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Cone-manifolds and the density conjecture

Jeffrey F. Brock and Kenneth W. Bromberg

Abstract

We give an expository account of our proof that each cusp-free hyperbolic 3-
manifold M with finitely generated fundamental group and incompressible ends
is an algebraic limit of geometrically finite hyperbolic 3-manifolds.

1. Introduction

The aim of this paper is to outline and describe new constructions and techniques we
hope will provide a useful tool to study deformations of hyperbolic 3-manifolds. An
initial application addresses the following conjecture.

Conjecture 1.1 (Bers–Sullivan–Thurston. The Density Conjecture). Each com-
plete hyperbolic 3-manifold M with finitely generated fundamental group is an alge-
braic limit of geometrically finite hyperbolic 3-manifolds.

Algebraic convergence of Mn to M refers to convergence in the algebraic defor-

mation space or in the topology of convergence on generators of the holonomy repre-
sentations

ρn : π1�M�� PSL2�� � � Isom��� 3 ��

The approximating manifolds Mn � � 3�ρn�π1�S�� are geometrically finite if the con-

vex core of Mn, the minimal convex subset homotopy equivalent to Mn, has finite vol-
ume. We give an expository account of our progress toward Conjecture 1.1 [BB02].

Theorem 1.2. Let M be a complete hyperbolic 3-manifold with no cusps, finitely
generated fundamental group, and incompressible ends. Then M is an algebraic limit
of geometrically finite hyperbolic 3-manifolds.

Our result represents an initial step in what we hope will be a general geometrically
finite approximation theorem for topologically tame complete hyperbolic 3-manifolds,
namely, for each such manifold M that is homeomorphic to the interior of a compact
3-manifold.

Indeed, the clearly essential assumption in our argument is that M is tame; we
make direct use of the following theorem due to Bonahon and Thurston (see [Bon86,
Thu79]).
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Theorem 1.3 (Bonahon–Thurston). Each cusp-free complete hyperbolic 3-manifold
M with finitely generated fundamental group and incompressible ends is geometrically
and topologically tame.

The tameness of a complete hyperbolic 3-manifold with finitely generated funda-
mental group reduces to a consideration of its ends since every such 3-manifold M
contains a compact core, namely, a compact submanifold� whose inclusion is a ho-
motopy equivalence. Each end e of M is associated to a component E of M � int�� �,
which we typically refer to as an “end” of M, assuming an implicit choice of com-
pact core. An end E is incompressible if the inclusion of E induces an injection
π1�E� �� π1�M�. The end E is geometrically finite if it has compact intersection with
the convex core. Otherwise, it is degenerate.

For a degenerate end E, geometric tameness refers to the existence of a family
of simple closed curves on the closed surface S � ∂� �E whose geodesic repre-
sentatives leave every compact subset of E. Using interpolations of pleated surfaces,
Thurston showed that a geometrically tame end is homeomorphic to S��� , so M

is topologically tame if all its ends are geometrically finite or geometrically tame (R.
Canary later proved the equivalence of these notions [Can93]).

1.1. Approximating the ends

Our approach to Theorem 1.2 will be to approximate the manifold M end by end.
Such an approach is justified by an asymptotic isolation theorem (Theorem 1.7) that
isolates the geometry of the ends of M from one another when M is obtained as a limit
of geometrically finite manifolds. Each degenerate end E of M has one of two types:
E has either

I. bounded geometry: there is a uniform lower bound to the length of the shortest
geodesic in E, or

II. arbitrarily short geodesics: there is some sequence γn of geodesics in E whose
length is tending to zero.

Historically, it is the latter category of ends that have been persistently inscrutable
(they are known to be generic [McM91, CCHS01]). Our investigation of such ends
begins with another key consequence of tameness, due to J. P. Otal (see [Ota95], or
his article [Ota02] in this volume). Before discussing this result, we introduce some
terminology.

If E is an incompressible end of M, the cover �M corresponding to π1�E� is homo-
topy equivalent to the surface S � ∂� �E. Thus, �M sits in the algebraic deformation
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space AH�S�, namely, hyperbolic 3-manifolds M equipped with homotopy equiva-
lences, or markings, f : S�M up to isometries that preserve marking and orientation
(see [Thu86b], [McM96]). The space AH�S� is equipped with the algebraic topol-
ogy, or the topology of convergence of holonomy representations, as described above.
Theorem 1.3 guarantees each M � AH�S� is homeomorphic to S��; Otal’s theorem
provides deeper information about how short geodesics in M sit in this product struc-
ture.

Theorem 1.4 (Otal [Ota95]). Let M lie in AH�S�. There is an εknot � 0 so that if �
is any collection of closed geodesics so that for each γ �� we have

�M�γ�� εknot

then there exists a collection of distinct real numbers �tγ � γ � � � and an ambient
isotopy of M �� S�� taking each γ to a simple curve in S��tγ�.

Said another way, sufficiently short curves in M are simple, unknotted and pairwise
unlinked with respect to the product structure S�� on M.

Otal’s theorem directly facilitates the grafting of tame ends that carry sufficiently
short geodesics. This procedure, introduced in [Brm02b], uses embedded end-homo-
topic annuli in a degenerate end to perform 3-dimensional version of grafting from
the theory of projective structures (see e.g. [McM98, GKM00]). In section 3 we will
describe how successive graftings about short curves in an end E of M can be used to
produce a sequence of projective structures with holonomy π 1�M� whose underlying
conformal structures Xn reproduce the asymptotic geometry of the end E in a limit.

Our discussion of ends E with bounded geometry relies directly on a large body of
work of Y. Minsky [Min93, Min94, Min00, Min01] which has recently resulted in the
following bounded geometry theorem.

Theorem 1.5 (Minsky. Bounded Geometry Theorem). Let M lie in AH�S�, and
assume M has a global lower bound to its injectivity radius inj : M � �

� . If N �
AH�S� has the same end-invariant as that of M then M � N in AH�S�.

In other words, there is an orientation preserving isometry ϕ : M � N that re-
spects the homotopy classes of the markings on each. The “end invariant” ν�M� refers
to a union of invariants, each associated to an end E of M. Each invariant is either
a Riemann surface in the conformal boundary ∂M that compactifies the end, or an
ending lamination, namely, the support �µ � of a limit �µ � of simple closed curves γ n

whose geodesic representatives in M that exit the end E (here �µ � is the limit of �γ n� in
Thurston’s projective measured lamination space�� �S� [Thu79, Thu86b]).
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Minsky’s theorem proves Theorem 1.2 for each M with a lower bound to its injec-
tivity radius, since given any end invariant ν�M� there is some limit M∞ of geometri-
cally finite manifolds with end invariant ν�M∞� � ν�M� (see [Ohs90, Bro00]).

1.2. Realizing ends on a Bers boundary

Grafting ends with short geodesics and applying Minsky’s results to ends with
bounded geometry, we arrive at a realization theorem for ends of manifolds M �
AH�S� in some Bers compactification.

Theorem 1.6 (Ends are Realizable). Let M � AH�S� have no cusps. Then each end
of M is realized in a Bers compactification.

We briefly explain the idea and import of the theorem. The subset of AH�S� con-
sisting of geometrically finite cusp-free manifolds is the quasi-Fuchsian locus QF�S�.
In [Ber60] Bers exhibited the parameterization

Q : Teich�S��Teich�S�� QF�S�

so that Q�X �Y � contains X and Y in its conformal boundary; Q�X �Y � simultane-

ously uniformizes the pair �X �Y �. Fixing one factor, we obtain the Bers slice BY �

�Q�X �Y � � Y � Teich�S��, which Bers proved to be precompact. The resulting com-
pactification BY 	 AH�S� for Teichmüller space has frontier ∂BY , a Bers boundary
(see [Ber70a]).

We say an end E of M � AH�S� is realized by Q in the Bers compactification

BY if there is a manifold Q � BY and a marking preserving bi-Lipschitz embedding
φ : E � Q (see Definition 4.2).

The cusp-free manifold M � AH�S� is singly-degenerate if exactly one end of M is
compactified by a conformal boundary componentY . In this case, the main theorem of
[Brm02b] establishes that M itself lies in the Bers boundary ∂BY , which was originally
conjectured by Bers [Ber70a]. Theorem 1.6 generalizes this result to the relative set-
ting of a given incompressible end of M, allowing us to pick candidate approximates
for a given M working end-by-end.

1.3. Candidate approximates

To see explicitly how candidate approximates are chosen, let M have finitely generated
fundamental group and incompressible ends. For each end E of M, Theorem 1.6 allows
us to choose Xn�E� so that the limit of Q�Xn�E��Y � in BY realizes the end E. Then we
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simply let Mn be the geometrically finite manifold homeomorphic to M determined by
specifying the data

�Xn�E1�� � � � �Xn�Em�� � Teich�∂� �

where � is a compact core for M; Teich�∂� � naturally parameterizes such man-
ifolds (see section 5). The union Xn�E1� 
 � � � 
 Xn�Em� constitutes the conformal
boundary ∂Mn.

To conclude that the limit of Mn is the original manifold M, we must show that
limiting geometry of each end of Mn does not depend on limiting phenomena in the
other ends. We show ends of Mn are asymptotically isolated.

Theorem 1.7 (Asymptotic Isolation of Ends). Let N be a complete cusp-free hyper-
bolic 3-manifold with finitely generated fundamental group and incompressible ends.
Let Mn converge algebraically to N. Then up to bi-Lipschitz diffeomorphism, the end
E of M depends only on the corresponding sequence Xn�E�	 ∂Mn.

(See Theorems 4.1 and 5.1 for a more precise formulation).

When N � AH�S� is singly-degenerate, the theorem is well known (for example
see [McM96, Prop. 3.1]). For N not homotopy equivalent to a surface, the cover cor-
responding to each end of N is singly-degenerate, so the theorem follows in this case
as well.

The ideas in the proof of Theorem 1.7 when N is doubly-degenerate represent a
central focus of this paper. In this case, the cover of N associated to each end is again
the manifold N and thus not singly-degenerate, so the asymptotic isolation is no longer
immediate. The situation is remedied by a new technique in the cone-deformation
theory called the drilling theorem (Theorem 2.3).

This drilling theorem allows us to “drill out” a sufficiently short curves in a geo-
metrically finite cusp-free manifold with bounded change to the metric outside of a
tubular neighborhood of the drilling curve. When quasi-Fuchsian manifolds Q�X n�Yn�

converge to the cusp-free limit N, any short geodesic γ in N may be drilled out of each
Q�Xn�Yn�.

The resulting drilled manifolds Qn�γ� converge to a limit N�γ� whose higher genus
ends are bi-Lipschitz diffeomorphic to those of N. In the manifold N�γ�, the rank-2
cusp along γ serves to insulate the geometry of the ends from one another, giving the
necessary control. (When there are no short curves, Minsky’s theorem again applies).

The drilling theorem manifests the idea that the thick part of a hyperbolic 3-
manifold with a short geodesic looks very similar to the thick part of the hyperbolic
3-manifold obtained by removing that curve. We employ the cone-deformation theory
of C. Hodgson and S. Kerckhoff to give analytic control to this qualitative picture.
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1.4. Plan of the paper

In what follows we will give descriptions of each facet of the argument. Our descrip-
tions are expository in nature, in the interest of conveying the main ideas rather than
detailed specific arguments (which appear in [BB02]). We will focus on the case when
M is homotopy equivalent to a surface, which presents the primary difficulties, treating
the general case briefly at the conclusion.

In section 2 we provide an overview of techniques in the deformation theory of
hyperbolic cone-manifolds we will apply, providing bounds on the metric change out-
side a tubular neighborhood of the cone-singularity under a change in the cone-angle.
In section 3 we describe the grafting construction and how it produces candidate ap-
proximates for the ends of M with arbitrarily short geodesics. Section 4 describes the
asymptotic isolation theorem (Theorem 1.7), the realization theorem for ends (Theo-
rem 1.6), and finally how these results combine to give a proof of Theorem 1.2 when
M lies in AH�S�. The general case is discussed in section 5.
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The authors would like to thank Craig Hodgson and Steve Kerckhoff for their support
and for providing much of the analytic basis for our results, Dick Canary and Yair
Minsky for their input and inspiration, and Caroline Series for her role in organizing
the 2001 Warwick conference and for her solicitation of this article.

2. Cone-deformations

Over the last decade, Hodgson and Kerckhoff have developed a powerful rigidity and
deformation theory for 3-dimensional hyperbolic cone-manifolds [HK98]. While their
theory was developed initially for application to closed hyperbolic cone-manifolds,
work of the second author (see [Brm00]) has generalized this rigidity and deformation
theory to infinite volume geometrically finite manifolds.

The cone-deformation theory represents a key technical tool in Theorem 1.2. Let
N be a compact, hyperbolizable 3-manifold with boundary; assume that ∂N does not
contain tori for simplicity. Let c be a simple closed curve in the interior of N. A
hyperbolic cone-metric is a hyperbolic metric on the interior of N � c that completes
to a singular metric on all of the interior of N. Near c the metric has the form

dr2 � sinh2 rdθ 2 � cosh2 rdz2

where θ is measured modulo the cone-angle, α .
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Just as � 3 is compactified by the Riemann sphere, complete infinite volume hy-
perbolic 3-manifolds are often compactified by projective structures. If a hyperbolic
cone-metric is so compactified it is geometrically finite without rank-one cusps. As
we have excised the presence of rank-one cusps in our hypotheses, we simply refer to
such metrics as geometrically finite.

A projective structure on ∂N has an underlying conformal structure; we often refer
to ∂N together with its conformal structure as the conformal boundary of N.

Theorem 2.1. Let Mα denote N with a 3-dimensional geometrically finite hyperbolic
cone-metric with cone-angle α at c. If the cone-singularity has tube-radius at least

sinh�1
��

2
�

, then nearby cone-metrics are locally parameterized by the cone-angle

and the conformal boundary.

Here, the tube-radius about c is the radius of the maximally embedded metric tube
about c in Mα .

This local parameterization theorem was first proven by Hodgson and Kerckhoff
for closed manifolds with cone-angle less than 2π and no assumption on the size of
the tube radius [HK98]. In the thesis of the second author [Brm00], Hodgson and
Kerckhoff’s result was generalized to the setting of general geometrically finite cone-
manifolds, where the conformal boundary may be non-empty. The replacement of the
cone-angle condition with the tube-radius condition is recent work of Hodgson and
Kerckhoff (see [HK02a] in this volume).

Theorem 2.1 allows us to decrease the cone-angle while keeping the conformal
boundary fixed at least for cone-angle near α . We need more information if we wish
to decrease the cone-angle all the way to zero.

Theorem 2.2 ([Brm02a]). Let Mα be a 3-dimensional geometrically finite hyperbolic
cone-metric with cone-angle α . Suppose that the cone-singularity c has tube-radius

at least sinh�1
��

2
�

. Then there exists an ε � 0 depending only on α such that if the

length of c is less than ε there exists a one-parameter family Mt of geometrically finite
cone-metrics with cone-angle t and conformal boundary fixed for all t � �0�α �.

2.1. The drilling theorem

When the cone-angle α is 2π the hyperbolic cone-metric Mα is actually a smooth
hyperbolic metric. When the cone-angle is zero the hyperbolic cone-metric is also a
smooth complete metric; the curve c, however, has receded to infinity leaving a rank-
two cusp, and the complete hyperbolic metric lives on the interior of N � c. We call
N � c with its complete hyperbolic metric M0 the drilling along c of Mα .
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Applying the analytic tools and estimates developed by Hodgson and Kerckhoff
[HK02b], we obtain infinitesimal control on the metric change outside a tubular neigh-
borhood of the cone-singularity under a change in the cone-angle. Letting U t 	 Mt

denote a standard tubular neighborhood of the cone-singularity we obtain the follow-
ing drilling theorem, which summarizes the key geometric information emerging from
these estimates.

Theorem 2.3 (The Drilling Theorem). Suppose Mα is a geometrically finite hyper-
bolic cone-metric satisfying the conditions of Theorem 2.2, and let Mt be the resulting
family of cone-metrics. Then for each K � 1 there exists an ε � � 0 depending only on
α and K such that if the length of c is less than ε �, there are diffeomorphisms of pairs

φt : �Mα �Uα �∂Uα ��� �Mt �Ut �∂Ut�

so that φt is K-bi-Lipschitz for each t � �0�α �, and φt extends over Uα to a homeomor-
phism for each t � �0�α �.

3. Grafting short geodesics

A simple closed curve γ in M � AH�S� is unknotted if it is isotopic in M to a simple
curve γ0 in the “level surface” S��0� in the product structure S�� on M. For such
a γ , there is a bi-infinite annulus A containing γ representing its free homotopy class
so that A is isotopic to γ0��. Let A� denote the sub-annulus of A exiting the positive
end of M, let A� denote the sub-annulus of A exiting the negative end.

The positive grafting Gr��γ �M� of M along γ is the following surgery of M along
the positive grafting annulus A�.

1. Let M
�

denote the cyclic cover of M associated to the curve γ . Let

F : S1� �0�∞�� A�

be a parameterization of the grafting annulus and let F
�

be its lift to M
�
.

2. Cutting M along A� and M
�

along A�
�
� F

�
�S1� �0�1��, the complements M �

A� and M
�
�A�
�

each have two isometric copies of the annulus in their metric
completions M �A� and M

�
�A�
�

: the inward annulus inherits an orientation
from F that agrees with the orientation induced by the positive orientation on
M �A� and the outward annulus inherits the opposite orientations from F and
M �A�. The complement M

�
�A�
�

also contains an inward and outward copy of
A�
�

in its metric completion.
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Figure 1: The grafting annulus and its lift.

3. Let F in and Fout denote the natural parameterizations of the inward and outward
annulus for the metric completion of M �A� induced by F and let F in

�
and Fout

�

be similarly induced by F
�
.

4. Let φ be the isometric gluing of the inward annulus for M
�
�A�
�

to the outward
annulus for M �A� and the outward annulus of M

�
�A�
�

to the inward annulus
of M �A� so that

φ�F in�x� t�� � Fout
� �x� t� and φ�F out�x� t�� � F in

� �x� t�

(the map φ on the geodesic �γ 	M
�

should just be the restriction covering map
M
�
�M).

The result Gr��M�γ� of positive grafting along γ is no longer a smooth manifold since
its metric is not smooth at γ , but Gr��M�γ� inherits a smooth hyperbolic metric from
M and M

�
away from γ .

3.1. Graftings as cone-manifolds.

Otal’s theorem (Theorem 1.4) guarantees that a sufficiently short closed geodesic γ �

is unknotted. In this case, the positive grafting Gr��M�γ�� along the closed geodesic
γ� is well defined, and the singularity has a particularly nice structure: since the sin-
gularity is a geodesic, the smooth hyperbolic structure on Gr��M�γ��� γ� extends to
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Figure 2: Grafting: glue the wedge M
�
�A�
�

along the completion of M �A�.

a hyperbolic cone-metric on Gr��M�γ�� with cone-singularity γ � and cone-angle 4π
at γ� (cf. [Brm02b]).

3.2. Simultaneous grafting

We would like to apply the cone-deformation theory of section 2 to the grafting
Gr��M�γ��. The deformation theory applies, however, only to geometrically finite
hyperbolic cone-manifolds. The grafting Gr��M�γ�� alone may not be geometrically
finite if the manifold M is doubly-degenerate. Indeed, in the doubly-degenerate case
positive grafting produces a geometrically finite positive end, but to force geometric
finiteness of both ends, we must perform negative grafting as well.

Let γ and β be two simple unknotted curves in M that are also unlinked: γ is
isotopic to a level surface in the complement of β . Then γ is homotopic either to
�∞ or to �∞ in the complement of β . Assume the former. Then we may choose
a positive grafting annulus A�γ for γ and a negative grafting annulus A�

β for β and
perform simultaneous grafting on M: we simply perform the grafting surgery on A �

γ

and A�β at the same time.

By Otal’s theorem, when γ � and β � are sufficiently short geodesics in the hyper-
bolic 3-manifold M, they are simple, unknotted and unlinked. If γ � is homotopic to
�∞ in M �β �, the simultaneous grafting

Gr��β ��γ��M�
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produces a hyperbolic cone-manifold with two cone-singularities, one at γ � and one
at β �, each with cone-angle 4π .

We then prove the following theorem.

Theorem 3.1 (Simultaneous Graftings). Let γ � and β � be two simple closed geo-
desics in M as above. Then the simultaneous grafting Gr��β ��γ��M� is a geometri-
cally finite hyperbolic cone-manifold.

The proof applies the theory of geometric finiteness for variable negative curva-
ture developed by Brian Bowditch [Bow94] [Bow95], to a variable negative curva-
ture smoothing � of Gr��β ��γ��M� at its cone-singularities. Using these results,
we obtain the following version of Canary’s geometric tameness theorem [Can93] for
Riemannian 3-manifolds with curvature pinched between two negative constants, or
pinched negative curvature (we omit the cusped case as usual).

Theorem 3.2 (Geometric Tameness for Negative Curvature). Each end E of the
topologically tame 3-manifold� with pinched negative curvature and no cusps sat-
isfies the following dichotomy: either

1. E is geometrically finite: E has finite volume intersection with the convex core
of� , or

2. E is simply degenerate: there are essential, non-peripheral simple closed curves
γn on the surface S cutting off E whose geodesic representatives exit every com-
pact subset of E.

In our setting, any simple closed curve η on S whose geodesic representative η �

avoids the cone-singularities of Gr��β ��γ��M� projects to a closed geodesic π�η �� in
M under the natural local isometric covering

π : Gr��β ��γ��M��β � γ��M�

The projection π extends to a homotopy equivalence across β � γ�, so the image
π�η�� is the geodesic representative of η in M. Though π is not proper, we show
that any sequence ηn of simple closed curves on S whose geodesic representatives
in Gr��β ��γ��M� leave every compact subset must have the property that π�η �

n �

leaves every compact subset of M. This contradicts bounded diameter results from
Thurston’s theory of pleated surfaces [Thu79], which guarantee that realizations of
π�η�n � by pleated surfaces remain in a compact subset of M. The contradiction im-
plies that grafted ends are geometrically finite, proving Theorem 3.1.
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The simultaneous grafting Gr��β ��γ��M� has two components in its projective

boundary at infinity to which the hyperbolic cone-metric extends. Already, we can
give an outline of the proof of Theorem 1.2 in the case that each end of the doubly-
degenerate manifold M � AH�S� has arbitrarily short geodesics.

Here are the steps:

I. Let �γ�n� be arbitrarily short geodesics exiting the positive end of M and let
�β �n � be arbitrarily short geodesics exiting the negative end of M. Assume γ �n is
homotopic to �∞ in M �β �n .

II. The simultaneous graftings

Gr��β �n �γ
�

n �M� � Mc
n

have projective boundary with underlying conformal structures X n on the nega-
tive end of Mc

n and Yn on the positive end of Mc
n .

III. By Theorem 3.1 the manifolds Mc
n are geometrically finite hyperbolic cone-

manifolds (with no cusps, since M has no cusps).

IV. Applying Theorem 2.3, we may deform the cone-singularities at γ �n and β �n back
to 2π fixing the conformal boundary of M c

n to obtain quasi-Fuchsian hyperbolic
3-manifolds Q�Xn�Yn�.

V. Since the lengths of γ �n and β �n are tending to zero, the metric distortion of the
cone-deformation outside of tubular neighborhoods of the cone-singularities is
tending to zero. Since the geodesics γ �n and β �n are exiting the ends of M, larger
and larger compact subsets of M are more and more nearly isometric to large
compact subsets of Q�Xn�Yn� for n sufficiently large. Convergence of Q�Xn�Yn�

to M follows.

Next, we detail our approach to the general doubly-degenerate case, which handles
ends with bounded geometry and ends with arbitrarily short geodesics transparently.

4. Drilling and asymptotic isolation of ends

It is peculiar that manifolds M � AH�S� of mixed type, namely, doubly-degenerate
manifolds with one bounded geometry end and one end with arbitrarily short geo-
desics, present some recalcitrant difficulties that require new techniques. Here is an
example of the type of phenomenon that is worrisome:
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4.1. Example

Consider a sequence Q�Xn�Y � tending to a limit Q∞ in the Bers slice BY for which Q∞

is partially degenerate, and for which Q∞ has arbitrarily short geodesics. AllowingY to
vary in Teichmüller space, we obtain a limit Bers slice B∞ associated to the sequence

�Xn� (this terminology was introduced by McMullen [McM98]). The limit Bers slice
B∞ is an embedded copy of Teich�S� in AH�S� consisting of manifolds

M�Y �� � lim
n�∞

Q�Xn�Y
�� where Y � lies in Teich�S��

Each M�Y �� has a degenerate end that is bi-Lipschitz diffeomorphic to Q∞ (see, e.g.,
[McM96, Prop. 3.1]), but the bi-Lipschitz constant depends on Y �.

If, for example, δ is a simple closed curve on S and τ n�Y � � Yn is a divergent
sequence in Teich�S� obtained via an iterated Dehn twist τ about δ , a subsequence of
�M�Yn��∞n�1 converges to a limit M∞, but there is no a priori reason for the degenerate
end of M∞ to be bi-Lipschitz diffeomorphic to that of M�Y �. The limiting geometry
of the ends compactified by Yn could, in principle, bleed over into the degenerate end,
causing its asymptotic structure to change in the limit. (We note that such phenomena
would violate Thurston’s ending lamination conjecture since M∞ has the same ending
lamination associated to its degenerate end as does M�Y �).

4.2. Isolation of ends

For a convergent sequence of quasi-Fuchsian manifolds Q�Xn�Yn��N, we seek some
way to isolate the limiting geometry of the ends of Q�Xn�Yn� as n tends to infinity. Our
strategy is to employ the drilling theorem in a suitably chosen family of convergent
approximates Q�Xn�Yn�� N for which a curve γ is short in Qn � Q�Xn�Yn� for all n.
We prove that drilling γ out of each Qn to obtain a drilled manifold Qn�γ� produces a
sequence converging to a drilled limit N�γ� whose higher genus ends are bi-Lipschitz
diffeomorphic to those of N.

An application of the covering theorem of Thurston and Canary [Thu79, Can96]
then demonstrates that the limiting geometry of the negative end of N depends only
on the sequence �Xn� and the limiting geometry of the positive end of N depends only
on the sequence �Yn�.

When N has no such short geodesic γ , the ends depend only on the end invariant
ν�N�, since in this case N has bounded geometry and Theorem 1.5 applies. These
arguments are summarized in the following isolation theorem for the asymptotic ge-
ometry of N (cf. Theorem 1.7).
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Theorem 4.1 (Asymptotic Isolation of Ends). Let Q�Xn�Yn� � AH�S� be a sequence
of quasi-Fuchsian manifolds converging algebraically to the cusp-free limit manifold
N. Then, up to marking and orientation preserving bi-Lipschitz diffeomorphism, the
positive end of N depends only on the sequence �Yn� and the negative end of N de-
pends only on the sequence �Xn�.

We now argue that as a consequence of Theorem 4.1 we need only show that
each end of a doubly-degenerate manifold M arises as the end of a singly-degenerate
manifold lying in a Bers boundary.

Definition 4.2. Let E be an end of a complete hyperbolic 3-manifold M. If E admits
a marking and orientation preserving bi-Lipschitz diffeomorphism to an end E � of a
manifold Q lying in a Bers compactification, we say E is realized in a Bers compacti-
fication by Q.

If, for example, the positive end E� of M is realized by Q�∞ on the Bers boundary
∂BX then there are by definition surfaces �Yn� so that Q�X �Yn� converges to Q�∞ , so
E� depends only on �Yn� up to bi-Lipschitz diffeomorphism. Arguing similarly, if
E� is realized by Q�

∞ on the Bers boundary ∂BY , the approximating surfaces �Xn� for
which Q�Xn�Y �� Q�

∞ determine E� up to bi-Lipschitz diffeomorphism.

By an application of Theorem 4.1, if the manifolds Q�Xn�Yn� converge to a cusp-
free limit N, then the negative end E�

N is bi-Lipschitz diffeomorphic to E� and the
positive end E�N is bi-Lipschitz diffeomorphic to E�. We may glue bi-Lipschitz dif-
feomorphisms

ψ� : E�N � E� and ψ� : E�N � E�

along the remaining compact part to obtain a global bi-Lipschitz diffeomorphism

ψ : N �M

that is marking and orientation preserving. By applying Sullivan’s rigidity theorem
[Sul81a], ψ is homotopic to an isometry, so Q�Xn�Yn� converges to M.

4.3. Realizing ends in Bers compactifications

To complete the proof of Theorem 1.2, then, we seek to realize each end of the doubly-
degenerate manifold M on a Bers boundary; we restate Theorem 1.6 here.

Theorem 4.3 (Ends are Realizable). Let M � AH�S� have no cusps. Then each end
of M is realized in a Bers compactification.
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In the case that M has a conformal boundary component Y , the theorem asserts
that M lies within the Bers compactification BY . This is the main result of [Brm02b],
which demonstrates all such manifolds are limits of quasi-Fuchsian manifolds.

We are left to attend to the case when M is doubly-degenerate. As one might ex-
pect, the discussion breaks into cases depending on whether an end E has bounded
geometry or arbitrarily short geodesics. We discuss the positive end of M; one argues
symmetrically for the negative end.

1. If a bounded geometry end E has ending lamination ν , choose a measured
lamination µ with support ν and a sequence of weighted simple closed curves
tnγn � µ . Choose Yn so that �Yn

�γn�� 1.

2. If γ�n are arbitrarily short geodesics exiting the end E, we apply the drilling
theorem to Gr��γ0�γn�M� to send the cone-angles at γ �0 and γ�n to 2π . The result
is a sequence Q�X �Yn� of quasi-Fuchsian manifolds.

We wish to show that after passing to a subsequence Q�X �Yn� converges to a limit Q∞

that realizes E on the Bers boundary ∂BX .

Bounded geometry. When E has bounded geometry, we employ [Min00] to argue that
its end invariant ν has bounded type. This condition ensures that any end with ν as
its end invariant has bounded geometry. The condition �Yn

�γn� � 1 guarantees that
�Yn

�tnγn�� 0 so that any limit Q∞ of Q�X �Yn� has ν as its end-invariant (by [Bro00],
applying [Ber70a, Thm. 3]). We may therefore apply a relative version of Minsky’s
ending lamination theorem for bounded geometry (see [Min94], and an extension due
to Mosher [Mos01] that treats the case when the manifold may not possess a global
lower bound to its injectivity radius) to conclude that Q∞ realizes E.

Arbitrarily short geodesics. If E has an exiting sequence �γn� of arbitrarily short
geodesics, we argue using Theorem 2.3 that Q�X �Yn� converges in the Bers bound-
ary ∂BX to a limit Q∞ that realizes E.

4.4. Binding realizations

As a final detail we mention that to apply Theorem 4.1, we require a convergent se-
quence Q�Xn�Yn�� N so that the limit Q� � limQ�Xn�Y0� realizes the negative end
E� of M and the limit Q� � limQ�X0�Yn� realizes the positive end E�.

By an application of [Bro01], the realizations described in our discussion of The-
orem 1.6 produce surfaces �Xn� and �Yn� that converge up to subsequence to lami-
nations in Thurston’s compactification of Teichmüller space that bind the surface S.
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Thus, an application of Thurston’s double limit theorem (see [Thu86b, Thm. 4.1],
[Ota96]) implies that Q�Xn�Yn� converges to a cusp-free limit N after passing to a
subsequence.

5. Incompressible ends

We conclude the paper with a brief discussion of the proof of Theorem 1.2 when M is
not homotopy equivalent to a closed surface.

Since M has incompressible ends, Theorem 1.3 implies that M is homeomorphic
to the interior of a compact 3-manifold N. Equipped with a homotopy equivalence
or marking f : N � M� the manifold M determines an element of the algebraic de-

formation space AH�N� consisting of all such marked hyperbolic 3-manifolds up to
isometries preserving orientation and marking, equipped with the topology of alge-
braic convergence.

By analogy with the quasi-Fuchsian locus, the subset AH�N� consisting of M � that
are geometrically finite, cusp-free and homeomorphic to M is parameterized by the
product of Teichmüller spaces

Teich�∂N� � ∏
X�∂N

Teich�X��

In this situation, the cover �M corresponding to an end E of M lies in AH�S�. The-
orem 1.6 guarantees that if E is degenerate it is realized on a Bers boundary; indeed,
since M is cusp-free and M is not homotopy equivalent to a surface, it follows that �M
is itself singly-degenerate, so Theorem 1.6 guarantees that �M lies in a Bers compacti-
fication.

The remaining part of Theorem 1.2, then, follows from the following version of
Theorem 1.7.

Theorem 5.1 (Asymptotic Isolation of Ends II). Let M be a cusp-free complete
hyperbolic 3-manifold with incompressible ends homeomorphic to int�N�. Let Mn �
M in AH�N� be a sequence of cusp-free geometrically finite hyperbolic manifolds so
that each Mn is homeomorphic to M. Let �E 1� � � � �Em� denote the ends of M, and let
∂Mn � X1

n  � � �Xm
n be the corresponding points in Teich�∂N�. Then, up to marking

preserving bi-Lipschitz diffeomorphism, E j depends only on the sequence �X j
n�.

In the case not already covered by Theorem 4.1, the covers of M n corresponding
to a fixed boundary component are quasi-Fuchsian manifolds Q�Yn�X j

n �. Their limit is
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the singly-degenerate cover of M corresponding to E j, so the surfaces Yn range in a
compact subset of Teichmüller space.

Again, it follows that the marked bi-Lipschitz diffeomorphism type of the end E

does not depend on the surfaces Yn. Theorem 1.2 then follows in this case from an
application of Theorem 1.6 to each end degenerate end E of M, after an application of
Sullivan’s rigidity theorem [Sul81a].
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