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The following theorem was supposed to have been proven in lecture 2. It wasn’t so now it
becomes homework!

Theorem 0.1 (Chuckrow, Jorgensen) Let ρn be a sequence of discrete faithful representa-
tions of a torsion free group G in Isom+(H3) that converges to a representation ρ. If G is not
abelian then ρ is discrete and faithful.

A discrete, faithful representation of G is an injective homomorphism from G to Isom+(H3)
where the image is discrete. We say ρn → ρ if for all g ∈ G, ρn(g) → ρ(g) in Isom(H3).

Here is one way to prove this.

1. If ρ is not discrete show that (after possibly passing to subsequence) that there exists
gn ∈ G\{id} such that ρn(gn) → id.

2. Observe if ρ is not faithful that there exists a g ∈ G\{id} such that ρn(g) → ρ(g) = id. In
the remaining exercises we take gn = g to be a constant sequence when ρ is not faithful.

3. Let h ∈ G be an arbitrary element and show that ρn([h, gn]) → id.

4. Given any p ∈ H3 show that for large n both ρ(gn) and ρn([h, gn]) translate p some distance
< ε3 where ε3 is the 3-dimensional Margulis constant.

5. For large n show that [h, gn] and gn commute.

6. If a, b ∈ Isom+(H3) show that if a and [a, b] commute then a commutes with b. Use this to
show that h and gn commute for large n.

7. Show that if a, b, c ∈ Isom+(H3) and a commutes with both b and c then b commutes with
c. Use this to show that G is abelian. The proof is done!

8. We’ve actually shown something a bit stronger. Let Γn = ρn(G) be the ρn-image of G. If
G is not abelian and ρn converges then the identity is isolated in the union

⋃
n
Γn. Why?
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