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1. Introduction

In the 1970s, work of W. P. Thurston revolutionized the study of Kleinian groups and their
3-dimensional hyperbolic quotients. Nevertheless, a complete topological and geometric
classification of hyperbolic 3-manifolds persists as a fundamental unsolved problem.

Even for tame hyperbolic 3-manifolds N =H3/Γ, where N has tractable topology
(N is homeomorphic to the interior of a compact 3-manifold), the correct picture of the
range of complete hyperbolic structures on N remains conjectural.

On the other hand, geometrically finite hyperbolic 3-manifolds are completely pa-
rameterized by an elegant deformation theory. As an approach to a general classifica-
tion, Thurston proposed a program to extend this parameterization to all hyperbolic
3-manifolds with finitely generated fundamental group [T2]. A critical, and as yet un-
yielding obstacle is the density conjecture:

The first author was supported by an NSF Postdoctoral Fellowship and NSF research grants. The
second author was supported by NSF research grants and the Clay Mathematics Institute.
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Conjecture 1.1 (Bers–Sullivan–Thurston). Let M be a complete hyperbolic 3-
manifold with finitely generated fundamental group. Then M is a limit of geometrically
finite hyperbolic 3-manifolds.

Our main result is the following theorem.

Theorem 1.2. Let M be a complete hyperbolic 3-manifold with finitely generated
fundamental group, incompressible ends and no cusps. Then M is an algebraic limit of
geometrically finite hyperbolic 3-manifolds.

We call M geometrically finite if its convex core, the minimal convex subset of M , has
finite volume. The manifold M is the quotient of H3 by a Kleinian group Γ, a discrete,
torsion-free subgroup of the orientation-preserving isometries of hyperbolic 3-space. Then
M=H3/Γ is an algebraic limit of Mi=H3/Γi if there are isomorphisms �i: Γ→Γi so that
after conjugating the groups Γi in Isom+(H3) if necessary, we have �i(γ)→γ for each
γ∈Γ. We say that M has incompressible ends if it is homotopy equivalent to a compact
submanifold with incompressible boundary.

The algebraic deformation space AH(M ) is the collection of discrete, faithful rep-
resentations �:π1(M )→Isom+(H3) up to conjugacy, with the topology of algebraic con-
vergence. Marden and Sullivan proved that the interior of AH(M ) consists of such
geometrically finite hyperbolic 3-manifolds (see [Ma] and [Su2]). Then Conjecture 1.1
predicts that the deformation space is the closure of its interior.

Theorem 1.2 generalizes the recent result of the second author [Brm1], which applies
to cusp-free singly degenerate manifolds M with the homotopy type of a surface. In that
case, the result gives a partial solution to an earlier version of Conjecture 1.1 formulated
by L. Bers in [Be]. For the modern formulation, see [Su2] and [T2]. Our strategy is
essentially similar here: due to work of Minsky (see [Mi4]) one need only consider the
case that M has arbitrarily short geodesics; such geodesics necessarily exit an end of M .
After work of Bonahon [Bon1] and Otal [Ot1], such geodesics are eventually unknotted :
they are isotopic into a level surface in the end. This unknottedness facilitates the use of
the grafting trick of [Brm1], but peculiarities of the general doubly degenerate case force
us to develop new deformation-theoretic techniques to complete the proof.

Indeed, fundamental in the treatment of each case is the use of 3-dimensional hy-
perbolic cone-manifolds, namely, 3-manifolds that are hyperbolic away from a closed ge-
odesic cone-type singularity. The theory of deformations of these manifolds that change
only the cone-angle, developed by C. Hodgson and S. Kerckhoff [HK1], [HK2], [HK4],
and the second author [Brm2], [Brm3], is instrumental in our study. In particular, the
recent innovations of [HK2] and [HK4] have extended the theory to treat the setting
of arbitrary cone-angles, whereas [HK1] treats only the case of cone-angle at most 2π
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(see [HK3] for an expository account). These estimates are essential to results of [Brm1]
and their generalizations here.

Though the power of cone-deformations has been amply demonstrated in the proof
of the orbifold theorem and the study of hyperbolic Dehn-surgery space developed by
Hodgson and Kerckhoff, we hope that the present study will suggest its wider applicability
as a new tool in the study of deformation spaces of infinite-volume hyperbolic 3-manifolds.

The principal application of the cone-deformation theory here is its ability to control
the geometric effect of a cone-deformation that decreases the cone-angle at the singular
locus when the singular locus is a sufficiently short geodesic. Since each simple closed
geodesic in a hyperbolic 3-manifold may be regarded as a “singular locus” with cone-
angle 2π, we obtain control on how a geometrically finite structure with a short closed
geodesic differs from the complete hyperbolic structure on the manifold with the same
conformal boundary and the short geodesic removed (the resulting cusp may be viewed
as a singular locus with cone-angle 0).

A central result of the paper is a drilling theorem, giving an example of this type of
control. Here is a version applicable to complete, smooth hyperbolic structures:

Theorem 1.3. (The drilling theorem) Let M be a geometrically finite hyperbolic
3-manifold. For each L>1, there is an l>0 so that if c is a geodesic in M with length
lM (c)<l, there is an L-bi-Lipschitz diffeomorphism of pairs

h: (M \T(c), ∂T(c))−→ (M0\P(c), ∂P(c)),

where M \T(c) denotes the complement of a standard tubular neighborhood of c in M,
M0 denotes the complete hyperbolic structure on M \c, and P(c) denotes a standard
rank-2 cusp corresponding to c.

(See Theorem 6.2 for a more precise version.)
The drilling theorem and its algebraic antecedents in [Brm2] are reminiscent of the

essential estimates needed to control the algebraic effect of other types of pinching defor-
mations. Such estimates have been used to show (for example) the density of maximal
cusps in boundaries of deformation spaces [Mc2], [CCHS]. While these estimates give
algebraic control over pinching short curves on the conformal boundary, a very short
geodesic in M can have large length on the conformal boundary of M . The drilling
theorem, by contrast, applies to any short geodesic in M .

The drilling theorem has proven to be of general use in the study of deformation
spaces of hyperbolic 3-manifolds. Indeed, Theorem 1.3 represents the main technical tool
in the recent topological tameness theorems of the authors’ with R. Evans and J. Souto
for algebraic limits of geometrically finite manifolds, and the consequent reduction of
Ahlfors’ measure conjecture to Conjecture 1.1 (see [Ah] and [BBES]).
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Grafting and geometric finiteness. Initially, our argument mirrors that of [Brm1],
in which a singly degenerate M with arbitrarily short geodesics is first shown to be
approximated by geometrically finite cone-manifolds.

The grafting construction of [Brm1] produces cone-manifolds that approximate a
doubly degenerate manifold as well, but the proof that these cone-manifolds are geomet-
rically finite is entirely different in this case. Here, we replace considerations of projective
structures on surfaces with notions of convex hulls and geometric finiteness for variable
(pinched) negative curvature developed by B. Bowditch and M. Anderson, after apply-
ing a theorem of Gromov and Thurston to perturb the relevant cone-metrics to smooth
metrics of negative curvature.

Bounded geometry and arbitrarily short geodesics. After [Brm1], our central chal-
lenge here is to address the possibility that M is doubly degenerate, namely, the case for
which M∼=S×R and the convex core is all of M . In this case, M has two degenerate
ends: each end has an exiting sequence of closed geodesics that are homotopic to simple
curves on S. Our analysis turns on whether such geodesics can be taken to be arbitrarily
short.

When each end of M has such a family of arbitrarily short geodesics, a streamlined
argument exists that avoids certain technical tools developed here. We refer the reader
to [BB, §3] for a discussion of the argument, which is more directly analogous to that
of [Brm1]. We remark that in particular no application of Thurston’s double limit theo-
rem is required; the convergence of the relevant approximations follows directly from the
cone-deformation theory.

When M is assumed to have bounded geometry (M has a global lower bound to its
injectivity radius) and M is homotopy equivalent to a surface, Minsky’s ending lamina-
tion theorem for bounded geometry implies Theorem 1.2 (see [Mi4, Corollary 2]). The
theorem guarantees that any such M is completely determined by its end-invariants,
asymptotic data associated to the ends of M . An application of Thurston’s double limit
theorem ([T1], cf. [Oh1]) and continuity of the length function for laminations (see [Bro1])
allows one to realize the end-invariants of M as those of a limit N of geometrically finite
manifolds Qn. Minsky’s theorem [Mi4, Corollary 1] then implies that N is isometric
to M , and thus {Qn}∞n=1 converges to M .

A persistently difficult case has been that of M with mixed type. In this case,
one end of M has bounded geometry, the other arbitrarily short geodesics. For mani-
folds of mixed type, the full strength of our techniques is required to isolate the ge-
ometry of the ends from one another. Rather than breaking the argument into the
above cases, however, we have presented a unified treatment that handles all cases simul-
taneously.
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Scheme of the proof. As a guide to the reader, we briefly describe the scheme of the
proof of Theorem 1.2.

I. Reduction to surface groups. The essential difficulties arise in the search for
geometrically finite approximations to a hyperbolic 3-manifold M with the homotopy
type of a surface S. Within this category, it is the doubly degenerate manifolds that
remain after [Brm1]. Each such manifold has a positive and a negative degenerate end,
given a choice of orientation.

II. Realizing ends on a Bers boundary . We first seek to realize the geometry of
each end of M as that of an end of a singly degenerate limit of quasi-Fuchsian mani-
folds {Q(X,Yn)}∞n=1 or {Q(Xn, Y )}∞n=1: given the positive end E of M , say, we seek
a limit Q=limn→∞ Q(X,Yn) so that E admits a marking- and orientation-preserving
bi-Lipschitz diffeomorphism to an end of Q. We prove that such limits can always be
found (Theorem 7.2) by considering the bounded geometry case and the case when E

has arbitrarily short geodesics separately.

III. Bounded geometry . If the end E has a lower bound to its injectivity radius, we
employ techniques of Minsky to show that its end-invariant ν(E) has bounded type: any
incompressible end of a hyperbolic 3-manifold with end-invariant ν(E) has a lower bound
to its injectivity radius, whether or not the bound holds globally. After producing a
limit Q on a Bers boundary with end-invariant ν(E), an application of Minsky’s bounded
geometry theory shows that Q realizes E in the above sense.

IV. Arbitrarily short geodesics. If the end E has arbitrarily short geodesics, a simul-
taneous grafting procedure produces a hyperbolic cone-manifold with two components in
its singular locus, each with cone-angle 4π. Generalizing tameness results for variable neg-
ative curvature, we show that the simultaneous grafting is geometrically finite: its convex
core is compact. Applying the drilling theorem (Theorem 6.2) we deform the metric back
to a smooth structure rel, the conformal boundary with bounded distortion of the metric
structure outside a tubular neighborhood of the singular locus. Successive simultaneous
graftings give quasi-Fuchsian manifolds limiting to a manifold Q that realizes E.

V. Asymptotic isolation. We then prove an asymptotic isolation theorem (Theo-
rem 8.1) which again uses the drilling theorem to show that any cusp-free doubly degen-
erate limit M of quasi-Fuchsian manifolds Q(Xn, Yn) has positive and negative ends E+

and E− so that E+ depends only on {Yn}∞n=1 and E− depends only on {Xn}∞n=1 up to
bi-Lipschitz diffeomorphism.

VI. Conclusion. The proof is concluded by realizing the positive end E+ of M by the
limit of {Q(X,Yn)}∞n=1, and the negative end E− of M by the limit of {Q(Xn, Y )}∞n=1,
where {Xn}∞n=1 and {Yn}∞n=1 are determined by Theorem 7.2. Thurston’s double limit
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theorem implies that Q(Xn, Yn) converges up to subsequence to a limit M ′, and thus
Theorem 8.1 implies that the ends of M ′ admit marking-preserving bi-Lipschitz diffeo-
morphisms to the ends of M . By an application of Sullivan’s rigidity theorem, we have
Q(Xn, Yn)→M .

We conclude with two remarks.

Generalizations. The hypotheses of the theorem can be weakened with only technical
changes to the argument. The clearly essential hypothesis is that M be tame, which
is guaranteed in our setting by the assumption that M have incompressible ends (by
Bonahon’s theorem [Bon1]). In the setting of tame manifolds with compressible ends,
the principal obstruction to carrying out our argument lies in the need for unknotted short
geodesics, guaranteed in the incompressible setting by a result of J. P. Otal (see [Ot3]
and Theorem 2.5). We expect this to be a surmountable difficulty and will take up the
issue in a future paper.

The assumption that M have no parabolics is required only by our use of Minsky’s
ending lamination theorem for bounded geometry [Mi1], where the hyperbolic manifolds
in question are assumed to have a global lower bound on their injectivity radii rather
than simply a lower bound to the length of the shortest geodesic.

A reworking of Minsky’s theorem to allow peripheral parabolics represents the only
obstacle to allowing parabolics in our theorem. While such a reworking is now essentially
straightforward after the techniques introduced in [Mi4], we have chosen in a similar spirit
to defer these technicalities to a later paper in the interest of conveying the main ideas.

Ending laminations. We also remark that recently announced work of the first au-
thor with R. Canary and Y. Minsky [BCM] has completed Minsky’s program to prove
Thurston’s ending lamination conjecture for hyperbolic 3-manifolds with incompressible
ends. This result predicts (in particular) that each hyperbolic 3-manifold M equipped
with a cusp-preserving homotopy equivalence from a hyperbolic surface S is determined
up to isometry by its parabolic locus and its end-invariants (see [Mi5] and [BCM]).

As in the bounded geometry case, Theorem 1.2 follows from the ending lamination
conjecture via an application of [T1], [Oh1] and [Bro1], so the results of [BCM] will give
an alternative proof of our main theorem. We point out that the techniques employed
here are independent of those of [BCM], and of a different nature. In particular, we
expect the drilling theorem (Theorem 6.2) to have applications beyond the scope of this
paper, and we refer the reader to [BBES] for an initial example of its application in a
different context.

Acknowledgements. The authors are indebted to Dick Canary, Craig Hodgson, Steve
Kerckhoff and Yair Minsky for their interest and inspiration.
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2. Preliminaries

A Kleinian group is a discrete, torsion-free subgroup of Isom+(H3)=Aut(Ĉ). Each
Kleinian group Γ determines a complete hyperbolic 3-manifold M=H3/Γ as the quo-
tient of H3 by Γ. The manifold M extends to its Kleinian manifold N =(H3∪Ω)/Γ
by adjoining its conformal boundary ∂M , namely, the quotient by Γ of the domain of
discontinuity Ω⊂Ĉ where Γ acts properly discontinuously. (Unless explicitly stated, all
Kleinian groups will be assumed non-elementary .)

The convex core of M , which we denote by core(M ), is the smallest convex subset
of M whose inclusion is a homotopy equivalence. The complete hyperbolic 3-manifold
M is geometrically finite if core(M ) has a finite-volume unit neighborhood in M .

The thick–thin decomposition. The injectivity radius inj:M→R+ measures the ra-
dius of the maximal embedded metric open ball at each point of M . For ε>0, we denote
by M<ε the ε-thin part where inj(x)<ε, and by M�ε the ε-thick part M \M<ε. By the
Margulis lemma there is a universal constant ε so that each component T of the thin
part M<ε, where inj(x)<ε, has a standard type: either T is an open solid-torus neigh-
borhood of a short geodesic, or T is the quotient of an open horoball B⊂H3 by a Z- or
Z⊕Z-parabolic group fixing B.

Curves and surfaces. Let S be a closed topological surface of genus at least 2. We
denote by S the set of all isotopy classes of essential simple closed curves on S. The
geometric intersection number

i: S×S−→Z+

counts the minimal number of intersections of representatives of curves in a pair of isotopy
classes (α, β)∈S×S.

The Teichmüller space Teich(S) parameterizes marked hyperbolic structures on S:
pairs (f,X ) where f :S→X is a homeomorphism to a hyperbolic surface X modulo the
equivalence relation that (f,X )∼(g, Y ) when there is an isometry φ:X→Y for which
φ�f�g. If we allow S to have boundary, then X is required to have finite area and
f : int(S)→X is a homeomorphism from the interior of S to X.

We topologize Teichmüller space by the quasi-isometric distance

dqi((f,X ), (g, Y )),

which is the log of the infimum over all bi-Lipschitz diffeomorphisms φ:X→Y homotopic
to g�f−1 of the best bi-Lipschitz constant for φ (cf. [T7]). Each α∈S has a unique
geodesic representative on any surface (f,X )∈Teich(S) by taking the representative of
the free-homotopy class of f(α) on X of shortest length.
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To interpolate between simple closed curves in S, Thurston introduced the measured
geodesic laminations, ML(S), which may be obtained formally as the completion of the
image of R+×S under the map ι:R+×S→RS defined by 〈ι(t, α)〉β =ti(α, β).

On a given (f,X ) in Teichmüller space, a geodesic lamination is a closed subset
of X given as a union of pairwise disjoint geodesics on S. The measured laminations
ML(S) are then identified with measured geodesic laminations, pairs (λ, µ) of a geodesic
lamination λ and a transverse measure, an association of a measure µα to each arc α

transverse to λ so that µα is invariant under holonomy and finite for compact α. One
obtains the projective measured laminations PL(S) as the quotient (ML(S)\{0})/R+.
(See [T1], [FLP], [Ot2] or [Bon2] for more about geodesic and measured laminations.)

Surface groups. By H(S) we denote the set of all marked hyperbolic 3-manifolds
(f :S→M ): i.e. complete hyperbolic 3-manifolds M equipped with homotopy equiva-
lences f :S→M , modulo the equivalence relation

(f :S →M )∼ (g:S →N )

if there is an isometry φ:M→N for which φ�f�g.
Each (f :S→M ) in H(S) determines a representation

f∗ = �:π1(S)−→ Isom+(H3),

well defined up to conjugacy in Isom+(H3)=PSL2(C). We topologize H(S) by the
compact-open topology on the induced representations, up to conjugacy. Convergence in
this sense is known as algebraic convergence; we equip H(S) with this algebraic topology
to obtain the space AH(S), the algebraic deformation space.

The subset QF (S)⊂AH(S) denotes the quasi-Fuchsian locus, namely, manifolds
(f :S→Q) so that Q is bi-Lipschitz diffeomorphic to the quotient of H3 by a Fuchsian
group. Such a quasi-Fuchsian manifold Q simultaneously uniformizes a pair (X,Y )∈
Teich(S)×Teich(S) as its conformal boundary ∂Q, namely, the quotient of the region
where the covering group f∗(π1(S)) for Q acts properly discontinuously on Ĉ. In our
convention, X compactifies the negative end of Q(X,Y )∼=S×R and Y compactifies the
positive end (Ĉ is assumed oriented so that the resulting identification of S̃ with Ỹ⊂Ĉ is
orientation preserving while the identification of X̃ with S̃ is orientation reversing—by
our convention Q(Y, Y ) is a Fuchsian manifold).

Bers exhibited a homeomorphism

Q: Teich(S)×Teich(S)−→QF (S)

that assigns to the pair (X,Y ) the quasi-Fuchsian manifold Q(X,Y ) simultaneously uni-
formizing X and Y . The manifold Q(X,Y ) naturally inherits a homotopy equivalence
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f :S→Q(X,Y ) from the marking on either of its boundary components, so the simulta-
neous uniformization is naturally an element of AH(S).

One obtains a Bers slice of the quasi-Fuchsian space QF (S) by fixing one factor in
the product structure; we denote by

BX = {X}×Teich(S)⊂QF (S)

the Bers slice of quasi-Fuchsian manifolds with X compactifying their negative ends. As
one may fix the conformal boundary compactifying either the positive or negative end,
we will employ the notation

B+
X = {X}×Teich(S) and B−

Y =Teich(S)×{Y }

to distinguish the two types of slices.
If g:M→N is a bi-Lipschitz diffeomorphism between Riemannian n-manifolds, its

bi-Lipschitz constant L(g)�1 is the infimum over all L for which

1
L

� |g∗(v)|
|v| �L

for all v∈TM .
Following McMullen (see [Mc3, §3.1]), we define the quasi-isometric distance on

AH(S) by
dqi((f1,M1), (f2,M2))= inf log L(g),

where the infimum is taken over all orientation-preserving bi-Lipschitz diffeomorphisms
g:M1→M2 for which g�f1 is homotopic to f2. If there is no such diffeomorphism
in the appropriate homotopy class, then we say that (f1,M1) and (f2,M2) have infi-
nite quasi-isometric distance. The quasi-isometric distance is lower semi-continuous on
AH(S)×AH(S) ([Mc3, Proposition 3.1]).

Geometric and strong convergence. Another common and related notion of conver-
gence of hyperbolic manifolds comes from the Hausdorff topology, which we now describe.

A hyperbolic 3-manifold determines a Kleinian group only up to conjugation. Equip-
ping M with a unit orthonormal frame ω at a basepoint p (a base-frame) eliminates this
ambiguity via the requirement that the covering projection

π: (H3, ω̃)−→ (H3, ω̃)/Γ= (M,ω)

sends the standard frame ω̃ at the origin in H3 to ω.
The framed hyperbolic 3-manifolds (Mn, ωn)=(H3, ω̃)/Γn converge geometrically to

a geometric limit (N,ω)=(H3, ω̃)/ΓG if Γn converges to ΓG in the geometric topology:
(1) For each γ∈ΓG there are γn∈Γn with γn→γ.
(2) If elements γnk

in a subsequence Γnk
converge to γ, then γ lies in ΓG.
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Geometric convergence has an internal formulation: (Mn, ωn) converges to (N,ω) if
for each smoothly embedded compact submanifold K⊂N containing ω, there are diffeo-
morphisms φn:K→(Mn, ωn) so that φn(ω)=ωn and so that φn converges to an isometry
on K in the C∞-topology ([BP], [Mc3, Chapter 2]).

When (f :S→M ) lies in AH(S), a base-frame ω∈M determines a discrete, faithful
representation f∗:π1(S)→Γ, where (M,ω)=(H3, ω̃)/Γ. Denote by AHω(S) the marked
framed hyperbolic 3-manifolds (f :S→(M,ω)), i.e. framed hyperbolic 3-manifolds (M,ω)
together with homotopy equivalences f :S→(M,ω) up to isometries that preserve mark-
ing and base-frame.

The space AHω(S) carries the topology of convergence on generators of the induced
representations f∗; the topology on AH(S) is simply the quotient topology under the
natural base-frame forgetting map AHω(S)→AH(S). As with AH(S) we will often
assume an implicit marking and refer to (M,ω)∈AHω(S).

Consideration of AHω(S) allows us to understand the relation between algebraic
and geometric convergence (see [Bro3, §2]):

Theorem 2.1. Given a sequence {(fn:S→Mn)}∞n=1 with limit (f :S→M ) in
AH(S) there are convergent lifts (fn:S→(Mn, ωn)) to AHω(S) so that, after passing
to a subsequence, (Mn, ωn) converges geometrically to a geometric limit (N,ω) covered
by M by a local isometry.

When this local isometry is actually an isometry, we say that the convergence is
strong.

Definition 2.2. The sequence Mn→M in AH(S) converges strongly if there are lifts
(Mn, ωn)→(M,ω) to AHω(S) so that (Mn, ωn) also converges geometrically to (M,ω).

Pleated surfaces. Given M∈AH(S) and a simple closed curve α∈S representing a
non-parabolic conjugacy class of π1(M ), we follow Bonahon’s convention and denote by
α∗ the geodesic representative of α in M . To control how α∗ can lie in M , Thurston
introduced the notion of a pleated surface.

Definition 2.3. A path isometry g:X→N from a hyperbolic surface X to a hyper-
bolic 3-manifold N is a pleated surface if for each x∈X there is a geodesic segment σ

through x so that g maps σ isometrically to N .

Recall that the condition for g to be a path isometry means that g sends rectifiable
arcs in X to rectifiable arcs in N of the same arc length.

When M lies in AH(S), a particularly useful class of pleated surfaces arises from
those that “preserve marking” in the following sense: denote by PS(M ) the set of all
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pairs (g,X ) where X lies in Teich(S) and g:X→M is a pleated surface with the property
that g�φ�f , where φ is the implicit marking on X and f is the implicit marking on M .

Given a lamination µ∈ML(S), we say that the pleated surface (g,X )∈PS(M )
realizes µ if each geodesic leaf l in the support of µ realized as a geodesic lamination on
X is mapped by g by a local isometry; alternatively, the lift g̃: X̃→H3 sends every leaf l̃

of the lift µ̃ of µ to a complete geodesic in H3.
The following bounded diameter theorem for pleated surfaces is instrumental in

Thurston’s studies of geometrically tame hyperbolic 3-manifolds (see [T1, §8] or alterna-
tive versions in [Bon1] and [C1]). Since we are working in the cusp-free setting, we state
the theorem in this context.

Theorem 2.4. Each compact subset K of the cusp-free manifold M∈AH(S) has
a compact enlargement K ′ so that if (g,X )∈PS(M ) and g(X )∩K �=∅, then g(X ) lies
entirely in K ′.

Tame ends. Let M be a complete hyperbolic 3-manifold with finitely generated
fundamental group. By a theorem of P. Scott [Sc], there is a compact submanifold
M⊂M whose inclusion is a homotopy equivalence. By convention, given a choice of
compact core M for M , the ends of M are the connected components of the complement
M \M. Each end E is cut off by a boundary component S⊂∂M.

The end E is tame if it is homeomorphic to the product S×R+, and the manifold
M is topologically tame (or simply tame) if it is the interior of a compact manifold with
boundary. When M is tame we can choose the compact core M such that each end E is
tame. Manifestly, the end E depends on a choice of compact core, but as we will typically
be interested in the end E only up to bi-Lipschitz diffeomorphism, we will assume such
a core to be chosen in advance and address any ambiguity as the need arises.

An end E of M is geometrically finite if it has finite-volume intersection with the
convex core of M . Otherwise it is geometrically infinite. By a theorem of Marden
(see [Ma]), a geometrically finite end is tame. The manifold M is geometrically finite if
and only if each of its ends is geometrically finite.

Tameness and Otal’s theorem. One key element of our argument in §5 involves the
fact that any collection of sufficiently short closed curves in M∈AH(S) is unknotted and
unlinked .

Given M∈AH(S) the tameness theorem of Bonahon and Thurston [Bon1], [T1]
guarantees the existence of a product structure F :S×R→M . Otal defines a notion of
‘unknottedness’ with respect to this product structure as follows: a closed curve α∈M is
unknotted if it is isotopic in M to a simple curve in a level surface F (S×{t}). Likewise,
a collection C of closed curves in M is unlinked if there is an isotopy of the collection C
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sending each member α∈C to a distinct level surface F (S×{tα}).

Theorem 2.5. (Otal) Let S be a closed surface, and let (f :S→M ) lie in AH(S).
There is a constant lknot>0 depending only on S so that if C is any collection of closed
curves in M for which lM (α∗)<lknot for each α∈C, then the collection C is unlinked.

See [Ot1] and, in particular, [Ot3, Theorem B].

Cone-manifolds. A key ingredient for our argument will be the notion of a 3-dimen-
sional hyperbolic cone-manifold. Let N be a compact 3-manifold with boundary and
C a collection of disjoint simple closed curves. A hyperbolic cone-metric on (N, C ) is a
hyperbolic metric on the interior of N \C whose completion is a singular metric on the
interior of N . In a neighborhood of a point in C, the metric will have the form

dr2+sinh2r dθ2+cosh2r dz2,

where θ is measured modulo the cone-angle α. The singular locus will be identified with
the z-axis and will be totally geodesic. Note that the cone-angle will be constant along
each component of the singular locus.

3. Geometric finiteness in negative curvature

In this section, defining the notion of geometric finiteness for 3-dimensional hyperbolic
cone-manifolds, we will use and show its equivalence to precompactness of the set of
closed geodesics in the cusp-free setting. We then go on to employ the work of Bonahon
and Canary [Bon1], [C1] to show the existence of simple closed geodesics exiting any end
of M that is not geometrically finite.

Geometric finiteness for cone-manifolds. When the convex core of the complete
hyperbolic 3-manifold M has a finite-volume unit neighborhood, the only obstruction to
the compactness of the convex core is the presence of cusps in M . In the cusped case,
a slightly different definition is required. For our discussion, we consider only cusps that
arise from rank-2 Abelian subgroups of the fundamental group, i.e. rank-2 cusps.

Definition 3.1. A 3-dimensional hyperbolic cone-manifold M is geometrically finite
without rank-1 cusps if M has a compact core bounded by convex surfaces and tori.

In the sequel, all hyperbolic cone-manifolds we will consider will be free of rank-1
cusps. As such, we simply refer to geometrically finite manifolds without rank-1 cusps
as geometrically finite.

Given a compact core M for such an M, the geometric finiteness of M is usefully
rephrased as a condition on the ends of M (again, we refer to components of M \M as
the ends of M ; they are neighborhoods of the topological ends of M ).
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Definition 3.2. An end E of a 3-dimensional hyperbolic cone-manifold M is geomet-
rically finite if its intersection with the convex core of M has finite volume.

An end that is cut off by a torus will be a rank-2 cusp and will be entirely contained
in the convex core. Since we are assuming that M does not have rank-1 cusps, each
end of a geometrically finite manifold cut off by a higher genus surface will intersect the
convex core in a compact set.

Then one may easily verify the following proposition.

Proposition 3.3. The 3-dimensional hyperbolic cone-manifold M is geometrically
finite if and only if each end of M is geometrically finite.

Geometrically infinite ends. An end E of M that is not geometrically finite is geo-
metrically infinite or degenerate.

Definition 3.4. Let E be a geometrically infinite end of a 3-dimensional hyperbolic
cone-manifold M, cut off by a surface S. Then E is simply degenerate if for any compact
subset K⊂E there is a simple curve α on S whose geodesic representative lies in E \K.

In the smooth hyperbolic setting, a synonym for a simply degenerate end is a geo-
metrically tame end; we use the same terminology here. The cusp-free hyperbolic cone-
manifold M is geometrically tame if all its ends are geometrically finite or geometrically
tame.

Thurston and Bonahon proved that a geometrically tame manifold M with freely
indecomposable fundamental group is topologically tame, namely, M is homeomorphic
to the interior of a compact 3-manifold. Generalizing Bonahon’s work, Canary proved a
general converse:

Theorem 3.5. ([C1]) Let M be a complete hyperbolic 3-manifold. If M is topolog-
ically tame then M is geometrically tame.

Geometric finiteness in variable negative curvature. B. Bowditch has given a de-
tailed analysis of how various notions of geometric finiteness for complete hyperbolic
3-manifolds and their equivalences generalize to the case of pinched negative curvature,
namely, 3-manifolds with complete Riemannian metrics with all sectional curvatures in
the interval [−a2,−b2 ], where 0<b<a.

Such a manifold is the quotient of a pinched Hadamard manifold X, a simply con-
nected manifold with sectional curvatures pinched between −a2 and −b2, by a discrete
subgroup Γ of its orientation-preserving isometries Isom+(X ). For our purposes, we as-
sume that X has dimension 3. The action of Γ on X has much in common with actions
of Kleinian groups on H3. In particular, X has a natural ideal sphere XI , or sphere at
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infinity, which may be identified with equivalence classes of infinite geodesic rays in X,
where rays are equivalent if they are asymptotic.

As in the hyperbolic setting, the action of Γ on XI is partitioned into its limit set Λ,
where the orbit of a (and hence any) point in X accumulates on XI , and its domain of
discontinuity Ω=XI\Λ.

The convex core of the quotient manifold M=X/Γ of pinched negative curvature
is the quotient hull(Λ)/Γ of the convex hull in X of the limit set Λ by the action of Γ.
Then following [Bow2] we make the following definition.

Definition 3.6. The manifold M=X/Γ of pinched negative curvature is geometrically
finite if the radius-1 neighborhood of the convex core has finite volume.

In the case when the manifold M has no cusps (the group Γ is free of parabolic
elements; see [Bow2, §2]), this notion is equivalent to the compactness of the convex
core.

Indeed, it suffices to consider the quotient of the join of the limit set join(Λ): the
collection of all geodesics in X joining pairs of points in Λ. We apply the following
theorem of Bowditch [Bow1] which follows from work of M. Anderson [An].

Theorem 3.7. (Bowditch) Let M be a Riemannian manifold of pinched negative
curvature. Then there is a σ>0 depending only on the pinching constants so that

hull(Λ)⊂Nσ(join(Λ)).

(Cf. [Bow2, §5.3].)
In the complete smooth hyperbolic setting, the density of the fixed points of hyper-

bolic isometries in Λ×Λ gives another characterization of geometric finiteness: the com-
plete cusp-free hyperbolic 3-manifold is geometrically finite if and only if the closure of
the set of closed geodesics in M is compact.

A lacuna in the various existing discussions of how features of the complete hyper-
bolic setting generalize to the pinched negative curvature setting is the following equiv-
alence, which will allow us to improve the results of Canary [C1].

Lemma 3.8. Let M be a 3-dimensional manifold of pinched negative curvature and
no cusps. Then M is geometrically finite if and only if the closure of the set of closed
geodesics in M is compact.

Proof. Let M=X/Γ, where X is a 3-dimensional pinched Hadamard manifold and
Γ is a discrete subgroup of Isom+(X ).

Since fixed points of hyperbolic isometries are again dense in Λ×Λ, it follows that
lifts of closed geodesics to X are dense in join(Λ). Applying Theorem 3.7, we have

hull(Λ)⊂Nσ(join(Λ)),
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where σ depends only on the pinching constants for M . But if the closure of the set of
closed geodesics in M is compact then the quotient join(Λ)/Γ is compact. It follows that
the convex core

core(M )⊂Nσ(join(Λ)/Γ)

is compact. Thus M is a geometrically finite manifold of pinched negative curvature.

Conversely, since all closed geodesics in M lie in core(M ), the closure of the set of
closed geodesics in M is compact whenever core(M ) is compact. �

Corollary 3.9. Let M be a 3-dimensional hyperbolic cone-manifold with no cusps
so that for every component c of the singular locus, the cone-angle at c is greater than 2π.
Then M is geometrically finite if and only if the closure of the set of all closed geodesics
in M is compact.

Proof. By a standard argument (see [GT]) the assumption on the cone-angles implies
that the singular hyperbolic metric on M may be perturbed to give a negatively curved
metric on M that is hyperbolic away from a tubular neighborhood of the cone-locus.
The result is a Riemannian manifold of pinched negative curvature M̂ .

The smoothing M̂ is a new metric on M , and in this new metric each closed geodesic
is a uniformly bounded distance from its geodesic representative in M . It follows that
the closure of the set of closed geodesics in M is compact if and only if the closure of the
set of closed geodesics in M̂ is compact.

If the union of all closed geodesics in M̂ is precompact, then M̂ is geometrically
finite, by Lemma 3.8. It follows that the convex core for M̂ is compact (since M̂ has no
cusps). For R>0 sufficiently large, the radius-R neighborhood of the convex core of M̂

gives a compact core M for M̂ bounded by convex surfaces that miss the neighborhoods
where the metrics on M and M̂ differ. Since convexity is a local property for embedded
surfaces, it follows that the surfaces ∂M are convex in M as well.

We conclude that if the closed geodesics are precompact in M then M has a com-
pact core bounded by convex surfaces, so M is geometrically finite. The converse is
immediate. �

We now prove the appropriate generalization of Canary’s theorem in the context of
hyperbolic cone-manifolds. As in the smooth case, we say that a 3-dimensional hyperbolic
cone-manifold is topologically tame if it is homeomorphic to the interior of a compact
3-manifold.

Theorem 3.10. Suppose that M is a topologically tame 3-dimensional hyperbolic
cone-manifold. Assume that the cone-angle at each component of the singular locus is at
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least 2π. Then M is geometrically tame: each end E of M is either geometrically finite
or simply degenerate.

Proof. As above, we let M̂ be a smoothing of M to a manifold of pinched negative
curvature, modifying the metric in a close neighborhood of the singular locus. Since
neighborhoods of the ends are unchanged by this smoothing, it suffices to prove the
theorem for M̂ .

Let E be a geometrically infinite end of M̂ cut off by a surface S0, and let K be
a compact submanifold of E so that ∂K=S0�S, where S is a smooth surface in E.
By a straightforward generalization of an argument in [Bon1] to the setting of pinched
negative curvature, we may find a closed curve on S0 (not necessarily simple) whose
geodesic representative lies outside of K.

In [C1] a generalization of Bonahon’s tameness theorem [Bon1] is applied in the
context of branched covers of hyperbolic 3-manifolds. After smoothing the branching
locus to obtain a manifold with pinched negative curvature that is hyperbolic outside
of a compact set, Canary discusses the appropriate generalization to the main theorem
of [Bon1] in this context. In [C1, §4], however, a geometrically infinite end E cut off
by S is defined to be an end for which there are closed loops αn⊂S whose geodesic
representatives eventually lie outside of every compact subset of E. The above shows
that if an end E is not geometrically finite in our sense, then it is geometrically infinite
in the sense of Canary [C1, §4].

Applying the tameness theorem of [C1, Theorem 4.1], if M is a tame 3-dimensional
hyperbolic cone-manifold, then all of its ends are either geometrically finite or simply
degenerate. �

4. Bounded geometry

A central dichotomy in the study of ends of hyperbolic 3-manifolds lies in the distinction
between hyperbolic manifolds with bounded geometry and those with arbitrarily short
geodesics.

A recent theorem of Y. Minsky shows that whether a manifold M∈AH(S) has
bounded geometry is predicted by a comparison of its end-invariants, a collection of
geodesic laminations and hyperbolic surfaces associated to the ends of M .

In this section we adapt Minsky’s techniques to produce a version of these criteria
which can be applied end-by-end: we show that whether or not a simply degenerate end
E has bounded geometry depends only on its ending lamination ν(E) and not on the
remaining ends.
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End-invariants. When an end E of M∈AH(S) is geometrically finite it admits a
foliation by surfaces whose geometry is exponentially expanding, but whose conformal
structures converge to that of a component, say X, of the conformal boundary of M .
With the induced marking from f , X determines a point in Teichmüller space, and the
asymptotic geometry of the end E is determined by this marked Riemann surface. We say
that X is the end-invariant of the geometrically finite end E (see, e.g., [EM] and [Mi1]).

A simply degenerate end of M also has a well-defined end-invariant.

Definition 4.1. Let E be a simply degenerate end of M cut off by a surface S. Let
αn be a sequence of simple closed curves on S whose geodesic representatives α∗

n leave
every compact subset of E. Then the support |[ν]| of any limit [ν]∈PL(S) of αn is the
ending lamination of E.

By a theorem of Thurston, any two limits [ν] and [ν′ ] in PL(S) satisfy

|ν|= |ν′|,

so ν(E) is well defined. We call the ending lamination ν(E) the end-invariant for the
degenerate end E.

For each M in AH(S) with no cusps, we will denote by ν− and ν+ the end-invariants
of the negative and positive ends E− and E+ of M, respectively.

Curve complexes and projections. In [Ha], W. Harvey organized the simple closed
curves on S into a complex in order to develop a better understanding of the action of
the mapping class group. Recently (see [Mi4], [Mi3] and [Bro4]), his complex has become
a fundamental object in the study of 3-dimensional hyperbolic manifolds.

The complex of curves C(S) is obtained by associating a vertex to each element of S

and stipulating that k+1 vertices determine a k-simplex if the corresponding curves can
be realized disjointly on S. Except for some sporadic low-genus cases, the same definition
works for non-annular surfaces with boundary (provided that S is taken to represent the
isotopy classes of non-peripheral essential simple closed curves on S ), and a similar
arc-complex can be defined for consideration of the annulus. A remarkable theorem
of H. Masur and Y. Minsky establishes that the natural distance on C(S) obtained by
making each k-simplex into a standard Euclidean simplex, turns C(S) into a δ-hyperbolic
metric space (see [MM1] for more details).

When Y⊂S is a proper essential subsurface of S, C(Y ) is naturally a subcomplex
of C(S). Masur and Minsky define a projection map πY : C(S)→P(C(Y )) from C(S) to
the set of subsets of C(Y ), by associating to each α∈C(S) the arcs of essential intersection
of α with Y , surgered along the boundary of Y to obtain simple closed curves in Y . The
possible surgeries can produce curves in Y that intersect, but given any simplex σ∈C(S)
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the total diameter of πY (σ) in C(Y ) is at most 2 (see [MM2, §2, Lemma 2.3] for more
details).

The projection distance dY (α, β) measures the distance from α to β relative to the
subsurface Y :

dY (α, β)=diamC(Y )(πY (α)∪πY (β)).

Note that by the above, the projection πY is 2-Lipschitz, i.e. we have

dY (α, β)� 2dC(S)(α, β)

for any pair of vertices α and β in C(S).
By a result of E. Klarreich [Kl], the Gromov boundary of C(S) is in bijection with

the possible ending laminations for a cusp-free simply degenerate end of M∈AH(S).
We denote this collection of geodesic laminations by EL(S). Given such an ending
lamination ν, the projection πY (ν) can be defined just as for α∈C(S), and πY (ν) is the
limiting value of πY (αi), where αi converges to ν∈∂C(S).

If Z∈Teich(S) is a conformal boundary component of M∈AH(S), there is a uniform
upper bound to the length of the shortest geodesic on Z. Although the shortest geodesic
may not be unique, the set short(Z ) of shortest geodesics on Z determines a set of
uniformly bounded diameter in C(S). Thus, given end-invariants ν− and ν+ for a cusp-
free M∈AH(S), we can compare the end-invariants in the surface Y by the quantity

dY (ν−, ν+),

where if ν−=Z∈Teich(S) we replace ν− with short(Z ).
Using such comparisons, the main results of [Mi3] and [Mi4] give necessary and

sufficient conditions for the length of the shortest closed geodesic in M to have a lower
bound l0>0.

Theorem 4.2. (Minsky) Let M∈AH(S) have no cusps and end-invariants (ν−, ν+).
Then M has bounded geometry if and only if the supremum

sup
Y⊂S

dY (ν−, ν+)

over all proper essential subsurfaces Y⊂S is bounded above.

We deduce the following corollary.

Corollary 4.3. Let the doubly degenerate manifold M∈AH(S) have no cusps. If
the positive end E+ of M has bounded geometry, then any degenerate manifold Q in the
Bers slice BY with ending lamination ν(E+) has bounded geometry.
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Proof. Assume otherwise. Then by Minsky’s theorem, there exists a family of es-
sential subsurfaces Yj⊂S so that

dYj(Y, ν+)→∞

as j tends to ∞. Choosing αj⊂∂Yj , we have

lQ(αj)→ 0

by [Mi3, Theorem B]. Since the geodesic representatives α∗
i in Q exit the end of Q, any

limit [ν] of αi in PL(S) has intersection number zero with ν+ by the exponential decay
of the intersection number (see [T1, Chapter 9] and [Bon1, Proposition 3.4]).

We claim that the projection sequence

{dYj (ν
−, ν+)}∞j=1

is also unbounded.
Consider the distances

dYj (ν
−, Y ).

Then either dYj(ν
−, Y ) remains bounded, or we may pass to a subsequence so that

dYj(ν
−, Y )→∞.
In the first case we have by the triangle inequality,

dYj(Y, ν+)� dYj(Y, ν−)+dYj(ν
−, ν+);

in particular, dYj(ν
−, ν+) is unbounded. By the main theorem of [Mi3], it follows that

the simple closed curves αi satisfy lM (αi)→0.
Thus, the geodesic representatives α∗∗

i of αi in M must exit the end E− of M, since
their lengths have zero infimum. Again applying [T1, Chapter 9] and [Bon1, Proposi-
tion 3.4], we find that [ν] has intersection number zero with ν−. It follows that ν−=ν+,
a contradiction (the ending laminations of a cusp-free doubly degenerate manifold M in
AH(S) must be distinct; see [Bon1, §5] and [T1, Chapter 9]). Thus, Q has bounded
geometry in this case.

If, on the other hand, dYj(ν
−, Y )→∞, we consider a limit Q′ of quasi-Fuchsian

manifolds in the Bers slice BY with ending lamination ν−. Then by [Mi3] the curves αj

again have the property that lQ′(αj)→0, so the geodesic representatives of αj in Q′ must
exit the end of Q′. We again arrive at the contradiction ν−=ν+, so we may conclude
again that Q has bounded geometry. �

The argument motivates the following definition.



52 J. F. BROCK AND K.W. BROMBERG

Definition 4.4. A lamination ν∈EL(S) has bounded type if for any α∈C(S),
{dYj(α, ν)}∞j=1 is bounded over all essential subsurfaces Yj⊂S.

Remark. The projection distances dYj(α, ν) are reminiscent of the continued fraction
expansion of an irrational number. In the case when S is a punctured torus, this analogy
is literal in the sense that simple closed curves on S are encoded by their rational slopes,
and measured laminations (up to scale) are naturally the completion of the simple closed
curves (see [Mi2]). In the punctured-torus setting, bounded-type laminations are en-
coded by bounded-type irrationals, namely, irrationals with uniformly bounded continued
fraction expansion.

Theorem 4.5. Let E be a geometrically infinite tame end of a cusp-free hyperbolic
3-manifold M, and assume that there is a lower bound to the injectivity radius on E.
Then there is a compact set K⊂E and a manifold Q∞ on the Bers boundary ∂BY so that
the subset E \K is bi-Lipschitz diffeomorphic to the complement E∞\K∞ of a compact
subset K∞⊂Q∞.

Proof. Let ν=ν(E) be the ending lamination for E. Since the injectivity radius
of E is bounded below, it follows that ν has bounded type. By an application of the
continuity of the length function for laminations on AH(S) [Bro2, Theorem 1.3], there
exists some Q∞∈∂BY so that ν(Q∞)=ν.

By the previous theorem, the manifold Q∞ has a positive lower bound to its injec-
tivity radius since ν has bounded type. If E∞ represents the simply degenerate end of
Q∞ for which ν(E∞)=ν, then E and E∞ represent ends of two different manifolds with
injectivity radius bounded below and the same ending lamination.

Applying the main theorem of [Mi1], or its generalization [Mo] if N does not have a
global lower bound to its injectivity radius, the ends E and E∞ are bi-Lipschitz diffeo-
morphic. �

5. Grafting in degenerate ends

In this section we describe a central construction of the paper. The grafting of a simply
degenerate end, introduced as a technique in [Brm1], serves as the key to approximating
degenerate ends of complete hyperbolic 3-manifolds by cone-manifolds.

The grafting construction. By Bonahon’s theorem [Bon1], each manifold M∈AH(S)
is homeomorphic to S×R. Given a particular choice of homeomorphism F :S×R→M,
each simple closed curve α on S has an associated embedded positive grafting annulus

A+
α =F (α×[0,∞))
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M
α

Aα

Ãα

M̃α

Fig. 1. Lifting the grafting annulus.

in M and a negative grafting annulus A−
α=F (α×(−∞, 0]).

Consider the solid-torus cover M̃α=H3/〈α∗〉 obtained as the quotient of H3 by a
representative of the conjugacy class of F (α×{0}) in π1(M ). Let Aα=A+

α denote the
positive grafting annulus for α. Then by the lifting theorem, Aα lifts to an annulus Ãα

in the cover M̃α.

Let Gr+(M,α) denote the singular 3-manifold obtained by isometrically gluing the
metric completions of

M \Aα and M̃α\Ãα

in the following way:
I. For reference, choose an orientation on the curve α. Together with the product

structure F, this orientation gives a local “left” and “right” side in M to the annulus Aα

corresponding to the left and right side of the curve F (α×{t}) in F (S×{t}).
II. The metric completion of M \Aα contains two isometric copies Al and Ar of the

annulus Aα in its metric boundary corresponding to the local left and right side of the
annulus with respect to the choice of orientation of α. Likewise, the metric boundary
of the metric completion of M̃α\Ãα contains the two isometric copies Ãl and Ãr of Ãα

corresponding to the local left and right side of Ãα in M̃α.
III. The parameterization of Aα by F |α×[0,∞) induces parameterizations

Fl:α×[0,∞)−→Al and Fr:α×[0,∞)−→Ar
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α

M \Aα

M̃α\Ãα

Fig. 2. The grafted end.

of the annuli Al and Ar, and

F̃l:α×[0,∞)−→Ãl and F̃r:α×[0,∞)−→Ãr

of the annuli Ãl and Ãr. We obtain the grafting Gr+(M,α) by identifying the metric
completions

M \Aα and M̃α\Ãα

by the mapping φ from the metric boundary of M \Aα to the metric boundary of M̃α\Ãα

determined by setting

φ(Fl(x, t))= F̃r(x, t) and φ(Fr(x, t))= F̃l(x, t).

There is a natural projection
π: Gr+(M,α)−→M

obtained by defining π to be the identity on M \Aα and the restriction of the natural
covering map M̃α→M on M̃α\Ãα, and then extending across the gluing. The projection
π is a covering mapping away from α and is the two-fold branched covering map of M

branched along α in a neighborhood of α.
IV. Since the gluing is isometric, the resulting grafted end has a hyperbolic metric

away from a singularity along the curve α. When the curve α is a geodesic, the sin-
gularity becomes a cone-type singularity, and Gr+(M,α) is a hyperbolic cone-manifold
homeomorphic to S×R with cone-angle 4π at α.
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By Otal’s theorem (Theorem 2.5) any sufficiently short geodesic in M∈AH(S) is
unknotted, guaranteeing that the grafting construction may be applied to the geodesic
itself. We now prove that grafting along a short geodesic always produces a geometrically
finite end.

Theorem 5.1. If (f :S→M )∈AH(S) has no cusps and α is an essential simple
closed curve in S for which lM (α∗)<lknot, then the positive end of the hyperbolic cone-
manifold Gr+(M,α∗) is geometrically finite.

Proof. Applying Otal’s theorem (Theorem 2.5), α is isotopic into a level surface for
any product structure on M , so we choose a homeomorphism F :S×R→M so that

(1) F (S×{0}) is homotopic to f ;
(2) F |S×{0} realizes α: i.e. F (α×{0})=α∗.
Let E+ be the positive end of M . Let Mc=Gr+(M,α∗) and let Ec denote the positive

end of M c. Arguing by contradiction, assume that the end Ec is not geometrically
finite. Then §3 guarantees that there are simple closed curves γk on S whose geodesic
representatives in Ec eventually lie outside of every compact subset of Ec.

We choose a particular exhaustion of Ec by compact submanifolds that is adapted
to an exhaustion of the original end E+ as follows:

(1) Let Kj be an exhaustion of E+ by the compact submanifolds

Kj =F (S×[0, j]).

(2) Let K̂j be the lift of Kj\A to Ec for which the restriction of π to K̂j is an
isometric embedding.

(3) Extend K̂j to a compact subset Kc
j by taking the union of K̂j with an exhaustion

of M̃α by solid tori as follows: Let Aα=F (α×[0,∞)) again be the positive grafting
annulus for α∗ and let F̃ be the lift of Fα×[0,∞) to M̃α. Let Vj be an exhaustion of M̃α

by closed solid tori so that Vj intersects the lift Ãα of Aα to M̃α in F̃ (α×[0, j]). Then

Kc
j = K̂j∪Vj

exhausts the end Ec.
Let {γj}∞j=1⊂{γk}∞k=1 be a subsequence for which

γ∗
j ⊂Ec\Kc

j .

We claim that there is a compact subset K of M so that the projections π(γ∗
j ) of γ∗

j

to M, all intersect K. Consider the (unique) component S̃α of the lifts of S to the solid
torus M̃α for which π1(S̃α)=Z, i.e. S̃α is the annular lift of S to M̃α that contains the
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curve α. The properly embedded annulus S̃α separates M̃α into two pieces, one covering
the component of M \S containing S0, and the other covering the noncompact portion
of E+\S.

Since α⊂Kc
j for all sufficiently large j, we may throw away a finite number of γj to

guarantee that α �=γj for all j. Thus, the geodesic γ∗
j intersects S̃α if and only if we have

i(γj , α) �=0.

The geodesic γ∗
j projects isometrically by π to the geodesic representative of γj in M ;

for convenience, we denote the latter by π(γ∗
j ). Let Xj be a pleated surface realizing γj

in M with the property that if i(γj , α)=0 then Xj realizes α as well.

If γ∗
j intersects S̃α in M c, then the geodesic π(γ∗

j ) intersects S in M , so the pleated
surface Xj intersects S. If, on the other hand, γ∗

j does not intersect S̃α, then Xj realizes α,
so Xj also intersects S. By Theorem 2.4, there is a compact subset K⊂M so that we
have

Xj ⊂K

for all j. In particular, it follows that we have

π(γ∗
j )⊂K

for all j.

Note, however, that there is a j′>j so that γ∗
j intersects K̂j′\K̂j , since otherwise

γ∗
j would lie entirely in M̃α\Ãα, which would imply that γj is isotopic to α. Choosing j

sufficiently large to guarantee that

K⊂Kj ,

we then obtain a contradiction, since

π(K̂j′\K̂j)∩K = ∅.

We conclude that the end Ec is geometrically finite. �

We introduce one further piece of notation for later use. If α and β represent simple
closed curves whose geodesic representatives lie in E− and E+, respectively, we can
perform grafting of E− along the negative grafting annulus for α in M , and grafting
of E+ along the positive grafting annulus for β in M simultaneously. We denote by
Gr±(M,α, β) this simultaneous grafting along α and β.
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6. Geometric inflexibility of cone-deformations

In this section we establish the estimates on cone-deformations necessary to obtain geo-
metric control away from the singular locus. The main result of this section, Theo-
rem 6.2, harnesses the deformation theory of cone-manifolds originally developed in [HK1]
and [Brm3], and improved upon in [HK2], [HK4] and [Brm2] to obtain the necessary con-
trol.

Theorem 6.2 is a geometric formulation of similar analytic results in [Brm2] that
control the change of projective structure associated to an end of a cone-manifold M

under a deformation that changes the cone-angle. Here, we have replaced control over
the change in projective structure, which suffices for applications in [Brm1], with bi-
Lipschitz control over the metric on M itself. We refer the reader to [HK3] for an
expository account of the necessary recent developments in the cone-deformation theory.

Let E be an end of a geometrically finite cone-manifold that is cut off by a surface
S with genus �2. Then the hyperbolic structure on E=S×R+ naturally extends to
a conformal structure on S×{∞}. The hyperbolic structure on E is locally modelled
on H3, while the conformal structure is modelled on Ĉ.

More concretely, H3 is compactified by Ĉ, and PSL2(C) acts continuously on the
compactification as hyperbolic isometries of H3 and as projective transformations of Ĉ.
Then S×(0,∞] has an atlas of charts to H3∪Ĉ whose transition maps are restrictions
of elements of PSL2(C). These charts will map points in S×R+ to H3 and points in
S×{∞} to Ĉ. Restricted to S×R+ the charts will form an atlas for the end E, and
on S×{∞} the charts will define a conformal structure on S. We refer to S with this
conformal structure as the conformal boundary of E.

The following theorem appears in [Brm2].

Theorem 6.1. Given α>0 there exists l>0 such that the following holds: Let Mα

be a geometrically finite hyperbolic cone-manifold with no rank-1 cusps, singular locus C
and cone-angle α at each component c⊂C. If the tube radius R about each component c

in C is at least arsinh
√

2 and the total length lMα(C ) of C in Mα satisfies lMα(C )<l,
then there is a 1-parameter family Mt of cone-manifolds with fixed conformal boundary
and cone-angle t∈[0, α] at each c⊂C.

The main result of this section allows us to control the geometric effect of the 1-
parameter cone-deformation when the singular locus is sufficiently short.

Theorem 6.2. (The drilling theorem) Given α>0 and L>1, there exists l>0 so
that the following holds: If Mα is a hyperbolic cone-manifold satisfying the hypotheses
of the previous theorem, and Mt the corresponding 1-parameter family of cone-manifolds
with t∈[0, α], then if lMα(C )<l, there is for each t a standard neighborhood Tt(C ) of the
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singular locus C and an L-bi-Lipschitz diffeomorphism of pairs

ht: (Mα\Tα(C ), ∂Tα(C ))−→ (Mt\Tt(C ), ∂Tt(C ))

so that ht extends to a homeomorphism h̄t:Mα→Mt for each t∈(0, α].

As we will see, the standard neighborhood Tt(C ) will be a component Tε
t(C ) of the

Margulis ε-thin part of Mt containing C. In fact, for each ε>0 less than the appropriate
Margulis constant (which will depend in general on the tube radius and cone-angle of
each component of the singular locus) there are l and ht satisfying the theorem for
Tt(C )=Tε

t(C ).

Background. Before proving Theorem 6.2 we review the necessary background. Let
N be a 3-manifold with boundary (we allow N to be non-compact). Let g be a hyperbolic
metric on the interior of N that extends to a conformal structure on each component
of ∂N ; here, the metric g need not be complete, but the conformal structures compactify
the ends where the metric is complete.

Let Ñ denote the universal cover of N and let π: Ñ→N denote the covering pro-
jection. Then g lifts to a metric g̃ on the universal cover int(Ñ ) of int(N ), and the
conformal structures on ∂N lift to conformal structures on ∂Ñ . There is a map

Dev: Ñ −→H3∪Ĉ

that is a local isometry on int(Ñ ) and conformal on ∂Ñ .
Furthermore, there is a representation

�:π1(N )−→PSL2(C)

with the property that

Dev(γ(p))= �(γ)Dev(p) (6.1)

for each p∈Ñ and each deck transformation γ∈π1(N ).
The map Dev is called the developing map for the metric g and is determined up

to postcomposition with elements of PSL2(C) acting on H3∪Ĉ. Changing the devel-
oping map by postcomposition changes the corresponding representation by conjugation
in PSL2(C).

A smooth family gt of such metrics on N determines a smooth family of developing
maps

Devt: Ñ −→H3∪Ĉ.
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The developing maps Devt determine a time-dependent vector field vt on Ñ, where vt(p)
is the pullback by Devt of the tangent vector to the path Devt(p) at time t; i.e.

(Devt)∗(vt(p))=
dDevt

dt
(p).

We call vt the derivative of the family of developing maps Devt.
A Killing field on a Riemannian manifold N is a vector field whose local flow is an

isometry for the Riemannian metric on N. By differentiating (6.1) we have that for each
t and for any γ∈π1(N ), the vector field

vt−γ∗vt

is a Killing field on int(Ñ ) for the Riemannian metric gt. A vector field with this
automorphic property is called automorphic for the metric gt, or gt-automorphic. Note
that a gt-automorphic vector field vt need not arise as the derivative of a family of
developing maps.

Let ĝt be a family of metrics on N for which there are diffeomorphisms ft:N→N

isotopic to the identity satisfying (ft)∗gt=ĝt, i.e.

ft: (N, ĝt)−→ (N, gt)

is an isometry. Then there will be a corresponding family of developing maps D̂evt with
derivative v̂t, a time-dependent vector field on Ñ.

The lifts f̃t: Ñ→Ñ of ft to the universal cover allow us to compare vt and v̂t: since
the maps ft are isometries from (N, ĝt) to (N, gt) one sees that the difference

(f̃t)∗v̂t−vt

restricts to the sum of a π1(N )-equivariant vector field and a Killing field on int(Ñ ).
In fact, D̂evt can be chosen so that (f̃t)∗v̂t−vt is a π1(N )-equivariant vector field: one
simply needs to alter D̂evt by postcomposition with a family of elements in PSL2(C).

The derivative of the family of developing maps Devt is a gt-automorphic vector
field; we now seek to integrate a gt-automorphic vector field vt to obtain a family of
developing maps Devt, reversing the above process.

Theorem 6.3. Let gt be a smoothly varying family of metrics, Devt the corre-
sponding family of developing maps and vt the derivative of Devt. Let wt be a smoothly
varying uniquely integrable family of gt-automorphic vector fields on Ñ, tangent to the
boundary ∂Ñ, such that wt−vt is equivariant. For any subset U⊂N contained in a
compact subset of N, there exists a family of metrics ĝt on N, developing maps D̂evt
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for ĝt, ĝt-automorphic vector fields v̂t on Ñ, and diffeomorphisms ft:N→N isotopic to
the identity so that

(1) (ft)∗gt=ĝt;
(2) v̂t is the derivative of the developing maps D̂evt;
(3) (ft)∗v̂t=wt on π−1(U).

Proof. We first prove that each p∈N has a neighborhood U such that the theorem
holds on U for t near 0.

Let p̃∈π−1(p) and choose nested neighborhoods V⊂V ′⊂V ′′ of p̃ such that both Dev0

and π restricted to V ′′ are embeddings. Then there exists an ε′>0 such that for |t|<ε′

the image Devt(V ′′) contains Dev0(V ′). We can then choose an ε′′ with 0<ε′′�ε′ such
that for |t|<ε′′ there exists a flow

φt:Dev0(V )−→H3∪Ĉ

so that φt is the flow of the time-dependent vector fields (Devt)∗wt.
Given q∈V define

D̂evt(q)=φt�Dev0(q).

Then we claim that D̂evt can be extended to a developing map on all of Ñ for each t.
To see this, we first note that for |t|<ε′′, we have

D̂evt(V )⊂Devt(V ′′),

so we may define an embedding ft:V →Ñ by

ht =Dev−1
t �D̂evt.

Since V ′′ is disjoint from its translates, there exists a family of embeddings ft:π(V )→N

so that
f̃t|V =ht

on V . We extend ft to a smooth family of diffeomorphisms of all of N so that f0 is the
identity. Then by setting U=π(V ) and

D̂evt =Devt�f̃t

we obtain the desired extension.
Now let U⊂N be any subset of N contained in a compact subset K of N . We again

establish the theorem for U and for t near 0. By the above, and the compactness of K,
there exist a finite collection of open sets Ui⊂N and an ε>0 so that

⋃
i Ui covers K, and
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the theorem holds on each Ui for |t|<ε. Let Devi be the resulting developing maps for
each Ui.

By the uniqueness of flows, we may define D̂evt by

D̂evt|π−1(Ui) =Devi
t|π−1(Ui)

,

and we have the theorem for U and all |t|<ε.
It follows that we may now define D̂evt on some open interval (a, b). Applying the

theorem at t=b we have corresponding triples (g′t,Dev′t, v
′
t) satisfying the conclusions

of the theorem on U for t∈(b−ε′, b+ε′) for some ε′>0. Let f ′
t: (N, g′t)→(N, gt) be the

corresponding diffeomorphisms.
The developing maps Dev′t satisfy

Dev′t =Devt�f̃
′
t.

Thus we have Devt=Dev′t�(f̃ ′
t )−1, and therefore setting

D̂evt =Dev′t�(f̃
′
t )

−1
�f̃t,

Devt extends D̂evt over a neighborhood of t=b. Arguing similarly for t=a, the set of
t-values on which D̂evt may be defined is open, closed and non-empty, and therefore D̂evt

can be defined for all t. The proof is complete. �

Let gt be a smooth family of Riemannian metrics on N . We define vector-valued
1-forms ηt by the formula

dgt(x, y)
dt

=2gt(x, ηt(y)).

The symmetry of gt implies that ηt is self-adjoint. We define a pointwise norm of ηt by
choosing an orthonormal frame field {e1, e2, e3} for the gt-metric and setting

‖ηt‖2 =
3∑

i,j=1

gt(ηt(ei), ηt(ej)).

Note that
gt(x, ηt(x))� ‖ηt‖gt(x, x).

Given two metrics g and ĝ we define the bi-Lipschitz constant at each point p∈N

by

bilipp(g, ĝ)= sup
{

K � 1
∣∣∣∣ 1
K

�
√

ĝ(x, x)
g(x, x)

�K for all x∈TpN, x �=0
}

.
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A bound on ‖ηt‖ for all t∈[0, a] gives a bound on bilipp(g0, ga). In particular,∣∣∣∣dgt(x, x)
dt

∣∣∣∣ � 2‖ηt‖gt(x, x),

and integrating we have
ga(x, x)� e2Kag0(x, x)

if ‖ηt‖�K for all t∈[0, a]. This implies that

bilipp(g0, ga)� eaK.

The families of metrics we will examine will always be the pullback of some fixed
metric g by the flow φt of a time-dependent vector field vt. In this case we can relate ηt

to the covariant derivative of vt. More precisely, if gt=φ∗
t g then

ηt = sym∇tvt

where ∇t is the Riemannian connection for the gt-metric and sym∇t is the symmetric
part of the covariant derivative. This follows from the fact that

dgt(x, y)
dt

=Lvtgt(x, y)= g(∇t
xvt, y)+g(x,∇t

yvt)= 2g(x, sym∇t
yvt).

Our vector fields will also be divergence free and harmonic. For our purposes v is
harmonic if it is divergence free and curl curl v=−v. Note that our curl is half the usual
curl and is chosen to agree with the definition given in [HK1]. We also refer there for
motivation for this definition of harmonic. Note that curl v will also be a divergence-free,
harmonic vector field.

We use ∇t to define an operator Dt on the space of vector-valued k-forms by the
formula

Dt =
3∑

i=1

ωi∧∇t
ei

,

where the ei are an orthonormal frame field with coframe ωi. The formal adjoint of Dt

is then

D∗
t =

3∑
i=1

i(ei)∇ei ,

where i(ei) is contraction.
Let wt=curl vt. In §2 of [HK1] it is shown that

sym∇twt = ∗Dtηt =βt

and D∗
t ηt=0. Bounds on the norms of ηt and βt will allow us to control the geodesic

curvature of a smooth curve in N.
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Proposition 6.4. Let γ(s) be a smooth curve in N and let C(t) be the geodesic
curvature of γ at γ(0)=p in the gt-metric. For each ε>0 there exists a K>0 depending
only on ε, a and C(0) such that |C(a)−C(0)|�ε if ‖ηt(p)‖�K, ‖βt(p)‖�K and D∗

t ηt=0
for all t∈[0, a].

Proof. We assume that γ(s) is a unit-speed parameterization in the g0-metric. In the
gt-metric we reparameterize such that γt(s)=γ(ht(s)) is a unit-speed parameterization.
Let

V (t)=∇t
γ′

t
γ′

t(0).

Then

C(t)2 = gt(V (t), V (t)).

Differentiating we have

C(t)C ′(t)= gt(V (t), V ′(t))+gt(V (t), ηt(V (t))). (6.2)

The result will follow if we can bound C′(t); we accomplish this via a calculation in local
coordinates. We choose our coordinates so as to bound the derivative at t=0.

To write the various tensors in local coordinates (x1, x2, x3) we let ei=∂/∂xi, define
functions gij by gt(ei, ej)=gij(t), and let the gij be chosen such that (gij)(gij)=id. We
similarly define ηj

i by the formula ηt(ei)=
∑3

j=1 ηj
i (t)ej . The βj

i are defined in the same
way. Recall that the Christoffel symbols Γk

ij satisfy the formula

Γk
ij =

1
2

3∑
m=1

(
∂gim

∂xj
+

∂gjm

∂xi
− ∂gij

∂xm

)
gmk.

We can choose our local coordinates such that at a point p in N we have gij(0)=δj
i and

Γk
ij(0)=0. Note that

1
2

dgij

dt
=

3∑
k=1

ηk
i gkj ,

so with this choice of coordinates we have

ηj
i (0)=

1
2

dgij

dt
(0)

and
dΓk

ij

dt
(0)=

∂ηk
i

∂xj
(0)+

∂ηj
k

∂xi
(0)− ∂ηj

i

∂xk
(0) (6.3)

at p.
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We need to write the βj
i as derivatives of the ηj

i . To do this we note that by definition

ηt =
3∑

i,j=1

ηj
i (t)ej⊗ωi.

Then direct calculation gives

D0η0 =
3∑

i,j,k=1

∂ηj
i

∂xk
(0)ej⊗ωk∧ωi

at p. This implies that

βj
i (0)=

∂ηj
i+2

∂xi+1
(0)−

∂ηj
i+1

∂xi+2
(0) (6.4)

at p, where on the right-hand side of this formula the indices are measured mod 3. From
this we see that a bound on ‖β‖ gives a bound on the difference

∂ηj
i

∂xk
(0)− ∂ηj

k

∂xi
(0).

Another direct calculation in local coordinates gives

D∗
0η0 =

3∑
i,j=1

∂ηj
i

∂xi
(0)ej . (6.5)

Therefore, if D∗
0η0=0 we have (∂ηj

i/∂xi)(0)=0.
Combining (6.3), (6.4) and (6.5) we have

dΓ1
11

dt
(0)= 0,

dΓ2
11

dt
(0)=β1

3(0),
dΓ3

11

dt
(0)=−β1

2(0). (6.6)

We can now return to our smooth curve γ(s)=(x1(s), x2(s), x3(s)). Assume that
γ(0)=p and γ′(0)=e1. Define h1(t)=(dht/ds)(0) and h2(t)=(d2ht/ds2)(0). By our choice
of γ we have

V (t)=h1(t)2
3∑

i=1

(
d2xi

ds2
(0)+Γi

11(t)
)

ei+h2(t)e1.

To bound C ′(0) we need to bound g0(V (0), V ′(0)) and g0(V (0), η0(V (0))). For the second
term we have

|g0(V (0), η0(V (0)))|�C2(0)‖η0‖.

To bound the first term we note that V (0) is perpendicular to γ′(0). Therefore, if
we let V⊥(t) be the sum of the e2- and e3-terms of V (t), we have g0(V (0), V ′(0))=
g0(V (0), V ′

⊥(0)). Differentiating we have

V ′
⊥(0)=

∑
i=2,3

(
2h′

1(0)
d2xi

ds2
(0)+

dΓi
11

dt
(0)

)
ei.
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We need to bound h′
1(0). This is accomplished by differentiating the formula

gt(γ′
t(s), γ

′
t(s))= 1.

Note that when s=0 the formula becomes

h1(t)2g11(t)= 1,

and differentiating with respect to t yields h′
1(0)=−η1

1(0). To bound the derivative of
the Christoffel symbols we use (6.6). Therefore

|V ′
⊥(0)|0 � 2C(0)‖η0‖+‖β0‖,

which in turn implies that

|g0(V (0), V ′(0))|�C(0)(2C(0)‖η0‖+‖β0‖)

and
|C ′(0)|� 3C(0)‖η0‖+‖β0‖.

Since we could choose coordinates to calculate the derivative for any t we have

|C ′(t)|� 3C(t)‖ηt‖+‖βt‖. (6.7)

Therefore if we choose K small enough, and if ‖ηt(p)‖ and ‖βt(p)‖ are less than K, then
integrating (6.7) implies that |C(a)−C(0)|�ε. �

We remark that a similar statement holds for subsurfaces of N. In particular, if γ

lies on a subsurface S then the metrics gt induce a metric on S. If we use this induced
metric on S to measure the geodesic curvature of γ then the conclusion of Proposition 6.4
still holds.

For a vector field v the symmetric traceless part of ∇v is the strain of v and measures
the conformal distortion of the metric pulled back by the flow of v. If v is divergence free
then ∇v will be traceless, so η=sym∇v is a strain field. If v is harmonic we say that
η is also harmonic. To prove Theorem 6.2 we need the following mean-value inequal-
ity for harmonic strain fields (the result is due to Hodgson and Kerckhoff, see [Brm2,
Theorem 9.9] for an exposition).

Theorem 6.5. Let η be a harmonic strain field on a ball BR of radius R centered
at p. Then we have

‖η(p)‖� 3
√

2 vol(BR)
4πf(R)

√∫
BR

‖η‖2 dV ,
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where
f(R)= cosh(R) sin

(√
2R

)
−
√

2 sinh(R) cos
(√

2R
)

and R<π/
√

2 .

We now return to the concrete situation of interest: We assume given triples
(gt,Devt, vt), a family of cone-metrics, developing maps and gt-automorphic vector
fields vt so that vt is the derivative of Devt, where t∈[0, α] denotes the cone-angle at
the singular locus of gt. To apply Theorem 6.5, we will invoke the following Hodge theo-
rem of Hodgson and Kerckhoff [HK1] and its generalization [Brm3] to the geometrically
finite setting.

Theorem 6.6. (The Hodge theorem) Given the triple (gt,Devt, vt) there exists a
smooth, time-dependent, divergence-free, harmonic, gt-automorphic vector field wt so
that for each t∈[0, α] we have

(1) wt is tangent to ∂Ñ ;
(2) the restriction of wt to ∂Ñ is conformal ;
(3) wt−vt is an equivariant vector field.

Combined with Theorem 6.3 the Hodge theorem has the following corollary.

Corollary 6.7. Let Mt be the 1-parameter family of cone-metrics given by The-
orem 6.1. There exists a 1-parameter family of cone-metrics gt on N such that Mt=
(N, gt) and ηt is a harmonic strain field outside a small tubular neighborhood of the
singular locus and the rank-2 cusps.

Below, we will estimate the L2-norm of ηt=sym∇wt outside of a tubular neighbor-
hood of a short component of the singular locus. This, together with Theorem 6.5, will
give us the necessary control metrics gt outside of the thin part. Before obtaining this
control, we must normalize the picture in a neighborhood of the singular locus.

In general, the Margulis lemma does not apply to cone-manifolds. If, however, there
is a uniform lower bound R to the tube radius of each component of the singular locus and
an upper bound α on all cone-angles, a thick–thin decomposition exists exactly analogous
to that of the smooth hyperbolic setting (see [HK2] and [Brm2]). In particular, there
exists εR,α such that the εR,α-thin part M�εR,α of a hyperbolic cone-manifold M consists
of tubes about short geodesics (including the singular locus) and cusps.

In our situation, we have assumed that the singular locus of Mα has tube radius
at least arsinh

√
2 . It is shown in [HK2] that this tube radius will not decrease as the

cone-angle decreases. Therefore we fix

ε = εarsinh
√

2,α.



ON THE DENSITY OF GEOMETRICALLY FINITE KLEINIAN GROUPS 67

Given a non-parabolic homotopy class [γ] of a closed curve γ in Mα, it will be conve-
nient to consider the family of embedded tubes with core the geodesic representative of γ

as the cone-angle varies. For this, we use the following notation: If γ is a homotopically
non-trivial closed curve in N with lMt(γ)�ε�ε, we denote by Tε

t(γ) the component of
M<ε

t that contains the geodesic representative of γ in the gt-metric. We will often need
to refer to the union of the tubes about the singular locus C. For this reason we set

Tε
t(C )=

⋃
c∈C

Tε
t(c).

Occasionally we will make statements about a generic Margulis tube without reference to
a particular tube in the cone-manifolds Mt. We simply refer to such a generic ε-Margulis
tube as Tε.

Theorem 6.8. Given ε>0, there are l>0 and K>0 such that if lMt(C )�l then we
have the L2-bound ∫

Mt\Tε
t (C)

‖ηt‖2+‖∗Dtηt‖2 �K2lMt(C )2.

To apply Theorems 6.5 and 6.8 to bound the pointwise norms ‖ηt(p)‖ and
‖∗Dtηt(p)‖ we need to control the injectivity radius of p and the distance from p to
Tε

t(C ). To bound these two quantities we use the following estimates of R. Brooks and
J. Matelski on the geometry of equidistant tori about a short geodesic (see [BM]). Their
original result only applies to tubes about non-singular geodesics. The extension to tubes
about components of the singular locus is straightforward.

Theorem 6.9. (Brooks–Matelski) Given ε∈[0, ε], there are two continuous positive
functions du

ε and dl
ε on [0, ε] with du

ε (δ)→0, as δ→ε, and dl
ε(δ)→∞, as δ→0, so that

given δ∈[0, ε] the distance between the boundaries of Tε and Tδ satisfies

dl
ε(δ)� d(∂Tε, ∂Tδ)� du

ε (δ).

Given Riemannian manifolds (M,g) and (N, g′), a diffeomorphism

h: (M,g)−→ (N, g′)

is L-bi-Lipschitz if we have the bound

sup
p∈M

bilipp(h∗g′, g)�L.

It is worth noting that we will often be interested in the case when M=N and h is the
identity.

Our L2-bound on ηt, together with the above mean-value inequality for harmonic
strain fields (Theorem 6.5) and Proposition 6.4, readily gives the following corollary.
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Corollary 6.10. For any ε>0, δ>0, C>0 and L>1, there exists l>0 so that if
lMα(C )<l then the following holds: Let W be a subset of N, γ(s) a smooth curve in W

and C(t) the geodesic curvature of γ in the gt-metric at γ(0). If

W⊂M�ε
t

for all t∈[t0, α] and C(0)�C then the identity map

id: (W, gα)−→ (W, gt0)

is L-bi-Lipschitz and |C(0)−C(A)|�δ.

To apply the corollary we need to show that the thick part of Mα does not become
too thin in Mt, while the thin part does not become too thick.

Theorem 6.11. Given an ε1>0 there exist an ε0>0 and l>0 so that if the length
lMα(C )<l then we have

M�ε1
α ⊂ int M�ε0

t (6.8)

and
M�ε1

t ⊂ int M�ε0
α (6.9)

for all t∈[0, α].

Proof. By Theorem 6.9 we can choose ε0>0 so that

d(∂M�ε0
t , ∂M

�ε1/2
t )� 3ε1.

The set A of t such that (6.8) holds is open in [0, α]. To prove (6.8) we will show that
if lMα(C ) is sufficiently short then A is closed. Let a be a point in the closure of A. By
continuity we have

M�ε1
α ⊆M�ε0

a .

Either a is in A and we have proven (6.8), or M�ε1
α ∩M�ε0

a is non-empty.
We work by contradiction and assume that q∈M�ε1

α ∩M�ε0
a . Let B be a ball of

radius ε1 in the gα-metric with q in ∂B and center p. We also assume that B is contained
in M�ε1

α . By Corollary 6.10 there exists an l such that if lMα(C )�l then the inclusion
map

ι: (M�ε1
α , gα)−→ (M�ε0

a , ga)

is 2-bi-Lipschitz. This implies that p∈M
�ε2/2
a while d(p, q) is less than 2ε1 in the ga-

metric. By our choice of ε0, however, we have d(p, ∂M�ε0
a )�3ε1, which contradicts our

assumption that q lies in M�ε0
a , proving (6.8).

The inclusion (6.9) is proved similarly. �
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Before we continue we need to fix some constants. First choose ε2<ε such that Theo-
rem 6.9 implies that d(∂Mε

t , ∂M ε2
t )>1. Next choose ε1<ε2 such that d(∂M ε2

t , ∂M ε1
t )>2ε2.

Finally choose ε0<ε1 and l0 to satisfy the conditions of Theorem 6.11. This implies that
if lMα(C )�l0 then the inclusion map

ι: (M�ε1
α , gα)−→ (N, gt)

is an L-bi-Lipschitz diffeomorphism to its image, where L only depends on lMα(C ) and
L→1 as lMα(C )→0. The remainder of this section will be spent on extending this map
to all of Mα\Tε2

α (C ) in a uniformly bi-Lipschitz way.
Theorem 6.2 will easily follow from the next result.

Theorem 6.12. Let V⊂N be either
(1) the ε-Margulis tube Tε

α(γ) about a geodesic γ with lMα(γ)<ε1, or
(2) a rank-2 cusp component Pε

α of M�ε
α .

For each L>1 there exists an l>0 such that if lMα(C )�l then for all t�α there
exists an L-bi-Lipschitz embedding

φt: (V, gα)−→ (N, gt)

such that φt is the identity on a neighborhood of ∂V .

We will prove the theorem via a sequence of lemmas. For simplicity, these lemmas
will treat the case of the Margulis tube; the rank-2 cusp case admits a far simpler direct
proof and is also a limiting case of these arguments.

We first fix more notation: focusing our attention on a single short geodesic γ, let
W =Tε2

α (γ) and T =∂W.

Lemma 6.13. For each d>0 there exists an l>0 such that if lMα(C )�l then T is
contained in the d-neighborhood Nd(∂Tε2

t (γ)) of ∂Tε2
t (γ) and W contains Tε1

t (γ) for all
t�α.

Proof. The tubes Tε1
t (γ) will vary continuously in N as t varies. Since W⊃Tε1

α (γ),
if T is in M>ε1

t for all t then W⊃Tε1
t (γ) for all t. For d sufficiently small, Nd(∂Tε2

t (γ))
will be contained in M>ε1

t . In particular, the first conclusion implies the second.
By Theorem 6.9 there exists an L>0 such that if the injectivity radius in the gt-

metric of all points in T lies in the interval [ε2/L,Lε2] then T is contained in the d-
neighborhood of ∂Tε2

t (γ).
Let B be a ball of radius ε2 in the gα-metric centered at a point p∈T . Since B

is contained in M�ε1
α we have B⊂M�ε0

t for all t by Theorem 6.11. By Corollary 6.10
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we can choose an l>0 such that if lMα�l then the identity map restricted to B is L-bi-
Lipschitz from the gα-metric to the gt-metric. In particular, in the gt-metric there is a
ball of radius ε2/L centered at p and contained in B; i.e. p has injectivity radius greater
than ε2/L for all t. On the other hand, if p has injectivity radius greater than Lε2 in the
gt-metric then there exists a ball B′ of radius greater than Lε2 in the gt-metric centered
at p. Reversing the process above, this implies that p has injectivity radius greater than
ε2 in the gα-metric. This contradiction implies that the injectivity radius at p is bounded
above and below by Lε2 and ε2/L, respectively, for all t. �

Lemma 6.14. There exists an l>0 such that if lMα(C )�l then T is convex in the
gt-metric for all t�α.

Proof. To show that T is convex we need to show that every smooth curve σ on
T has non-zero geodesic curvature in the gt-metric at every point on σ. Since the tube
Tε2

α (γ) has radius uniformly bounded below by some R>0, every smooth curve on T has
geodesic curvature greater than tanhR in the gα-metric. The result then follows from
Corollary 6.10. �

We denote by

πt:T −→Tε2
t (γ)

the radial projection mapping. More explicitly, each point p∈T lies on a geodesic ray
which is perpendicular to the core of Tε

t (γ) in the gt-metric. This ray intersects ∂Tε2
t (γ)

in a unique point p′, and we set πt(p)=p′.

Lemma 6.15. For each L>1 and δ>0 there exists an l>0 such that if lMα(C )�l

then
(1) the radial projection πt is an L-bi-Lipschitz diffeomorphism;
(2) if σ is a geodesic in the Euclidean metric on T induced by the gα-metric then

πt(σ) has curvature bounded by δ in the Euclidean metric on ∂Tε2
t (γ) induced by the

gt-metric.

Proof. Given p∈T , let P be the hyperbolic plane in the gt-metric tangent to T at p,
and let r be the radial geodesic through p. By Lemma 6.13 a bound lMα(C ) gives a
bound on d(p, πt(p)), and as lMα(C )→0 we have d(p, πt(p))→0. We show that a bound
on lMα(C ) gives a bound on the angle ∠(r, P ) between r and P , and as lMα(C )→0 we
have

∣∣∠(r, P )− 1
2π

∣∣→0.

To control ∠(r, P ) we make the following observation. Let

W ′=Tε2
t (γ)\Nd(∂Tε2

t (γ)).
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By Lemma 6.13 we have W⊃W ′, and since T is convex P and W ′ are disjoint. On the
other hand, p∈P is within 2d of W ′, and the tube W ′ has definite radius. Elementary
hyperbolic geometry then gives the desired bound.

Next we remark that if ∠(r, P ) �=0 then πt is a diffeomorphism at p. If πt is a
local diffeomorphism at each point in T , it is a covering map. Since T and ∂Tε2

t (γ) are
homotopic in the complement of the core geodesic, πt must be a global diffeomorphism.
To finish the proof of (1) we note that bounds on d(p, πt(p)) and

∣∣∠(r, P )− 1
2π

∣∣ along
with a lower bound on the tube radius of W ′ bound the bi-Lipschitz constant of πt at p.

Next we control the curvature of the curve σ̄=πt�σ. We give the tube Tε
t (γ) cylin-

drical coordinates (r, θ, z) so that gt|Tε
t (γ) is given by the Riemannian metric

dr2+sinh2r dθ2+cosh2r dz2,

where r measures the hyperbolic distance from the core geodesic of Tε
t (γ). We then let

σ(s)=(r(s), θ(s), z(s)) be a unit-speed parameterization of σ.
We begin the proof of (2) with some preliminary remarks.
The bound on

∣∣∠(r, P )− 1
2π

∣∣ described above gives a bound on r′(s). We also note
that by the remark after Proposition 6.4, σ will be almost geodesic on (T, gt). In par-
ticular, ∇t

σ′σ′ will be nearly orthogonal to T and hence nearly radial. That is, we can
bound ∠(∇t

σ′σ′(s), ∂/∂r). Putting this all together, for any ε>0 if lMα(C ) is sufficiently
small, then |r′(s)|�ε and

∠
(
∇t

σ′σ′(s),
∂

∂r

)
� ε.

If Tε2
α (γ) has radius Rα then the curvature of σ in the gα-metric will be less than

coth Rα. By Corollary 6.10, for any C>0, if lMα(C ) is sufficiently small then the curvature
of σ in the gt-metric will be less than coth Rα+C. The curvature is the length of ∇t

σ′σ′

in the gt-metric, so we have
|∇t

σ′σ′|t � coth Rα+C.

Combining this with our bound ∠(∇t
σ′σ′, ∂/∂R)�ε we have∣∣∣∣gt

(
∇t

σ′σ′,
1

sinh r

∂

∂θ

)∣∣∣∣ � ε(coth Rα+C ).

Direction calculation gives

∇t
σ′σ′(s)= (r′′(s)−sinh r(s) cosh r(s)(θ′(s)2+z′(s)2))

∂

∂r

+(θ′′(s)+2 coth r(s)r′(s)θ′(s))
∂

∂θ

+(z′′(s)+2 tanh r(s)r′(s)z′(s))
∂

∂z
,
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so ∣∣∣∣gt

(
∇t

σ′σ′,
1

sinh r

∂

∂θ

)∣∣∣∣ = |sinh rθ′′+2 cosh rr′θ′|� ε(coth Rα+C ).

Since σ has unit speed we have |cosh rθ′|�|coth r|. Combining this with the fact that
|r′|<ε we have

|sinh rθ′′|� ε(2 coth r+cothRα+C ).

By a similar method we also see that

|cosh rz′′|� ε(2 tanh r+coth Rα+C ).

We can now bound the curvature of σ̄ on (∂Tε2
t (γ), gt). We first note that if �∇t is

the Riemannian connection for the Euclidean metric on ∂Tε2
t (γ) then

�∇t
σ̄′ σ̄′(s)= θ′′(s)

∂

∂θ
+z′′(s)

∂

∂z
.

Since σ̄ does not necessarily have unit speed, the length of �∇t
σ̄′ σ̄′(s) does not necessarily

give the geodesic curvature of σ̄. If, however, σ̄(h(s)) is a unit-speed reparameterization
of σ̄ then h′(s) is close to 1 and h′′(s) is small.

Thus, the geodesic curvature of σ̄ on (∂Tε2
t (γ), gt) is approximately the norm of

�∇t
σ̄′ σ̄′(s), for which we have the bound

|�∇t
σ̄′ σ̄′(s)|2 =sinh2r(θ′′)2+cosh2(z′′)2 � 2ε2(2 coth r+coth Rα+C )2.

The right-hand side tends to zero as lMα(C )→0, completing the proof. �

We now return to the situation at hand, and recall that the inclusion

ι: (M�ε1
α , gα)−→ (N, gt)

is an L-bi-Lipschitz diffeomorphism to its image. Given the short geodesic γ with length

lMα(γ)� ε1,

we now show that the inclusion map can be modified to a map φt on the collar
Tε

α(γ)\Tε2
α (γ) that is bi-Lipschitz and sends ∂Tε2

α (γ) to ∂Tε2
t (γ).

Lemma 6.16. For each L>1 there exists an l>0 such that if lMα(C )�l then there
exists an embedding

φt: (Tε
α(γ)\Tε2

α (γ), gα)−→ (N, gt)

such that
(1) φt is the identity in a neighborhood of ∂Tε

α(γ);
(2) φt is L-bi-Lipschitz from the gα-metric to the gt-metric;
(3) φt=πt on T ;
(4) dφt sends each unit normal vector to ∂Tε2

α (γ) to a unit normal vector to ∂Tε2
t (γ).
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Proof. Using a smooth bump function, it is straightforward to extend the projection
πt to a map

φt(p, r)= (p, s(r)),

where if (p, r) lies in T then (p, s(r))=πt(p), and so that φt is the identity on ∂Tε2
α (γ).

Since by Lemma 6.13, for any d>0 we may choose l>0 so that the Margulis tube Tε2
t (γ)

has boundary ∂Tε2
t (γ) lying within distance d of T =∂Tε2

α (γ) in N, s(r) may be chosen
so that φt is L-bi-Lipschitz.

Since radial geodesics in Tε
α(γ) make small angle with ∂Tε2

t (γ) (as in the proof of
Lemma 6.15), a further small modification in a neighborhood of T ensures that dφt sends
unit normal vectors to ∂Tε2

α (γ) to unit normal vectors to ∂Tε2
t (γ). �

The shape of the Margulis tube Tε(γ) about a short geodesic γ in a hyperbolic 3-
manifold varies continuously with the complex length of the core curve γ in the smooth
bi-Lipschitz topology (cf. [Mi2, Lemma 6.2]). By [Brm2, Theorem 4.3], when the singu-
lar locus is sufficiently short one can control the derivative of the complex length of a
bounded-length closed geodesic in Mt (for the analogous statement for the Teichmüller
parameter for a rank-2 cusp, see [Brm2, Theorem 7.3]). Together, these estimates yield
the following lemma:

Lemma 6.17. For each L>0 there exists an l>0 such that if lMα(C )�l then there
exists an L-bi-Lipschitz diffeomorphism

ψt:Tε2
α (γ)−→Tε2

t (γ)

so that ψt restricts to ∂Tε2
α (γ) by an affine map with respect to the Euclidean structures

on ∂Tε2
α (γ) and ∂Tε2

t (γ), and dψt sends unit normal vectors to ∂Tε2
α (γ) to unit normal

vectors to ∂Tε2
t (γ).

Applying Lemma 6.16, the final step in our argument will be the following lemma.

Lemma 6.18. Assume that Tε2 is an ε2-Margulis tube whose core geodesic has length
less than ε0. Let

φ: ∂Tε2 −→ ∂Tε2

be a diffeomorphism isotopic to the identity. Then for each K>1 there are L>1 and
δ>0 so that if φ is L-bi-Lipschitz and sends geodesics in the intrinsic metric on ∂Tε2 to
arcs of geodesic curvature at most δ in the intrinsic metric on ∂Tε2, then φ extends to
a K-bi-Lipschitz diffeomorphism

Φ:Tε2 −→Tε2 .
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Proof. If Tε2 were instead a rank-2 cusp component Pε2 of M�ε2, it would admit
a natural parameterization T×R+ where (x, d)∈T×R+ represents the point at depth d

along the inward-pointing normal to T at x∈T . Since the radial projection πd:T→Td

from T to the torus Td at depth d given by

πd(x, 0)= (x, d)

is conformal, the radial extension

Φ(x, d)= (φ(x), d)

is readily seen to be bi-Lipschitz, with bi-Lipschitz constant L.
For the Margulis tube Tε2 the situation is very similar away from a neighborhood

of the core geodesic. Indeed, after removing the core geodesic, the tube has a natural
product structure T×R+, where (x, r)∈T×R+ is now a point at radius r from γ. If Tε2

has radius R, the radial projection

πr(x,R)= (x, r),

for r�R, is uniformly quasi-conformal for r�1, and we will see that the radial extension

Φ(x, r)= (φ(x), r)

is uniformly bi-Lipschitz for r�1 as a result. For r∈(0, 1), however, the radial extension
Φ over Tε2 will not in general be bi-Lipschitz, nor will it in general extend to the core
geodesic.

To correct these problems, we will construct an isotopy φr of φ to the identity and
define our extension Φ by

Φ(x, r)= (φr(x), r). (6.10)

The isotopy φr will be the flow of a time-dependent family of vector fields vr on T . If
Tr denotes the equidistant torus at radius r from γ, the extension Φ will be bi-Lipschitz
if each φr is uniformly bi-Lipschitz on Tr and the vector field vr has uniformly bounded
size on Tr.

Using the intrinsic Euclidean metric on Tr, we identify all tangent spaces Tx(Tr),
x∈Tr, with R2 via parallel translation. In particular, for each x we view dφx as a linear
map of R2 to itself. We choose an orthonormal framing {e1, e2} such that e1 and e2 are
tangent to the directions of principal curvature of Tr. Then |dφ−id|r is the maximum
of the absolute value of the entries of the matrix dφ−id written in terms of this basis.
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Let Tε2 have radius R so that TR=∂Tε2. We first claim that given any δ′>0 there
are δ>0 and L>1 such that |dφ−id|R�δ′. This is equivalent to showing that φ has
small bi-Lipschitz constant and small “twisting”. That is, we need to show that the
angle between any v and dφ(v) is small for any tangent vector v. We have assumed that
φ is L-bi-Lipschitz, so we only need to bound the twisting.

Let α be the shortest geodesic on TR through x. Then the length of α is bounded
by Cε2, where C is a universal constant, so the length of φ(α) is bounded by LCε2. By
our assumption the geodesic curvature of φ(α) is bounded by δ. Since φ(α) is homotopic
to α, there is some point y on α such that if v is tangent to α at y then the angle between
v and dφ(v) is 0. The bounds on the curvature and the length of φ(α) imply that the
tangent to φ(α) is nearly parallel to α everywhere. Therefore, for any vector v tangent
to α, v and dφ(v) make a small angle. Since L is close to 1, φ is nearly conformal, so
for any tangent vector v the angle between v and dφ(v) is small, and thus φ has small
twisting.

We now consider a linear homotopy of φ to the identity constructed as follows. After
normalizing by an isometry of Tε2, we may assume that φ fixes a point p∈TR. We then
identify the universal cover T̃R with R2 so that the intrinsic metric on TR lifts to the
Euclidean metric on R2. We let φ̃ be a lift of φ that fixes a point and hence a lattice.
Let φ̃t be the homotopy of φ̃ to the identity given by

φ̃t(�x)= (1−t)φ̃(�x)+t�x

for each �x in R2. This homotopy is equivariant by the action of the covering translation
group for TR and therefore descends to a homotopy φt of TR. Direct computation shows
that if |dφ−id|R�δ′ then |dφt−id|R�(1−t)δ′. In particular, for δ′ sufficiently small, φt is
a local, and hence global, diffeomorphism for all t. In the Tr-metric another computation
shows that

|dφ−id|r � tanh R

tanh r
δ′.

Therefore for any δ′′�0 we can choose L and δ such that |dφt−id|�δ′′ in the Tr-metric
for all r�1. A bound on |dφt−id|r determines a bound on the bi-Lipschitz constant.
In particular, for any L′>1 we can choose L and δ so that φt is L′-bi-Lipschitz in the
Tr-metric.

Let vt be the time-dependent family of vector fields whose flow is φt. The norm of
vt in the Tr-metric is bounded by the supremum of the distance between x and φ̃(x) in
the Tr-metric. If Dr is the diameter of Tr, this distance is bounded by Drε

′, where ε′

tends to zero as the bi-Lipschitz constant L′ tends to 1. But Dr is universally bounded
for 1�r�2, so for these values of r the norm of vt is bounded on Tr.
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To finish the proof, we must reparameterize our isotopy to obtain the desired smooth-
ness for the extension Φ. Let s be a smooth function on [0, R] with

s(r)=


1, r � 1,

monotonically decreasing, 1� r � 2,

0, 2� r �R.

Note that the derivative of s is bounded (and independent of R). We now abuse notation
and redefine the isotopy φr as the projection to T of the isotopy of φ̃ to the identity given
by the formula

φ̃r(�x)= (1−s(r))φ̃(�x)+s(r)�x

for r∈[0, R]. With this notation, φr is the flow of the time-dependent vector field

wr = s′(r)vs(r),

which is again bounded in the Tr-metric for all r, and zero for r�1 and r�2. It follows
that the extension Φ of φ given by (6.10) is K-bi-Lipschitz, where K depends only on L

and δ. The proof is complete. �

We now prove Theorem 6.12 by combining Lemmas 6.16, 6.17 and 6.18.

Proof of Theorem 6.12. Let L>1 and δ>0 be given. Then by Lemma 6.16 there is
an l>0 so that if lMα(C )�l then for each closed geodesic γ with lMα(γ)<ε1 we have the
corresponding mapping

φt: (Tε
α(γ)\Tε2

α (γ), gα)−→ (N, gt).

Then φt restricts to an L-bi-Lipschitz diffeomorphism

φt|∂T
ε2
α (γ): ∂Tε2

α (γ)−→ ∂Tε2
t (γ)

so that geodesics on ∂Tε2
α (γ) map to arcs of geodesic curvature bounded by δ on ∂Tε2

t (γ).
Assume that l also satisfies the hypotheses of Lemma 6.17, and let

ψt:Tε2
α (γ)−→Tε2

t (γ)

be the L-bi-Lipschitz diffeomorphism guaranteed by Lemma 6.17.
Since

ψt: ∂Tε2
α (γ)−→ ∂Tε2

t (γ)

is affine, the composition

φt�ψ
−1
t |∂T

ε2
t (γ): ∂Tε2

t (γ)−→ ∂Tε2
t (γ)
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sends geodesics on ∂Tε2
t (γ) to arcs of curvature bounded by δ, and is L2-bi-Lipschitz.

Since L>1 and δ were arbitrary, given any K>1 we may choose L and δ sufficiently
small so that Lemma 6.18 provides a K-bi-Lipschitz extension

Φt:Tε2
t (γ)−→Tε2

t (γ)

of φt�ψ
−1
t |∂T

ε2
t (γ) over Tε2

t (γ).
Since we have

φt|∂T
ε2
α (γ) =Φ−1

t �ψt|∂T
ε2
α (γ),

the composition
Φ−1

t �ψt:Tε2
α (γ)−→Tε2

t (γ)

gives a KL-bi-Lipschitz extension of φt over Tε2
α (γ).

As remarked, we may apply exactly analogous versions of Lemmas 6.16, 6.17 and 6.18
for the rank-2 cusp case to complete the proof. �

Proof of Theorem 6.2. Given any L>1, we may choose l>0 satisfying the hypotheses
of Theorem 6.12 so that the inclusion

ι: (M�ε1
α , gα)−→ (N, gt)

is an L-bi-Lipschitz diffeomorphism to its image from the gα-metric to the gt-metric.
After decreasing l if necessary, Theorem 6.2 follows by applying Theorem 6.12 to extend
ι to an L-bi-Lipschitz diffeomorphism ft by extending over each component of M�ε

α other
than Tε(C ).

Finally, for each component c⊂C we may apply the argument of Lemma 6.16 to each
component of Tε(C ) to modify the restriction

ft|Mα\Tε2
α (C)

on Tε
α(c)\Tε2

α (c) so that ft(∂Tε2
α (c))=∂Tε2

t (c). The resulting L-bi-Lipschitz diffeomor-
phism

ht:Mα\Tε2
α (C )−→Mt\Tε2

t (C )

proves Theorem 6.2. �

We remark that the choice of ε2 was arbitrary, and there exists l>0 satisfying the
theorem for any choice of ε2.

Constants. For future reference, choosing some L>1 and letting l>0 denote the cor-
responding constant so that the conclusions of Theorem 6.2 apply, we take as a threshold
constant

l0 =min{lknot, l}.
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Then for any M∈AH(S) and any geodesic γ⊂M with lM (γ)<l0, we may graft M along γ,
and we may decrease the cone-angle along γ with L-bi-Lipschitz distortion of the metric
outside of a standard tube about γ.

7. Realizing ends on a Bers boundary

In this section we define a notion of realizability for simply degenerate ends of hyperbolic
3-manifolds on Bers boundaries for Teichmüller space:

Definition 7.1. Let E be a simply degenerate end of a hyperbolic 3-manifold M . If
E admits a marking- and orientation-preserving bi-Lipschitz diffeomorphism to an end
E′ of a manifold Q lying on the boundary of a Bers slice, we say that E is realized on a
Bers boundary by Q.

We prove a general realizability result for ends of manifolds M∈AH(S).

Theorem 7.2. (Ends are realizable.) Let M∈AH(S) have no cusps. Then each
degenerate end E of M is realized on a Bers boundary by a manifold Q.

Proof. As usual, the proof breaks into cases.

Case I: the end E has arbitrarily short geodesics. Let {γn}∞n=0 be a collection of
arbitrarily short geodesics in M. Pass to a subsequence so that each γn has length less
than l0, and so that for each n�1 the geodesic γn is isotopic out the end E in the
complement of γ0.

Consider the simultaneous graftings

M c
n =Gr±(γ0, γn,M ).

The manifolds Mc
n are 3-dimensional hyperbolic cone-manifolds with cone-angles 4π at

each component γ0 and γn of the singular locus.
Since we have

lM (γn)< l0

for each n, we may apply Theorem 6.2 to decrease the cone-angles at γ0 and γn to 2π.
The result is a smooth, geometrically finite hyperbolic 3-manifold homotopy equivalent
to S, namely, a quasi-Fuchsian manifold Q. We let Xn and Yn in Teich(S) be the surfaces
simultaneously uniformized by Q, so that Q=Q(Xn, Yn).

We note that the conformal boundary component that arises from negative grafting
along γ0 does not change with n; there is a single X∈Teich(S) so that Xn=X. It follows
that sending the cone-angles of Mc

n to 2π gives the sequence {Q(X,Yn)}∞n=1 lying in the
Bers slice BX .
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Passing to a subsequence and extracting a limit Q∈∂BX , we claim that the manifold
Q realizes the end E on the Bers boundary ∂BX .

To see this, let Un be the union of the Margulis tubes

Un =Tε(γ0)�Tε(γn)

in M. Let
F :S×R−→M

be a product structure for M as in §5 so that γn is a simple curve on F (S×{n}). We
consider an exhaustion of the end E by compact submanifolds Kn=F (S×[t0, tn]), where
[t0, tn]⊂[0,∞) is an interval chosen so that

Kn∩Un = ∅.

Letting F (γ0×(−∞, 0]) be the negative grafting annulus for γ0 and F (γn×[n,+∞)) be
the positive grafting annulus for γn, Kn admits a marking-preserving isometric embed-
ding ιn to the subset ιn(Kn)=K ′

n⊂M c
n.

Let U ′
n⊂Q(X,Yn) denote the union

U ′
n =Tε(γ0)�Tε(γn),

and let
hn: (M c

n\Un, ∂Un)−→ (Q(X,Yn)\U ′
n, ∂U ′

n)

be the uniformly bi-Lipschitz diffeomorphisms furnished by Theorem 6.2. For each inte-
ger j, there is an nj so that the mappings ϕn=hn�ιj are uniformly bi-Lipschitz embed-
dings of Kj into Q(X,Yn) for all n>nj .

By Ascoli’s theorem, the embeddings ϕn converge to a uniformly bi-Lipschitz embed-
ding on Kj into the limit Q of Q(X,Yn) after passing to a subsequence. Diagonalizing,
we have a uniformly bi-Lipschitz embedding of E into Q, so E is realized by Q on the
Bers boundary ∂BX .

Case II: the end E has bounded geometry. By our application of Minsky’s bounded
geometry results (Theorem 4.5), if Q∈∂BX has end-invariant ν(EQ)=ν(E), then Q re-
alizes the end E on the Bers boundary ∂BX . Letting µ be any measure on ν(Q) and
choosing weighted simple closed curves tnγn so that tnγn→µ, we let Yn∈Teich(S) be
any surface for which lYn(γn)<1/n. Then applying [Bro1, Theorem 2], any accumulation
point Q of Q(X,Yn) has the property that ν(EQ)=ν(E). This completes the proof. �

Applying results of [Bro1] and [Bro2], we deduce a corollary that will be essential
to ensure convergence of our candidate geometrically finite approximations for M .
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Corollary 7.3. Let Q=limn→∞ Q(X,Yn) be a realization of the positive degener-
ate end E of M∈AH(S). Then for any convergent subsequence Yn→[µ] in Thurston’s
compactification PL(S), we have ν(E)=|µ|.

Proof. The corollary is a direct consequence of Theorem 6.1 of [Bro2]. �

8. Asymptotic isolation of ends

Theorem 7.2 guarantees that each degenerate end of a manifold M∈AH(S) can be re-
alized on a Bers boundary. In the doubly degenerate case, realizations of E− and E+

by

Q− = lim
n→∞

Q(Xn, Y ) and Q+ = lim
n→∞

Q(X,Yn)

suggest the candidate approximations Q(Xn, Yn) for the original manifold M.
The construction raises the natural question: to what extent do the ends of a limit

N of quasi-Fuchsian manifolds Q(Xn, Yn) depend on the pair of surfaces (Xn, Yn)? In
this section we isolate the effect of the negative surfaces Xn on the positive end of N,
and likewise for the negative end.

Theorem 8.1. (Asymptotic isolation of ends.) Let Q(Xn, Yn)∈AH(S) be a se-
quence of quasi-Fuchsian manifolds converging algebraically to the cusp-free limit mani-
fold N. Then, up to marking- and orientation-preserving bi-Lipschitz diffeomorphism,
the positive end of N depends only on the sequence {Yn}∞n=1, and the negative end of N

depends only on the sequence {Xn}∞n=1.

Proof. Consider such a sequence Q(Xn, Yn) converging to N. By the assumption
that N is cusp free, the convergence of Q(Xn, Yn) to N is strong (see [T1] or [AC2,
Corollary G]).

We show that the positive end E+ depends only on the sequence {Yn}∞n=1 up to bi-
Lipschitz diffeomorphism preserving orientation and marking; the same argument applies
to the negative end E−. In other words, given another sequence {X ′

n}∞n=1 in Teich(S) for
which the quasi-Fuchsian manifolds Q(X ′

n, Yn) converge to N ′, the positive end (E+)′ of
N ′ admits a marking- and orientation-preserving bi-Lipschitz diffeomorphism with E+.

If the end E+ is geometrically finite, it is well known that its associated confor-
mal boundary component Y determines E+ up to bi-Lipschitz diffeomorphism (see [EM]
and [Mi1]). Thus we may assume that E+ is degenerate.

If all closed geodesics in N have length at least 1
2 l0 then N has a global lower bound

to its injectivity radius since N has no cusps. It follows from Theorem 4.5 that there is a
hyperbolic manifold Q∈∂BX in the boundary of the Bers slice BX so that the positive end
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E+
Q of Q is degenerate, and there is an orientation- and marking-preserving bi-Lipschitz

diffeomorphism
h:E+ −→E+

Q.

By Minsky’s bounded geometry theorem (Theorem 4.2), the bi-Lipschitz diffeomorphism
type of the end E+

Q depends only on ν(E+
Q). Since E+ and E+

Q are bi-Lipschitz diffeo-
morphic, we have ν(E+)=ν(E+

Q). If [µ] is any limit of {Yn}∞n=1 in PL(S), it follows from
[Bro2, Theorem 6.1] that either ν(E+)=|µ| or ν(E−)=|µ|. The fact that ν(E+)=|µ| is
due to Thurston (see [T1, §9.2]), but the argument makes delicate use of interpolations
of pleated surfaces through Q(Xn, Yn). We present an alternative argument in which a
geodesic in the complex of curves plays a similar role to that of the carefully chosen path
in ML(S) from Thurston’s original argument.

By strong convergence, there are compact cores Mn⊂Q(Xn, Yn) converging geo-
metrically to a compact core M⊂N so that each compact core separates the ambient
manifold into positive and negative ends. It follows that if ν(E−)=|µ| then there are
simple closed curves γn with [γn]→[µ] for which the geodesic representative γ∗

n of γn in
Q(Xn, Yn) always lies in the negative end of Q(Xn, Yn) for n sufficiently large.

Let βn∈ML(S) denote the bending lamination for the convex-core boundary com-
ponent of Q(Xn, Yn) that faces Yn (see [T1] and [EM]). By a theorem of M. Bridgeman
[Bri, Proposition 2], there is a K>0 so that the lengths lYn(βn) are uniformly bounded,
and since Yn→[µ] in PL(S) there are µn∈ML(S) with [µn]→[µ] so that lYn(µn) are
also uniformly bounded (see [T4, Theorem 2.2] and [T6, §9]). It follows that the projec-
tive classes [βn] converge up to subsequence to a limit [µ′ ] with i(µ′, µ)=0, so we have
|µ|=|µ′|.

Given δ>0, we may construct a nearly straight train track τn carrying βn (see [T1, §8]
or [Bro1, Lemma 5.2]) so that leaves of βn lie within δ of τn, as do the geodesic represen-
tatives of sufficiently close approximations to βn by simple closed curves. Diagonalizing,
there are simple closed curves ηn with [ηn]→[µ′ ] so that the geodesic representatives η∗

n

of ηn in Q(Xn, Yn) lie in the positive ends of Q(Xn, Yn) for all n sufficiently large.
Since |µ|=|µ′| in EL(S), we have that the curves γn and ηn converge to the same

point in the Gromov boundary ∂C(S)=EL(S) (see [Kl, Theorem 1.4]). Joining γn to ηn

by a geodesic gn in C(S), it follows from the δ-hyperbolicity of C(S) and the definition
of its Gromov boundary that the entire geodesic gn converges to |µ| in ∂C(S). (The
Gromov inner product 〈αn|ζn〉 of any pair of points αn and ζn along the geodesic gn is
equal to that of its endpoints 〈γn|ηn〉, which tends to infinity with n since γn and ηn

both converge to |µ|. It follows that the geodesics gn converge at infinity to the limit |µ|
of their endpoints; see for example [BH, §III.H, Definition 3.12].)

Thus, for any sequence αn of curves so that αn corresponds to a vertex of gn, we
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have [αn]→[µ]. Since successive pairs of curves along gn have zero intersection, we may
realize each such pair by a pleated surface, one of which, say Zn, must intersect Mn.
The sequence of pleated surfaces Zn in Q(Xn, Yn) has a limit Z∞ in N (after passing to
a subsequence, see [T3, Proposition 5.9] and [CEG]) realizing µ, a contradiction.

It follows that ν(E+)=|µ|, and we conclude that the bi-Lipschitz diffeomorphism
type of the end E+ depends only on the sequence {Yn}∞n=1 in the case that all closed
geodesics in N have length at least 1

2 l0.
If N has a closed geodesic γ∗ for which lN (γ∗)< 1

2 l0, then there is an I so that for
all n>I, we have

lQ(Xn,Yn)(γ)< l0.

Otal’s theorem (Theorem 2.5) implies that γ∗ is the geodesic representative of a simple
closed curve γ on S, and that γ∗ is unknotted in each Q(Xn, Yn). It follows that the
complement Q(Xn, Yn)\Tε(γ) of the Margulis tube for γ in Q(Xn, Yn) has the homeo-
morphism type

Q(Xn, Yn)\Tε(γ)∼= S×R\N (γ×{0}),

where N (γ×{0}) denotes an embedded solid-torus neighborhood of γ×{0} in Q(Xn, Yn).
We assume for simplicity that the curve γ is non-separating on S; the separating

case presents no new subtleties. For reference let

T =S\collar(γ)

be the essential subsurface in the complement of a standard open annular collar of γ.
Applying Theorem 6.2, we may send the cone-angle at γ to zero keeping the confor-

mal boundary fixed, to obtain a manifold Mγ(Xn, Yn) with a rank-2 cusp P(γ) at γ and
a uniformly bi-Lipschitz diffeomorphism of pairs

hn: (Q(Xn, Yn)\Tε(γ), ∂Tε(γ))−→ (Mγ(Xn, Yn)\P(γ), ∂P(γ))

so that h is marking-preserving on the ends of Q(Xn, Yn), in a sense to be made precise
presently.

For simplicity of notation, let Qn=Q(Xn, Yn) and Mn=Mγ(Xn, Yn). We pause to
elaborate briefly on the structure of Mn. Since the geodesic γ∗ is unknotted, we may
choose a product structure Fn:S×R→Qn so that γ∗=Fn(γ×{0}) and so that there is
a standard tubular neighborhood

Vγ =collar(γ)×
(
−1

2 , 1
2

)
of γ×{0} in S×R with Fn(Vγ)=Tε(γ).



ON THE DENSITY OF GEOMETRICALLY FINITE KLEINIAN GROUPS 83

We take Mn=F (S×[−1, 1]) as a compact core for Qn, and we denote by E+
n =

F (S×(1,∞)) and E−
n =F (S×(−∞,−1)) the positive and negative ends of Qn with re-

spect to Mn. The diffeomorphism hn sends Mn\Tε(γ) to a relative compact core for Mn,
and sends E+

n and E−
n to ends of Mn. We will refer to hn(E+

n ) and hn(E−
n ) as the positive

and negative ends of Mn. The positive and negative ends of Mn are implicitly marked
by the compositions

hn�F (S×{1}) and hn�F (S×{−1}).

It follows from the fact that the cone-deformation preserves the conformal boundary that
in this marking the positive ends of Qn and Mn are compactified by the same surface
Yn∈Teich(S), and the negative ends of Qn and Mn are compactified by the same surface
Xn∈Teich(S).

Let ωn∈Qn\Tε(γ) be a choice of base-frame for Qn so that the lifts (Qn, ωn) to
AHω(S) converge strongly to (N,ω). Let ω′

n=hn(ωn) be base-frames for Mn. By Gro-
mov’s compactness theorem, we may pass to a subsequence and extract a geometric
limit (h∞, (Q∞, ω∞), (M∞, ω′

∞)) of the triples (hn, (Qn, ωn), (Mn, ω′
n)), where h∞ is a

uniformly bi-Lipschitz diffeomorphism between smooth submanifolds of Q∞ and M∞

obtained as a limit of the uniformly bi-Lipschitz diffeomorphisms hn.
Since the convergence of Qn→N is strong, we have Q∞=N, and h∞ has domain

N \Tε(γ). By the above discussion, the mappings hn induce the markings on the positive
ends of Mn, so h∞ gives a marking- and orientation-preserving uniformly bi-Lipschitz
diffeomorphism of the positive end E+ of N with the positive end E+

M of M∞.
The covering Qγ of M∞ corresponding to π1(E+

M ) lies in AH(S) and has the fol-
lowing properties:

(1) Qγ has positive end isometric to E+
M ;

(2) Qγ has cuspidal thin part Pγ⊂Qγ , a rank-1 cusp whose inclusion on π1 is con-
jugate to 〈γ〉;

(3) the pared submanifold Qγ\Pγ has a negative end

E−
γ
∼=T×(−∞, 0].

We claim that the end E−
γ of the pared submanifold Qγ\Pγ is geometrically finite.

Since it suffices to show that the cover Q̃γ of Qγ corresponding to π1(E−
γ )∼=π1(T )

is quasi-Fuchsian, assume otherwise. Then there is some degenerate end E of the pared
submanifold of Q̃γ , namely, the complement Q̃γ\P̃γ of the cuspidal thin part of Q̃γ .
Since the manifold Qγ is not a surface bundle over the circle, the covering theorem
(see [T1] and [C2]) implies that the end E has a neighborhood U that covers a degenerate
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end of M∞ finite-to-one. But the manifold M∞ has exactly two degenerate ends, each
homeomorphic to a product of the larger surface S with a half-line.

It follows that the negative end of Qγ is geometrically finite. Let Z∈Teich(T ) denote
the associated conformal boundary component. Choose a surface X∈Teich(S) so that
lX(γ)< 1

4 l0. By a theorem of Bers (see [Be, Theorem 3] or [Mc1, Proposition 6.4]), then,
the manifolds Q(X,Yn) have the property that

lQ(X,Yn)(γ)< 1
2 l0

for all n.
Performing the same process as above with Xn=X, we arrive at a manifold Q′

γ

whose positive end �E
+

is bi-Lipschitz diffeomorphic to the positive end of the limit Q∞

of Q(X,Yn) after passing to a subsequence. The negative end of Q′
γ has conformal

boundary surface Z ′∈Teich(T ).
The manifold Qγ is the cover associated to the positive end of

lim
n→∞

Mγ(Xn, Yn)=M∞,

and the manifold Q′
γ is the cover associated to the positive end of the limit

lim
n→∞

Mγ(X,Yn).

But letting Qγ(n) be the cover of Mγ(Xn, Yn) associated to Yn and letting Qγ(n)′ be the
cover of Mγ(X,Yn) associated to Yn, we have

∂Qγ(n)=Zn�Yn and ∂Qγ(n)′=Z ′
n�Yn,

where Zn converges to Z in Teich(T ) and Z ′
n converges to Z ′ in Teich(T ). Letting

Kn=dT (Zn, Z ′
n) be the Teichmüller distance from Zn to Z ′

n, the manifolds Qγ(n) and
Qγ(n)′ have quasi-isometric distance

dqi(Qγ(n), Qγ(n)′)<K ′
n,

where K ′
n depends only on Kn (see e.g. [Mc3, Theorem 2.5]). By lower semi-continuity

of the quasi-isometric distance on AH(S) [Mc3, Proposition 3.1] we have a marking-
preserving bi-Lipschitz diffeomorphism

Φ:Qγ −→Q′
γ .

Restricting the diffeomorphism Φ to the positive ends of Qγ and Q′
γ , it follows that

the positive end of N is bi-Lipschitz diffeomorphic to the positive end of

Q∞ = lim
n→∞

Q(X,Yn).

Since for any surface X ′∈Teich(S), the manifolds in the sequences Q(X,Yn) and
Q(X ′, Yn) are uniformly bi-Lipschitz diffeomorphic, the bi-Lipschitz diffeomorphism type
of E+ does not depend on X (by another application of [Mc3, Proposition 3.1]), so the
theorem follows. �
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9. Proof of the main theorem

In this section, we assemble our results to give the proof of our main approximation
theorem (Theorem 1.2). The proof naturally breaks into cases based on the homotopy
type of the manifold we wish to approximate. We first treat the following case.

Theorem 9.1. Let M∈AH(S) be cusp free. Then M is an algebraic limit of quasi-
Fuchsian manifolds.

Proof. By Theorem 7.2 (or the main theorem of [Brm1]), it suffices to consider the
case when M is doubly degenerate. Let F :S×R→M be a smooth product structure
on M, and let M=F (S×[−1, 1]) denote a compact core for M. Let

E− =F (S×(−∞,−1)) and E+ =F (S×(1,∞))

denote the positive and negative ends of M.
By Theorem 7.2, the ends E+ and E− are realizable by manifolds

Q+ = lim
n→∞

Q(X,Yn) and Q− = lim
n→∞

Q(Xn, Y )

on the Bers boundaries ∂B+
X and ∂B−

Y .
Moreover, if ν+ and ν− are the end-invariants for M, Corollary 7.3 guarantees that

after passing to a subsequence we may assume that we have the convergence

Xn → [µ−] and Yn → [µ+]

in Thurston’s compactification PL(S), and that the support of µ− and µ+ is given by

|µ−|= ν− and |µ+|= ν+.

Since ν− and ν+ are the end-invariants of the doubly degenerate manifold M, it
follows that µ− and µ+ bind the surface: for any simple closed curve α, we have

i(α, µ−)+i(α, µ+)> 0.

Thus, by Thurston’s double limit theorem ([T4, Theorem 4.1], see also [Ot2]), the
sequence

{Qn}∞n=1 = {Q(Xn, Yn)}∞n=1

converges after passing to a subsequence.
By an application of the continuity of the length function [Bro1, Theorem 2] we may

pass to a subsequence so that the sequence Q(Xn, Yn) converges to a limit M ′∈AH(S)
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for which ν+ and ν− are the end-invariants of M ′. It follows that the limit M ′ is doubly
degenerate.

Applying Theorem 8.1, the ends of M ′ are geometrically isolated: the positive end
of M ′ is bi-Lipschitz diffeomorphic to the positive end of Q+, and the negative end of
M ′ is bi-Lipschitz diffeomorphic to the negative end of Q−. Since Q+ and Q− realize the
ends of M, it follows that there is a smooth product structure

F ′:S×R−→M ′

so that
(1) F ′ decomposes M ′ into a compact core M′=F (S×[−1, 1]) and ends (E−)′=

F (S×(−∞,−1)) and (E+)′=F (S×(1,∞));
(2) there are marking-preserving bi-Lipschitz diffeomorphisms

h+:E+ −→ (E+)′ and h−:E− −→ (E−)′

between the positive and negative ends of M and M ′ so that

h+(F (x, t))=F ′(x, t) and h−(F (x, t))=F ′(x, t).

By compactness of M, the extension

h:M −→M ′

of h+ and h− across M defined by setting h(F (x, t))=F ′(x, t) is a single marking-
preserving bi-Lipschitz diffeomorphism from M to M ′. Applying Sullivan’s rigidity the-
orem [Su1], it follows that h is homotopic to an isometry, and we may conclude that
Q(Xn, Yn) converges to M. �

To complete the proof of Theorem 1.2, we now treat the case when M is a general
infinite-volume complete hyperbolic 3-manifold with incompressible ends and no cusps.
The theorem in this case essentially follows directly from the case when M has the
homotopy type of a surface; there are two issues to which we alert the reader:

(1) In the surface case, we applied Thurston’s double limit theorem to show that
the approximations converge up to subsequence. Here, an analogous compactness result
is necessary ([Oh2, Theorem 2.4], cf. [T5]).

(2) Examples constructed by Anderson and Canary (see [AC1]) illustrate that ho-
meomorphism type need not persist under algebraic limits of hyperbolic 3-manifolds.
Since we control the ends of Mn, and thence the peripheral structure of π1(Mn), we may
prevent such a topological cataclysm by an application of Waldhausen’s theorem [W],
[He, Theorem 13.7].
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Theorem 9.2. Let M be an infinite-volume complete hyperbolic 3-manifold with
incompressible ends and no cusps. Then M is an algebraic limit of geometrically finite
manifolds.

Proof. By Theorem 9.1, we may assume that M is not homotopy equivalent to a
surface. By Bonahon’s theorem, there is a compact 3-manifold N so that

M ∼= int(N ).

Thus, M lies in AH0(N ), the subset of AH(N ) consisting of marked hyperbolic 3-
manifolds (f :N→M ) for which f |int(N ) is homotopic to a homeomorphism.

As in the outline, we approximate the tame manifold M end-by-end, and combine
the approximations into one sequence of geometrically finite hyperbolic manifolds Mn

homeomorphic to M that converge to M.
Let M be a compact core for M and let E be a degenerate end of M \M. Let Q

be the cover of M corresponding to π1(E). Then Q lies in AH(S), where S=�E∩M.
Assume that M is oriented so that E lifts to the positive end Ẽ of Q in the cover.

By the covering theorem (see [T1, Chapter 9] or [C2, Main Theorem]), we claim that
the manifold Q is a singly degenerate manifold with no cusps and degenerate end Ẽ. To
see this, note first that M has no cusps, so neither does Q. The only alternative is then
that Q is doubly degenerate, which implies that the covering Q→M is finite-to-one, since
M is not a surface bundle over the circle. But if Q covers M finite-to-one, the manifold
M is itself homotopy equivalent to a surface finitely covered by S.

The geometrically finite locus GF0(N )=AH0(N ) consists of geometrically finite hy-
perbolic 3-manifolds M homeomorphic to int(N ). Realizing the degenerate ends of M

on the appropriate Bers boundaries, we will obtain surfaces that determine candidate
approximations for M in the interior of AH0(N ). The interior of AH0(N ) is typically
denoted by MP0(N ), the minimally parabolic structures on int(N ), namely, geometrically
finite structures on int(N ) with only finite-volume cusps. Since N is assumed to have no
torus boundary components, MP0(N ) is simply the cusp-free hyperbolic structures on
int(N ) in the case at hand.

Choosing a reference compact core M for M, let E1, ..., Ep denote the geometrically
finite ends of M, and let E1, ..., Eq denote its simply degenerate ends. Let Sj⊂∂N

denote the boundary component of N lying in the closure of the end Ej , j=1, ..., p, and
let Tk⊂∂N denote the boundary component of N lying in the closure of the end Ek,
where k=1, ..., q. Then the space MP0(N ) admits the parameterization

MP0(N )=Teich(∂N )=
p∏

j=1

Teich(Sj)×
q∏

k=1

Teich(Tk)
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(see [Kr, Theorem 14], [T4, Theorem 1.3] or [Mc1]).
Let {Yk(n)}∞n=1⊂Teich(Tk) denote the sequences of surfaces obtained from Theo-

rem 7.2 so that the limit
Qk = lim

n→∞
Q(Yk(0), Yk(n))

realizes the end Ek, k=1, ..., p. Let

hk: Êk −→Ek

be the marking-preserving bi-Lipschitz diffeomorphism from the positive end of Qk to Ek

coming from Theorem 7.2. Let Xj be the conformal boundary component compactify-
ing Ej for j=1, ..., p, and let

gj : Êj −→Ej

be the marking-preserving bi-Lipschitz diffeomorphism from the end of the Fuchsian
manifold Q(Xj ,Xj).

In the above parameterization, we let Mn be determined by

Mn =(X1, ...,Xp, Y1(n), ..., Yp(n))∈Teich(∂N ).

Let fn:N→Mn be the implicit homotopy equivalences marking the manifolds Mn. We
claim that the sequence Mn converges up to subsequence in AH(N ).

Corollary 7.3 guarantees that Yk(n) may be chosen to converge to a limit [µk]∈PL(S)
with support |µk|=νk, where νk=ν(Ek). Thus, there are simple closed curves γn on Tk

and positive real weights tn so that tnγn converges in ML(Tk) to µk, and the lengths
lYk(n)(tnγn) remain bounded. Applying a theorem of K. Ohshika generalizing Thurston’s
compactness theorem (see [Oh2, Theorem 2.4] and [T5]) we conclude that the sequence
Mn converges after passing to a subsequence. We pass to a subsequence so that Mn

converges algebraically to M∞, and geometrically to a manifold MG covered by M∞ by
a local isometry π:M∞→MG. Let f∞:N→M∞ denote the marking on M∞.

We will exhibit a compact core M∞ for M∞ so that any homotopy equivalence
f ′
∞:N→M∞ homotopic to f∞ is homotopic to a homeomorphism, and the ends

M∞\M∞ are exactly the ends Êk and Êj , where k=1, ..., p and j=1, ..., p.
First consider the covers Qj(n) of Mn corresponding to π1(Xj). The manifolds

Qj(n) range in the Bers slice BXj , and the surface Xj persists as a conformal boundary
component of the algebraic and geometric limits Qj(∞) and QG

j of {Qj(n)}∞n=1 (after
potentially passing to a further subsequence; see e.g. [KT, Proposition 2.3]).

The end Ej(n) of Qj(n) cut off by the boundary of a smooth neighborhood of the
convex-core boundary component facing Xj embeds in the covering projection to Mn.
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The ends Ej(n) converge geometrically to the geometrically finite end Ej(∞) of the geo-
metric limit QG

j , and this end is compactified by Xj . It follows that there are marking-
preserving smooth embeddings ϕn

j of Ej(∞) into Mn that converge C∞ to an isometric
embedding ϕj : Ej(∞)→MG.

The isometric embedding ϕj is marking-preserving in that

(ϕj)∗|π1(Sj) =π∗�(f∞)∗�(ιj)∗,

where ιj :Sj→N is the inclusion map. Thus, the end Ej(∞) lifts to an end �Ej of the
algebraic limit M∞.

Consider, on the other hand, covers Qk(n) of Mn corresponding to Yk(n). The
manifolds Qk(n)⊂AH(S) converge algebraically to Qk(∞), and there is a measured
lamination µk so that lQk(n)(µk)→0. The measured lamination µk “fills” the surface Tk:
for any essential simple closed curve γ on Tk, we have i(γ, µk) �=0. Applying [Bro1,
Theorem 2], the support |µk|=νk is an ending lamination for Qk(∞), which implies that
Qk(∞) has a degenerate end Ek(∞) with ending lamination νk. By an argument using
the covering theorem and [JM, Lemma 3.6], the end Ek(∞) embeds in the geometric
limit QG

k (see [AC2, Proposition 5.2]). Just as above, then, we have a limiting isometric
embedding φk:Ek(∞)→M∞ which is marking-preserving in the sense that

(φk)∗|π1(Tk) =π∗�(f∞)∗�(ik)∗,

where ik:Tk→N is the inclusion map. Let �Ek denote this end of M∞.
By an application of Waldhausen’s theorem (see [W] and [He, Theorem 13.7]), the

homotopy equivalence f∞:N→M∞ is homotopic to a homeomorphism to a compact core
M∞ for M∞ that cuts off the geometrically finite ends �Ej and the simply degenerate
ends �Ek.

We claim that the ends �Ej and �Ek have no cusps. Since �Ej is a geometrically finite
end compactified by the closed surface Xj , there is no isotopy class in �Ej with arbitrarily
short length. Likewise, �Ek is a degenerate end with ending lamination νk=|µk| that fills
the surface Tk. By results of Thurston and Bonahon (see [T1, Chapter 9] and [Bon1,
Proposition 3.4]), if γ⊂Tk is a simple closed curve represented by a cusp in �Ek (γ has
representatives with arbitrarily short representatives in the end �Ek) then we have

i(γ, µk)= 0,

contradicting the fact that νk fills the surface.
It follows that M∞ is cusp free, since any element g∈π1(N ) for which f∞(g) is

parabolic must have arbitrarily short representatives in its free-homotopy class exiting
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some end �Ej or �Ek of M∞. By a theorem of Anderson and Canary [AC2, Corollary G]
we may conclude that Mn converges strongly to M∞.

It follows that each sequence of covers Qj(n) or Qk(n) converges strongly to a limit
on a Bers boundary; otherwise the limit would be doubly degenerate, which is ruled out
once again by the covering theorem.

It follows that the geometric limit of the quasi-Fuchsian manifolds Qj(n) or Qk(n) is
uniformly bi-Lipschitz diffeomorphic to the quasi-Fuchsian manifolds (either Q(Xj ,Xj)
or Q(Yk(0), Yk(n))) whose limit realizes the corresponding ends Ej or Ek. Thus each
end of M∞ admits a marking-preserving bi-Lipschitz diffeomorphism to the end of the
corresponding realization in a Bers boundary.

As these ends admit marking-preserving bi-Lipschitz diffeomorphisms to the ends
of M, we may extend the corresponding bi-Lipschitz diffeomorphisms across the compact
cores to obtain a single marking-preserving bi-Lipschitz diffeomorphism

Ψ:M∞ −→M.

Since the corresponding conformal structures compactifying the geometrically finite ends
of M∞ and M are the same, we may apply Sullivan’s theorem [Su1] to conclude that Ψ
is homotopic to an isometry, and we have

M =M∞ = lim
n→∞

Mn.

As the manifolds Mn are geometrically finite, the proof is complete. �
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