for a tubular neighborhood of the singular locus.
Let

Ũ = {(r, θ, z)|r ∈ R+ and θ, z ∈ R}

with metric
g̃ = dr2 + sinh2 rdθ2 + cosh2 dz2.

Then (Ũ , g̃) is the universal cover of H3 with a complete geodesic removed. Let U be the
quotient of Ũ by the two isometries

(r, θ, z) 7→ (r, θ + α, z)

and
(r, θ, z) 7→ (r, θ + τ, z + L).

Let g be the induced metric on U . We also set U(R) be the set of points in U that are
distance R or less from the singular locus. Let C(R0, R1) = U(R1)− intU(R0) be a collar
in U .

We fix an orthonormal frame and co-frame by setting

e1 =
∂

∂r
, e2 =

1
sinh r

∂

∂θ
and e3 =

1
cosh r

∂

∂z

and letting
{ω1, ω2, ω3}

be the dual co-frame. In all that follows we’ll write tensors of type (1, 1) as three-by-three
matrices where the ij-terms are multiples of ωi ⊗ ej .

Let gt be a smooth one-parameter family of hyperbolic cone-metrics on U with g0 = g.
Let η be the time zero derivative of the gt. Let α(t) be the cone angle, L(t) the length of the
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singular locus and τ(t) the twisting, all for the gt-metric. In particular we have α = α(0),
L = L(0) and τ = τ(0).

In these coordinates we have the following two important harmonic strain fields:

ηm =

 −1
cosh2 r sinh2 r

0 0
0 1

sinh2 r
0

0 0 −1
cosh2 r


and

η` =


−1

cosh2 r
0 0

0 − 1 0
0 0 cosh2 r+1

cosh2 r

 .

We will also need the dual of the covariant derivative of η`. One of the consequences of
harmonicity is that this will again be a harmonic strain field. By direct calculation we see
that

∗∇η` =

 0 0 0
0 0 − tanh r
0 − tanh r 0

 .

We have the following decomposition for η.

Proposition 4.1 ([HK1]) The derivative η decomposes as

η = Cmηm + C`η` + Cτ ∗ ∇η` + ηc

with Cm = −α′(0)
2α , C` = αL′(0)−L

2αL , Cτ = ατ ′(0)−τ
2αL and ηc = sym∇vc where vc is a vector

field on U .

For a point p ∈ U let rp(t) be the distance from p to the singular locus in the gt-metric.
To control rp(t) we will bound the derivative r′p(t). The bounds on the derivative will be
given by bounds on the norm of η, at least when η is a harmonic strain field. Note that
although Proposition 4.1 will hold for any η the only way we will be able to control the
geometry is when η is harmonic. As ηm, η` and ∗ ∇η` are all harmonic, the form η will be
harmonic if and only if ηc is harmonic.

Let (Ũ , g̃t) be the lift of the gt-metrics. Let

Dt : (Ũ , g̃t) −→ H3

be a smooth family developing maps. The metric completion of (Ũ , g̃t) is obtained by adding
a single complete geodesic to Ũ . The developing maps extends continuously to the metric
completion and we can assume that the added geodesic is mapped to a fixed geodesic in
H3.

8



Let the vector field v on Ũ be the time zero derivative of Dt. Let

n(p) = g0 (v(p), e1)

be the component of v normal to the foliation of Ũ consisting of surfaces equidistant to the
singular locus.

The following lemma is a simple consequence of our setup.

Lemma 4.2
n(p) = r′p(0)

Next we decompose the vector field v as

v = Cmvm + C`v` + Cτvτ + vc

with sym∇vm = ηm, etc. Let nm, n`, nτ and nc be the corresponding normal components.
We bound the four terms separately with the last term being the most difficult to control.

4.1 nm(p)

We could explicitly write down vm and nm. Instead we take a more indirect approach using
the radial symmetry of ηm.

Let γ(s) be a path with s defined from a to b and let |γ|(t) be its length in the gt-metric.
We observe

|γ|(t) =
∫ b

a

√
gt(γ′(s), γ′(s))ds

and therefore

|γ|′(0) =
∫ b

a

g(η(γ′(s)), γ′(s))√
g(γ′(s), γ′(s))

ds.

Lemma 4.3
nm(p) = tanh rp(0) + coth rp(0)

Proof. Note that nm(p) depends only on ηm and not on the family of metrics gt. In
particular, we can assume that gt is a family of metrics with time zero derivative η = ηm

and that the gt have the same symmetry as g. That is we assume that every isometry (U, g)
is also an isometry of (U, gt).

A meridian is a closed geodesic on one of the tori equidistant from the singular locus
that bounds a (singular) disk in the solid torus. Parameterize the meridian through p by
γ(s) = (rp(0), s, z) where s ranges from 0 to α and p = (rp(0), 0, z). Note that the symmetry
implies that γ will still be a meridian in the gt metric. The length of meridian is completely
determined by it radius so the length of γ in the gt-metric is

|γ|(t) = α(t) sinh rp(t).
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Differentiating we see that

|γ|′(0) = α′(0) sinh rp(0) + α cosh rp(0)r′p(0)
= −2α sinh rp(0) + α cosh rp(0)r′p(0)

since α′(0) = −2α by Proposition 4.1.
We can also calculate the derivative of the length using ηm:

|γ|′(0) =
∫ α

0

g(ηm(γ′(s)), γ′(s))√
g(γ′(s), γ′(s))

ds

=
∫ α

0

1
sinh rp(0)

ds

=
α

sinh rp(0)

Setting these two expression for |γ|′(0) equal to each other and solving for r′p(0) = nm(p)
gives us the lemma. 4.3

4.2 n`(p)

Lemma 4.4
n`(p) = − tanh rp(0).

Proof. The proof is essentially the same as the proof of Lemma 4.3. As before we assume
that the gt have time zero derivative η = η` and that the gt have the same symmetry as g.
The path γ(s) is a meridian in the gt-metrics and we have

|γ|(t) = α sinh rp(t)

since the cone angle is α for all g0. Differentiating we have

|γ|′(0) = α cosh rp(0)r′p(0).

We also have

|γ|′(0) =
∫ α

0

g(η`(γ′(s)), γ′(s))√
g(γ′(s), γ′(s))

ds

=
∫ α

0
−sinh2 rp(0)

sinh rp(0)
ds

= −α sinh rp(0).

Again setting the two expressions for |γ|′(0) equal to each other and solving for r′p(0) = n`(p)
gives us the lemma. 4.4
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4.3 nτ (p)

Lemma 4.5
nτ (p) = 0.

Proof. The strain field ∗ ∇η` doesn’t change the length of the singular locus or the
cone angle so the radii of the equidistant tori is fixed. 4.5

4.4 nc(p)

As we mentioned above we can only control the size of nc(p) if we assume that η, and
therefore ηc, are harmonic. As we don’t have an explicit description of ηc and vc this will be
more difficult than controlling the other terms and it constitutes the main technical work
of the paper.

Before stating the main proposition of this section we note that the it is easy to obtain
lower bounds on the injectivity radius of a point p in U that is distance r from the singular
locus. In particular the injectivity radius at p is bounded below by one half the minimum
of ` and

cosh−1
(
cosh2 r − cosα sinh2 r

)
.

Set the above expression equal to ` and let m(α, `) be the unique positive r that solves this
equation.

This subsection will be dedicated to proving the following proposition.

Proposition 4.6 Assume that ηc is a harmonic strain field. Given `0, L0, α0 and α1 there
exists a constant K > 0 such that the following holds. Let m = max(1,m(α0, `0)). If
`0 ≤ L ≤ L0, α0 ≤ α ≤ α1 and R ≥ m + 2`0 then

|nc(r, θ, z)| ≤ Kr

√∫
C(m,R)

‖ηc‖2

for r ∈ [m + `0, R− `0].

Before continuing we also comment on the definition of m. By making the inner radius
of the collar greater than m(α0, `0) we guarantee that the injectivity radius in the collar is
greater than `0/2. Since the inner radius of the collar is also ≥ 1 > sinh−1 1√

2
it will be

contained in the part of the manifold where the deformation is harmonic. (See Theorem
4.12.) Finally we note the the volume of C(m,m + 2`0) is bounded above. All three of
these facts will be used below.

Recall in Theorem 3.3 we saw that a bound on the L2-norm of a harmonic strain field
in a ball gives a pointwise bound on the norm of the strain at the center of the ball. This
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bound will depend linearly on the L2-norm and the linearity constant will only depend on
the radius of the ball. In particular, there is a constant K0 > 0 so that the pointwise norm
of the strain at the center of a ball of radius `0/2 is less than K0 times the L2-norm of the
strain on the ball. Note that if we write the strain field as a three-by-three matrix in an
orthonormal framing then we have the same bound on the absolute value of each term of
the matrix.

To prove the proposition we use the Fourier decomposition of vc. That is we can write

vc =
∑

(va,b + wa,b)

where va,b has the form

f(r) cos(aθ + bz) + g(r) sin(aθ + bz) + h(r) sin(aθ + bz)

and wa,b is defined similarly except the sin and cos are interchanged. The quantities a
and b are of the form 2πn

α and 2πm+aτ
L with n,m ∈ Z and we assume that n (and a) are

non-negative.
We have the following expression for sym∇va,b: f ′ cos −af+g′

2 sin −bf+h′

2 sin
(f coth r + ag) cos bg+ah

2 cos
(f tanh r + bh) cos


Note that the matrix is symmetric which is why we have only written those terms on the
diagonal and above. We have also eliminated the argument for the sin and cos which
should be aθ + bz. There is a similar expression for sym∇wa,b with the sin and cos
interchanged. Note that sym∇va,b and sym∇wa,b are the Fourier decomposition for ηc

and tr(sym∇va,b) and tr(sym∇wa,b) are the Fourier decomposition for the divergence of
vc. In particular sym∇va,b and sym∇wa,b are harmonic strain fields and tr(sym∇va,b)
and tr(sym∇wa,b) are zero.

Let
ε2a,b =

∫
C(m,m+2`0)

‖ sym∇va,b‖2

and similarly define δa,b for wa,b. Then by Parseval’s equality∫
C(m,m+2`0)

‖ηc‖2 =
∑

ε2a,b + δ2a,b.

Note that, of course, the L2-norm of ηc on C(m,m + 2`0) is bounded by the L2-norm on
C(m, R) since R ≥ m + 2`0.

Lemma 4.7 There exists a constant K1 such that, with the exception of w0,0, the vector
fields va,b and wa,b are pointwise bounded by K1εa,b and K1δa,b, respectively, on C

(
m + 1

2`0,m + 3
2`0

)
.
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Proof. Every point in C
(
m + 1

2`0,m + 3
2`0

)
is the center of a ball of radius `0/2 that

is contained in C(m,m + 2`0) so the L2-norm of sym∇va,b is bounded by εa,b on the ball.
Therefore each term of sym∇va,b is bounded in absolute value by K0εa,b.

We first prove the estimate for v0,0. In this case we see that the absolute value of the
ω2 ⊗ e2 term of sym∇v0,0 is ‖v0,0‖ coth r so ‖v0,0‖ ≤ K0ε0,0.

The estimate for the remaining terms splits into four infinite cases: (1) a and b are not
zero but |b| ≤ 1, (2) a and b are not zero but |b| > 1, (3) a 6= 0 and b = 0, and (4) a = 0
and b 6= 0. To obtain bounds on f , g and h we only need to use the three lower terms of
the matrix sym∇va,b each of which is bounded by K0εa,b. Note that if a 6= 0 then |a| is
bounded below by 2π

α . If a = 0 and b 6= 0 then |b| is bounded below by 2π
L . From here it is

easy to derive the required bounds in all four cases.
The terms wa,b are dealt with in exactly the same way except that we do not bound

w0,0. 4.7

Remark. There is no hope of bounding the norm of w0,0 because it could be a (arbi-
trarily large) rotation about the singular locus in which case its strain will be zero. In fact,
one can check to see that this is the only possibility. On the other hand, w0,0 has no normal
term so it has no effect on the size of nc.

Lemma 4.8 There exists a constant K2 such that for p ∈ ∂U(m + `0) we have

|nc(p)| ≤ K2

√∫
C(m,R)

‖ηc‖2.

Proof. Let v′c = vc − w0,0. As we remarked above w0,0 has no normal term so nc(p) =
g0(v′c(p), e1) and we only need to bound v′c. We already have pointwise bounds on the terms
of the Fourier decomposition of v′c but this does not directly lead to bounds on v′c itself
since we can’t bound the series

∑
(εa,b + δa,b). Instead we will first bound the L2-norm of

v′c.
By Lemma 4.7 we see that the L2-norm of va,b on C

(
m + 1

2`0,m + 3
2`0

)
is bounded by

K2
1ε

2
a,b vol

(
C

(
m +

1
2
`0,m +

3
2
`0

))
.

A similar statement holds for wa,b. Once again we use Parseval’s equality to get∫
C(m+ 1

2
`0,m+ 3

2
`0)
‖v′c‖2 ≤ K2

1 vol
(
C

(
m +

1
2
`0,m +

3
2
`0

)) ∫
C(m+ 1

2
`0,m+ 3

2
`0)
‖ηc‖2.

Note that vol
(
C

(
m + 1

2`0,m + 3
2`0

))
is bounded above by a constant depending only on

L0 and α1. Finally we note that if p ∈ ∂U(m + `0) then it is the center of a ball of radius
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`0/2 that is contained in C
(
m + 1

2`0,m + 3
2`0

)
. Combining these two facts, with the above

inequality and Theorem 3.2 gives us the lemma. 4.8

We can now prove the main proposition of this subsection.
Proof of Proposition 4.6. Note that ∂nc

∂r = g0(∇e1vc, e1) which is exactly the ω1⊗ e1
term of ηc. In particular, this derivative is bounded by

K0

√∫
C(m,R)

‖ηc‖2

at every point in C(m + `0, R − `0). The estimate is then obtained by integrating this
derivative bound and using the bound on nc(p) for p ∈ ∂U(m + `0) given by Lemma 4.8.

4.6

4.5 L2-bounds

For a harmonic strain field η we define the function bR(η) by

bR(η) = −
∫

∂U(R)
∗∇η ∧ η.

By estimating bR(η) we will be able to control the L2-norm of the harmonic strain field on
a geometrically finite cone-manifolds.

Recalling the decomposition of η in Proposition 4.1 we set η0 = η − ηc. By doing this
we have removed the trivial part of the deformation and are left with three terms that we
have explicitly described. The following lemma will be key in estimating bR(η):

Lemma 4.9 ([HK2])
bR(η) = bR(η0) + bR(ηc)

We will always assume that our deformations are parameterized by cone angle. Therefore
the constant Cm given in Proposition 4.1 is − 1

2α . With this assumption Hodgson and
Kerckhoff bound bR(η0) via direct calculations. Here are their estimates.

Lemma 4.10 ([HK2]) If Cm = − 1
2α then

bR(η0) ≤
2L

α2 sinh2R
.

If we also have bR(η0) ≥ 0 then

2α|C`| =
∣∣∣∣αL′

L
− 1

∣∣∣∣ ≤ 1
sinh2R

.

14



We now have the following corollary of the two previous lemmas and Proposition 3.1

Corollary 4.11 If b1(ηc) ≤ 0 then∫
C(1,R)

‖ηc‖2 + ‖∇ηc‖2 ≤ 2L
α2 sinh2R

.

The point here is that the L2-norm is the difference b1(ηc) − bR(ηc). If the first term is
negative then the second term must also be negative and bounded in absolute value by
bR(η0).

4.6 Controlling the tube radius

Now we apply our work to a geometrically finite hyperbolic cone-manifold. Let (M, gt) be
a one parameter family geometrically finite cone-manifolds. Let η be the derivative of the
metrics gt at time t = 0. We say that η is a Hodge form if the following conditions hold:

1. The form η is a harmonic strain field on M\U0(1).

2. The L2-norm satisfies the boundary formula∫
M\U0(R)

‖η‖2 + ‖∇η‖2 = bR(η)

for all R ∈ [1, Rmax(α)].

3. On U0(Rmax(α)) decompose η into η0 and ηc as above. Then b1(ηc) ≤ 0.

The infinitesimal version of the following theorem was proven by Hodgson and Kerckhoff
in [HK3] for finite volume hyperbolic cone-manifolds. (Also see [HK1].) It was extended to
geometrically finite manifolds in [Br2]. The form of the theorem given below is derived in
[BB] where it can be found as Corollary 6.7.

Theorem 4.12 Let Mt be a one-parameter family of geometrically finite cone-manifolds,
parameterized by the cone angle t. We also assume that the conformal boundary is fixed for
the entire family. If Rmax(t) > sinh−1 1√

2
for all t then we can realize the family by metrics

gt such that the derivative ηt are Hodge forms.

Recall that if p is a point in M then rp(t) is the distance in (M, gt) from p to the singular
locus. The proposition that follows gathers all the work of this section.

Proposition 4.13 Given `0, L0, α0 and α1 there exists a constant R0 > 0 such that
the following holds. Let (M, gt) be a one parameter family of geometrically finite cone-
manifolds, parameterized by the cone angle t and with fixed conformal boundary. Assume
that the derivatives of the metrics gt are Hodge forms. Let m = max(1,m(α0, `0)). If
Rmax(t) ≥ R0 and rp(t) ∈ (m + `0, Rmax(t)) then r′p(t) < 0.
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Proof. The work we have done this section gives us the bound

r′p(t) ≤ − 1
2t

(tanh rp(t) + coth rp(t)) +
tanh rp(t)

2t sinhRmax(t)
+

K
√

2L0rp(t)
t sinhRmax(t)

if Rmax(t) ≥ m + 2`0, t ∈ [α1, α0] and rp(t) ∈ (m + `0, Rmax(t)− `0). This first term comes
from Lemma 4.3 and the fact that are family is parameterized by cone angle. The second
term comes from Lemma 4.4 and the second inequality in Lemma 4.10. The K in the final
term is from Proposition 4.6. We also use the inequality in Corollary 4.11 for the last term.

By choosing R0 sufficiently large we can make the final two terms as small as we like
when Rmax(t) > R0. The only point here is that sinh r grows much faster than r. This will
prove the proposition when rp(t) ∈ (m + `0, Rmax(t)− `0).

We now need to prove the inequailty for final `0-collar of the tube. This is done with
three observations. First we note that there is an ε such that the injectivity radius of every
point in the collar is > ε. Second by choosing R0 sufficiently large we can apply Lemma
4.10 to make the L2-norm of η small on M\Ut(Rmax(t) − `0 − ε). Finally we recall that
∂n
∂r = gt(η(e1), e1). Applying Theorem 3.3 to the first two facts we get a pointwise bound on
η in the collar. Using this bound and the third fact we bound the difference between r′p0

(t)
and r′p1

(t) where rp0(t) = Rmax(t) and rp1(t) ∈ (Rmax(t) − `0, Rmax(t)). By the previous
paragraphs we can assume that r′p0

is uniformly < 0. We have just shown that we can
make the difference between r′p0

(t) and r′p1
(t) uniformly small so we also have r′p1

(t) < 0.
4.13

5 The Drilling Theorem

We are now ready to conclude the proof of the main theorem.

Proposition 5.1 Given `0 > 0, L0 > 0 and α0 > 0 there exists an R0 > 0 such that the
following holds. Let Mt be a one parameter family of geometrically finite cone manifolds,
parameterized by cone angle and with fixed conformal boundary. Assume that L(α0) < L0

and that Rmax(α0) > R0. Then the family Mt can be defined for all t ∈ [0, α] and either
Rmax(t) ≥ Rmax(α0) or L(t) ≤ `0.

Proof. We assume that `0 is small enough such that if L(t) ≤ `0 for any t ≤ α0 then
we can apply Theorem 2.3 to decrease the cone angle to zero.

Let I be the largest connected interval with right endpoint α0 such that for all t ∈ I
we have sinh2Rmax(t) ≥ 2 and L(t) ≥ `0. By Theorem 4.12, on I we can realize Mt by
a family of metrics whose derivatives are Hodge forms. For angles t in I we can integrate
the second inequality in Lemma 4.10, to see that L(t) ≤

√
t

α0
L(α0) ≤

√
t

α0
L0. The square
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root in the inequality comes from our assumption that sinh2Rmax(t) ≥ 2. Let α′ be the
left endpoint of I. By the above bound on L(t) if α1 = `20α0

L2
0

then we must have α′ ≥ α1. If
α′ = α1 then the length bound gives us that L(α′) = `0. We need to show that this holds
even if α′ > α1 for then we can allow Theorem 2.3 take over and and decrease the cone
angle all the way to zero.

For all t in I we have `0 ≤ L(t) ≤ L0 so we can apply Proposition 4.13 to find an
R0 such that if Rmax(t) > R0 then r′p(t) < 0 for rp(t) ∈ (m + `0, Rmax(t)). We can also
assume that sinh2R0 > 2. This implies that Rmax(t) increases as t decreases. In particular,
Rmax(α′) ≥ Rmax(α0) > sinh−1

√
2 so we must have L(α′) = `0 as desired. 5.1

Once we know that the cone angle can be decreased to zero we would like to control the
geometry throughout the deformation. This was done when the singular locus was short in
[BB]. Here is the theorem:

Theorem 5.2 Given α0 > 0, ε0 > 0 and K0 > 1 there exists an `0 > 0 such that the
following holds. Let Mα be a geometrically finite hyperbolic cone-manifold with cone angle
α. Assume that α ≤ α0, the length of the singular locus is < `0 and that Rmax(α) is
> sinh−1 1/

√
2. Then there a K0-bi-Lipschitz diffeomorphisms

φt : (Mα\Tε0(α), ∂Tε0(α)) −→ (Mt\Tε0(t), ∂Tε0(t))

where φt extends to a homeomorphism between Mα and Mt for t ∈ (0, α].

If the length of the singular locus is bounded but not necessarily short then we have the
following version of the drilling theorem.

Theorem 5.3 Given α0 > 0, L0 > 0 and K0 > 1 there exists an R0 > 0 such that the
following holds. Let Mα0 be a geometrically finite hyperbolic cone-manifold with cone angle
α0. Assume that the length of the singular locus is < L0 and that Rmax(α) > R0. Then
there are K0-bi-Lipschitz embeddings

φt : Mα0\Uα0(R0) −→Mt\C

where φt extends to a homeomorphism from Mα0 to Mt for t ∈ (0, α0].

Proof. By Theorem 5.2 there is an `0 such that such if for some cone angle α′ < α0 we
have L(α′) ≤ `0 then for all t ≤ α′ there is a

√
K0-bi-Lipschitz diffeomorphism Mα′\Tα′(ε)

to Mt\Tt(ε). We can assume that L(α0) > `0 for otherwise the result follows from Theorem
5.2.

Now we apply Proposition 5.1 which tells that we can find an R1 such that if Rmax(α0) >
R1 then the one-parameter family Mt exists for all t ∈ [0, α0] and either Rmax(t) ≥ Rmax(α0)
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or L(t) ≤ `0. As we note in the proof of the proposition L(t) decreases as the cone angle
decreases so there is a unique α′ such that L(α′) = `0.

We realize the one-parameter family Mt by metrics gt as given by Theorem 4.12 so that
the derivatives, ηt, are Hodge forms. Define φ′t to be the identity map between (M, gα)
and (M, gt) for t ∈ [α′, α]. By the proof of Proposition 5.1 we see that φ′t(Mα\UR(α))
is contained in Mt\UR(t) for all R ∈ [R0, Rmax(α0)]. By Lemma 4.10 we can make the
L2-norm of ηt on Mt\Ut(R) arbitrarily small by choosing R to be large.

Now we need to recall some of the work in [BB]. If p is a point in M that is in the thick
part of (M, gt) for all t then a bound on the L2-norm of ηt gives a bound on the pointwise
norm of ηt. Therefore if we can make the L2-norm arbitrarily small then at such points we
can make the bi-Lipschitz constant of φt arbitrarily close to one. To control the bi-Lipschitz
constant in the thin part we need to modify the maps φt. In particular, it was shown that
for any K > 1 there is a K ′ > 1 such that if φ′t is K ′-bi-Lipschitz on the thick than it can be
modified to be K-bi-Lipschitz in the thin part. Therefore there is some R0 > 0 that makes
the L2-norm of ηt on Mt\Ut(R0) sufficiently small so that the maps φ′t can be modified
diffeomorphisms φt that are

√
K0-bi-Lipschitz on Mα0\Uα0(R0).

We now define φt when the cone angle is less than α′. Note that we can assume
that Uα′(R0) ⊃ Tα′(ε) for if not we can simply choose R0 to be larger. To define φt

for t ∈ [0, α′) we simply post-compose φα′ with the
√
K0-bi-Lipschitz diffeomorphism from

(Mα′\Tα′(ε), ∂Tα′(ε) to (Mt\Tt(ε), ∂Tt(ε)) given by Theorem 5.2. 5.3

6 An application

We now describe an an application of the drilling theorem. It is conjectured that for any
simple closed geodesic γ in a smooth hyperbolic 3-manifold there is a one parameter family
of cone-manifold deformations that decreases the cone angle at γ from 2π to zero. We have
the following virtual resolution of this conjecture.

Corollary 6.1 Let γ be a simple closed geodesic in a hyperbolic 3-manifold (M, g). Then
there is a cover (M ′, g′) of (M, g) such that γ has a homeomorphic lift γ′ in (M ′, g′) and
there is a one parameter family of cone deformations with singular locus γ that takes the
cone angle from 2π to zero.

Proof. Using the fact that Z-subgroups of the fundamental group of a hyperbolic 3-
manifold are separable, Gabai [Ga] observed that given any R > 0 one can find a cover
(M ′, g′) of (M, g) such that γ lifts homeomorphically to a simple closed geodesic γ′ such
that γ′ has a tubular neighborhood of radius R. Then result then follows from Proposition
5.1. 6.1
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