• **Product rule:** If F(x) = f(x)g(x) then

$$F'(x) = f'(x)g(x) + f(x)g'(x).$$

• Quotient rule: If $F(x) = \frac{f(x)}{g(x)}$ then

$$F'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.$$

• Chain rule: If F(x) = f(g(x)) then

$$F'(x) = f'(g(x))g'(x).$$

• Power rule: If $F(x) = f(x)^n$ then

$$F'(x) = nf(x)^{n-1}f'(x).$$

• Quadratic formula: If $ax^2 + bx + c = 0$ then

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

• Integrals:

$$\int f'(x)f(x)^n dx = \frac{f(x)^{n+1}}{n+1} + C \text{ if } n \neq -1;$$
$$\int f'(x)f(x)^{-1} dx = \ln|f(x)| + C;$$
$$\int f'(x)e^{f(x)} dx = e^{f(x)} + C.$$

• Elasticity: If q is the quantity and p is the price then the elasticity is

$$-\frac{p}{q}\frac{dq}{dp}.$$

• **Present value:** If f(t) is a revenue stream and r the interest then the future value of the stream after T years is

$$\int_0^T f(t)e^{-rt}dt.$$

(a)
$$y = xe^{x^2}$$

(b) $y = \ln(x^2 + 3)$
(c) $y = \frac{1}{\sqrt{x^2 + 1}}$
(d) $y = \frac{e^{\sqrt{x}}}{1 + x}$
(e) $y = \ln(x(x^2 + 1))$
(f) $y = e^{3x^2 + 1}$

- (2) Find the second derivative of $f(x) = \frac{x}{3x+1}$. (3) Find the equation of the tangent line to $y^3 = x^2 3$ at (x, y) = (-2, 1). (4) Let $f(x) = \frac{4x^2+1}{3x^2+1}$. The first derivative of f is $f'(x) = \frac{2x}{(3x^2+1)^2}$ and the second derivative is $f''(x) = \frac{2(1-9x^2)}{(3x^2+1)^3}$.
 - (a) Find the critical values of f.
 - (b) Find the intervals where f is increasing and the intervals where f is decreasing.
 - (c) Find the intervals where f is concave up and the intervals where f is concave down.
 - (d) Find x-values for any inflection points for f.
 - (e) Find the x-values of any relative maxima and minima. Make sure you clear which values correspond to maxima and which to minima.
 - (f) Find the horizontal and vertical asymptotes.

(5) If $f(x,y) = \frac{x}{y-x}$, determine the following:

(a)
$$\frac{\partial f}{\partial x}$$

(b) $\frac{\partial^2 f}{\partial x \partial y}$

(6) Compute the following integrals:

(a)
$$\int \frac{3x}{x^2 + 1} dx$$

(b)
$$\int \frac{x}{(x^2 + 2)^2} dx$$

(c)
$$\int 8x\sqrt{x^2 - 1} dx$$

(d)
$$\int_0^1 \frac{x}{e^{x^2}} dx$$

(e)
$$\int_0^4 \frac{x}{\sqrt{x^2 + 9}} dx$$

- (7) Suppose that a donor wishes to provide a cash gift to the University that will generate a continuous income stream with an annual rate of flow at time t given by f(t) = \$80,000 per year. If the annual interest rate of 4% compounded continuously, find the capital value of this income stream.
- (8) A company has an income stream of $f(t) = 7000e^{-.03t}$ in dollars per year. Find the present value of the income stream over the next 10 years if it is invested at a rate of 2% a year compounded continuously. Also find the capital value of the income stream given the same rate of interest.
- (9) Find the area of the region between the curves $y = x^2 1$ and y = -x 1.
- (10) A company's profit from selling pens and pencils is

$$P(x,y) = 3x + 2y - .01x^2 - .02y^2 - .003xy$$

where x is the number of pens and y is the number of pencils. If 20 pens and 10 pencils have been sold what is the approximate amount of profit from selling the 11th pencil?

- (11) The marginal cost function for an item is $\overline{MC}(x) = 100 + 3x$ and the marginal revenue function is $\overline{MR}(x) = 300 x$. The initial cost is \$50. Find the maximum profit or minimal loss.
- (12) The profit function for an item is $P(x) = 9x x^3 3x^2 2$ and you are only allowed to make up to 10 items. Find the maximum profit or minimal loss.
- (13) The profit function for an item is $P(x) = x + \frac{100}{x 20} + 2$ and you are only allowed to make up to 15 items. Find the maximum profit or minimal loss.
- (14) The demand function for a certain item is given by

$$(p+1)(q+6)^2 = 1000$$

Find the elasticity of demand when p = 9. If the price is increased will revenue increase or decrease?

- (15) In 1988 the Lorenz curve for income distribution in the U.S. was $y = x^{2.3521}$. What was the Gini coefficient? If the Gini Coefficient in another country that some year was .4 was the income distribution more equal in this country or in the U.S.
- (16) Find the consumer's surplus at the equilibrium price given that the demand function is $p = -x^2 6x + 75$ and the supply function is p = 2x + 10.
- (17) Find the consumer's surplus at the equilibrium price given that the demand function is p = -x + 170 and the supply function is $p = x^2 + 4x + 20$.