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Abstract

We prove hyperbolic 3-manifolds are geometrically inflexible: a unit
quasiconformal deformation of a Kleinian group extends to an equivari-
ant bi-Lipschitz diffeomorphism between quotients whose pointwise bi-
Lipschitz constant decays exponentially in the distance form the bound-
ary of the convex core for points in the thick part. Points in the thin
part are controlled by similar estimates on the complex lengths of short
curves. We use this inflexibility to give a new proof of the convergence of
pseudo-Anosov double-iteration on the quasi-Fuchsian space of a closed
surface, and the resulting hyperbolization theorem for 3-manifolds that
fiber over the circle with pseudo-Anosov monodromy.

1 Introduction

In the study of hyperbolic structures on 3-manifolds, the rigidity theorems of
Mostow and Sullivan allow for coarse methods to play a key role in the classifica-
tion of structures up to isometry: it suffices to exhibit a uniformly bi-Lipschitz
map between two hyperbolic 3-manifolds with the same asymptotic data to
conclude they are in fact isometric.

A general theme in work of Thurston has been the notion of limiting to
rigidity, wherein a family of hyperbolic structures has a quasiconformally rigid
limit. Such discussions suggest a qualitative notion of inflexibility for manifolds
far out in the sequence: a unit quasiconformal deformation at infinity has ex-
ponentially deteriorating effect at the basepoint as the geometry freezes around
it.

This qualitative notion was made more precise for manifolds with injectiv-
ity radius bounds by McMullen (see [Mc3]), but the assumption of injectivity
bounds is very restrictive. Though a uniform upper bound on the injectivity
radius follows from tameness (now known for arbitrarily M with finitely gener-
ated π1 [Ag, CG]), the lower bound is non-generic [Mc2, CCHS, CH]. In this
paper we prove an exponential decay theorem for the L2-norm of a harmonic
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deformation a hyperbolic 3-manifold. This allows us to prove inflexibility the-
orems for arbitrary hyperbolic 3-manifolds. Here is a sample theorem which
generalizes McMullen’s result.

Theorem 1.1 (Geometric Inflexibility) Given a hyperbolic 3-manifold M ,
a K-bi-Lipschitz diffeomorphic hyperbolic 3-manifold M ′, and an ε > 0, there is
a diffeomorphism Φ: M → M ′ whose bi-Lipschitz distortion in the ε-thick part
of the convex core C(M) decays exponentially with the distance from ∂C(M)
with rate of decay depending only on ε, K and the topology of ∂M .

See Theorem 5.6 for a more precise version.
Although Theorem 1.1 does not give estimates on the bi-Lipschitz constant

in the thin part, this is to be expected. Indeed, there are harmonic deforma-
tions whose distortion within a Margulis tube is roughly constant over the tube
and does not decay in the depth into the tube – the pointwise bounds on the
distortion (the strain) are determined by its behavior on the boundary of the
tube. In this sense, Theorem 1.1 is sharp, and in fact optimal, in that we can
only expect at best exponential decay of the bi-Lipschitz constant in the thick
part.

On the other hand, the proof of Theorem 1.1 is quite robust and applies
to a variety of other situations. For example we can control the ratio of the
change in length of moderate length geodesics by constants that exponentially
decay in the depth of the geodesic in the convex core. We obtain similar con-
trol over short geodesics by measuring the depth of their entire Margulis tubes.
Our methods also apply to deformations of hyperbolic cone-manifolds where
the depth is measured by distance from the singular locus. For both smooth,
complete hyperbolic manifolds and for cone-manifolds, the Schwarzian deriva-
tive can be similarly controlled at components of the conformal boundary that
are fixed under the deformation.

We emphasize that while McMullen’s inflexibility theorem is ultimately a
consequence of the compactness of hyperbolic 3-manifolds with injectivity ra-
dius bounds and basepoints in the convex core, our arguments harness explicit
analytic estimates on the pointwise L2-norm of the deformation to obtain sharp
estimates on the bi-Lipschitz distortion of a deformation at infinity.

Convergence results. Inflexibility provides for new approaches and tech-
niques in the theory of Kleinian groups. To outline these results, we briefly
recall notions from their deformation theory.

Given a closed surface S of negative Euler-characteristic the Teichmüller
space, Teich(S), parametrizes pairs (f,X) of marked hyperbolic surfaces

f : S → X,

where f is a homeomorphism up to marking preserving isometry. The modular
group Mod(S) of isotopy classes of orientation preserving self homeomorphisms
of S acts naturally on Teich(S) by ϕ(f,X) = (f ◦ ϕ−1, X). A mapping class
is pseudo-Anosov if for each essential isotopy class of simple closed curves γ we
have ϕn(γ) 6' γ for n 6= 0.
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L. Bers proved that for each pair (X,Y ) ∈ Teich(S) × Teich(S) there is a
unique quasi-Fuchsian simultaneous uniformization, namely, a single Kleinian
group Γ ∼= π1(S) for which Γ leaves invariant a directed Jordan curve Λ in Ĉ
with the property that Ĉ \ Λ = ΩX t ΩY , where ΩX/Γ = X and ΩY /Γ = Y
(see [Brs1]).

As a tool in the deformation theory of Kleinian groups, Theorem 1.1 guar-
antees convergence in certain cases where the depth in the convex core at the
basepoint diverges quickly enough. In particular, Theorem 1.1 gives a new proof
of Thurston’s double limit theorem for pseudo-Anosov iteration, the main step
in the hyperbolization for 3-manifolds that fiber over the circle with pseudo-
Anosov monodromy (see [Th2, Ot, Mc3]).

Theorem 1.2 (Pseudo-Anosov Double Limits) For each X and Y in the
Teichmüller space Teich(S), and each pseudo-Anosov mapping class ψ ∈ Mod(S),
the double iteration Q(ψ−n(X), ψn(Y )) converges algebraically and geometri-
cally to a limit Q∞ ∈ AH(S).

See Theorem 9.3. Note that the convergence up to subsequence was proven
earlier by Thurston (see [Th2]). Convergence was later proven in [CT]; Mc-
Mullen gave a more explicit treatment in [Mc3]. Note that in our result the
quasi-conformal rigidity of the limit is a direct consequence of the geometric
inflexibility theorem.

Because for each n the manifold Qn = Q(ψ−n(X), ψn(Y )) admits a uni-
formly bi-Lipschitz diffeomorphism Ψn in the homotopy class of ψ, we may
apply the inflexibility theorem to obtain an isometry Ψ: Q∞ → Q∞ in the
homotopy class of ψ. The quotient Q∞/〈Ψ〉 is a hyperbolic 3-manifold with
the homotopy type of Tψ, which is thus homeomorphic to Tψ by a theorem of
Stallings. We arrive at Thurston’s original theorem.

Theorem 1.3 (Thurston) (Mapping Torus Hyperbolic) Let ψ ∈ Mod(S)
be pseudo-Anosov. Then the mapping torus Tψ = S × [0, 1]/(x, 0) ∼ (ψ(x), 1)
admits a complete hyperbolic structure.

Curve complex distance and convex core width. To describe how Theo-
rem 1.2 follows from Theorem 1.1, we remark that one key step is show linear
growth of the width of the convex core in terms of the iterate of the pseudo-
Anosov applied to each factor. As the width of the core grows, the geometric
effect of the next iterate decays at the basepoint exponentially fast, and conver-
gence follows.

To show the growth in width is linear, however, the combinatorial properties
of curves on surfaces play a crucial role. The collection of isotopy classes S of
essential simple closed curves on S can be encoded as a graph C(S) with vertices
corresponding to elements of S and edges joining vertices if their corresponding
classes can be represented by disjoint curves on S. This graph has the structure
of a δ-hyperbolic metric space if each edge is assigned length 1 [MM]. Though
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C(S) can be given the structure of a complex by associating k-simplices to k+1-
tuples of vertices whose representatives can be realized disjointly, these higher
dimensional simplices do not play a role here.

Among the many reflections of the combinatorics of C(S) in the geometry
of hyperbolic 3-manifolds, the width of the convex core of a quasi-Fuchsian
manifold is an important new example. We show the following.

Corollary 1.4 (Wide Cores) Given a closed surface S, there is linear func-
tion f such that the distance between the boundary components of the convex
core C(Q(X,Y )) of a quasi-Fuchsian manifold Q(X,Y ) in QF (S) is bounded
below by f(dC(X,Y )).

(See Corollary 8.18). Here, the distance dC(X,Y ) is shorthand: if S has genus
g, there is a uniform Lg > 0 so that for each X ∈ Teich(S) has a the length
of the shortest essential closed loop on X is bounded by Lg. Furthermore, any
two shortest loops have uniformly bounded intersection, by the collar lemma.
It follows that there is a coarsely defined map from Teich(S) to the complex
of curves, that sends each X to the collection of vertices whose simple closed
curves have length less than Lg on X. Then dC(X,Y ) measures the maximal
distance in C(S) between shortest curves on X and on Y .

Since the action of pseudo-Anosov iteration has linear growth in the curve
complex, it follows that the width of the convex core of the double pseudo-
Anosov iteration

Q(ψ−n(X), ψn(Y ))

is linear in n. Combining these estimates on core width with Theorem 1.1,
Geometric Inflexibility, we obtain Thurston’s original result.

It should be noted, however, that Theorem 1.2 is a convergence theorem
rather than a compactness theorem. In particular, the rigidity of the limit is
implicit in the proof. As such, where Thurston’s original proof appealed to
Sullivan’s rigidity theorem after showing the limit has limit set all of Ĉ, the
existence of a hyperbolic structure on the mapping torus for ψ here is self-
contained.

We remark that the linear growth in the width of the convex core with
distance between the bounded length curves on its boundary in C(S) is not spe-
cific to pseudo-Anosov deformations. In particular, the methods of Theorem 1.2
extend immediately to apply to sequences {Q(Xn, Yn)}n of quasi-Fuchsian man-
ifolds for which we have the bounds dT (Xn, Xn+1) ≤ K and dT (Yn, Yn+1) ≤ K,
and the curve complex distance dC(Xn, Yn) grows linearly with n.

Ending laminations and efficient approximations. We remark that a
key further application of Theorem 1.1 will be a new approach to the ending
lamination conjecture via efficient approximations by maximal cusps. In short,
Minsky’s a priori bounds guarantees that for any hyperbolic 3-manifold M in a
Bers slice BY with the ending lamination λ there is a canonical sequence of pants
decompositions Pn → λ that arises with uniformly bounded length `M (Pn) < L
in M .
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By an application of the grafting technique of [Brm1, BB] together with a
covering argument as in [BS] we may, in effect, drill Pn out of M to obtain a
maximal cusp Cn ∈ BY , by a deformation that has a bounded effect on the
geometry in a compact core M ⊂ M . By the inflexibility theorem, the effect
of this process on the geometry of M decays with the distance of the geodesic
representatives of the curves in Pn from M. It follows that he sequence Cn
converges back to M . Since Pn depend only on λ, the lamination λ determines
M . We take up this approach in [BBES].

Plan of the paper. A significant component of the paper involves the study
of harmonic deformations of hyperbolic 3-manifolds. In particular, estimates
relating the decay of the norm of the strain field induced by a deformation to
the depth in the convex core have been absent from prior treatments. The second
portion of the paper develops geometric limit arguments vis a vis the complex of
curves. The paper concludes with our proof of the convergence of pseudo-Anosov
iteration and double-iteration on quasi-Fuchsian space, exhibiting explicitly the
hyperbolic structure on the pseudo-Anosov mapping torus Tψ.

Acknowledgements. The authors gratefully acknowledge the support of the
National Science Foundation. The first author thanks Guggenheim Foundation
and the second thanks the Sloan Foundation for their support. We thank MSRI
for their hospitality while this work was being completed.

2 Deformations

Let M be a 3-manifold and gt a one-parameter family of hyperbolic metrics on
M with Dt the covariant derivative for the Riemannian connection for gt. At
time t = 0 we let g = g0 and D = D0. We define the time zero derivative, η, of
gt by the formula

dgt(v, w)
dt

|t=0 = 2g(η(v), w).

Then η is a symmetric tensor of type (1, 1). We define the pointwise norm of η
at p by choosing an orthonormal basis {e1, e2, e3} for TpM in the g-metric and
setting

‖η‖2 =
∑
i

g(η(ei), η(ei)).

Note that this L2-norm bounds the sup norm so that we have

‖η(v)‖ ≤ ‖η‖‖v‖.

If ηt is the time t derivative of gt and ‖ηt‖ ≤ K for all t ∈ [0, T ] then by
integrating we see that

e−2KT g(v, v) ≤ gT (v, v) ≤ e2KT g(v, v).

In particular, the identity map on M is a eKT -bi-Lipschitz map from (M, g) to
(M, gT ).
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We can also use η to bound the change in the complex length of geodesics.
Let γ be an essential closed curve in M and let Lγ(t) = `γ(t) + ıθγ(t) be the
complex length of the holonomy of γ in the gt-metric. The following proposition
is a combination of Proposition 4.3 and Lemma 4.6 in [Brm2].

Proposition 2.1 Let the harmonic strain field η be the time zero derivative of
a family of hyperbolic metrics Mt = (M, gt). Let γ be an essential simple closed
curve in M and Lγ(t) = `γ(t) + ıθγ(t) its complex length in Mt. Let γ∗ be the
geodesic representative of γ in M0.

1. If the pointwise norms of η and Dη are bounded by K on γ∗ then

|L′γ(0)| ≤
√

2
3
K`γ(0).

2. If γ∗ has a tubular neighborhood U of radius R then∫
U

‖η‖2 + ‖Dη‖2 ≥
( |L′γ(t)|

2`γ(t)

)2( sinhR
coshR

)(
2 +

1
cosh2R

)
area ∂U.

When the derivative η is a harmonic strain field there are a number of
formulas that are very useful in controlling the norm of η. Before stating these
formulas we define harmonic. Given a family of hyperbolic metrics (M, gt)
around each point we can find a one-parameter family of H3-charts (U, φt) for
the hyperbolic structure induced by the gt-metric. These charts can be viewed
as a flow on a neighborhood in H3. Let v be the vector field on U that is the
pullback of the time zero derivative of this flow. We then observe symDv = η.
This follows from the fact that for vector fields u and w on M the derivative
dgt(u,w)

dt |t=0 is exactly the Lie derivative of g(u,w) along the vector field v.
The trace of symDv is the divergence of v and it measures the infinitesimal

change in volume. The traceless part, sym0Dv, is the strain of v and it mea-
sures the infinitesimal change in the conformal structure. The vector field v is
harmonic if

D∗Dv + 2v = 0.

Here D∗ is the formal adjoint of D. The factor of 2 arises from the fact that the
Ricci curvature of a hyperbolic manifold is −2, and the normalization guaran-
tees that infinitesimal isometries are harmonic. We see that a strain field η is
harmonic if locally there is a divergence free and harmonic vector field v with
η = symDv.

Finally we note that if η is a harmonic strain field then ∗Dη is also an
harmonic strain field where ∗ is the Hodge star-operator (see Proposition 2.6 in
[HK1]). While we are only really interested in controlling the size of η we will
see throughout the paper that our formulas will also involve ∗Dη and we will
also control its size along the way.
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3 Infinitesimal inflexibility

The following formula is our key tool for calculating the L2-norm of a harmonic
strain field. It is Proposition 1.3 of [HK1] along with the calculations on p. 36
of the same paper.

Proposition 3.1 (Hodgson-Kerkchoff) Let M be a compact manifold with
piecewise smooth boundary and η a harmonic strain field. Then∫

M

‖η‖2 + ‖Dη‖2 =
∫
∂M

∗Dη ∧ η.

The following inequality will allow us to control the boundary term in terms
of point-wise bounds on the norms of η and Dη.

Lemma 3.2 We have ‖η‖2 + ‖Dη‖2 ≥ 2‖ ∗Dη ∧ η‖.

Proof. The inequality follows from the fact that ‖η − ∗Dη‖2 ≥ 0. 3.2

The following lemma is the first step in showing that the formula from Propo-
sition 3.1 holds on some non-compact manifolds if the strain field is bounded.

Lemma 3.3 Let M be a a complete hyperbolic 3-manifold that is exhausted
by compact submanifolds Mn with the area of ∂Mn bounded above. If η is a
harmonic strain field with the pointwise norms ‖η‖ and ‖Dη‖ bounded above
then the L2 norm of η and Dη is finite.

Proof. By Proposition 3.1∫
Mn

‖η‖2 + ‖Dη‖2 =
∫
∂Mn

∗Dη ∧ η.

Since both the area of ∂Mn and the pointwise norms of η and Dη are bounded,
Lemma 3.2 implies that the right hand side is bounded. This implies that the
L2-norm on M is finite. 3.3

Let Pn be a finite 1/n-net on ∂M . Define

M(t) = {p ∈M |d(p, ∂M) ≥ t}

and
Mn(t) = {p ∈M |d(p, Pn) ≥ t}.

Lemma 3.4 For all but an isolated set of t > 1/n, Mn(t) is a manifold with
piecewise smooth boundary.

Proof. If the boundary of Mn(t) is not a manifold with piecewise smooth
boundary then there is a geodesic of length 2t in M with endpoints in Pn. The
set of lengths of geodesics in M with endpoints in Pn is a discrete subset of R
so Mn(t) must be a manifold with piecewise smooth boundary for all but an
isolated set of values for t. 3.4
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Lemma 3.5 Let M be a hyperbolic 3-manifold with piecewise smooth, compact
boundary and let η be a harmonic strain field on M . If η and Dη have finite
L2-norm on M then ∫

M

‖η‖2 + ‖Dη‖2 =
∫
∂M

∗Dη ∧ η.

Proof. Fix a net Pn and a T > 0 such that the T -neighborhood of Pn contains
∂M and Mn(T ) is a manifold with piecewise smooth boundary. If we apply
Proposition 3.1 to M\Mn(T ) and rearrange terms we have∫
M

‖η‖2 + ‖Dη‖2 =
∫
∂M

∗Dη ∧ η −
∫
∂Mn(T )

∗Dη ∧ η +
∫
Mn(T )

‖η‖2 + ‖Dη‖2.

By Lemma 3.4 we can choose a sequence of ti → ∞ such that Mn(ti) is a
manifold with piecewise smooth boundary. We now apply Proposition 3.1 again
to see that∫

Mn(T )

‖η‖2 + ‖Dη‖2 =
∫
∂Mn(T )

∗Dη ∧ η − lim
i→∞

∫
∂Mn(ti)

∗Dη ∧ η.

The function
f(t) =

∫
∂Mn(t)

(‖η‖2 + ‖Dη‖2)dA

is defined for all but a discrete set of t and therefore∫
Mn(T )

‖η‖2 + ‖Dη‖2 =
∫ ∞

T

f(t)dt.

Since the L2-norm of η and Dη is finite on Mn(T ) we have

lim
t→∞

f(t) = 0

and in particular f(ti) → 0. Lemma 3.2 then implies that

f(ti) ≥ 2

∣∣∣∣∣
∫
∂Mn(ti)

∗Dη ∧ η

∣∣∣∣∣ .
Therefore

lim
i→∞

∫
∂Mn(ti)

∗Dη ∧ η = 0

and ∫
Mn(T )

‖η‖2 + ‖Dη‖2 =
∫
∂Mn(T )

∗Dη ∧ η.

Combining this last equality with the first equality in the proof gives us the
lemma. 3.5
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Remark. Thurston [Th1] and Bonahon [Bon1] showed that Sullivan rigidity
[Sul] follows more directly from tameness. Lemmas 3.3 and 3.5 give another
perspective on Sullivan’s result. In particular, if M = H3/Γ is a complete
hyperbolic 3-manifold then any Γ-invariant limit Beltrami differential extends
continuously via an averaging process to a harmonic strain field η on M with
the pointwise norms of η and Dη uniformly bounded. If M is tame, then the
limit set of Γ has measure zero or is all of Ĉ. In the former case, any Beltrami
differential supported on the limit set is trivial. In the later case tameness also
implies that M is exhausted by submanifolds whose boundary has uniformly
bounded area and Lemma 3.3 implies that the L2-norms of η and Dη are finite
on M . Since M has no boundary, Lemma 3.5 implies that η = Dη = 0 and the
initial Beltrami differential must be trivial.

The following theorem is the key analytic estimate that underlies all of our
inflexibility theorems. It should be compared with Theorem 2.15 in [Mc3].

Theorem 3.6 Let M be a hyperbolic 3-manifold with compact boundary and let
η be a harmonic strain field on M . Then∫

M(t)

‖η‖2 + ‖Dη‖2 ≤ e−2t

∫
M

‖η‖2 + ‖Dη‖2.

Proof. We can assume that η and Dη have finite L2-norm on M for otherwise
the inequality is trivially true. We will show that∫

Mn(t)

‖η‖2 + ‖Dη‖2 ≤ e−2(t−2/n)

∫
Mn(2/n)

‖η‖2 + ‖Dη‖2. (3.1)

Taking the limit of this inequality as n→∞ will imply the theorem.
Let

f(t) =
∫
Mn(t)

‖η‖2 + ‖Dη‖2.

By Lemma 3.4 we can write

f(T ) =
∫ ∞

T

∫
∂Mn(t)

(
‖η‖2 + ‖Dη‖2

)
dAdt

for T > 1/n. Therefore

−f ′(t) =
∫
∂Mn(t)

(
‖η‖2 + ‖Dη‖2

)
dA

≥ 2
∫
∂Mn(t)

∗Dη ∧ η

≥ 2f(t).

Integrating both sides of this inequality from 2/n to infinity implies (3.1). 3.6
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To go from L2-bounds on η to pointwise bounds we use the following mean
value theorem of Hodgson and Kerckhoff. A proof can be found in [Brm2].

Theorem 3.7 Let η be a harmonic strain field on a ball B of radius R < π/2
centered at a point p. Then

‖η(p)‖ ≤ 3
√

2 volB
4πf(R)

√∫
B

‖η‖2

where f(R) = cosh(R) sin(
√

2R)−
√

2 sinh(R) cos(
√

2R).

It is useful to let M≥ε refer to the locus of points in M where the injectivity
radius is at least ε. For complete hyperbolic 3-manifolds, the Margulis thick-thin
decomposition for hyperbolic 3-manifolds guarantees the existence of a universal
ε3 > 0 (depending only on the dimension) for which each portion of the ε3-thin
part, where the injectivity radius is less than ε3, has a the standard form of a
solid torus neighborhood T of a short geodesic γ∗ (a Margulis-tube), a horoball
modulo a parabolic Z-action (a rank-one cusp) or a horoball modulo a parabolic
Z⊕ Z-action (a rank-two cusp).

We now apply Theorems 3.6 and 3.7 to obtain pointwise bounds on η.

Theorem 3.8 Let M be a complete hyperbolic 3-manifold with compact bound-
ary and let η be a harmonic strain field on M . Then

‖η(p)‖ ≤ A(ε)e−d(p,∂M)

√∫
M

‖η‖2 + ‖Dη‖2

where p ∈M≥ε and

A(ε) =
3eε
√

2 vol(B)
4πf(ε)

with the function f defined in Theorem 3.7.

Proof. Let B be the ball of radius ε centered at p. Then B lies in M(d(p, ∂M)−
ε). By Theorem 3.6∫

B

‖η‖2 ≤
∫
B

‖η‖2 + ‖Dη‖2

≤
∫
M(d(p,∂M)−ε)

‖η‖2 + ‖Dη‖2

≤ e−2(d(p,∂M)−ε)
∫
M

‖η‖2 + ‖Dη‖2

We then apply Theorem 3.7 to finish the proof. 3.8
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We can also control the derivative of the length of a closed geodesic.

Theorem 3.9 Let the harmonic strain field η be the time zero derivative of
a family of hyperbolic metrics Mt = (M, gt) where M is a 3-manifold with
compact boundary. Let γ be an essential simple closed curve in M and Lγ(t) =
`γ(t) + ıθγ(t) its complex length in Mt. Let γ∗ be the geodesic representative of
γ in M0.

1. If γ∗ is contained in M≥ε
0 then

|L′γ(0)| ≤ A(ε)e−d(γ
∗,∂M)`γ(0)

√
2
3

∫
M

‖η‖2 + ‖Dη‖2

where A(ε) is the function given in Theorem 3.8.

2. If γ∗ has a tubular neighborhood U of radius R then

|L′γ(0)| ≤ C(R)e−d(U,∂M)`γ(0)

√∫
M
‖η‖2 + ‖Dη‖2

area(∂U)

where 1/C(R) = 2 tanhR
(
2 + 1

cosh2 R

)
.

Proof of (1). Applying Theorem 3.8 we see that on γ∗ the pointwise norm of
η and Dη is bounded by A(ε)e−d(γ

∗,∂M)
√
‖η‖2 + ‖Dη‖2. We then apply (1) of

Proposition 2.1 to finish the proof.

Proof of (2). By Theorem 3.6∫
U

‖η‖2 + ‖Dη‖2 ≤ e−d(U,∂M)

∫
M

‖η‖2 + ‖Dη‖2.

In this case, (2) of Proposition 2.1 finishes the proof. 3.9

4 Inflexibility

There are two types of deformations of hyperbolic 3-manifolds that we will
study: quasiconformal deformations, namely, quasiconformal conjugacies of
their uniformizing Kleinian groups, and cone-manifold deformations, a defor-
mation of a singulcar cone-manifold structure where in the cone-angle at the
cone-locus varies. In this section we will prove two general global inflexibility
theorems which will apply to both settings.

Theorem 4.1 Let gt be a one-parameter family of hyperbolic metrics on a 3-
manifold M with t ∈ [a, b]. Let ηt be the time t derivative of the metrics gt and
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let Nt be a family of submanifolds of M such that ηt is a harmonic strain field
on Nt. Also assume that √∫

Nt

‖ηt‖2 + ‖Dtηt‖2 ≤ K

for some K > 0. Let p be a point in M such that for all t ∈ [a, b], p is in M≥ε
t

and
dMt

(p,M\Nt) ≥ d

where d > ε. Then

log bilip(Φt, p) ≤ (t− a)KA(ε)e−d

where Φt is the identity map from Ma to Mt and A(ε) is the function from
Theorem 3.8.

Proof. Since d > ε the ε-neighborhood of p is contained in Nt and is at least
distance d− ε from ∂Nt. An application of Theorem 3.8 gives us

‖ηt(p)‖ ≤ KA(ε)e−d.

Integrating we get

log bilip(Φt, p) ≤ (t− a)KA(ε)e−d

as desired. 4.1

Though the previous resultgives no control over the bi-Lipschitz constant
of the map Φ in the thin part, we may instead demonstrate exponential decay
of the change in length of short curves in Margulis thin parts, which controls
the geometry of the thin part itself. Here, the decay is measured in terms
of the distance of the corresponding Margulis tube from the boundary. For
completeness, we also bound the change in length of curves that are not short.

Theorem 4.2 Let gt be a one-parameter family of hyperbolic metrics on a 3-
manifold M with t ∈ [a, b]. Let ηt be the time t derivative of the metrics gt and
let Nt be a family of submanifolds of M such that ηt is a harmonic strain field
on Nt. Also assume that √∫

Nt

‖ηt‖2 + ‖Dtηt‖2 ≤ K

for some K > 0. Let γt be the geodesics representative on (M, gt) of a closed
curve γ and let `γ(t) be the length of γ.
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1. Assume that γt is in M≥ε
t for all t ∈ [a, b], and that

dMt(γt,M\Nt) ≥ d.

Then ∣∣∣∣log
`γ(b)
`γ(a)

∣∣∣∣ ≤√2/3A(ε)(b− a)Ke−d.

2. Assume γt has a tubular neighborhood Ut of radius ≥ R and the area of
∂Ut is ≥ B. Also assume that

dMt
(Ut,M\Nt) ≥ d

for all t ∈ [a, b]. Then∣∣∣∣log
`γ(b)
`γ(a)

∣∣∣∣ ≤ C(R)(b− a)Ke−d√
B

where C(R) is the function from Theorem 3.9.

Proof. Both inequalities are obtained by integrating the estimates of Theo-
rem 3.9. 4.2

Remark. Although in the above theorem we only control the real lengths
of closed geodesics it is straightforward to control their complex lengths. In
particular if Lγ(t) is the complex length of γ in (M, gt) then we can view ıLγ(t)
as a point in the upper half space model of H2. Then the quantities on the right
hand side of the inequalities bound the hyperbolic distance between ıLγ(a) and
ıLγ(b). Note that this hyperbolic distance is an upper bound on the log of the
ratio of real lengths so such a hyperbolic distance bound implies the inequalities
in Theorem 4.2.

5 Quasiconformal deformations

We now apply the results of the previous section to quasiconformal deformations.
We begin reviewing some standard definitions.

LetM be a complete, orientable, hyperbolic 3-manifold. Its universal cover is
naturally identified with H3 and M may be recovered as the quotient M = H3/Γ
of H3 by a Kleinian group Γ, namely, a discrete subgroup of Isom+(H3). The
natural action of Γ on Ĉ by Möbius transformations partitions Ĉ into its domain
of discontinuity, Ω, the largest subset of Ĉ where Γ acts properly discontinuously,
and its limit set Λ. Then the Kleinian manifold quotient H3∪Ω/Γ is a 3-manifold
with conformal boundary Ω/Γ.

A K-quasiconformal deformation of a complete, orientable, hyperbolic 3-
manifolds M0 is a is a map Ψ : M0 → M1 to a complete hyperbolic 3-manifold
M1 such that the lift Ψ̃ : H3 → H3 to the universal covers extends continuously

13



to a K-quasiconformal map of Ĉ. If Ψ is a K-quasiconformal deformation then
it will extend to a K-quasiconformal map between the conformal boundaries of
M0 and M1.

The following result is due to Reimann [Rei] using work of Ahlfors [Ah] and
Thurston [Th1]. For a self contained exposition see [Mc3]. It is an essential tool
for the work that follows

Theorem 5.1 (Reimann) Let Ψ : M0 → M1 be a K-quasiconformal defor-
mation of the complete hyperbolic 3-manifold M0. Then there exists a one-
parameter family, Mt = (M, gt), t ∈ [0, 1], of hyperbolic 3-manifolds with time
t derivative ηt such that the following holds:

1. The ηt are harmonic strain fields and ‖ηt‖∞, ‖Dtηt‖∞ ≤ 3k where k =
1
2 logK;

2. Let Φt : M0 →Mt be the identity map on M . Then Φt is K
3
2 -bi-Lipschitz

and Φ1 is homotopic to Ψ.

The convex cores C(Mt) of the one-parameter family Mt will play the role
of Nt when we apply Theorems 4.1 and 4.2 to Mt.

Lemma 5.2 Let M be a complete hyperbolic 3-manifold such that π1(M) is
finitely generated and assume that M has no rank one cusps. Let η be a harmonic
strain field on M such that the norms of η and Dη are pointwise bounded by k.
Then ∫

C(M)

‖η‖2 + ‖Dη‖2 ≤ area(∂C(M))k2.

Proof. We first replace the convex core with its ε-neighborhood, Cε(M). While
the boundary of the convex core may not be smooth, the boundary of Cε(M)
will be C1. We also note that area(∂Cε(M)) → area(∂C(M)) as ε→ 0.

Since π1(M) is finitely generated the M are both topologically and geomet-
rically tame ([Ag, CG]). In particular the convex cores C(M) will be exhausted
by submanifolds whose boundary has uniformly bounded area. Since the norms
of η andDη are uniformly bounded we can apply Proposition 3.1 and Lemma 3.2
to see that the L2-norms of η and Dη are uniformly bounded on these subman-
ifolds which implies that the L2-norms of η and Dη are finite on Cε(M).

Applying Lemma 3.5 to Cε(M) and taking a limit as ε → 0 gives us the
lemma. 5.2

To make sure that objects deep in the convex core of C(M0) stay deep in
the convex core of C(M1) we will use the fact that bi-Lipschitz maps of H3 take
convex subsets of H3 to quasi-convex sets, a general feature of quasi-isometries
between δ-hyperbolic spaces. While this section only applies this observation
for hyperbolic space we will later make use of this more general version in the
setting of manifolds with pinched negative curvature, so we give more general
form. Sometimes known as the Morse Lemma, Theorem 1.7 in Chapter of III.H
of [BH] is one reference.
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Theorem 5.3 Given constants L > 1 and ε ∈ (0, 1) there exists a K > 0
such that the following holds. Let X0 and X1 be complete, simply connected
Riemannian manifolds with sectional curvatures lying in (−1 − ε,−1 + ε), and
let Φ : X0 → X1 be an L-bi-Lipschitz diffeomorphism. Then the Φ-image of a
convex set in X0 is K-quasi-convex in X1.

An example of a convex set is a geodesic – its image under a bi-Lipschitz
map is an example of a quasi-geodesic. A more common way to state the above
theorem is that in a space with pinched negative curvature, a quasi-geodesic is
a bounded Hausdorff distance from a geodesic. In fact this is how the result is
stated in [BH] but it is not hard to see that this implies the above theorem.

On application of the above theorem is the following proposition.

Proposition 5.4 Given B > 1 and ε ∈ (0, 1) there exists d > 0 such that the
following holds. Let g0 and g1 be complete Riemannian metrics on a manifold M
with sectional curvatures in (−1− ε,−1+ ε) and let φ : (M, g0) → (M, g1) be B-
bi-Lipschitz. Then then Hausdorff distance between C(M, g1) and φ(C(M, g0))
is less than d.

Proof. For hyperbolic manifolds this is Proposition 2.16 in [Mc3]. It follows
from Theorem 5.3 and the fact that every point in the the convex hull of a
set is a uniform distance from a geodesic with endpoints in the set. Using
work of Anderson [And], Bowditch [Bow] proved this last fact for manifolds
with pinched negative curvature where the uniformity constants depend on the
pinching constants. Using Bowditch’s work, McMullen’s proof extends to the
setting we have here. 5.4

The following is Corollary 2.17 in [Mc3]. The proof is a straightforward
application of Proposition 5.4.

Lemma 5.5 Let Φ : M0 → M1 be an L-bi-Lipschitz diffeomorphism between
complete hyperbolic 3-manifolds. Then there exist a constant d such that

d(Φ(p),M1\C(M1)) ≥
d(p,M0\C(M0))

L
− d.

We are now ready to prove our first inflexibility theorem for quasiconformal
deformations.

Theorem 5.6 Let M0 and M1 be complete hyperbolic structures on a 3-manifold
M such that M1 is a K-quasiconformal deformation of M0, π1(M) is finitely
generated, and M0 has no rank one cusps. Then there is a bi-Lipschitz diffeo-
morphism

Φ: M0 →M1

whose pointwise bi-Lipschitz constant satisfies

log bilip(Φ, p) ≤ C1e
−C2d(p,M0\C(M0))

where p is in M≥ε
0 and C1 and C2 depend only on K, ε, and area(∂C(M0)).
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Proof. Let Mt = (M, gt) be the one-parameter family of hyperbolic manifolds
given by Theorem 5.1 with ηt the derivative of the metrics and

Φt : M0 →Mt

the given maps. By Lemma 5.2 we have∫
C(Mt)

‖ηt‖2 + ‖Dtηt‖2 ≤ area(∂C(Mt))9k2.

Lemma 5.5 guarantees

d(Φt(p),Mt\C(Mt)) ≥
d(p,M0\C(M0))

K
3
2

− d.

Since the Φt are K
3
2 -bi-Lipschitz we have p ∈ M≥ε′

t for all t where ε′ = ε/K
3
2 .

The result then follows from Theorem 4.1 with Φ = Φ1 the desired map. 5.6

For points in the thin part, the above theorem fails to yield good estimates,
but this is not surprising. Indeed, one can construct examples of harmonic
strain fields on Margulis tubes where the pointwise L2-norm is roughly constant
and does not decay with depth into the tube. Rather, one expects the pointwise
norm of the strain at a point in a Margulis tube to depend on the depth of the
boundary of the tube. Rather than pursue such a line of argument, we will bound
the change in length of short geodesics where, again, the bounds will depend on
the depth of the boundary of the Margulis tube not the short geodesic. Such a
bound is the natural thing to expect and suffices for applications.

For completeness we also give bounds on the change in length of curves that
have bounded length but are not necessarily short. We must first show that an
essential curve whose geodesic representative lies deep in the convex core of M0

also has geodesic representative in M1 deep in the convex core.

Proposition 5.7 Let M0 = (M, g0) and M1 = (M, g1) be hyperbolic 3-manifolds
that are L-bi-Lipschitz diffeomorphic. Let ε a positive constant such that Lε is
less than the Margulis constant. Then there exists a constant d = d(L, ε) such
that the following holds. Let γ be an essential closed curve in M and γ0 and γ1

its geodesic representatives in M0 and M1, respectively.

1. We have

d(γ1,M1 − C(M1)) ≥
d(γ0,M0 − C(M0))

L
− d,

and

2. if `M0(γ0) ≤ ε/L then

d(U1
ε (γ1),M1 − C(M1)) ≥

d(U0
ε (γ0),M0 − C(M0))

L
− d.
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Proof. Let Φ : M0 → M1 be the L-bi-Lipschitz diffeomorphism. Let q be a
point on γ1 with

d(q,M1 − C(M1)) = d(γ1,M1 − C(M1)).

By Theorem 5.3, the Hausdorff distance between Φ(γ0) and γ1 is bounded by
K where K only depends on L so there exists a q′ ∈ Φ(γ0) with d(q, q′) ≤ K.
Let p = Φ−1(q′). Then

d(p,M0 − C(M0)) ≥ d(γ0,M0 − C(M0)).

An application of Lemma 5.5 to p gives us (1).
The proof of (2) is similar with one change. Again let q be a point on ∂U1

ε (γ)
such that

d(q,M1 − C(M1)) = d(U1
ε (γ),M1 − C(M1)).

The collar U1
Lε(γ)−U1

ε/L(γ) will contain ∂Φ(U0
ε (γ)) and the inclusion will be a

homotopy equivalence since Φ(U0
ε (γ)) is not contained in the collar. By [BM]

the width of the collar is bounded above by some W depending only on ε and
L. Therefore there exists a q′ ∈ ∂Φ(U0

ε (γ)) such that d(q, q′) ≤W . The rest of
the proof is the same as in (1). 5.7

We can now control the length of geodesics under quasiconformal deforma-
tions.

Theorem 5.8 Let M1 = (M, g1) be a K-quasiconformal deformation of the
hyperbolic 3-manifold M0 = (M, g0) with finitely generated fundamental group
and no rank-one cusps. Let γ be an essential simple closed curve in M and γ0

and γ1 its geodesic representatives in M0 and M1 respectively. Choose ε > 0
such that εK

3
2 is less than the Margulis constant and let L > ε > 0. Then there

exists constants C1 and C2 depending on K, ε, L and area(∂C(M0)) such that
the following holds.

1. If ε ≤ `(γ0) ≤ L then∣∣∣∣log
`(γ1)
`(γ0)

∣∣∣∣ ≤ C1e
−C2d(γ0,M0−C(M0)).

2. If `(γ0) ≤ ε then ∣∣∣∣log
`(γ1)
`(γ0)

∣∣∣∣ ≤ C1e
−C2d(U

0
ε (γ),M0−C(M0)).

Proof. As with the proof Theorem 5.6 we now only need to put together the
pieces. We will use Theorem 4.2, our generic inflexibility theorem for lengths
of curves. To apply this result we use the family of deformations given by
Theorem 5.1 where the bound on the L2-norms of the strain fields inside the
convex core comes from Lemma 5.2. Finally, Proposition 5.7 guarantees that
geodesics and tubes that are deep in the convex core stay deep in the convex
core. The theorem then follows from an application of Theorem 5.6. 5.8
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Remark. It is easy to see that both Theorems 5.6 and 5.8 hold for geometrically
finite hyperbolic manifolds with rank-one cusps. To see this let M<δ

c be set of
points in the rank one cusps of M that have injectivity radius less than δ.
If M is geometrically finite then Cδc (M) = C(M)\M<δ

c will be compact and
Theorems 5.6 and 5.8 will hold if we replace C(M) with Cδc (M). We also note
that area(∂Cδc (M)) → area(C(M)) as δ → 0 and for all p ∈ C(M) there exists
a δp such that if δ < δp then

d(p,M\Cδc (M)) = d(p,M\C(M)).

Therefore if we let δ → 0 we recover Theorems 5.6 and 5.8 as stated above.
In fact, the above argument applies whenever Cδc (M) is a manifold with

compact boundary, as is the case when either the intersection of each rank
one cusp with the convex core has finite volume or the entire rank one cusp is
contained in the convex core.

We expect both theorems should hold for any hyperbolic 3-manifold with
finitely generated fundamental group.

6 Cone-manifolds

We now turn our attention to deformations of hyperbolic cone-manifolds. We
begin with a definition. We let H̃3 be the set

{(r, θ, z)|r > 0, θ, z ∈ R}

with the incomplete Riemannian metric

dr2 + sinh2 rdθ2 + cosh2 rdz2.

Then H̃3 is isometric to the lift to the universal cover of the hyperbolic metric
on H3 \ ` where ` is a complete geodesic. For each α > 0, let H3

α be the metric
completion of the quotient of H̃3 under the isometry (r, θ, z) 7→ (r, θ+α, z). Note
that H3

α is a topological ball. Let N be a compact 3-manifold with boundary
and g a complete metric on the interior of N . The metric g is a hyperbolic
cone-metric if every point in the interior of N has a neighborhood isometric to
a neighborhood of a point in H3

α for some α > 0. The pair (N,h) is a hyperbolic
cone-manifold. Let C be the subset of N where the metric h is singular. Then C
will be a collection of isolated simple curves in N . In this paper we will assume
that C is compact which implies that it is a finite collection of disjoint simple
closed curves.

Let c be a component of C. Then there is a unique α > 0 such that each
point p in c has a neighborhood isometric to the neighborhood of a singular
point in H3

α. This α is the cone-angle of the component c.
Recall that H3 is naturally compactified by Ĉ. The union is a closed 3-ball

and isometries of H3 extend continuously to conformal automorphisms of Ĉ. Let
∂0N be the components of ∂N that are not tori. Then (N, g) is a geometrically
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finite cone-manifold if each point p in ∂0N has a neighborhood V in N and a
chart φ : V → H̄3 such that φ restricted to V ∩ int(N) is an isometry and φ

restricted to V ∩ ∂N is a map into ∂H̄3 = Ĉ. Note that the restriction of the
charts to ∂0N defines an atlas for a conformal structure on ∂0N . (In fact, as we
will see in the next section, this conformal atlas determines a complex projective
structure on ∂0N).

The following theorem is the cone-manifold analogue of Theorem 5.1.

Theorem 6.1 Given α0, L,K, ε > 0 and B > 1 there exists an R > 0 and a
d > 0 such that the following holds. Let (M, gα) be a geometrically finite hyper-
bolic cone-manifold with all cone-angles α < α0 and the length of the singular
locus is at most L. Then there exists a one-parameter family of geometrically
finite hyperbolic cone-manifolds (M, gt) defined for t ∈ [0, α] with the following
properties:

1. Each component of the singular locus of (M, gt) has cone-angle t and the
conformal boundary is the same as the conformal boundary of (M, gα).

2. The derivative ηt of gt is a family of harmonic strain fields outside of a
radius sinh−1 1/

√
2 neighborhood of the singular locus.

3. Let Uα be the R-tubular neighborhood of the singular locus in (M, gα) and
let Ut be a tubular neighborhood of the singular locus in (M, gt) such that
area(∂Ut) = area(∂Uα). Then∫

Mt\Ut
‖ηt‖2 + ‖Dtηt‖2 ≤ K.

4. There exists B-bi-Lipschitz diffeomorphisms φt : Mα\Uα → Mt\Ut such
that φt is the identity map on M in the ε-thick part of Mα.

5. If p ∈M is in the ε-thick part of Mα\Uα then dt(p, Ut) ≥ dα(p, Uα)/B.

6. If γ is a closed curve in M then dt(γt, Ut) ≥ dα(γα)/B − d.

7. If γ is a closed curve in M with `α(γ) < ε/B then

dt(U tε (γ), Ut) ≥
dα(Uαε (γ))

B
.

Proof. Statements (1)-(4) are proven in [Brm3] (see Theorem 5.3 and its proof).
When the singular locus is sufficiently short this was proven in [Brm2, BB]
building on Hodgson and Kerckhoff’s foundational work on deformations of
hyperbolic cone-manifolds in [HK1, HK2, HK3].

Statement (5) follows directly from (4). Statements (6) and (7) are more
difficult. We would like to apply Theorem 5.3 as in the proof of Proposition 5.7.
As the manifolds Mt are not complete, however, we cannot directly use Theo-
rem 5.3. The situation is remedied by modifying the metrics gα and gt in Uα
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and Ut so that they are complete metrics of pinched negative curvature and by
then extending the map φt to a bi-Lipschitz map for these new metrics.

The construction such metrics is straightforward: they are doubly warped
products using cylindrical coordinates. Given an r0 > 0 define a metric on R3

by
dr2 + fr0(r)

2dθ2 + gr0(r)
2dz2

where fr0(r) and gr0(r) are convex functions with fr0(r) = sinh r and gr0(r) =
cosh r for r ∈ [r0/2, r0] and fr0(r) = gr0(r) = 1

2e
r for r ≤ r0/4. We can also

assume that sinh r ≤ fr0(t) ≤ 1
2e
r and 1

2e
r ≤ gr0(r) ≤ cosh r. When r ≥ r0/2

or r ≤ r0/4 then this metric is hyperbolic. For r ∈ (r0/4, r0/2) the sectional
curvature will be pinched within ε of −1 where ε only depends on r0 and ε→ 0
as r0 →∞. Details of this calculation can be found in Section 1.2 of [Koj] where
the construction is attributed to Kerckhoff.

The map (r, θ, z) 7→ (r, θ+x, z+y) is an isometry in this metric. If we take the
quotient of the set of points with r ∈ (−∞, r0] by isometries (r, θ, z) 7→ (r, θ+t, z)
and (r, θ + x, z + `) we get a complete metric on T 2 × (−∞, r0]. If r0 = Rt is
the tube radius of Ut and ` + ıx is the complex length of the singular locus of
(M, gt) then the Rt/2-neighborhood of the boundary is isometric to the Rt/2-
neighborhood of ∂Ut. We then define g′t on Ut by replacing the original metric
with the above metric. Since the two metrics agree in a collar neighborhood of
∂Ut the metric g′t is smooth and g′t is a complete metric on M with sectional
curvature within ε of −1.

We now construct a bi-Lipschitz diffeomorphism φ′t : (M, g′α) → (M, g′t) by
extending the map φt from (4). The original map φt restricted to ∂Uα is a B-bi-
Lipschitz diffeomorphism from ∂Uα to ∂Ut. This map can then be extended to a
map on (Uα, g′α) in the obvious way. Namely there are nearest point projections
of (Uα, g′α) and (Ut, g′t) onto ∂Uα and ∂Ut respectively. Then on Uα, φ′t is
the unique map that commutes with these projections and that takes a point
distance r from ∂Uα to a point distance r from ∂Ut. We need to calculate the
bi-Lipschitz constant of this map.

To do so we make a few observations. First the functions fR(r) and gR(r)
converge uniformly to 1

2e
r as R→∞. Second we note that by construction the

derivative of the map is an isometry in the r-direction. For a vector v tangent
to the tori of fixed r-coordinate a direction calculation shows that

1
B

fRt(r
′)

fRt(Rt)
gRα(Rα)
gRα(r)

‖v‖ ≤ ‖ (φ′t)∗ v‖ ≤ B
gRt(r

′)
gRt(Rt)

fRα(Rα)
fRα(r)

‖v‖

where Rα − r = Rt − r′. Therefore the map is B′-bi-Lipschitz where B′ is the
maximum of the factor on the right side of the inequality and the inverse of
the factor on left side of the inequality. Since the functions fR(r) and fR(r)
converge uniformly to 1

2e
r, the quotients fR(r1)/fR(r0) and gR(r1)/gR(r0) con-

verge uniformly to er1−r0 . By Theorem 2.7 of [HK2] the length of the singular
locus is an increasing function of t. This implies that Rt is a decreasing function
in t and therefore the bi-Lipschitz constant, B′, depends only on B and R. This
in turn implies that the constant that we get when we apply Theorem 5.3 only
depends on B and Rα.
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To finish the proof of (6) and (7) we simply follow the proof of Proposition 5.7
where M\Uα and M\Ut replace the role of the convex cores. 6.1

We can now prove the bi-Lipschitz inflexibility theorem for cone-manifolds
just as we did in the case of the quasiconformal deformations. We leave the
details to the reader.

Theorem 6.2 Let Mt = (M, gt) be the one-parameter family of geometrically
finite cone-manifolds given by Theorem 6.1. If p is in the ε-thick part of (M, gα)
then the pointwise bi-Lipschitz constant of the maps

φt : Mα →Mt

satisfies
log bilip(φt, p) ≤ C1e

−C2dα(p,Mα\Uα)

where the constants C1 and C2 depend on the α0, L,K, ε and B as in Theo-
rem 6.1.

Next we state the cone-manifold version of the length inflexibility statement.
Again the proof closely follows the proof for quasiconformal deformations and
we leave details to the reader.

Theorem 6.3 Let Mt = (M, gt) be the one parameter family of geometrically
finite cone-manifolds given by Theorem 6.1. Let γ be an essential simple closed
curve in M and γt its geodesic representatives in Mt. Assume that `α(γ) < ` for
some ` > 0. Then there exists constants C1 and C2 depending on the constants
α0, L,K, ε and B from Theorem 6.1 and on ` such that the following holds.

1. If ε ≤ `α(γ) ≤ ` then ∣∣∣∣log
`t(γ)
`α(γ)

∣∣∣∣ ≤ C1e
−C2dα(γα,Uα).

2. If `α(γ) ≤ ε/B then∣∣∣∣log
`t(γ)
`α(γ)

∣∣∣∣ ≤ C1e
−C2dα(Uαε (γ),Uα).

7 Schwarzian derivatives

The conformal boundary of a hyperbolic 3-manifold also has a projective struc-
ture. In this section we will obtain bounds on how this projective boundary
changes during either a quasiconformal deformation or a cone-deformation. We
begin with some background on projective structures. One reference for this
material is [Dum]
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A complex projective structure on a surface S can be defined in two equiv-
alent ways. First, a complex projective structure is an atlas of charts to Ĉ
whose transition functions are restrictions of Möbius transformations. Second,
a projective structures is a developing pair (D, ρ) where D : S̃ → Ĉ is a lo-
cal homeomorphism and ρ is representation of π1(S) in PSL2 C for which that
D ◦ g(x) = ρ(g) ◦D(x) for all g ∈ π1(S) and x ∈ S̃. The map D is developing
map and ρ is the holonomy representation. An atlas determines a developing
pair and a developing pair determines an atlas.

A projective structure determines a conformal structure on S but distinct
projective structures may have the same underlying conformal structure. If X
is a conformal structure on S then we let P (X) denote the space of projective
structures on S with conformal structure X.

Note that the charts that define a conformal structure on the boundary of a
hyperbolic 3-manifold also define a projective structure. We refer to this projec-
tive structure as the projective boundary of the manifold. We will be interested
in controlling how the projective boundary changes under a deformation fixing
the conformal boundary.

The difference between two projective structures Σ0 and Σ1 in P (X) is
measured by a quadratic differential Φ determined via the Schwarzian derivative.
We can then define d(Σ0,Σ1) = ‖Φ‖∞ where ‖Φ‖∞ is the sup-norm taken with
respect to the hyperbolic metric on X. If Σt is a smooth path in P (X) from Σ0

to Σ1 than the time t derivative Φt of the path is also a quadratic differential.
The following inequality will be useful for bounding d(Σ0,Σ1):

‖Φ‖∞ ≤
∫ 1

0

‖Φt‖∞dt.

For each hyperbolic structure X there is a unique Fuchsian projective structure
ΣF in P (X). For an arbitrary Σ ∈ P (X) we define ‖Σ‖F = d(Σ,ΣF ).

A key substantive difference between a conformal structure and a projective
structure a projective structure carries a well defined notion of a round disk.
Let Σ be projective structure. Then a round disk on Σ is a projective map from
a round disk in Ĉ to Σ. If M is a hyperbolic 3-manifold then a half-space in
M is a local isometry from a half space in H3 to M . Note that the projective
boundary of a half-space in H3 is a round disk so every half space in hyperbolic
3-manifold extends to a round disk on the projective boundary.

The following result is our generic inflexibility theorem for Schwarzian deriva-
tives. It should be compared to Theorems 4.1 and 4.2.

Theorem 7.1 Let gt, t ∈ [a, b], be a one-parameter family of hyperbolic metrics
on the interior of a 3-manifold M with boundary. Let ηt be the time t derivative
of the metrics gt and let Nt be a family of submanifolds of M with compact
boundary such that ηt is a harmonic strain field on Nt. Also assume that√∫

Nt

‖ηt‖2 + ‖Dtηt‖2 ≤ K
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for some K > 0. Let S be a component of ∂M such that each hyperbolic metric
gt extends to a fixed conformal structure X on S and a family of projective
structures Σt on S. Assume that at every embedded round disk in Σt bounds an
embedded half space H in Nt and that

dMt
(H,M\Nt) ≥ d

for some d > 0. Then
d(Σa,Σb) ≤ CKe−d

where C is a constant depending on ‖Σa‖F and the injectivity radius of X.

Proof. Let H be an embedded half space in Mt bounding a round disk in Σt.
By Theorem 3.6 we have∫

H

‖ηt‖2 + ‖Dtηt‖2 ≤ K2e−2d.

Let Φt be the holomorphic quadratic differential that is the time t derivative of
the family of projective structures Σt. Then by Theorem 5.5 in [Brm2] we have

K2e−2d ≥ 2

√
2π
3

tanh2(κ/2)
1 + 2‖Σt‖F

‖Φt‖∞

where κ is the injectivity radius of the hyperbolic structure on X. Integrating
this inequality finishes the proof of the theorem. For details see the proof of
Theorem 1.3 in [Brm2]. 7.1

7.1 Quasiconformal deformations

Let M be a complete hyperbolic 3-manifold. Then each component Σ of the
projective boundary ofM will bound a component ofM\C(M), the complement
of the convex core. Label this component N (Σ) which should be thought of as
a standard neighborhood of Σ in M . If Σ is a union of components of the
projective boundary then N (Σ) is the corresponding union of components of
M\C(M). If X is a component of the conformal boundary we similarly define
N (X).

Theorem 5.1 gave us one-parameter family of hyperbolic manifold interpo-
lating between a quasiconformal deformation. We will need to use this result
again but we will also need to know that the corresponding strain fields are
L2 in a neighborhood of those ends of the boundary where the deformation
is conformal. For convenience we restate Theorem 5.1 as part of the theorem
below.

Theorem 7.2 Let Ψ : M0 → M1 be a K-quasiconformal deformation of the
complete orientable hyperbolic 3-manifold M0. Then there exists a one-parameter
family, Mt = (M, gt), t ∈ [0, 1], of hyperbolic metrics gt with time t derivative
ηt such that the following holds:
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1. The ηt are harmonic strain fields and ‖ηt‖∞, ‖Dtηt‖∞ ≤ 3k where k =
1
2 logK;

2. Let Φt : M0 →Mt be the identity map on M . Then Φt is K
3
2 -bi-Lipschitz

and Φ1 is homotopic to Ψ;

3. Let X be a union of components of the conformal boundary M0 such that
Ψ extends to a conformal map on X. Then Φt extends to a conformal
map on X for all t and∫

N (Φt(X))

‖ηt‖2 + ‖Dtηt‖2 <∞.

Proof. We only need to prove (3) as (1) are (2) are exactly the same as
Theorem 5.1. The fact that Φt is conformal on X follows directly from the
construction in [Rei]. To establish the L2-bounds, we lift ηt to a harmonic
strain field η̃t on the universal cover H3. Then η̃t is the visual extension of a
Beltrami differential µt on Ĉ. By construction, µt will be zero on Φ̃t(ΩX) where
ΩX is the component of the domain of discontinuity that descends to X.

Let p be a point in N (Φt(X)). There is a unique point q in ∂C(Mt) that is
nearest to p. Let σ be the shortest geodesic between p and q, let σ̃ be a lift of
this geodesic to H3 and let p̃ and q̃ be the endpoints of this geodesic which lie
in the pre-images of p and q, respectively. Let P be the hyperbolic plane in H3

that contains q̃ and is perpendicular to σ̃. The boundary of P is a circle in Ĉ
that bounds a disk D contained in Φ̃t(ΩX). An easy calculation shows that the
in the visual measure based at p̃, the ratio of the area of D to the area of the
the entire sphere is tanh d(p, q). This implies that

‖ηt(p)‖ = ‖η̃t(p)‖ ≤ C(1− tanh d(p, q)) ∼ 2Ce−2d(p,q)

where C is a constant that only depends on ‖µt‖∞. The area of the surface
obtained by taking the locus of points in N (Φt(X)) a distance d from ∂C(Mt)
grows like e2d. Together these two estimates imply that the integral of ‖ηt‖2

over N (Φt(X)) is finite.
To estimate the norm of ‖Dtηt‖ we note that the lift of this strain field is

obtained by averaging ıµt so the same argument shows that it has finite L2-
norm on N (Φt(X)). 7.2

We can now prove the quasiconformal deformation version of our inflexibility
theorem for Schwarzian derivatives.

Theorem 7.3 Let Ψ : M0 → M1 be a K-quasiconformal deformation of com-
plete, hyperbolic 3-manifolds. Assume that the conformal boundary of M0 is the
disjoint union of two collections of components X and Y and that Ψ extends
to a conformal map on Y . Let Σ0 be the projective structure on X and Σ1 the
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projective structure on Ψ(X). Let d be the minimal distance between N (X) and
N (Y ) in M0. Then

d(Σ0,Σ1) ≤ C0e
−C1d

where C0 and C1 depend only on K, area(Y ), ‖Σ0‖F and the injectivity radius
of X.

Proof. We want to apply Theorem 7.1. Let Mt be the one-parameter family
of hyperbolic 3-manifolds given by Theorem 7.2. Then the submanifolds Nt
will be the union of the convex cores C(Mt) and the neighborhoods N (Σt).
By Lemma 5.2 the L2-norm of ηt and Dtηt is finite on C(Mt), and by (3) of
Theorem 7.2 these L2-norms are finite on N (Σt). Therefore the L2-norms are
finite on the union Nt and just as in the proof of Lemma 5.2 we can apply
Lemma 3.5 to see that∫

Nt

‖ηt‖2 + ‖Dtηt‖2 ≤ area(Y )9k2.

The maps Φt : M0 → Mt are K
3
2 -bi-Lipschitz and such a map between

hyperbolic manifolds will take a convex set to a K0-quasi-convex set where K0

depends on K. Applying this fact to Φ−1
t we see that the Hausdorff distance

between Φt(C(M0)) and C(M0) is bounded by a constant K1 which again only
depends on K. In particular the distance between N (Φt(X)) and N (Φt(Y )) is
bounded below by d/K

3
2 −K1.

Finally we see that if D is round disk in Ĉ bounding a half space in H then
D descends to an embedded disk in projective boundary of Mt if every deck
transformation for Mt takes D of itself. But if this is the case the same will
hold for H so H will descend to an embedded half space in Mt.

We are now in position to apply Theorem 4.1 to see that

d(Σ0,Σ1) ≤ C0e
−C1d

where C0 = C area(T )9k2e−K1 with C the constant from Theorem 4.1 and
C1 = 1/K

3
2 . 7.3

Remark. If the components of X are incompressible then Nehari’s Theorem
[Neh] implies that ‖Σt‖F ≤ 3/2. In particular, the constants in the previous
theorem will not depend on ‖Σ0‖F in this case.

Remark. As with our previous inflexibility theorems for quasiconformal defor-
mations, Theorem 7.3 also holds for certain hyperbolic 3-manifolds with rank-
one cusps. For example if (Mt ∪ N (Φt(Y )))\(Mt)δc is a compact manifold then
the proof of Theorem 7.3 goes through after making the exact same modifica-
tions that were described in the remark after the proof of Theorem 5.8. Mani-
folds lying on the boundary of a Bers slice of a closed surface give one important
case where this condition holds.
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7.2 Hyperbolic cone-manifolds

We now want to obtain a similar theorem for deformations of cone-manifolds.
The main difficulty is that we need a replacement for the notion of convex core.

We begin by defining a neighborhood of a component of the projective
boundary. Note that our construction would also work for a smooth manifold
and in fact would exactly be the component of the complement of the convex
core.

We start with a lemma about round disks in the projective boundary.

Lemma 7.4 Let M be the non-singluar part of a 3-dimensional hyperbolic cone-
manifold. Then every round disk on the projective boundary of M extends to a
half-space in M , and if the disk is embedded the half space is embedded.

Proof. In Lemma 3.3 of [Brm2] it is shown that every embedded round disk
extends to an embedded half space so we only need to show that every round
disk extends to half space. One can check that this lemma still holds for the
universal cover of the non-singular part of a cone-manifold unless the closure of
the disk fails to embed in the projective boundary, in which case the half space
may not be embedded. In particular, the map of the half space may not be
injective on the hyperbolic plane bounding the half space. But any embedded
half space in the projective boundary of M will lift, in the universal cover, to a
round disk whose closure is embedded.

Let Σ be a component of the projective boundary of M . Let M̃ be the
universal cover of M and let Σ̃ be a component of the pre-image of Σ in the
projective boundary of M̃ . Any round disk in Σ will lift to a round disk in Σ̃.
Note that while the projective structure Σ̃ may not be simply connected it will
have a trivial holonomy representation. This implies that every round disk in
Σ̃ is embedded and by the above cited lemma this disk bounds a half space in
M̃ . This half space will then descend to a half-space in M . 7.4

We define N (Σ) to be the union of all half-spaces that are bounded by
round disks in Σ. Since two half-spaces in M will intersect if and only if their
boundary round disks intersect, disjoint components of the projective boundary
will determine disjoint neighborhoods.

Thurston parameterized the space of projective structures on a surface S by
the product of the Teichmüller space and the space of measured laminations.
In his proof he extends a projective structure to a hyperbolic structure on Σ×
[0,∞) where the boundary is a locally concave pleated surface (or a locally
convex pleated surface if it is embedded in a larger manifold). Lemma 7.4
essentially shows that this hyperbolic structure constructed by Thurston is our
neighborhood N (Σ). We now state Thurston’s result in a form that will be
useful to us. For a proof see [KT].

Theorem 7.5 (Thurston) Each neighborhood N (Σ) is homeomorphic to Σ×
(0,∞). If the singular locus doesn’t intersect the boundary of N (Σ) then the
boundary is a locally convex pleated surface.
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Our inflexibility theorems will be vacuous if the singular locus is on the
boundary of N (Σ) so we can effectively assume that the boundary of N (Σ) is
a locally convex pleated surface.

Lemma 7.6 Let (M, g) be the non-singular part of a 3-dimensional hyperbolic
cone-manifold and let (M, g′) be a complete Riemannian metric on M with
pinched negative curvature such that g = g′ on N (Σ). Then M\N (Σ) is the
convex core of (M, g′).

Proof. By Theorem 7.5 the manifold M deformation retracts onto M\N (Σ) so
the inclusion ofM\N (Σ) intoM will be a homotopy equivalence. The boundary
of M\N (Σ) will be locally convex in (M, g) and therefore also in (M, g′). This
implies that M\N (Σ) is a convex sub-manifold in (M, g′) whose inclusion is a
homotopy equivalence and therefore the convex core is contained in M\N (Σ).

Next we show that the pleating locus of the pleated surfaces bounding
M\N (Σ) must be contained in the convex core. To see this we first note that any
closed geodesic is in the convex core. The pleating locus can be approximated
by closed geodesics so it must also be in the convex core.

Finally the join of anything in the convex core will also be in the convex
core. Since the join of the pleating locus will contain the pleated surface we
have that ∂(M\N (Σ)) lies in the convex core so M\N (Σ) lies in the convex
core. 7.6

Given this lemma, it is natural to define the convex core of a hyperbolic
cone-manifold by C(M) = M\N (Σ).

To prove our inflexibility theorem we need a version of the deformation
theorem for cone-manifolds that controls the distance from the standard neigh-
borhood of the singular locus to the convex core boundary. Again, it will be
convenient to restate part of the original deformation theorem, Theorem 6.1.

Theorem 7.7 Given α0, L,K > 0 and B > 1 there exists an R > 0 such
that the following holds. Let (M, gα) be a geometrically finite hyperbolic cone-
manifold with all cone-angles α < α0 and with singular locus of length at most
L. Then there exists a one-parameter family of geometrically finite hyperbolic
cone-manifolds (M, gt) defined for t ∈ [0, α] with the following properties:

1. All cone angles of (M, gt) are t and the conformal boundary is the same
as the conformal boundary of (M, gα).

2. The derivative ηt of gt is a family of harmonic strain fields outside of a
radius sinh−1 1/

√
2 neighborhood of the singular locus.

3. Let Uα be the R-tubular neighborhood of the singular locus in (M, gα) and
let Ut be a tubular neighborhood of the singular locus in (M, gt) such that
area(∂Ut) = area(∂Uα). Then∫

Mt\Ut
‖ηt‖2 + ‖Dtηt‖2 ≤ K.
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4. Let X be a component of the conformal boundary and Σt the projective
structure on X induced by (M, gt). Then

d(Ut,N (Σt)) ≥ d(Uα,N (Σα))/B − d.

Proof. Except for (4) this is exactly the same Theorem 6.1. To prove (4) we
would like to apply Proposition 5.4 but since our metrics are incomplete we
cannot do so directly. We will use the same trick that we used in the proof
of Theorem 6.1 and replace the metrics gα and gt with complete metrics of
pinched negative curvature, g′α and g′t and then use the extended B-bi-Lipschitz
diffeomorphism φ′t from (M, g′α) to (M, g′t). We then apply Proposition 5.4
which shows that

Bd(Ut,M\C(M, g′t)) + d ≥ d(Uα,M\C(M, g′α)).

Note that if Uα is contained in C(M, gα) for otherwise (4) is vacuous. The
inequality then follows from Lemma 7.6. 7.7

We can now apply Theorems 7.1 and 7.7 to get our Schwarzian inflexibility
theorem for cone-manifolds. The proof has the same general flavor as Theo-
rem 7.3 and we leave details to the reader.

Theorem 7.8 Given α0, L,K > 0 and B > 1 there exists an R > 0 such
that the following holds. Let (M, gα) be a geometrically finite hyperbolic cone-
manifold with all cone-angles α < α0, singular locus of length at most L and tube
radius of the singular locus at least R. Let Mt = (M, gt) be the one-parameter
family of geometrically finite cone-manifolds given by Theorem 7.7. Let Σt be
a component of the projective boundary of the Mt with underlying conformal
structure X. Then

d(Σα,Σt) ≤ CKe−d(Uα,N (Σα))/B−d

where Uα is the tubular neighborhood of the singular locus of radius R0 and C
is a constant depending on ‖Σα‖F and the injectivity radius of X.

8 Curves on surfaces and limits of surface groups

The application of inflexibility to uniformization of 3-manifolds fibering over
the circle requires us to develop some preliminary notions from algebraic and
geometric convergence of Kleinian groups. We emphasize that the techniques
we develop treat only the case when S is closed, though many results hold more
generally. We will assume S is closed in the sequel.

Hyperbolic surfaces. We begin by reviewing some standard facts about
hyperbolic surfaces. A proof of the following Lemma of Bers can be found in
[Bus].
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Lemma 8.1 Given a closed surface S of genus g there exist positive Lg and L′g
such that for any hyperbolic structure X on S the following holds.

1. For all points p in X there is an essential simple closed curve of length at
most Lg that contains p.

2. Any simple closed curve on X of length at most Lg can be extended to
pants decomposition of total length at most L′g.

We also recall the Margulis lemma for hyperbolic surfaces. If X is a hy-
perbolic surface the ε-thin part, denoted X≤ε, is the set of points in X whose
injectivity radius is at most ε.

Lemma 8.2 (Margulis) There exists ε2 > 0 such that if ε ≤ ε2 then every
component of X<ε is either the R-neighborhood of a simple closed geodesic,
R > 0, or a horosphere modulo a parabolic Z-action.

The ε-thick part X≥ε comprises the subest of X where the injectivity radius
is at least ε. For surfaces, the thick-part satisfies a bounded diameter condition
as an application of Gauss-Bonnet.

Lemma 8.3 Each component of X≥ε has diameter bounded by a constant D
depending only on ε and S.

The complex of curves. Given a closed surface S of negative euler character-
istic, let S denote the collection of isotopy classes of simple closed curves on S.
The complex of curves C(S), is a simplicial complex of dimension 3g − 2 whose
vertices correspond to elements of S, and whose k-simplices span collections of
k + 1 vertices whose corresponding elements of S can be realized disjointly on
S. Giving each simplex the standard metric, we obtain a distance function

dC : S × S → N.

A standard projection map from Teich(S) to C(S) is readily defined by ap-
plying the following Lemma, which is a simple application of the Collar Lemma
[Bus, Thm. 4.4.6] and [MM, Lem. 2.1].

Lemma 8.4 Given L > 0 there exists C > 0 such that if α and β are simple
closed curves on X of length at most L then we have dC(α, β) ≤ C.

The coarse projection map

πC : Teich(S) → P (C0(S))

assigns to each X ∈ Teich(S) the collection of vertices of C(S) whose corre-
sponding curves can be realized on X with length less than Lg. By Lemma 8.1,
the image πC(X) is non-empty and by Lemma 8.4 it has uniformly bounded di-
ameter, so we have a coarse notion of separation between bounded length curves
on X and Y obtained by taking

dC(X,Y ) = diamC(S)(πC(X), πC(Y )).
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Thurston’s compactification. The elements of S naturally determine points
in Thurston’s compactification for Teich(S), the projective measured lamination
space PML(S). Thurston showed Teichmüller space can be compactified by the
(6g−7)-sphere PML(S) to obtain a closed ball. The action of the mapping class
group Mod(S) on Teich(S) extends to the compactification by homeomorphisms.
Each simple closed curve α determines a point in PML(S). For further details
on Thurston’s construction, we point the reader to [FLP], [IT], or [Bon2].

Pseudo Anosov-mapping classes. Those elements ψ ∈ Mod(S) with posi-
tive translation distance realizd at a point on the interior of Teich(S) are known
as pseudo-Anosov mapping classes. Their action on C(S) is characterized by a
freeness condition: for each γ ∈ C0(S), we have γ 6= ψn(γ) for any non-zero n.
Thurston showed these elements have north-south dynamics on the compactified
Teichmüller space: there is a unique stable lamination [µ+] and unstable lami-
nation [µ−] in PML(S) fixed by the action of ψ, and for each neighborhood U
of [µ+] and each [γ] ∈ PML(S) with [γ] 6= [µ−], there is an n for which ψn([γ])
lies in U , and similarly for [µ−].

Surface groups. We discuss two related notions of convergence for hyperbolic
3-manifolds with the homotopy type of a surface S. A sequence {ρi} of discrete,
faithful representations

ρi : π1(S) → PSL2(C)

converges to a limit ρ∞ if ρi(γ) → ρ∞(γ) in PSL2(C) for every γ ∈ π1(S). The
quotient topology determined by passing to conjugacy classes is the algebraic
topology, and the set of all conjugacy classes of discrete, faithful representations
of π1(S) to PSL2(C) with this topology is denoted AH(S).

On the level of quotient hyperbolic 3-manifolds one obtains a similar for-
mulation via marking hyperbolic 3-manifolds by homotopy equivalences from
surfaces. Precisely, for each i let Mi be a complete hyperbolic 3-manifold and

fi : S →Mi

a homotopy equivalence. Then the marked manifolds {(fi,Mi)} converge to the
marked manifold (f∞,M∞) if there are lifts f̃i : S̃ → M̃i = H3 such that f̃i
converges to f̃∞ uniformly on compact sets. Giving such pairs the equivalence
relation

(f,M) ∼ (g,N)

if there is an isometry φ : M → N so that φ◦f ' g, the quotient topology yields
the algebraic topology on {[(f,M)]} equivalence classes of marked hyperbolic 3-
manifolds homotopy equivalent to S. The topology is equivalent to that given
above for representations via the natural bijective holonomy relation between
conjugacy classes of discrete faithful PSL2(C) representations ρ of π1(S) and
equivalence classes [(f,M)]. We will also use AH(S) to refer to the collection
of equivalence classes of such marked hyperbolic 3-manifolds with the algebraic
topology. When the meaning is clear from context, we will also refer to a hy-
perbolic 3-manifold M in AH(S) assuming an implicit marking by a homotopy
equivalence f : S →M .

30



As in the setting of Teich(S), the mapping class group Mod(S) acts on
AH(S) via remarking

ϕ(f,M) 7→ (f ◦ ϕ−1,M).

As a result, we have the diagonal action ϕ(Q(X,Y )) = Q(ϕ(X), ϕ(Y )) of the
mapping class ϕ ∈ Mod(S) on quasi-Fuchsian space.

Geometric convergence. Let (Mn, pn) be a sequence of hyperbolic 3-manifolds
with basepoint. We say that (Mn, pn) converges geometrically to a based hy-
perbolic 3-manifold (M∞, p∞) if for every compact subset K of M∞ containing
p∞ and every L > 1 there exist L-bilipschitz embeddings

φn : (K, p∞) → (Mn, pn)

for n sufficiently large. The maps φn are the approximating maps. We note that
this form of geometric convergence is often called bi-Lipschitz convergence.

The following lemma relates geometric convergence to algebraic convergence.

Lemma 8.5 Let (Mn, pn) converge to (MG, pG) geometrically. Let f : S →MG

be a map whose image is contained in an open set K whose closure is compact
and assume pG ∈ K. Let φn : (K, pG) → (Mn, pn) be approximating maps
with bi-Lipschitz constant limiting to 1, and assume that φn ◦ f : S → Mn are
homotopy equivalences. Then (φn ◦ f,Mn) converges to (f∞,M∞) where M∞
is the cover of MG induced by the subgroup f∗(π1(S)) and f∞ is the lift of f .

Proof. We lift the φn to maps φ̃n : (K̃, p̃G) → (H3, p̃n). Note that K̃ is a subset
of H3 and we can assume that p̃G = p̃n and that the derivative Dφ̃n converges to
the identity on the tangent space at p̃G. By Arzela-Ascoli this sequence will be
pre-compact in the compact-open topology and since the bi-Lipschitz constant
limits to 1, every limit will be an isometry with derivative the identity on the
tangent space at p̃G. Therefore φ̃n converges to the identity map and the lemma
follows. 8.5

We would like to compare an algebraic convergence to geometric convergence.
We say that an algebraically convergent sequence [(fn,Mn)] → [(M∞, f∞)]
converges strongly if the following holds. Let (fn,Mn) be representatives such
that (fn,Mn) → (f∞,M∞) and let pn = fn(p) where p is a point in S. Let
(MG, pG) be the geometric limit of (Mn, pn). Then [(fn,Mn)] converges to
[(f∞,M∞)] strongly if (MG, pG) = (M∞, p∞).

Note that if (fn,Mn) converges to (M∞, p∞) and the convergence is strong
then the approximating maps φn can be chosen such that if K is a compact set
with f∞(S) ⊂ K then fn is homotopic to φn ◦ f∞.

We will use the following fundamental result of Thurston and an improve-
ment due to R. Evans.

Theorem 8.6 (Thurston, Evans) Let [ρn] → [ρ] be a convergent sequence in
AH(S) and assume that for all α ∈ π1(S), if ρ(α) is parabolic then ρn(α) is
parabolic for all n. Then the convergence is strong.
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Remark. The case when ρn is assumed quasi-Fuchsian was established by
Thurston (see [Th1]), and generalized by Evans ([Ev]) to setting of general
manifolds in AH(S). We will use exclusively the case when ρ has no parabolic
elements in its image; the proof in this setting is considerably easier.

8.1 Lipschitz maps

Let g : X → M be a 1-Lipschitz homotopy equivalence of a hyperbolic surface
X into a hyperbolic 3-manifold M . If α is a homotopy class of simple closed
curve on X then the length of the geodesic representative of α on X bounds
the length of its geodesic representative in M . As a result, geometric features
of hyperbolic surfaces can be used to control the geometry of 3-manifolds (cf.
[Th2], [Min1], [Min2], [BCM]).

Two standard constructions of such maps are Thurston’s pleated surfaces
and the related simplicial hyperbolic surfaces, also introduced in [Th1] and used
extensively by Bonahon [Bon1] and Canary [Can]. Though we will employ both
constructions, we need only the consequences rather than the construction itself.

Theorem 8.7 (Canary) Let S be a closed surface and let M ∈ AH(S). Let x
and y be points in the convex core of M . We then have a homotopy gt : Xt →M
with the following properties.

1. The family Xt gives a continuously varying family of hyperbolic metrics
on S.

2. The maps gt are 1-Lipschitz.

3. The point x lies in g0(X0) and y lies in g1(X1).

In particular, for any point x in the convex core of M , there is a 1-Lipschitz
map of a hyperbolic surface into M whose image contains x.

The previous result can be proven using simplicial hyperbolic surfaces. For
the following, one needs pleated surfaces directly. We use this result only in
Corollary 8.15.

Proposition 8.8 Let α∗ be a closed geodesic in M ∈ AH(S) that is homotopic
to a simple closed curve on S. Then there is a 1-Lipschitz map X →M of a hy-
perbolic surface X that restricts to an isometry from the geodesic representative
of α on X to α∗.

In this case we say that X realizes α.
The following lemma recapitulates a standard fact for pleated surfaces (see

[Th2]) in the setting of Lipschitz homotopy equivalences of hyperbolic surfaces
and 3 manifolds. It will be useful to know this for arbitrary Lipschitz constants.

Lemma 8.9 Given ε > 0 and R > 0 there exists ε′ > 0 such that if f : X →M
is a B-Lipschitz homotopy equivalence of an ε-thick surface into a hyperbolic
3-manifold M and p is a point with f(p) ∈M≤ε′ then we have p ∈ X≤ε.
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Proof. By Lemma 8.3, the diameter of each component of X>ε is bounded
by a constant D that only depends on S and ε. Therefore the f -image of each
component of X≥ε has diameter less than BD. By a theorem of Brooks and
Matelski (see [BM]), we may choose ε′ < ε3 small enough such that the distance
between the boundaries ε3-thin and the ε′-thin part is at least BD. Every
component of X>ε has non-abelian fundamental group while every component
of M≤ε3 has abelian fundamental group. Since f is π1-injective, the f -image of
a component of X>ε must intersect M>ε3 and is therefore disjoint from M≤ε′ .

8.9

Mumford’s compactness theorem (see [Mum]) guarantees that any sequence
of thick surfaces in Teich(S) can be re-marked to converge in Teich(S) up to sub-
sequence; the following shows the same is true for Mn ∈ AH(S) with uniformly
Lipschitz markings by thick surfaces.

Proposition 8.10 Let ε > 0 be given.

1. For each sequence {Xn} of ε-thick surfaces there are markings fn : S → Xn

such that (fn, Xn) converges in Teich(S).

2. Let (fn, Xn) be a convegent sequence in Teich(S) and gn : Xn → Mn

B-Lipschitz homotopy equivalences to hyperbolic 3-manifolds Mn. Then
{(gn ◦ fn,Mn)} has a convergent subsequence.

Proof. Statement (1) is a restatement of Mumford’s compactness theorem for
the Moduli space M(S) [Mum]. To see statement (2), note that as sequence
(fn, Xn) converges we can place a hyperbolic metric on S such that the marking
maps fn are B′-Lipschitz for some B′ > 1. Then the maps hn = gn ◦ fn are
BB′-Lipschitz.

Pick a point p ∈ S and let p̃ ∈ S̃ = H2 be a point in the pre-imiage of p.
Identifying each M̃n with H3, we choose lifts of hn such that h̃n(p) = 0 ∈ H3.
Since hn are BB′-Lipschitz it follows that for any q ∈ S̃, the set {h̃n(q)} has
compact closure in H3. By the Arzela-Ascoli theorem there exists a subsequence
such that h̃n converges uniformly on compact sets to a map h̃∞ : S̃ → H3. The
action of π1(S) on S̃ commutes with the action of a representation of π1(S) in
PSL2(C) so that h̃∞ descends to a pair (h∞,M∞) where M∞ is the quotient
3-manifold. 8.10

8.2 Margulis’ estimates

Let M be a hyperbolic manifold in AH(S) and Γ a subset of M . Let #(Γ, L) be
the number of homotopy classes of essential primitive loops of length less than
L that intersect K such that each loop is a homotopic to a simple closed curve
on S.
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Lemma 8.11 Given L > 0 and D > 0 there is a N > 0 such that the following
holds. Let M ∈ AH(S) and let Γ ⊂ M be a subset of diameter at most D.
Then the number of distinct essential homotopy classes of loops intersecting Γ
is bounded by N .

Proof. By [BM] there exists an ε > 0 such that the distance between ∂M≤ε

and ∂M≥ε3 is at least D + L where ε is less than the 3-dimensional Margulis
constant ε3.

The proof then breaks into two cases. First assume that Γ intersects M≤ε.
Then every loop of length at most L that intersects Γ will be contained in
a component of M≤ε3 . Since M lies in AH(S), M has no rank-two cusps
and every component of M≤ε3 contains one essential primitive loop so we have
#(Γ, L) ≤ 1.

Now we assume that there is a point x in Γ ∩M>ε. Any loop of length at
most L that intersects Γ will be homotopic to a loop of length at most L+ 2D
that intersects x. The number of distinct homotopy classes of loops of length
at most L+ 2D that intersect x is bounded by the quotient

V =
vol(BH3(0, L+ 2D + ε))

vol(BH3(0, ε))

of the volumes of balls of radius L+2D+ ε and ε about the origin in hyperbolic
space H3. 8.11

8.3 Geometric limit arguments

Proposition 8.12 Let (Mn, ωn) be hyperbolic 3-manifolds homotopy equivalent
to S that converge geometrically to (M∞, ω∞). Assume there exists ε > 0 and
Rn → ∞ such that the Rn-neighborhood of ωn in Mn is ε-thick. Then M∞ is
homotopy equivalent to S, and the restriction of the approximating maps to any
compact core of M∞ are homotopy equivalences for large n.

Proof. By Theorem 8.7 there is a hyperbolic surface Xn and a 1-Lipschitz
map gn : Xn → Mn whose image contains ωn. Let qn be a point in Xn with
gn(qn) = ωn. Since gn is 1-Lipschitz, an Rn-neighborhood of qn in Xn will be
ε-thick as well. There is a constant K depending only on ε and the genus of S
such that if a hyperbolic structure X on S has ε-thick neighborhood of radius
at least K then X itself is ε-thick. In particular for large n the surfaces Xn are
themselves ε-thick.

We now apply Proposition 8.10 to find homeomorphisms fn : S → Xn such
that {(fn, Xn)} converges in Teichmüller space and {(gn ◦ fn,Mn)} converges
in AH(S). To show the sequence converges strongly it suffices to verify it is
type-preserving by an application of Theorem 8.6. After an isotopy, we can
assume there is a fixed point x ∈ S such that fn(x) = qn. Let α be a non-
trivial loop in S based at x. Since {(fn, Xn)} converges we can homotope the
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fn rel x so that the loops fn(α) have length bounded above by a constant only
depending on the homotopy class of α rel x. Since each gn is 1-Lipschitz, the
lengths of the loops gn ◦ fn(α) are also uniformly bounded. If the sequence is
not type-preserving there will be some α such that the length of the geodesic
representative of gn ◦ fn(α) tends to zero. In particular, for large n the curve
gn ◦ fn(α) will be homotopic into a component of the ε-thin part of Mn. There
is then a bound on the distance from gn ◦ fn(α) to this component of the thin
part where the bound only depends on the length of gn ◦ fn(α). But for large
n the Rn-neighborhood NRn(ωn) of ωn has non-empty intersection with this
component of the ε-thin part, contradicting our assumption that NRn(ωn) lies
in M≥ε

n .
If follows that the sequence (gn ◦ fn,Mn) is type-preserving, and by Theo-

rem 8.6 the convergence is strong. The proposition then follows. 8.12

Proposition 8.13 Given positive constants L and ε, there exist R and C so
that the following holds. Let M ∈ AH(S), and α and β curves in C(S). Let
α∗ and β∗ be loops based at ω in the convex core of M in the homotopy class
of α and β, respectively, and assume that `M (α∗) ≤ L, `M (β∗) ≤ L and the
neighborhood NR(ω) of radius R about ω has injectivity radius bounded below by
ε. Then we have

dC(α, β) ≤ C.

Proof. We argue by contradiction. Assume there is a sequence (Mn, ωn) of
hyperbolic manifolds with baseframes such that NRn(ωn) is ε-thick, Rn → ∞,
and that αn and βn are homotopy classes in C(S) represented by closed loops
α∗n and β∗n in Mn based at ωn of length at most L for which dC(αn, βn) →∞.

After passing to a subsequence, (Mn, ωn) converges geometrically to a man-
ifold (M∞, ω∞). By Proposition 8.12, (M∞, ω∞) is homotopy equivalent to S,
and the approximating maps are homotopy equivalences for large n. Choosing a
compact core K of M∞ that contains a diameter 4L neighborhood of ω∞, there
are 2-bi-Lipschitz approximating maps φn : K → Mn for large n such that φn
are homotopy equivalences.

The image ofK under φn will contain α∗n and β∗n so φ−1
n (α∗n) and φ−1

n (β∗n) are
loops in M∞ of length at most 2L. Since K is compact, there are only finitely
many free homotopy classes of loops in K of length at most 2L. This finite set
of loops has finite diameter in C(S). Since φn is a homotopy equivalence, we
conclude dC(αn, βn) is uniformly bounded, contrary to our assumption. 8.13

Proposition 8.14 Given ε1 > 0, let f : X → M be a 1-Lipschitz homotopy
equivalence of a hyperbolic surface X into a hyperbolic 3-manifold M , such that
that X is ε1-thick. Then for each R > 0 there is an L > 0 so that if each
γ ∈ shortε(M) satisfies `X(γ) > L then the R-neighborhood NR(X) is ε-thick.
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Proof. Again we argue by contradiction and assume that we have a sequence
{gn : Xn → Mn} of 1-Lipschitz homotopy equivalences with the property that
the infimum of `Xn(γ) over all γ ∈ shortε(Mn) is at least Ln → ∞, but the
R-ball about Xn is not ε-thick for any n.

By Proposition 8.10, there are markings fn : S → Xn so that after passing to
a subsequence {(fn, Xn)} converges in Teich(S) and {(gn ◦ fn,Mn)} converges
in AH(S). Assume γ ∈ C(S) has `Mn(γ) → 0. Then γ lies in shortε(Mn) for
large n, so we have

`Xn(γ) →∞.

On the other hand, convergence of {(fn, Xn)} in Teich(S), implies `Xn(γ) con-
verges, a contradiction to the assumption that the convergence of Mn in AH(S)
is type-preserving.

By Theorem 8.6, the manifolds Mn converge strongly, to M∞. Further, M∞
is ε-thick, since any γ in shortε(M∞) lies in shortε(Mn) for n sufficiently large.
This contradicts the assumption that the lengths on Xn of short curves in Mn

are divergent, completing the proof. 8.14

Corollary 8.15 Given R, L and ε there are C and D so that the following
holds: let α∗ be a loop in a manifold M ∈ AH(S) in the homotopy class of
α ∈ C(S). Assume that length of α∗ is at most L and that the R-neighborhood
of α∗ is not ε-thick. Then there is a curve β ∈ shortε(M) satisfying

dC(α, β) < C

with the property that dM (T(α),T(β)) ≤ D.

Proof. If α∗ is not a geodesic then it is either uniformly close to its geodesic
representative or α is in shortε(M). In the latter case, we may take β = α and
we are done. Thus we can assume that α∗ is a geodesic and consider 1-Lipschitz
hyperbolic surface f : X →M realizing α∗.

If the surface X fails to be ε-thick itself, then the theorem follows trivially
from Lemmas 8.1 and 8.9. Thus we may assume that X is ε-thick.

Applying Proposition 8.14, given R there is an L′ so that if the R-ball about
X fails to be ε-thick there is a curve β ∈ C(S) so that `X(β) < L′. Since α has
length at most L on X, by Lemma 8.1 there is a C depending on max{L,L′}
with the property that

dC(α, β) < C.

Since X is itself ε-thick, there is a uniform bound depending only on ε and
the genus of X for the diameter of X. Hence there is a uniform bound on
the distance between the geodesic representatives of α and β on X. For any
loop γ in M of length at most max{L,L′} there is a bound, depending only on
max{L,L′}, on dM (γ,T(γ)). Combining the two bounds gives the result. 8.15
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We can now prove the main theorem of this section, providing a linear lower
bound on the distance between two bounded length curves in a hyperbolic mani-
fold in terms of the distance of the curves in the curve complex. By the Margulis
lemma, a short curve will have a large tubular neighborhood and therefore lie at
large distance from the geodesic representatives of every other bounded length
curve. In this case we will prove a stronger statement and bound the distance be-
tween the Margulis tubes. For this reason, we define T′ε(γ) = Tε(γ) if `M (γ) < ε
and let T′ε(γ) be the geodesic representative of γ in M if `M (γ) ≥ ε.

Theorem 8.16 Given L > 0 there exist K1 and K2 all positive so that for
α and β in C0(S), and M ∈ AH(S), the following holds: if `M (α) < L and
`M (β) < L, then

dM (T′ε3(α),T′ε3(β)) ≥ K1dC(α, β)−K2.

Remark. We point out that Theorem 8.16 uses in an essential way the fact
that S is a closed surface. If S has boundary, the same statement holds if we
measure distance in the pared manifoldM0 obtained by excising cusps associated
to ∂S. All the results of the paper would then generalize in the presence of the
appropriate generalization of the geometric inflexibility theorem (Theorem 5.6)
to this pared setting.

Before we begin the proof of Theorem 8.16 we make a definition and prove a
preliminary lemma. A D-coarse path in C(S) is a sequence of αi in C0(S) such
that dC(αi, αi+1) ≤ D.

Lemma 8.17 Given L > 0 there exists a D > 0 and R > 0 such that the
following holds. Let α and β lie in C0(S) and M ∈ AH(S). Let Γ be a path in
M from T′ε3(α) to T′ε3(β). Then there are closed curves αi with `M (αi) ≤ Lg
and dM (αi,Γ) < R such that the curves αi describe a D-coarse path in C(S)
from α to β.

Proof. Let x be the endpoint of Γ on T′ε3(α) and y the endpoint of Γ on
T′ε3(β). Let gt : Zt → M , t ∈ [0, 1] be a continuous family of 1-Lipschitz
maps of hyperbolic surfaces Zt such that x ∈ g0(Z0) and y ∈ g1(Z1). Such an
interpolation exists by Theorem 8.7.

There is a subinterval [a, b] ⊆ [0, 1] such that x ∈ ga(Za), y ∈ gb(Zb) and
gt(Zt)∩Γ 6= ∅ for all t ∈ [a, b]. Reparameterize [a, b] to be the interval [0, 1] and
replace the original homotopy with this reparametrized homotopy.

Given a simple closed curve γ on S let U(γ) ⊆ [0, 1] be the set of t such that
there is a simple closed curve γ′ on Zt, homotopic to γ, with γ′ ∩ g−1

t (Γ) 6= ∅
and `gt(γ

′) < Lg. By (2) of Lemma 8.1, if U(γ) ∩ U(γ′) 6= ∅ then

dC(γ, γ′) ≤ C. (8.2)

Let z be a point in g−1
t (Γ). By Lemma 8.1 for each t there exists γ ∈ C(S)

such that t ∈ U(γ). The open (possibly disconnected) subsets U(γ) cover [0, 1]
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so we can find a collection α0, . . . , αn of distinct homotopy classes of simple
closed curves in C(S) such that the U(αi) satisfy

U(αi) ∩ U(αi+1) 6= ∅ (8.3)

with 0 ∈ U(α0) and 1 ∈ U(αn). In particular the αi are a C-coarse path. To
finish the proof we need to show that α and β are uniformly close to α0 and αn,
respectively.

To see this we observe that if `M (α) is sufficiently small then Lemma 8.9
guarantees that if 0 ∈ U(γ) we have γ = α. On the other hand if α has
a sufficiently large thick neighborhood then Proposition 8.13 implies that if
0 ∈ U(γ) then α and γ are uniformly close in C(S). If neither of these cases
holds, an application of Corollary 8.15 allows us to replace α with a curve α′

that is sufficiently short and such that α and α′ are uniformly close in M and
their corresponding vertices are uniformly close in C(S). We then append to Γ
a geodesic segment of length at most R connecting x to T′ε3(α

′) to make a new
path Γ′ and apply the previous argument to Γ′. This process yields a coarse
path {αi} with α0 = α′ such that the αi have representatives in M of length at
most Lg and so that each αi intersects Γ′.

Applying the same analysis to β we obtain the desired coarse path. 8.17

Remark. By the Bers inequality (see [Brs2, Thm. 3], [Mc1, Prop. 6.4]) given
the quasi-Fuchsian manifold Q(X,Y ) we have `Q(X,Y )(γ) ≤ 2`X(γ). Therefore
there is a uniform D, depending only on S, such that there is a D-coarse path
from X to Y in C(S) whose lengths in Q(X,Y ) are at most Lg.

Proof of 8.16. Let Γ be the shortest geodesic from T′ε3(α) to T′ε3(β) so that
dM (T′ε3(α),T′ε3(β)) = `(Γ). By Lemma 8.17 we have #(Γ, Lg + 2R) ≥ n where
D(n+ 1) ≥ dC(α, β).

The path Γ can be divided into b`(Γ)c disjoint segments of length 1 and
one segment of length at most 1. Let K be the constant given by Lemma 8.11
for the length bound Lg + 2R and the diameter bound 1. Then each of the
b`(Γ)c+ 1 = d`(Γ)e segments intersects at most K disjoint homotopy classes of
closed curves of length at most Lg + 2R and therefore

K(`(Γ) + 1) ≥ Kd`(Γ)e ≥ n.

Combining this inequality with a lower bound on n we have

K(`(Γ) + 1) ≥ dC(α, β)
D

− 1

and the theorem is proved. 8.16

Remark. Note that if α is a closed curve in M of length at most L then
the distance between α and T′ε3(α) is uniformly bounded by a constant only
depending on L. In particular Theorem 8.16 holds if we replace T′ε3(α) with
any curve of length at most L.
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Corollary 8.18 Given a closed surface S, there is linear function f such that
the distance between the boundary components of the convex core C(Q(X,Y )) of
a quasifuchsian manifold Q(X,Y ) in QF (S) is bounded below by f(dC(X,Y )).

Proof. Let α ∈ C(S) have length on X of at most the Bers constant Lg, and
choose β ∈ C(S) similarly for Y . Let α∗ and β∗ be the geodesic representa-
tives of α and β, respectively, in Q(X,Y ). By the Bers inequality α∗ and β∗

have length at most 2Lg. Every closed geodesic is contained in the convex core
C(Q(X,Y )) so there are hyperbolic surfaces Zα and Zβ and 1-Lipschitz ho-
motopy equivalences, fα : Zα → Q(X,Y ) and fβ : Zβ → Q(X,Y ), realizing α∗

and β∗, respectively. These maps will have image in the convex core and each
separates the two components ∂C(Q(X,Y )).

Let Γ be the shortest geodesic connecting the two components of the convex
core boundary. Let x be a point of intersection of Γ with the image of Zα and
y a point of intersection of Γ with the image of Zβ . There is a curve α0 ∈ C(S)
such that α0 has a representative on Zα of length at most Lg and whose image
α∗0 intersects x. Note that α∗0 will have length at most Lg constant and, by
(2) of Lemma 8.1, there is a constant D such that dC(S)(α, α0) ≤ D. Similarly,
we can find a curve β0 ∈ C(S) that is represented by a loop β∗0 that intersects
y ∈ Q(X,Y ), of length at most the Bers constant and with dC(β, β0) ≤ D.

We want to find a lower bound for `(Γ). We observe that

dQ(X,Y )(α∗0, β
∗
0) ≤ `(Γ) + Lg

and that
dC(S)(X,Y ) = dC(S)(α, β) ≤ dC(S)(α0, β0) + 2D.

The result then follows from Theorem 8.16. 8.18

The following Corollary controls the depth of a given curve in the convex
core. We leave the proof, which follows the same lines as the above, to the
reader.

Corollary 8.19 Given a closed surface S and L > 0 there is a linear function
fL such that if γ ∈ C(S) and the length of γ is at most L then the distance from
the geodesic representative of γ in Q(X,Y ) to the boundary of the convex core
is at least

fL(min{dC(X,T′ε3(γ)), dC(Y,T
′
ε3(γ))}).

9 Pseudo-Anosov double limits

In this section, we employ the estimates on depth in the convex core from the
previous section together with the inflexibility theorems of previous sections to
establish the convergence of pseudo-Anosov double iteration on quasi-Fuchsian
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space of a closed surface. The hyperbolization theorem for 3-manifolds that
fiber over the circle follows as a consequence.

The following Theorem is a refined version of a Theorem of Masur and
Minsky (see [MM, Prop. 3.6]). The proof that follows was communicated to us
by M. Bestvina who attributes the argument to F. Luo. (See [BeFu, Prop. 11]).

Theorem 9.1 Let ψ ∈ Mod(S) be pseudo-Anosov with [µ+] and [µ−] the at-
tracting and repelling laminations in PML(S). Then there is a Kψ depending
only on ψ so that for any B,D > 0 the following holds.

1. There exist neighborhoods V and U of [µ+] and [µ−] in PML(S) so that
for any α ∈ V and β ∈ U we have

dC(α, ψn(β)) ≥ Kψn+B.

2. There exists a subset W in PML(S)\(U ∪ V ) such that any path in C(S)
from a curve in U to a curve in V contains a subpath of length at least D.

3. For each α ∈ U , β ∈ V and γ ∈W we have

dC(γ, ψ−n(α)) ≥ Kψn+B and dC(γ, ψn(β)) ≥ Kψn+B.

4. Furthermore, given any curve β, the sets U , V , and W may be taken so
that any one of them contains β.

Proof. Let V ′ and U ′ be neighborhoods of [µ+] and [µ−] in PML(S) such
that for simple closed curves α ∈ V ′ and β′ ∈ U ′ the intersection of α and β is
non-empty. Then V ′ and U ′ are necessarily disjoint, and we let

W ′ = PML(S) \ (V ′ ∪ U ′)

be their complement in PML(S). Then the north-south dynamics of ψ guar-
antees that for any compact subset K of PML(S) that does not contain [µ+]
we have ψi(U ′) contains K for some positive i. In particular, since W ′ ∪ V ′ is
compact there is an N so that we have ψN (W ′ ∪ V ′) ⊂ V ′.

We claim that for any curves α ∈ ψmN (V ′) and β ∈ U ′ we have

dC(α, β) ≥ m+ 1. (9.4)

We first note that if α ∈ ψi(V ′) and β ∈ ψi(U ′) then any geodesic in the
curve complex connecting them will contain a curve in ψi(W ′), the complement
of the two sets, and the distance between α and β will be greater than 2. We
also note that ψ(m+1)N (W ′) ⊂ ψmN (V ′).

We prove the inequality by induction. By the observation above, the inequal-
ity (9.4) is true when m = 1. To complete the induction, note that we have
ψi(U ′) ⊂ ψi+N (U ′). Therefore U ′ lies in ψ(m+1)N (U ′) and β is in ψ(m+1)N (U ′).
Any curve complex geodesic connecting β to α will therefore contain a curve γ
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in ψ(m+1)N (W ′). Since ψ(m+1)N (W ′) is contained in ψmN (V ′) the curve γ is
contained in ψmN (V ′), and we have dC(β, γ) ≥ m + 1 by induction. But since
γ lies on a geodesic joining α to β, we have

dC(α, β) = dC(α, γ) + dC(γ, β)
≥ m+ 2

completing the induction.
Let V0 = ∪N−1

i=0 ψi(V ′). There is an M > 0 such that ψMN (V0) ⊂ V ′. Let n
be an integer greater than M and assume k is a non-negative integer less than
N . We then observe that

ψnN+k(V ′) ⊂ ψnN (V0) ⊂ ψn−M (V ′)

and therefore
dC(α, β) ≥ n−M + 1

for any α ∈ ψnN+k(V ′) and β ∈ U ′. Alternatively if α ∈ ψn(V ′) and β ∈ U ′

then
dC(α, β) ≥

⌊ n
N

⌋
−M + 1 ≥ n

N
−M.

We now set V ′′ = ψ(B+M)N (V ′). Any α ∈ V ′′ has image ψn(α) lying in
ψ(B+M)N+n(V ′) so we have

dC(ψn(α), β) ≥ (B +M)N + n

N
−M =

n

N
+B

and U ′ and V ′′ satisfy (1).
We may assume that B > D and let W = PML(S)\(U ′ ∪ V ′′) so that

any path from U ′ to V ′′ contains a subpath of length at least D. Let N ′ =
(B + M + 1)N and let U = ψ−N

′
(U ′) and V = ψN

′
(V ′′). Since U ⊂ U ′ and

V ⊂ V ′′ (2) will still hold U , V and W . We also note that the sets U and
ψ−2N ′

(V ) will satisfy (1) and W is contained in ψ−2N ′
(V ). A similar statement

holds for ψ2N ′
(U) and V with W contained in ψ2N ′

(V ). Therefore (3) will hold.
For (4) we note that we can replace U , V and W with ψn(U), ψn(V ) and

ψn(W ) for any integer n. We also note that⋃
n∈Z

ψn(V ) = PML(S)\[µ+] and
⋃
n∈Z

ψn(U) = PML(S)\[µ−]

and that ⋃
n∈Z

ψn(W ) = PML(S)\

(⋂
n∈Z

ψn(V ) ∪
⋂
n∈Z

ψn(U)

)
= PML(S)\{[µ+], [µ−]}.

If we want a fixed curve β to be in U we choose n large enough such that β is
in ψn(U) and then replace U with ψn(U), V with ψn(V ) and W with ψn(W ).

9.1
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9.1 Convergence of iteration

Let S be a closed surface. Given Y ∈ Teich(S), the Bers slice

BY = {Q(X,Y ) : X ∈ Teich(S)} ⊂ AH(S)

parametrizes Teich(S) by quasi-Fuchsian manifolds. Since the Bers slice BY
has compact closure in AH(S) [Brs2], the sequence {Q(ψ−n(X), Y )}n will have
a convergent subsequence. It was established in [Mc3] via a geometric limit
argument that the sequence converges. We give a new proof as an example of
our methods.

Theorem 9.2 Let ψ ∈ Mod(S) be a pseudo-Anosov mapping class. Then the
iteration {Q(ψn(X), Y )}n converges in AH(S).

Proof. Let Tn be the distance between the components of the boundary of
convex cores of Q(ψnX,Y ). Choose closed geodesics α on X and β on Y of
length less than the Bers constant Lg for S. Then applying Theorem 9.1 there
is a positive integer N , so that

dC(ψn+N (α), β) ≥ Kn.

Since ψn+N (α) and β have lengths on ψn+N (X) and Y (respectively) bounded
by Lg, we have

dC(ψn+N (X), Y ) = dC(ψn+N (α), β) ≥ Kn.

Applying Corollary 8.18, we have

Tn > K1n−K2.

The pseudo-Anosov mapping class ψ is uniformly quasiconformal as a mapping
from ψn(X) to ψn+1(X) (independent of n). Let dn be the distance between
Q(ψnX,Y ) and Q(ψn+1X,Y ) in the Bers slice T (X). By Theorem 7.3 there
are constants C1 and C2 such that

dn ≤ C1e
−C2Tn

≤ C1e
−C2(K1n−K2).

This implies that Q(ψn(X), Y ) is a Cauchy sequence and hence convergent. 9.2

9.2 Double Limits

We now examine the pseudo-Anosov double iteration

Qn = Q(ψ−n(X), ψn(Y )).
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Thurston’s double limit theorem [Th2] guarantees that the sequence has a con-
vergent subsequence. In [CT] a proof of convergence is outlined that uses the
Mostow rigidity theorem – in [Mc3], McMullen showed convergence explicitly.

We will give a single unified proof of convergence independent of Thurston’s
double limit theorem and these other convergence results using the geometric
inflexibility theorem proven here.

Theorem 9.3 (Pseudo-Anosov Double Limits) Given X, Y in Teich(S),
and a pseudo-Anosov mapping class ψ ∈ Mod(S), the double iteration {Qn}n
converges strongly in AH(S).

For each n there is a K-quasi-conformal deformation from Qn to Qn+1 where
K bounds the Teichmüller distance from X to ψ−1(X) and from Y to ψ(Y ).
Let φn : Qn → Qn+1 be the map given by Theorem 5.6. We note that in the
application of the inflexibility theorems, the constants that arise in Theorem 5.6
and 5.8 depend on K but not on n.

We begin with a criterion to ensure that a curve γ to have a convergent
sequence of geodeisc lengths `Qn(γ).

Proposition 9.4 Given L > 0 there exists B > 0 so that the following holds:
if given γ ∈ C0(S) there exists N ∈ N for which `QN (γ) < L and for all n we
have

min{dC(ψN+n(Y ), γ), dC(ψ−N−n(X), γ)} ≥ Kψn+B

then there exists `∞ > 0 so that `Qn(γ) → `∞. Furthermore, we have

`QN+n(γ) ≤ 2`QN (γ)

for all n > 0.

Proof. Let depthQ(γ) denote the distance of T′ε3(γ) from the boundary of the
convex core of Q. Let f2L be the function given by Corollary 8.19 so that any
curve β for which `Q(β) < 2L satisfies

depthQ(β) ≥ f2L(min{dC(X, γ), dC(γ, Y )}).

Let dn = depthQN+n
(γ). If `QN+n(γ) < 2L, then, we have

dn ≥ f2L(Kn+B).

Since `QN (γ) < L, we know by assumption that

d0 ≥ f2L(B).

Note that f2L is an increasing function so we can make f2L(B) as large as we
like through our choice of B.

Let
`n = `QN+n(γ).
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If `n < 2L then by Theorem 5.8 there are constants C ′1 and C ′2 so that∣∣∣∣log
(
`n+1

`n

)∣∣∣∣ ≤ C ′1e
−C′2dn . (9.5)

Choose C1 and C2 such that

C1e
−C2n = C ′1e

−C′2f2L(Kψn+B)

(recall f2L is linear). Since C1 = C ′1e
−C′2f2L(B) we can choose B such that

n∑
j=0

C1e
−C2n ≤ C1

1− e−C2
≤ log 2

from which it follows that ∣∣∣∣log
(
`n
`0

)∣∣∣∣ < log 2 (9.6)

by a simple inductive argument. We conclude that `n < 2L, and thus equa-
tion (9.5) holds for all n. It follows that {`n} is a Cauchy sequence, and its
convergence to `∞ > 0 follows from (9.6). 9.4

We note the following corollary, which will play a role in establishing strong
convergence of {Qn}.

Corollary 9.5 If Qn has a subsequence that converges algebraically then for
each γ ∈ C0(S) the sequence `Qn(γ) converges to a positive number.

Proof. Algebraic convergence of the subsequence Qni implies there is an L so
that `Qni (γ) < L for each ni. Taking B as guaranteed by Proposition 9.4 we
use Theorem 9.1 to choose subsets U , V and W of PML(S) with γ ∈ W such
that

min{dC(ψN+n(β), γ), dC(ψ−N−n(α), γ)} ≥ Kψn+B

for all α ∈ U and β ∈ V for all n ≥ 0. We then choose N > 0 such that if
ψN (X) ⊂ V and ψN (Y ) ⊂ U . We then have

min{dC(ψN+n(Y ), γ), dC(ψ−N−n(X), γ)} ≥ Kψn+B

and by Theorem 9.4 we have that `Qn(γ) converges to a positive number. 9.5

We now use Theorems 9.1 and 9.4 to find a pants decomposition whose
lengths in Qn converge.

Proposition 9.6 There exists a pants decomposition P such that for every γ ∈
P the sequence `Qn(γ) converges to a positive number.
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Proof. By Lemma 8.17 and the remark that follows it there is D-coarse path
from ψ−n(X) to ψn(Y ) consisting of curves in C0(S) whose lengths are at most
Lg in Q(ψ−n(X), ψn(Y )). Let B be the constant given by Proposition 9.4 where
L = L′g is the Bers constant for a pants decomposition.

As in the proof of Corollary 9.5 we can find subsets U, V and W of PML(S)
chosen with respect to the constants B+1 and D and a positive integer N such
that

min{dC(ψN+n(Y ), γ), dC(ψ−N−n(X), γ)} ≥ Kψn+B + 1

for all n ≥ 0 and γ ∈W .
In our coarse path from ψ−N (X) to ψN (Y ) consisting of curves whose length

is at most Lg in QN there is a curve γ ∈ W . Let f : Z → QN be a 1-Lipschitz
surface realizing γ. We can then extend γ to a pants decomposition P on such
that for all γ′ ∈ P we have

L′g > `Z(γ′) > `QN (γ′).

Since dC(γ, γ′) ≤ 1 we have

min{dC(ψN+n(Y ), γ′), dC(ψ−N−n(X), γ′)} ≥ Kψn+B

for all n ≥ 0. Then Theorem 9.4 implies that `Qn(γ′) converges for all γ′ ∈ P.
9.6

In the following proposition we will show that we have exponential decay
of the bi-Lipschitz constant on the iterated image of sufficiently deep and thick
subsets. The proof has the same basic structure as the proof of Proposition 9.4.

Proposition 9.7 Given ε, R, L,C > 0 there exist B,C1, C2 > 0 such that the
following holds. Assume that K is a subset of QN such that diam(K) < R,
injp(K) > ε for each p ∈ K and γ ∈ C0(S) is represented by a closed curve in K
of length at most L satisfying

min{dC(ψN+n(Y ), γ), dC(ψ−N−n(X), γ} ≥ Kψn+B

for all n ≥ 0. Then we have

log bilip(φN+n, p) ≤ C1e
−C2n

for p in φN+n−1 ◦ · · · ◦ φN ◦ f(K) and

C1

1− e−C2
< C.

Proof. As in the proof of Proposition 9.4, if K is a subset of C(Q) we let
depthQ(K) be defined by the distance from K to ∂C(Q). Let Φn = φN+n ◦
· · ·φN .
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Let ε0 = εe−C . By [BM] there exists an ε1 such that a point within ε of
point of injectivity radius at least ε0 will have injectivity radius at least ε1. Let
C ′1 and C ′2 be the constants given by Theorem 5.6 for the thickness constant ε1.
Let f = fLeC be the linear function given by Corollary 8.19. We then define
d(n) = f(Kψn+B)−R− ε. Finally we choose C1 and C2 such that

C1e
−C2n = C ′1e

−C′2d(n).

Note that C1 = C ′1e
−C′2d(0) and we can make d(0) as large as we like through

our choice of B. Therefore we can choose B such that

C1

1− e−C2
< C.

With this setup it is now easy to complete the proof of the theorem via
induction. Note that if p ∈ K then we have depthQN (Bε(p)) > d(0) where
Bε(p) is the ball of radius ε centered at p. By Theorem 5.6 for all q ∈ Bε(p) we
have

log bilip(φN , q) < C1.

In particular for every p ∈ K we have

log bilip(φN , p) < C1

and every point in φN (K) has injectivity radius at least εe−C1 .
Let

cn =
n∑
i=0

C1e
−C2i

and note that
cn <

C1

1− e−C2
< C.

Assume that the theorem holds for all i between 0 and n and that the
injectivity radius of every point in Φi(K) is greater than εe−ci > εe−C . Note
that if p is in K then

log bilip(Φn, p) < cn < C.

It follows that the length of Φn(γ) is < 2LgeC and for every point p within ε of
Φn(K) we have depthQN+n

(p) > d(n). We also note that the injectivity radius
at p will be greater than ε1 so we can apply Theorem 5.6 to see that

log bilip(φN+n+1, p) < C1e
−C2(n+1)

and that at every point in φN+n+1 ◦Φn(K) = Φn+1(K) the injectivity radius is
at least ε−cn+1 . This completes the proof of the induction hypothesis and the
proposition. 9.7
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Proposition 9.8 There exists a positive integer N , positive constants C1, C2

and a 1-Lipschitz homotopy equivalence f : Z → QN so that for all points p in
φN+n−1 ◦ · · ·φN ◦ f(Z) we have

log bilip(φN+n, p) < C1e
−C2n.

Proof. By Proposition 9.6 there exists a pants decomposition P such that
`Qn(γ) converges to a positive number for every γ ∈ P. In particular there are
constants L+ > L− > 0 such that L+ > `Qn(γ) > L− for all n and γ ∈ P.
For each n let fn : Zn → Qn be a 1-Lipschtiz homotopy equivalence realizing
P. By the collar lemma, there exists ε > 0 such that any hyperbolic surface
with a pants decomposition whose lengths are between L− and L+ is ε-thick.
In particular the surfaces Zn are ε-thick. We also note that there is an R > 0
such that an ε-thick surface has diameter bounded above by R.

By Lemma 8.9 there exists an ε′ > 0 such that fn(Zn) is contained in the
ε′-thick part of Qn. Let B be the constant given by Proposition 9.7 for the
constants ε′, R, L+ and C = 2. (Note that the choice of 2 is completely
arbitrary and could be any number > 1.) Using Theorem 9.1 we can find an
integer N such that

min{dC(ψN+n(Y ), γ), dC(ψ−N−n(X), γ} ≥ Kψn+B

where γ is a curve in P. When then let f = fN and Z = ZN and proposition
follows from Proposition 9.7. 9.8

We are now ready to prove the convergence of double iteration, Theorem 9.3.

Proof (Proof of Theorem 9.3). Let f : Z → QN be the 1-Lipschtiz surface given
by Proposition 9.8. Then the maps fn = φN+n−1 ◦ · · ·φN ◦ f are C-Lipschitz
where

C =
C1

1− e−C2
.

By Proposition 8.10 the sequence {(fn, Qn)} has a convergent subsequence
{(fni , Qni)} in AH(S) = AH(Z). Let {(f∞, Q∞)} be the limit. Note that
from the proof of Proposition 8.10 we can assume that there are lifts f̃ni that
converge to f̃∞.

Since Corollary 9.5 guarantees the limit has no parabolics, Theorem 8.6
implies that the limit is strong. In particular if we pick a point p in Z and
let pn = fn(p) then the sequence {(Qni , pni)} will converge geometrically to
(Q∞, p∞) for some point p∞ ∈ Q∞. Furthermore if K is a compact set with
f∞(S) ⊂ K and gni : (K, p∞) → (Qni , pni) are approximating maps then fni is
homotopic to gni ◦ f∞.

We will show that the entire sequence {(Qn, pn)} converges geometrically to
(Q∞, p∞). Let γ ∈ C0(S) be a simple closed curve on S and represent it by
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a closed curve γ∞ in M∞ and let L = `M∞(γ∞). Let K be a compact set in
M∞ and assume that both p∞ and γ∞ is contained in K. To show geometric
convergence we need to show that for any A > 0 there exists eA-bi-Lipschitz
embeddings

gn : (K, p∞) → (Qn, pn)

for n sufficiently large.
Let B,C1 and C2 be the constants given by Proposition 9.7 with repsect to

the constants εe−A/2, ReA/2, LeA/2 and A/2. By Theorem 9.1 there exists an
NA such that

min{dC(ψNA+n(Y ), γ), dC(ψ−NA−n(X), γ} ≥ Kψn+B.

Let K′ be the closed ε-neighborhood of K. By the strong convergence of the
subsequence for ni sufficiently large there is a eA/2-bi-Lipschitz embedding

gni : (K′, p∞) → (Mni , pni).

Note that every point in gni(K) will have injectivity radius at least εe−A/2,
the diameter of gni(K) will be at most ReA/2 and the length of gni(γ∞) will
be at most LeA/2. Since we can always replace NA with a larger integer we
can assume NA = ni where ni is part of the convergent subsequence. We now
apply Theorem 9.7 to gNA(K) which implies that φNA+n−1 ◦ · · · ◦ φNA is eA/2-
bi-Lipschitz on gNA(K). Therefore the composition

gNA+n = φNA+n−1 ◦ · · · ◦ φNA ◦ gNA

is eA-bi-Lipschitz. Furthermore gn(p∞) = pn so we have our desired bi-Lipschitz
embeddings and {(Qn, pn)} converges geometrically to (M∞, p∞).

To see that the sequence also converges algebraically assume that K contains
f∞(S). We note that fn+1 is homotopic to φn ◦ fn and more generally fn+k

is homotopic to φn+k ◦ · · · ◦ φn ◦ fn. On the subsequence {ni} we already
know that gni ◦ f∞ is homotopic to fni . By the above fact, the composition
φNA+n−1 ◦ · · · ◦ φNA ◦ fNA is homotopic to fNA+n−1 and in turn homotopic to
gNA+n−1 ◦ f∞. If gn are approximating maps for K whose bi-Lipschitz constant
limits to 1 then by Lemma 8.5 we have that (gn ◦f∞, Qn) → (f∞,M∞). By the
above remarks (gn ◦ f∞, Qn) ∈ [(fn, Qn)] and therefore [(fn, Qn)] converges to
[(f∞,M∞)] algebraically. 9.3

We conclude with the proof of Theorem 1.3.

Theorem 1.3 (Mapping Torus Hyperbolic) Let ψ ∈ Mod(S) be pseudo-
Anosov. Then the mapping torus Tψ = S × [0, 1]/(x, 0) ∼ (ψ(x), 1) admits a
complete hyperbolic structure.

Proof. We note that as Mod(S) acts diagonaly on quasi-Fuchsian space by
re-marking, the manifolds Qn and ψ(Qn) are isometric. Because we have

d(ψ−n+1(X), ψ−n(X)) = d(ψ(X), X) and d(ψn+1(Y ), ψn(Y )) = d(ψ(Y ), Y ),
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and
ψ(Qn) = Q(ψ−n+1(X), ψn+1(Y )),

there is a uniform K for which Qn admits a K-bi-Lipschitz self-diffeomorphism

Ψn : Qn → Qn

so that Ψn is in the homotopy class of ψ.
At this stage, one may simply follow Thurston’s original approach and use

the compactness of quasiconformal maps. In particular, the maps Ψn lift to H3

and extend to K ′-quasiconformal maps

ψ̃n : Ĉ −→ Ĉ

where K ′ only depends on K. After passing to a subsequence these maps will
limit to a quasiconformal map ψ̃∞. Note that if Qn = H3/Γn then Γn and
ψ̃n will generate a group of homeomorphisms of Ĉ isomorphic to π1(Tψ) and
therefore this property will hold in the limit. The Beltrami differential of ψ̃∞
will be Γ∞-invariant and since the limit set of Γ∞ is all of Ĉ, Sullivan rigidity
implies that ψ̃∞ is conformal. In particular the group Γ̂ generated by Γ∞ and
ψ̃∞ acts conformally on Ĉ. It is not hard to show the the discreteness of Γ∞ in
PSL2(C) implies that Γ̂ is discrete and therefore we have a discrete subgroup
of PSL2(C) that is isomorphic to π1(Tψ). A theorem of Stallings implies that
H3/Γ̂ is homeomorphic to Tψ. 1.3

Remark. Note that in Thurston’s original proof there is a significant amount
of extra work to show that the limit Q∞ is doubly degenerate (See [Ot, Ch. 6]).
In our approach the double degeneracy of Q∞ is immediate. We can also,
however, complete the proof using an approach that more directly follows the
theme of this paper. We sketch the argument; the interested reader should be
able to fill in the details. Using inflexibility and the fact that (Qn, pn) converges
geometrically to (Q∞, p∞) we can extract a limiting isometry

Ψ∞ : Q∞ −→ Q∞

in the homotopy class of ψ as a limit directly. In particular, if K is a compact set
in Q∞ containing p∞ with geometric limit mappings gn : (K, p∞) −→ (Qn, pn),
then (gn)−1 ◦ Ψn ◦ gn converges up to subsequence to a uniformly bi-Lipschitz
Ψ∞ where the conjugating maps are defined. Inflexibility then shows that for
any ε > 0 and any K the maps Ψn can be taken to be 1 + ε-bi-Lipschitz on
gn(K) for n sufficiently large. Diagonalizing, the limit Ψ∞ is an isometry. The
quotient of Q∞ by Ψ∞ gives the desired hyperbolic structure on Tψ.
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