- Product rule: If $F(x)=f(x) g(x)$ then

$$
F^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) .
$$

- Quotient rule: If $F(x)=\frac{f(x)}{g(x)}$ then

$$
F^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}} .
$$

- Chain rule: If $F(x)=f(g(x))$ then

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

- Power rule: If $F(x)=f(x)^{n}$ then

$$
F^{\prime}(x)=n f(x)^{n-1} f^{\prime}(x) .
$$

- Quadratic formula: If $a x^{2}+b x+c=0$ then

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

- Integrals:

$$
\begin{gathered}
\int f^{\prime}(x) f(x)^{n} d x=\frac{f(x)^{n+1}}{n+1}+C \text { if } n \neq-1 ; \\
\int f^{\prime}(x) f(x)^{-1} d x=\ln |f(x)|+C \\
\int f^{\prime}(x) e^{f(x)} d x=e^{f(x)}+C
\end{gathered}
$$

- Elasticity: If q is the quantity and p is the price then the elasticity is

$$
-\frac{p}{q} \frac{d q}{d p} .
$$

- Present value: If $f(t)$ is a revenue stream and r the interest then the future value of the stream after T years is

$$
\int_{0}^{T} f(t) e^{-r t} d t
$$

(1) Find the derivative $\frac{d y}{d x}$ if

$$
\begin{aligned}
& \begin{array}{l}
(a) y=x e^{e^{2}}=f(x) g(x) \\
f(x)=x \quad f^{\prime}(x)=1 \\
g(x)=e^{x^{2}} \quad g(x)=h(n(x)) \quad g^{\prime}(x)=h^{\prime}\left(r(x) r^{\prime}(x)\right. \\
h(x)=e^{x} \quad h^{\prime}(x)=e^{x} \\
r(x)=x^{2} \quad r^{\prime}(x)=2 x \\
g^{\prime}(x)=2 x e^{x^{2}} \\
\frac{d y}{d x}=1 \cdot e^{x^{2}}+x\left(2 x e^{x^{2}}\right)
\end{array}
\end{aligned}
$$

$$
\begin{array}{ll}
(1) y y=\ln \left(x^{2}+3\right) & =f(g(x)) \\
f(x)=\ln x & f^{\prime}(x)=\frac{1}{x} \\
g(x)=x^{2}+3 & g^{\prime}(x)=2 x \\
d y \\
d x=\frac{1}{x^{2}+3}(2 x) &
\end{array}
$$

$$
\begin{aligned}
& \text { (c) } y=\frac{1}{\sqrt{x^{2}+1}}=\left(x^{2}+1\right)^{-1 / 2}=f(x)^{n} \\
& f(x)=x^{2}+1 \\
& f^{\prime}(x)=2 x \\
& n=-1 / 2 \\
& \frac{d y}{d x}=-\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2-1}}(2 x) \\
& =\frac{-x}{\left(x^{2}+1\right)^{3 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1)y } y=\frac{v^{\sqrt{x}}}{1+x}=\frac{f(x)}{g(x)} \\
& f(x)=h(r(x)) \\
& h(x)=e^{x} \quad h^{\prime}(x)=e^{x} \\
& r(x)=\sqrt{x}=x^{1 / 2} \quad r^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \\
& f^{\prime}(x)=e^{\sqrt{x}}\left(\frac{1}{2} x^{-1 / 2}\right)=\frac{e^{\sqrt{x}}}{2 \sqrt{x}} \\
& g(x)=1+x \quad g^{\prime}(x)=1 \\
& \frac{d y}{d x}=\frac{\frac{e^{\sqrt{x}}}{2 \sqrt{x}}(1+x)-e^{\sqrt{x}} \cdot 1}{(1+x)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
&(9) y=\ln \left(x\left(x^{2}+1\right)\right)=\ln x+\ln \left(x^{2}+1\right) \\
&=\ln x+f(g(x)) \\
& g(x)=x^{2}+1 \quad g^{\prime}(x)=2 x \\
& f(x)=\ln x \quad f^{\prime}(x)=\frac{1}{x} \\
& F^{\prime}(x)=\frac{1}{x^{2}+1}(2 x) \\
& \frac{d y}{d x}=\frac{1}{x}+\frac{2 x}{x^{2}+1} \\
& x\left(x^{2}+1\right)
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =e^{x} \quad f^{\prime}(x)=e^{x} \\
g(x) & =3 x^{2}+1 \quad g^{\prime}(x)=6 x \\
\frac{d y}{d x} & =e^{3 x^{2}+1}(6 x)
\end{aligned}
$$

$$
\begin{align*}
\text { (2) Find the second derivative of } f(x)=\frac{x}{3 x+1} \cdot & =\frac{u(x)}{v(x)} \\
u(x) & =x \quad u^{\prime}(x)=1 \\
v(x) & =3 x+1 \quad v^{\prime}(x)=3 \\
f^{\prime}(x) & =\frac{1 \cdot(3 x+1)-x(3)}{(3 x+1)^{2}} \\
& =\frac{1}{(3 x+1)^{2}}=(3 x+1)^{-2}=g(x)^{-2} \\
g(x) & =\frac{3 x+1}{g^{2}(x)}=3 \\
f^{\prime \prime}(X) & =-2(3 x+1)^{-3}(3) \tag{3}\\
& =\frac{-6}{(3 x+1)^{3}}
\end{align*}
$$

(3) Find the equation of the tangent line to $y^{3}=x^{2}-3$ at $(x, y)=(-2,1)$.

$$
\begin{aligned}
& 3 y^{2} \frac{d y}{d x}=2 x \\
& \text { At } \quad(x, y)=(-2,1) \\
& 3(1) \frac{d y}{d x}=2(-2) \Rightarrow \frac{d y}{d x}=-\frac{4}{3}
\end{aligned}
$$

point-slope formula:

$$
y-1=-\frac{4}{3}(x-(-2))
$$

(4) Let $f(x)=\frac{4 x^{2}+1}{3 x^{2}+1}$. The first derivative of f is $f^{\prime}(x)=\frac{2 x}{\left(3 x^{2}+1\right)^{2}}$ and the second derivative is $f^{\prime \prime}(x)=\frac{2\left(1-9 x^{2}\right)}{\left(3 x^{2}+1\right)^{3}}$.

$$
f(x)=\frac{4 x^{2}+1}{3 x^{2}+1}
$$

$$
f^{\prime}(x)=\frac{2 x}{\left.3 x^{2}+1\right)^{2}}
$$

$$
f^{\prime \prime}(x)=\frac{2\left(1-9 x^{2}\right)}{\left(3 x^{2}+1\right)^{3}}
$$

$$
\begin{aligned}
& f(x)=\frac{4 x^{2}+1}{3 x^{2}+1} \\
& f^{\prime}(x)=\frac{2 x}{\left(3 x^{2}+1\right)^{2}} \\
& f^{\prime \prime}(x)=\frac{2\left(1-9 x^{2}\right)}{\left(3 x^{2}+1\right)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{4 x^{2}+1}{3 x^{2}+1} \\
& f^{\prime}(x)=\frac{2 x}{\left(3 x^{2}+1\right)^{2}} \\
& f^{\prime \prime}(x)=\frac{2\left(1-9 x^{2}\right)}{\left(3 x^{2}+1\right)^{3}}
\end{aligned}
$$

$$
\text { (b) Find the intervals where } f \text { is increasing and the intervals where } f \text { is decreasing. } f^{\prime}(x)=\frac{2 x}{\left(3 x^{2}+7^{2}\right.}
$$

The only critical value is $x=0$ So the intervals are $(-\infty, 0) \&$ $(0, \infty)$. We need to decide on which of these intervals the function is increasing or decreasing.
As $-1 \in(-\infty, 0) \& f^{\prime}(-1)=\frac{-2}{4^{2}}<0$ f is decrecerng on $(-\infty, 0)$ As $1 \in(0, \infty) \& f^{\prime}(1)=\frac{2}{4^{2}}>0$ f is increasing on $(0, \infty)$.
$f(x)=\frac{4 x^{2} x}{3 x^{2}+1}$
$f^{\prime}(x)=\frac{2 x}{\left(3 x^{2}+x^{2}\right)^{2}}$ (c) Find the intervals where f is concave up and the intervals where f is concave down.
$f^{\prime \prime}(x)=\frac{2\left(1-9 x^{\prime}\right)}{\left(3 x^{2}+1\right)^{3}}$ We first fine where $f^{\prime \prime}(x)<0$.
This occur when $2\left(1-9 x^{2}\right)=0$

$$
\Leftrightarrow \quad 9 x^{2}=1 \quad \Leftrightarrow \quad x= \pm \frac{1}{3} .
$$

So our intervals are $\left(-\infty,-\frac{1}{3}\right),\left(-\frac{1}{3}, \frac{1}{3}\right)$ and $\left(\frac{1}{3},+\infty\right)$. Choosing pts. in each interval we see that $f^{\prime \prime}(-1)=\frac{2(-8)}{4^{3}}<0$

$$
f^{\prime \prime}(0)=\frac{2}{1^{0}}>0 \quad \& f^{\prime \prime}(1)=\frac{2(-8)}{4^{3}}<0
$$

we have f is concave up on $\left(-\frac{1}{3}, \frac{1}{3}\right)$ \& concave down on $\left(-\infty,-\frac{1}{3}\right) \&\left(\frac{1}{3},+\infty\right)$.

$$
\begin{aligned}
& f(x)=\frac{4 x^{2}+1}{3 x^{2}+1} \\
& f^{\prime}(x)=\frac{2 x}{\left.3 x^{2}+1\right)^{2}} \\
& f^{\prime \prime}(x)=\frac{2\left(1-9 x^{2}\right)}{\left(3 x^{2}+1\right)^{3}}
\end{aligned}
$$

The inflection pts are where concavity changes so they are $x= \pm \frac{1}{3}$.
(e) Find the x-values of any relative maxima and minima. Make sure you clear which values correspond to maxima and which to minima.

$$
\begin{aligned}
& f(x)=\frac{4 x^{2}+1}{3 x^{2}+1} \\
& f^{\prime}(x)=\frac{2 x}{\left(3 x^{2}+1\right)^{2}} \\
& f^{\prime \prime}(x)=\frac{2\left(1-9 x^{2}\right)}{\left(3 x^{2}+1\right)^{3}}
\end{aligned}
$$

The relative extrema occur at the critical values. Here $x=0$ is the only critical value. We need to determine if it is a relative max or min.
Nos that $f^{\prime \prime}(0) \geqslant 0$ so by the 2 nd derivative test $x=0$ is a relative min.

To find the horizontal asymptote we take $\lim _{x \rightarrow \infty} \frac{4 x^{2}+1}{3 x^{2}+1}=\lim _{x \rightarrow \infty} \frac{4 x^{2}}{3 x^{2}}=\frac{4}{3}$.
so the horizontal asympdule is $y=\frac{4}{3}$.
Vertical asymptotes occur when the denonialer of $f(x)$ is zero. Since $3 x^{2}+1>1$ for all values of x there are uso vertical asy up totes.
(5) If $f(x, y)=\frac{x}{y-x}$, determine the following:

$$
\begin{aligned}
& f(x, y)=\frac{u(x, y)}{v(x, y)} \quad \text { where } \\
& u(x, y)=x \text { and } v(x, y)=y-x .
\end{aligned}
$$

Taking partial derivatives we have

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =1 \quad \& \quad \frac{\partial v}{\partial x}=-1 \\
\frac{\partial f}{\partial x} & =\frac{\frac{\partial u}{\partial x} \cdot v-u \cdot \frac{\partial v}{\partial x}}{v^{2}} \\
& =\frac{1 \cdot(y-x)-x \cdot(-1)}{(y-x)^{2}} \\
& =\frac{y}{(y-x)^{2}}
\end{aligned}
$$

(b) $\frac{\partial^{2} f}{\partial x \partial y}$

As $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$ we need to take the partial derivative of $\frac{\partial f}{\partial x}=\frac{y}{(y-x)^{2}}$ with respect to y.

We have $\frac{y}{\left(y-\left.x\right|^{2}\right.}=\frac{u(x, y)}{v(x, y)}$ where

$$
\begin{aligned}
& u(x, y)=y \quad \& \quad v(x, y)=(y-x)^{2} \text { so } \\
& \frac{\partial u}{\partial y}=1 \quad \& \quad \frac{\partial v}{\partial y}=2(y-x)(1) .
\end{aligned}
$$

Therefore

$$
\frac{\partial^{2} f}{\partial y \partial x}=\frac{1 \cdot(y-x)^{2}-y(2(y-x))}{(y-x)^{4}}
$$

(6) Compute the following integrals:

We use the log rale witt,

$$
u=x^{2}+1 \quad \& \quad u^{\prime}=2 x
$$

Since $\int \frac{3 x}{x^{2}+1} d x=\frac{3}{2} \int \frac{2 x}{x^{2}+1} d x$

We have

$$
\int \frac{3 x}{x^{2}+1} d x=\frac{3}{2}\left(\ln \left|x^{2}+1\right|+c\right)
$$

(a) $\int \frac{3 x}{x^{2}+1} d x$
(b) $\int \frac{x}{\left(x^{2}+2\right)^{2}} d x=\int x\left(x^{2}+2\right)^{-2} d x$.

Let $u=x^{2}+2$ \& $n=-2$. So $u^{\prime}=2 x$. Then by the power rule

$$
\int 2 x\left(x^{2}+2\right)^{-2} d x=\frac{\left(x^{2}+2\right)^{-1}}{-1}+c
$$

\& sine

$$
\int \frac{x}{\left(x^{2}+2\right)^{2}} d x=\frac{1}{2} \int 2 x\left(x^{2}+2\right)^{-2} d x
$$

we have

$$
\int \frac{x}{\left(x^{2}+2\right)^{2}} d x=\frac{1}{2}\left(\frac{\left(x^{2}+2\right)^{-2}}{-1}+c\right)
$$

$$
\begin{aligned}
(c) \int 8 x \sqrt{x^{2}-1} d x & = \\
& \int 8 x\left(x^{2}-1\right)^{\frac{1}{2}} d x \\
& 4 \int 2 x\left(x^{2}-1\right)^{1 / 2} d x \\
& =4\left(\frac{\left(x^{2}-1\right)^{\frac{3}{2}}}{3 / 2}+C\right)
\end{aligned}
$$

Let $u=x^{2}-1$ so $y^{\prime}=2 x$
\& $n=\frac{1}{2}$. To apply de pores rule we see that, For the red intogn-l to equal the black we need to muliply by 4 . There fro

$$
\int 8 x \sqrt{x^{2}-1} d x=4\left(\frac{\left(x^{2}-1\right)^{3 / 2}}{3 / 2}+c\right)
$$

22

$$
\begin{aligned}
& \text { (d) } \int_{0}^{1} \frac{x}{e^{x^{2}}} d x=\int_{0}^{1} x e^{-x^{2}} d x \\
& y=-x^{2} \quad u^{\prime}=-2 x
\end{aligned}
$$

so

$$
\begin{aligned}
& \int_{0}^{1} \frac{x}{e^{x^{2}}} d x=-\frac{1}{2} \int_{0}^{1}-2 x e^{-x^{2}} d x \\
& =-\frac{1}{2}\left(\left.e^{-x^{2}}\right|_{0} ^{1}\right)=-\frac{1}{2}\left(e^{-1}-e^{0}\right) \\
& =\frac{1}{2}\left(1-\frac{1}{e}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (e) } \int_{0}^{4} \frac{x}{\sqrt{x^{2}+9}} d x=\int_{0}^{4} x\left(x^{2}+9\right)^{-1 / 2} d x \\
& u=x^{2}+9 \text { and } u^{1}=2 x \text { so } \\
& \int_{0}^{4} \frac{x}{\sqrt{x^{2}+9}} d x=\frac{1}{2} \int_{0}^{4} 2 x\left(x^{2}{ }^{-1} d x\right. \\
& =\frac{1}{2}\left(\left.\frac{\left(x^{2}+9\right)^{1 / 2}}{1 / 2}\right|_{0} ^{4}\right. \\
& =\frac{1}{2}\left(\frac{\sqrt{16+9}}{1 / 2}-\frac{\sqrt{9}}{y_{2}}\right)=5-3=2
\end{aligned}
$$

(7) Suppose that a donor wishes to provide a cash gift to the University that will generate a consinuous income stream with an annual rate of flow at time t given by $f(t)=\$ 80,000$ per year If the annual interest rate of 4% compounded continuously, find the capital value of this income stream. Find the present value of the income Stream ather 10 years.

$$
\begin{aligned}
P V & =\int_{0}^{10} f(t) e^{-.04 t} d t \\
& =\int_{0}^{10} 8000 e^{-.04 t} d t \\
& =\frac{8000}{-.04} \int_{0}^{10}(-.04) e^{-.04 t} d t \\
& =\frac{8000}{-.04}\left(\left.e^{-.04 t}\right|_{0} ^{10}\right) \\
& =\frac{8000}{-.04}\left(e^{-.4}-e^{0}\right) \\
& =200,000\left(1-\frac{1}{e^{.4}}\right)
\end{aligned}
$$

(8) A company has an income stream of $f(t)=7000 e^{-.03 t}$ in dollars per year. Find the present value of the income stream over the next 10 years if it is invested at a rate of 2% a year compounded continuously. Also find the capital value of the income stream given the same rate of interest.

$$
\begin{aligned}
P V & =\int_{0}^{10} f(t) e^{-.02 t} d t=\int_{0}^{10} 7000 e^{-.03 t} e^{-.02 t} d t \\
& =\int_{0}^{10} 7000 e^{-.05 t} d t=\frac{7000}{-.05} \int_{0}^{10} 0.05 e^{-.05 t} d t \\
& =\frac{7000}{-.05}\left(\left.e^{-.05 t}\right|_{0} ^{10}\right) \\
& =-240,000\left(e^{-.5}-e^{0}\right)=240,000\left(1-\frac{1}{e^{.5}}\right)
\end{aligned}
$$

(9) Find the area of the region between the curves $y=x^{2}-1$ and $y=-x-1$.

The 2 curves intersect when $x^{2}-1=-x-1$

$$
\begin{aligned}
& \Rightarrow x^{2}+x=0 \\
& \Rightarrow x(x+1)=0 \\
& \Rightarrow x=-120
\end{aligned}
$$

The area is

$$
\begin{aligned}
\int_{-1}^{0}\left((-x-1)-\left(x^{2}-1\right)\right) d x & =\int_{-1}^{0}\left(-x^{2}-x\right) d x \\
=\left.\left(-\frac{x^{3}}{3}-\frac{x^{2}}{2}\right)\right|_{-1} ^{0} & =0-\left(-\frac{1}{3}-\frac{1}{2}\right) \\
& =\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
\end{aligned}
$$

(10) A company's profit from selling pens and pencils is

$$
P(x, y)=3 x+2 y-.01 x^{2}-.02 y^{2}-.003 x y
$$

where x is the number of pens and y is the number of pencils. If 20 pens and 10 pencils have been sold what is the approximate amount of profit from selling the 11th pencil?
We need to evaluate $\frac{\partial p}{\partial y}$ when

$$
\begin{aligned}
& x=20 \quad \& \quad y=10 . \\
& \frac{\partial D}{\partial y}=2-.04 y-.003 x \\
& \frac{\partial P}{\partial y}(20,10)=2-.04(10)-.003(20) \\
&=2-.4-.06 \\
&=1.54
\end{aligned}
$$

The marginal profit is

$$
\begin{aligned}
\hat{M P}(x) & =\overline{M R(x)}-\overline{M C}(x) \\
& =300-x-(100+3 x) \\
& =200-4 x .
\end{aligned}
$$

Terete prot is

$$
P(x)=\int(200-4) d x=200 x-2 x^{2}+K
$$

To find k we observe that

$$
\begin{aligned}
& R(0)=0 \quad \& \quad(0)=50 \quad \text { so } \\
& P(0)=k=R(0)-C(0)=-50 . \\
& S_{0} P(x)=200 x-2 x^{2}-50 . \\
& \hat{\operatorname{MP}}(x)=0=200-4 x \Rightarrow x=50 .
\end{aligned}
$$

This critical value is the max
so te max profit is

$$
P(50)=200(50)-2(50)^{2}-50 .
$$

(12) The profit function for an item is $P(x)=9 x-x^{3}-3 x^{2}-2$ and you are only allowed to make up to 10 items. Find the maximum profit or minimal loss.
The marginal prosit is

$$
\begin{aligned}
& \overline{\mu P}(x)=9-3 x^{2}-6 x=0 \\
& \Rightarrow \quad-3\left(x^{2}+2 x-3\right)=0 \\
& \Rightarrow \quad-3(x+3)(x-1)=0 \\
& \Rightarrow \quad x=-3,1 .
\end{aligned}
$$

Therefor the manx occurs it $x=0,1$ or 10 .

$$
\begin{aligned}
& P(0)=-2 \\
& P(1)=9-1-3-2=3 \\
& P(\omega)=9(10)-1000-300-2=-1208
\end{aligned}
$$

so the max is 3.
(13) The profit function for an item is $P(x)=x+\frac{100}{x-20}+2$ and you are only allowed to make up to 15 items. Find the maximum profit or minimal loss.

$$
\begin{aligned}
& \overline{M P}(x)=1+\frac{-100}{(x-20)^{2}}=0 \\
& \Rightarrow(x-20)^{2}=100 \Rightarrow x-20=100 \\
& \Rightarrow x=10,30
\end{aligned}
$$

So $x=10$ is te only C.V between O\& 15 and the max profit occurs if $x=0,10$ or 15 .

$$
\begin{aligned}
& P(0)=0+\frac{100}{-20}+2=-3 \\
& P(10)=10+\frac{100}{-10}+2=2 \\
& P(15)=15+\frac{100}{15-20}+2=15-20 \times 2=-3
\end{aligned}
$$

So the max is 2 .
(14) The demand function for a certain item is given by
$(p+1)(q+6)^{2}=1000$
Find the elasticity of demand when $p=9$. If the price is increased will revenue increase or decrease?
When $p=9$ we have

$$
\begin{aligned}
(q+1)(q+6)^{2}=1000 & \Rightarrow(q+6)^{2}=100 \\
& \Rightarrow q+6= \pm 10 \\
& \Rightarrow q=(4)-16
\end{aligned}
$$

D,fferationg

$$
(1+0)(q+6)^{2}+(p+1) 2(q+6) \frac{d q}{d_{p}}=0 .
$$

When $p=9$ \& $z=4 \Rightarrow$

$$
\begin{aligned}
& 10^{2}+10(2)(10) \frac{d q}{d_{p}}=0 \Rightarrow \frac{d q}{d p}=-\frac{1}{2} \\
& \& n=-\frac{1}{4}\left(-\frac{1}{2}\right)=\frac{q}{8}>1
\end{aligned}
$$

The quality is elastic so on increase in price will degas the revue.
(15) In 1988 the Lorenz curve for income distribution in the U.S. was $y=x^{2.3521}$. What was the Gini coefficient? If the Gini Coefficient in another country that some year was .4 was the income distribution more equal in this country or in the U.S.

$$
\begin{aligned}
G \cdot C & =\frac{A r a}{A}=\frac{1}{2} \\
& =2(\text { Are }) .
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1}\left(x-x^{2.3521}\right) d x \\
& =\frac{x^{2}}{2}-\left.\frac{x^{3.3521}}{3.3521}\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{3.3521} \\
& \begin{aligned}
G . C=2\left(\frac{1}{2}-\frac{1}{3.3521}\right) & =\frac{3.3521-2}{3.521} \\
& =\frac{1.3521}{3.3521}=.403
\end{aligned} \\
& \begin{aligned}
\end{aligned} \\
& =
\end{aligned}
$$

The distribution is more equal
in the other country.
(16) Find the consumer's surplus at the equilibrium price given that the demand function is $p=$ $-x^{2}-6 x+75$ and the supply function is $p=2 x+10$.

Find market equilibrium:

$$
\begin{aligned}
-x^{2}-6 x+75 & =2 x+10 \\
x^{2}+8 x-65 & =0 \\
\Rightarrow(x+13)(x-5) & =0
\end{aligned}
$$

$$
p=2(\overline{5})+10=20 \quad x=-13,5
$$

Equilibrium $\quad X=5, \quad p=20$

$$
\begin{aligned}
& \int_{0}^{5}\left(\left(-x^{2}-6 x+75\right)-20\right) d x=\int_{0}^{5}\left(-x^{2}-6 x+55\right) d x \\
& =-\frac{x^{3}}{3}-3 x^{2}+\left.55 x\right|_{8} ^{5} \\
& =-\frac{125}{3}-75+275=\frac{475}{3}
\end{aligned}
$$

(17) Find the consumer's surplus at the equilibrium price given that the demand function is $p=$ $-x+170$ and the supply function is $p=x^{2}+4 x+20$.

$$
\begin{aligned}
& -x+170=x^{2}+4 x+20 \\
= & x^{2}+5 x-150=0 \\
\Rightarrow & (x+15)(x-10)=0 \\
& x=10-15 \\
& p=-10+170=160
\end{aligned}
$$

$$
C S=-\frac{100}{2}+100=50
$$

