Introductory topics in Kleinian grops and hyperbolic 3-manifolds Margulis lemma problems

Jeffrey Brock, Kenneth Bromberg and Yair Minsky

August 20, 2007

If M is a hyperbolic 3-manifold. Let $M^{\leq \epsilon}$ be the set of points in M whose injectivity radius is $< \epsilon$. We similarly define $M^{\leq \epsilon}$, $M^{\geq \epsilon}$ and $M^{>\epsilon}$.

For a hyperbolic 3-manifold the Margulis lemma takes the following form:

Theorem 0.1 There exists a constant ε_3 such that each component of the $M^{<\varepsilon_3}$ is of the following type:

- 1. the open r-neighborhood of a simple closed geodesic of length $\leq \varepsilon_3$;
- 2. the quotient of a horoball by a parabolic group isomorphic to \mathbb{Z} ;
- 3. the quotient of a horoball by a parabolic subgroup isomorphic to \mathbb{Z}^2 .

In case (1) the component is a *Margulis tube*. In case (2) the component is a *rank* one cusp and in case (3) the component is a rank two cusp.

- 1. Given a Euclidean structure on the torus and a closed geodesic on the torus there is a tube with boundary the Euclidean structure and meridian the closed geodesic.
- 2. Given a Euclidean structure there is a unique rank two cusp with boundary the given Euclidean structure.
- 3. Show that all rank one cusps are isometric.
- 4. For $\lambda \in \mathbb{C}$ define $\phi_{\lambda}(z) = \lambda z$. Given a point in $p \in \mathbb{H}^3$ calculate $d(p, \phi_{\lambda}(p))$. Find a value for λ with $|\lambda| \neq 1$ and a point p such that $d(p, \phi_{\lambda}^2(p)) < d(p, \phi_{\lambda}(p))$.
- 5. Let $M_{\lambda} = \mathbb{H}^3/[\phi_{\lambda}]$ be the quotient hyperbolic 3-manifold of the group of isometries generated by ϕ_{λ} (again with $|\lambda| \neq 1$). Find a λ such that injectivity radius is not a smooth function on M_{λ} .

- 6. (hard) Given any $\epsilon > 0$ and D > 0 show that there exists an $\epsilon' < \epsilon$ such that for any point $p \in M_{\lambda}$ of injectivity radius ϵ and a point $q \in M_{\lambda}$ of injectivity radius ϵ' we have $d(p,q) \ge D$.
- 7. Prove the same statement but replace M_{λ} with a rank one or rank two cusp. This is much easier.
- 8. Using the Margulis Lemma and (7) and (8) prove the statement for a general hyperbolic 3-manifold.