
1 Quasiconformal maps

Giving R
2 its usual xy-coordinates we have the identification of R

2 with C given by
(x, y) �→ x+ iy. Let T : C → C be an R-linear map. If we let

Tz =
1

2
(Tx − iTy) and Tz =

1

2
(Tx + iTy)

then we can also write Tz = Tzz+Tzz. This decomposition is convenient as T is C-linear
if and only if Tz = 0 while T is C-anti-linear if and only if Tz = 0.

Let S : C → C be another R-linear map. For the chain rule it is useful to have formula
for (S ◦ T )z and (S ◦ T )z. We compute

S ◦ T (z) = S(Tzz + Tzz)

= Sz(Tzz + Tzz) + Sz(Tzz + Tzz)

= (SzTz + SzT̄z)z + (SzTz + SzT̄z)z

and therefore (S ◦ T )z = SzTz + SzT̄z and (S ◦ T )z = SzTz + SzT̄z.
The Beltrami differential for T is µT = Tz/Tz. If S is C-linear then we can use the

above formula to see that

µS◦T = µT and µT◦S =
S̄z
Sz
µT .

In particular, the absolute value |µT | is invariant under both pre- and post-composition
by C-linear maps.

The R-linear map takes the unit circle to an ellipse. The Beltrami differential encodes
both the ratio of the outradius to the inradius (the dilatation) and the directions of
maximal and minimal stretch. We leave the following as exercises:

1. |Tz|+ |Tz| is the outradius (amount of maximal stretch); |Tz| − |Tz| is the inradius
(amount of minimal stretch).

2. detT = |Tz|2−|Tz|2 and therefore T is orientation preserving if |µT | < 1, reversing
if |µT | > 1 and degenerate if |µT | = 1.

3. The dilatation of T is 1+|µT |
1−|µT | .

4. The direction of maximal stretch is arg µT and the direction of minimal stretch is
arg µT + π/2.

Let f : Ω → Ω′ be diffeomorphisms between domains in C. It will be critical later
that we recognize the difference between f being differentiable and f having partial
derivatives. In particular f is differentiable at z0 ∈ Ω if there exists an R-linear map

f∗(z0) : C → C
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such that
f(z)− f(z0) = f∗(z0)(z − z0) +O(|z − z0|).

If the partial derivatives exist and are continuous in a neighborhood of z0 then it is a
classical theorem that f is differentiable at z0 and once we know that f is differentiable
it follows that the partial derivatives exist and f∗(z0) is given by the matrix of partial
derivatives. However, it is possible that the partial derivatives exist at z0 but f is not
differentiable.

If f is differentiable at z0 then the R-linear map can be decomposed into its C-linear
and C-anti-linear parts as above. As f∗(z0) is the matrix of partial derivatives if we let

fz =
1

2
(fx − ify) and fz =

1

2
(fx + ify)

then f∗(z0)w = fz(z0)w + fz(z0)w̄. The Beltrami differential, defined above for a single
linear map, now becomes a function with

µf = fz/fz

and the dilatation function

Kf =
1 + |µf |
1− |µf | .

Then f is a K-quasiconformal diffeomorphism if

‖Kf‖∞ =
1 + ‖µf‖∞
1− ‖µf‖∞ ≤ K.

The Jacobian of f is the function

Jf = |fz|2 − |fz|2.

The following estimate of Grötzsch is fundamental to everything that follows.

Lemma 1.1 Let
f : [0, a] × [0, 1] → [0, b] × [0, 1]

be a K-quasiconformal diffeomorphism with f(0, 0) = (0, 0), f(a, 0) = (b, 0), f(0, 1) =
(0, 1) and f(a, 1) = (b, 1). Then K ≥ b/a with equality if and only if f is affine.

Proof: The proof has two fundamental ideas. First, the total amount of stretch
of the f -image of any horizontal segment will be bounded below as it will start at the
vertical line at x = 0 and end at x = b. Second the pointwise product of the dilatation
and the Jacobian is the square of the amount of maximal stretch and therefore bounds
above the stretch in any direction.
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We apply the fundamental theorem of calculus to f (and view it as a C-valued
function) to see that, for each fixed y ∈ [0, 1], we have∫ a

0
fx(x+ iy)dx = f(a+ iy)− f(0 + iy).

Observing that Re f(a+ iy) = b, Re f(0 + iy) = 0 and fx = fz + fz and taking absolute
values we have

b ≤
∫ a

0
(|fz|+ |fz|)dx.

Next we integrate both sides of this inequality with respect to y and get

b ≤
∫ 1

0

∫ a

0
(|fz|+ |fz|)dx.

The integrand can be written as√
|fz|+ |fz|
|fz| − |fz|

√
|fz|2 − |fz|2 =

√
Kf

√
Jf

and we apply the Cauchy-Schwarz inequality to get

b2 ≤
∫ 1

0

∫ a

0
Kfdxdy

∫ 1

0

∫ A

0
Jfdxdy.

The integrand in the first integral is the dilatation and is bounded above by K so the
integral is bounded by aK, the area of the domain rectangle times K. The second
integrand is the Jacobian so the integral is b, the area of the image rectangle. Therefore
we have

b2 ≤ (aK)b

and rearranging gives the desired lower bound on K.
We now need to check when equality holds. First we observe that

b =

∫ a

0
fxdx =

∫ a

0
|fx|dx

if and only if Im fx is identically zero and Re fx ≥ 0. Next note that

|fx| = |fz|+ |fz|
if and only if Re fy is identically zero. This implies that derivative is diagonal in the xy-
coordinates. For the Cauchy-Schwarz inequality to be an equality then both functions
must be constant and therefore both the dilatation and the Jacobian are constant. As the
derivative is diagonal, the dilatation is the ratio of the diagonal terms and the Jacobian
is the product. If both the ratio and product of two functions is constant the so most
be the functions. In particular the derivative is a constant diagonal matrix and f is an
affine map as claimed. 1.1
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The assumption that the height of the rectangular is 1 is just to simplify the compu-
tation. More generally we have:

Corollary 1.2 Let R and R′ be rectangles of width a and a′ and heights b and b′. Let

f : R→ R′

be a K-quasiconformal diffeomorphism taking horizontal sides to horizontal sides and
vertical sides to vertical sides. Then K ≥ ab′

a′b with equality if and only if f is affine.

This inequality motivates a more general version of a quasiconformal homeomorphism
where we take as an assumption that the above lemma holds. We needs some more
definitions to make this precise.

A quadrilateral Q in C (or more general a Riemann surface) is a Jordan domain with
four ordered points z0, z1, z2 and z3 in ∂Q where the order of the points respects the
cyclic order of ∂Q determined by the orientation. We need the following lemma:

Lemma 1.3 Given any quadrilateral (Q : z0, z1, z2, z3) there is a biholomorphic map

f : Q → R

to a rectangle R taking the zi to the corners of R and taking the arc of ∂Q between z0
and z1 to a horizontal side of R. Furthermore, for any such map the ratio of the height
of R to its width is always the same.

Proof: By the Riemann mapping theorem there is a biholomorphic map taking the
interior of Q to the upper half plane. By Caratheodory’s theorem this map extends to
a homeomorphism of Q to the closure of the upper half plane in Ĉ. Therefore we can
assume that Q is the closure of the upper half plane and the zi are points in R ∪ ∞.
Furthermore we can post-compose the Riemann map with a Möbius transformation so
that none of the zi are ∞. In fact we can assume that the zi are real and z0 < z1 < z2 <
z3.

After reducing to this case we construct the desired map via an elliptic integral.
Namely let

f(z) =

∫ z

i

dw√
(w − z0)(w − z1)(w − z2)(w − z3)

where the contour integral is over an arc from i to z whose interior is contained in the
upper half plane. That this function gives a map to a rectangle is a special case of the
Schwarz-Christoffel theorem. For this special case the proof is not difficult.

Let
φ(w) = (w − z0)(w − z1)(w − z2)(w − z3).
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This is a holomorphic function with zeros only at the zi so on any simply connected
domain in C that doesn’t contain the zi we can choose a branch of

√
φ. On Ĉ the

function φ is meromorphic with a pole at ∞ of order of 4 and as 4 is even we can take
the domain of

√
φ to be any simply connected domain in Ĉ that doesn’t contain the zi.

The function
√
φ will still be meromorphic but the pole at ∞ will be of order 2.

Let Ω be a simply connected domain in Ĉ that contains the upper half plane along
with R ∪ {∞}\{z0, z1, z2, z3}. Then

√
φ is a meromorphic function on Ω with a single

pole of order 2 at ∞ and no zeros. Therefore the reciprocal 1/
√
φ will be a holomorphic

function on Ω with a zero of order 2 at ∞ and no other zeros. Then dw/
√
φ(w) will be

a holomorphic 1-form on Ω and since the zero at ∞ of 1/
√
φ has order 2 (and there are

no other zeros) the 1-form dw/
√
φ(w) is non-zero on all of Ω.

The function φ is R-valued on R\{z0, z1, z2, z3} and therefore the argument of 1/
√
φ

is constant on each interval (zi, zi+1) in R ∪ {∞} (where the i are taken mod 4) and
are a multiple of π if φ is positive while they are of the form nπ + π/2 if φ is negative.
For any holomorphic function of constant argument θ its contour integral on the R-axis
will be a line of slope θ. For the elliptic function f we have that the f -image of (z0, z1)
and (z2, z3) are vertical segments while the f -image of (z1, z2) and (z3, z0) (by which we
mean the segment in R ∪∞ from z3 to z0 that contains ∞) are horizontal.

At zi, the function 1/
√
φ is asymptotic to 1/

√
z − zi so f extends continuously to

the zi and by the previous paragraph f(R∪ {∞}) will be a rectangle. By the maximum
principle the image of the upper half plane will be the interior of this rectangle. 1.3

There is then a unique a > 0 and a homeomorphism

f : Q→ [0, a]× [0, 1] ⊂ C

that is holomorphic on the interior of Q with f(z0) = 0, f(z1) = a, f(z2) = a + i and
f(z3) = i. We define the modulus of Q as m(Q) = a. If we let Q∗ be the same Jordan
domain with the four points permuted by one we see that m(Q∗) = 1/a.

We now give the geometric definition of a K-quasiconformal homeomorphism: a
homeomorphism f : Ω → Ω′ is K-quasiconformal if for all quadrilaterals Q ⊂ Ω we have

m(f(Q)) ≤ Km(Q).

Observe that f(Q)∗ = f(Q∗) and it follows from our above observation on the modulus
of Q∗ that this implies that

m(f(Q)) ≥ K−1m(Q)

for all Q ⊂ Ω. From this it follows f is K-quasiconformal if and only if f−1 is K-
quasiconformal.

We have the following corollary of Lemma 1.1:
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Corollary 1.4 A K-quasiconformal diffeomorphism is a (geometric) K-quasiconformal
homeomorphism.

The converse of this corollary does not hold. Define g : C → C by g(x+iy) = Kx+iy.
This is an affine map with constant dilatation K. Now choose a continuous map f : C →
C such that f(z)2 = g(z2). There are two possible choices for f ; we fix one. Then
f is differentiable with constant dilatation K everywhere except for z = 0 where f is
not differentiable. The proof of Lemma 1.1 works as above for functions with isolated
singularities, at least for the inequality. (A little extra thought is required when the
minimal dilations is achieved.)

The following important fact follows directly from the definition.

Lemma 1.5 If f and g are K1 and K2-quasiconformal homeomorphisms then f ◦ g is
a K1K2-quasiconformal homeomorphism.

One might hope that one could weaken the assumption on differentiability to dif-
ferentiability almost everywhere (a.e.) with a bound on the dilatation. However, this
assumption is too weak, as the next example shows. Let E ⊂ [0, 1] be a set of Lebesgue
measure zero and let σ be a positive measure on E without atoms. Such a set and
measure can be constructed by taking a homeomorphism from the usual Cantor set to
a Cantor set of positive Lebesgue measure and pulling back the measure. We define a
function h : [0, 1] → R by

h(x) =

∫ x

0
dσ.

Note that h is constant a.e. but not constant. We now define a function

f : [0, 1] × [0, 1] → [0, 1 + σ(E)]× [0, 1]

by
f(x+ iy) = x+ h(x) + iy.

The map f is a homeomorphism and it takes corners to corners. We also observe that
f is differentiable a.e. with fz = 0 and therefore µf = 0 a.e. and the dilatation is zero
a.e. However f is not holomorphic and does not satisfy the conclusion of Lemma 1.1. In
fact for any K one can find an interval [a, b] ⊂ [0, 1] such that

f(b)− f(a)

b− a
> K

and therefore f does not satisfy the geometric definition of a K-quasiconformal homeo-
morphism for any K. We leave this as an exercise. We therefore need to make stronger
assumptions on the derivative to get an analytic definition of quasiconformality.
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1.1 Extremal length

Let Γ be a family of paths in the C (or more generally a Riemann surface). Given a
conformal metric ρ we let LΓ(ρ) be the infimum of the ρ-length of the paths in Γ and
let A(ρ) be the area of the ρ metric. We define the extremal length by

λ(Γ) = sup
ρ

LΓ(ρ)
2

A(ρ)
.

Note that the quotient on the right is scale invariant and it will often be convenient to
normalize the metrics. For example if we restrict the metrics to have a fixed length or
area the supremum will be the same.

In the definition of extremal length it is sufficient to assume that our metrics are
smooth. However, it will be more convenient to allow a more general class of metrics.
Given any two conformal metrics their ratio is a non-negative function. Here we will
allow any conformal metric such that the area is finite and its ratio with a smooth
conformal metric is a measurable function.

We make a few elementary observations.

• If Γ is contained in some measurable set E we can assume that ρ is zero outside of
E for this will not change LΓ(ρ) and will only decrease A(ρ).

• As λ(Γ) is a supremum, for any conformal metric ρ we have

λ(Γ) ≥ LΓ(ρ)
2

A(ρ)
.

• If Γ′ ⊂ Γ then for any ρ, LΓ′(ρ) ≥ LΓ(ρ) so λ(Γ
′) ≥ λ(Γ).

• On the other hand, if every path in Γ contains a path in Γ′ then LΓ′(ρ) ≤ LΓ(ρ)
so λ(Γ′) ≤ λ(Γ).

Lemma 1.6 Let R be a rectangle of height a and width b and ΓR the paths in R con-
necting the vertical sides. The λ(ΓR) = b/a = m(R).

More generally for a quadrilateral (Q : z0, z1, z2, z3) let ΓQ be the paths in Q connect-
ing the z0z1-side to the z2z3-side. Then λ(ΓQ) = m(Q).

Proof: The proof is very similar to the proof of Lemma 1.1. As extremal length is
a sup we get an lower bound by choosing any conformal metric on R. If we take the
Euclidean metric we get λ(Γ) ≥ b/a. For the lower bound take any conformal metric ρ.
Then for any fixed y value we have∫ b

0
ρ(x+ iy)dx ≥ LΓ(ρ)
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and after integrating with respect to y this becomes∫
R
ρdxdx ≥ aLΓ(ρ).

Viewing the integrand as the product ρ · 1 and applying the Cauchy-Schwarz inequality
we have

abA(ρ) =

∫
R
1dxdy

∫
R
ρ2dxdy ≥

(∫
R
ρ · 1dxdy

)2

.

Combining the two inequalities and rearranging this becomes

LΓ(ρ)
2

A(ρ)
≤ b/a.

As ρ was arbitrary this implies λ(Γ) ≤ b/a and the proof is complete. 1.6

A metric ρ is extremal for Γ if

λ(Γ) =
LΓ(ρ)

2

A(ρ)
.

Lemma 1.6 can be rephrased as stating that the Euclidean metric on a rectangle R is
the extremal metric for ΓR.

Lemma 1.7 Let R be a rectangle divided into two quadrilaterals Q1 and Q2 by an arc
connecting the top to the bottom. If m(R) = m(Q1) + m(Q2) then the dividing arc is
vertical (and the Qi are rectangles).

Proof: We can assume that R has height one and width m(R). Let fi be the
uniformizing conformal map that takes Qi to the rectangle of height 1 and width m(Qi).
We then define the conformal metric ρ on R to be |(fi)z | on Qi. Any horizontal segment
of R has a subsegment connecting the vertical sides of Q1 and a disjoint subsegment
connecting the vertical sides of Q2. The f1-image of the first subsegment and the f2-
image of the second subsegment will have length at least m(Q1) andm(Q2), respectively,
and therefore the ρ-length of the subsegments will be at least m(Q1) and m(Q2). It
follows that ∫ m(R)

0
ρ(x+ iy)dx ≥ m(Q1) +m(Q2) = m(R)

for each fixed y ∈ [0, 1]. Subtracting 1 from the integrand and integrating with respect
to y this becomes ∫

R
(ρ− 1)dxdy ≥ 0.
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We also observe that
A(ρ) = m(Q1) +m(Q2) = m(R)

and therefore ∫
R
(ρ2 − 1)dxdy = 0.

On the other hand (ρ−1)2 is non-negative so its integral over R is also non-negative but∫
R
(ρ− 1)2dxdy =

∫
R

(
(ρ2 − 1)− 2(ρ− 1)

)
dxdy

= −2

∫
R
(ρ− 1)dxdy

≤ 0

and therefore ∫
R
(ρ− 1)2dxdy = 0

and (ρ−1) = 0 a.e. This implies that |(fi)z| is constantly equal to 1 and as a holomorphic
function of constant modulus is also constant we have that (fi)z is constant. Therefore
the Qi are rectangles and the lemma follows. 1.7

Theorem 1.8 A 1-quasiconformal homeomorphsim is conformal.

Proof: Being conformal is local property so it is enough to check that the theorem
holds when the domain is a rectangle R. Furthermore a map is conformal if and only if
its post-composition with a conformal map is conformal so we can post-compose with a
conformal map so that the image is also a rectangle (taking corners to corners). As the
map is 1-quasiconformal we can also assume that the image is the same rectangle R.

Let f : R→ R be a 1-quasiconformal homeomorphism. Divide R into two rectangles
R1 and R2 by a vertical segment connecting the top to the bottom. Then m(R) =
m(R1) +m(R2) and as f is 1-quasiconformal we also have m(f(R) = R) = m(f(R1)) +
m(f(R2)). Therefore, by Lemma 1.7, both f(R1) and f(R2) are rectangles and, in fact,
as the moduli don’t change we must have f(R1) = R1 and f(R2) = R2. This implies
that every vertical segment is mapped to itself. A similar argument shows that every
horizontal segment is also mapped to itself. Any such map must be the identity and
hence conformal. 1.8
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For 0 ≤ r1 < r2 ≤ ∞ let

Ar1,r2 = {z ∈ C|r1 < |z| < r2}.
Every annulus in C (or a Riemann surface) is conformally equivalent an Ar1,r2 . This is
a consequence of the uniformization theorem.1 We define the modulus of Ar1,r2 by

m(Ar1,r2) = 2π

(
log

r2
r1

)−1

.

In general, if A is conformally equivalent to Ar1,r2 we define m(A) = m(Ar1,r2). Note
that Ar1,r2 is conformally equivalent to As1,s2 if and only if r2/r1 = s2/s1 so that while
A is not conformally equivalent to a unique annulus of the form Ar1,r2 the modulus is
well defined.

As with the quadrilateral we can reinterpret the modulus as an extremal length
problem. Given an annulus A ⊂ C let ΓA be the collection of closed curves in A that
have winding number 1 around every point in the bounded component of the complement
of A.

Lemma 1.9
λ(ΓA) = m(A)

Proof: We can assume that A = A1,s. The metric ρ0(z) = 1/|z|, restricted to A,
gives the lower bound λ(ΓA) ≥ m(A). For the upper bound take any metric ρ with
support on A. The upper bound then follows almost exactly as in the proof of Lemma
1.6 (which is very similar to Lemma 1.1). In particular, the length of each circle center
at 0 of radius 1 < r < s must have length ≥ LΓA

(ρ) and therefore∫ 2π

0
rρ(reiθ)dθ ≥ LΓA

(ρ)

and ∫
A
ρdθdr =

∫ s

1
1/r

(∫ 2π

0
rρ(reiθ)dθ

)
dr ≥ LΓA

(ρ) log s.

Applying Cauchy-Schwarz to the functions 1/
√
r · √rρ we have

2π(log s)A(ρ) =

∫
A
1/rdθdr

∫
A
ρrdθdr ≥

(∫
A
ρdθdr

)2

≥ (LΓA
(ρ) log s)2 .

We rearrange the inequality to get the desired lower bound. 1.9

1If A ⊂ C (rather than a general Riemann surface) then it is not hard to see that Ã ⊂ C in which
case we just need the Riemann mapping theorem rather than the entire uniformization theorem. In
particular we can assume that 0 ∈ C is contained in the bounded component of the complement of A.
The exponential map is a covering map from C to the punctured plan C

∗ = C\{0} and the pre-image of
A in C is the universal cover Ã.
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One advantage of considering annuli rather than quadrilaterals is that for annuli we
don’t need to worry about boundary behavior. In particular we do not require that
the closure of annulus in C is a closed annulus with boundary. However, it will be
convenient at times to restrict to such annuli. In particular, A is a good annulus if it
is the interior of a compact annulus with boundary. The advantage of good annuli is
that they can be subdivided into quadrilaterals. In particular, if we take two disjoint
embedded arcs that connect the components of ∂A then the annulus becomes the union
of two quadrilaterals. We can use the moduli of the quadrilaterals to bound from below
the modulus of the annulus and we will use this to control the modulus of good annuli
under a K-quasiconformal homeomorphism.

We first need a lemma about extremal length.

Lemma 1.10 Let Γ1 and Γ2 be two collections of paths and let Γ1+Γ2 be paths that are
the union of a path in Γ1 and a path in Γ2. Then

λ(Γ1 + Γ2) ≥ λ(Γ1) + λ(Γ2).

Proof: Fix conformal metrics ρ1 and ρ2 normalized such that

LΓi(ρi) = A(ρi)

and let ρ = max{ρ1, ρ2}. Then
LΓ1+Γ2(ρ) ≥ LΓ1(ρ1) + LΓ2(ρ2)

and
A(ρ) ≤ A(ρ1) +A(ρ2).

Therefore, for any choice of ρ1 and ρ2, we have

LΓ1+Γ2(ρ)
2

A(ρ)
≥ (LΓ1(ρ1) + LΓ2(ρ2))

2

A(ρ1) +A(ρ2)

=
(LΓ1(ρ1) + LΓ2(ρ2))

2

LΓ1(ρ1) + LΓ2(ρ2)

= LΓ1(ρ1) + LΓ2(ρ2)

where in the second line we are using our normalization for the conformal metrics ρ1 and
ρ2. Given our normalization we also have

λ(Γi) = sup
LΓi

(ρi)=A(ρi)
LΓi(ρ)

so we if let ρ1 and ρ2 vary over all conformal metrics (with the given normalization) we
get

λ(Γ1 + Γ2) ≥ λ(Γ1) + λ(Γ2).

1.10
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Lemma 1.11 Let f : Ω → Ω′ be a K-quasiconformal homeomorphism. Let A ⊂ Ω be
“good” annulus. Then

1

K
m(A) ≤ m(f(A)) ≤ Km(A).

Proof: A is the conformal image of an annulus A1,r. If we take two radial arcs in
A1,r then the annulus is divided into two quadrilaterals Q1 and Q2 and we check to see
that m(A) = m(Q1) +m(Q2). We abuse notation and let Q1 and Q2 be the image of
these quadrilaterals in A. (We are using that A is a good annulus in our claim that the
Qi are quadrilaterals.) By Lemma 1.10

λ(Γf(Q1)) + λ(Γf(Q2)) ≤ λ(Γf(Q1) + Γf(Q2)).

We also observe that every path in Γf(A) contains a path in Γf(Q1) + Γf(Q2) so

λ(Γf(Q1) + Γf(Q2)) ≤ λ(Γf(A)).

As f is K-quasiconformal we have

1

K
m(Qi) ≤ m(f(Qi))

and using that m(A) = m(Q1) +m(Q2) we have

1

K
m(A) ≤ m(f(Q1)) +m(f(Q2)).

Using Lemmas 1.6 and 1.9 we can replace extremal lengths with moduli and combine all
the inequalities to get

1

K
m(A) ≤ m(f(A)).

Applying the above inequality to the inverse map f−1 we get the claimed upper bound
on m(f(A)). 1.11

1.2 Compactness

Quasiconformality is not metric property. However, as is the case with conformal maps, it
will often be useful to use the hyperbolic metric to study them. In particular, we’ll show
that QC(H2;K) the family of K-quasiconformal homeomorphism of H2 are equicontinu-
ous and this, with some additional restrictions, will allows us to establish a compactness
theorem. While the final result could be stated without any reference to the hyperbolic
metric it will be important in the proof.
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The key point is that two points that are close together in the hyperbolic metric on
∆ are separated from the boundary by an annulus of small modulus. However, if the
two points become far apart after applying a K-quasiconformal map then the annulus
will have large modulus by the Grötzsch estimate, a contradiction.

Lemma 1.12 Given ε > 0 there exists a δ > 0 such that if z0, z1 ∈ ∆ with m(A) < δ
and A is an annulus separating z0 and z1 from ∂∆ then dH2(z0, z1) < ε.

Conversely, given any ε > 0 there exists a δ > 0 such that if dH2(z0, z1) < δ then
there exists an annulus A separating z0 and z1 from ∂∆ with m(A) < ε.

Proof: After performing a conformal automorphism of the disk (a hyperbolic isom-
etry) we can assume that z0 = 0 and z1 = r for some 0 < r < 1. We get a lower
bound on λ(ΓA) by taking the euclidean metric on ∆. In particular for the Euclidean
metric every curve in ΓA has length at least 2r and the euclidean area of ∆ is π so
λ(ΓA) ≥ 4r2/π. As r → 0 we have dH2(z0, z1) → 0 so there exists an δ′ such that if

r < δ′ then dH2(z0, z1) < ε. Now choose δ = 4(δ′)2
π and we see that if m(A) < δ then

r < δ′ and therefore dH2(z0, z1) < ε.
For the converse take the annulus A2r,1/2. As the distance dH2(z0, z1) limits to zero

so does the modulus of A2r,1/2. 1.12

Proposition 1.13 The family QC(H2;K) is equicontinuous.

Proof: Fix ε > 0. By Lemma 1.12 there exists a δ′ > 0 such that for any annulus
in ∆ of modulus < δ any two points in the bounded component of the complement will
have hyperbolic distance bounded by ε. On the other hand, again by Lemma 1.12, we
can choose a δ > 0 such that for any two points z0, z1 with dH2(z0, z1) < δ there is a an
annulus A separating z0 and z1 from ∂∆ andm(A) < δ/K. Then for any f ∈ QC(H2;K)
we have

m(f(A)) ≤ Km(A) < δ

so dH2(f(z0), f(z1)) < ε, proving equicontinuity. 1.13

Clearly QC(H2;K) is not compact and does not have compact closure in the space
of all homeomorphisms as it contains the group of conformal automorphisms (the isom-
etry group) which does not have compact closure. We will need to make some extra
restrictions. We will apply (without proof) some facts from coarse geometry.

Corollary 1.14 A K-quasiconformal homeomorphism of H2 is a quasi-isometry (with
constants depending only on K).
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Proof: By Proposition 1.13 we can fix an ε > 0 and δ > 0 such that if dH2(z0, z1) < δ
then dH2(f(z0), f(z1)) < ε. For two arbitrary points let n be the smallest integer such
that dH2(z0, z1) ≤ nδ. Then

dH2(f(z0), f(z1)) ≤ nε ≤ ε

δ
dH2(z0, z1) + ε.

As f−1 is also a K-quasi-isometry we have a similar lower bound. 1.14

We will need to some properties of δ-hyperbolic metrics spaces and quasi-isometries.
We’ll state what we need in terms of H2 although they hold in much more generality.

• The hyperbolic plane has natural compactification by S1. We denote the compact
space H̄

2. Every isometry of H2 extends to a homeomorphism of H̄2.

• Any two distinct points x, y ∈ H̄
2 are endpoints of a unique geodesic xy in H

2.

• Let f : H2 → H
2 be a quasi-isometry. Then f extends continuously to a homeo-

morphism of ∂H̄2. In particular, if f is a homeomorphism it extends to a homeo-
morphism of H̄2. Furthermore, if fi are quasi-isometries (with uniform constants)
that converge to f in the compact-open topology on H

2 then the extensions of fi
converge (pointwise) to the extension of f .

• There exists a D > 0, depending only on the quasi-isometry constants, such that
f(xy) is contained in the D-neighborhood of f(x)f(y).

• There exists a δ > 0 such that for any geodesic triangle T (with possibly one or
more vertices at ∞) there exists a point z that is within δ of all three sides of T .
Furthermore any other such point is a uniformly bounded distance from z. We say
that z is a barycenter of T .

• Let v0, v1, v2 ∈ H̄
2 be vertices of a triangle T and f(v0), f(v1) and f(v2) vertices

of a triangle T ′. Let z be a barycenter of T and z′ a barycenter of T ′. Then the
distance between f(z) and z′ is uniformly bounded (with constants only depending
on the qc-constants for f).

Theorem 1.15 The space QC(H2, {x0, x1, x2};K) of K-quasiconformal homeomorphisms
of the H

2 that pointwise fix the distinct points x0, x1 and x2 on ∂H2 is compact.

Proof: We first show that QC(H2, {x0, x1, x2};K) has compact closure in the space
of all continuous maps of H2 to itself via Arzela-Ascoli. For this we need to show that
for some z0 ∈ H

2 the set

{f(z0)|f ∈ QC(H2, {x0, x1, x2};K)}

14



is bounded. If this set is bounded for one z0 ∈ H
2 then it is bounded for all z ∈ H

2.
Let z0 be the barycenter of the ideal triangle with vertices x0, x1 and x2. Then f(z0)

will be uniformly close to the barycenter of the ideal triangle with vertices f(x0), f(x1)
and f(x2). However, f fixes these three points so f(z0) is uniformly close to z0 and the
set is bounded.

Now we show that the closure is contained in the set of homeomorphisms. Assume
that fi ∈ QC(H2, {x0, x1, x2};K) converge in the compact-open topology to f . The
property of being a quasi-isometry is preserved in limits so f is proper. It is also a
local homeomorphism. For this we use that the maps f−1

i are K-quasiconformal and
equicontinuous. In particular given ε > 0 there exists a δ > 0 such that if dH2(z0, z1) < δ
then dH2(f−1

i (z0), f
−1
i (z1)) < ε. Conversely if w0, w1 ∈ ∆ with dH2(w0, w1) > ε then

dH2(fi(w0), fi(w1)) > δ and by passing to limits we have that f is injective.
Now we show that the limit is f is K-quasiconformal. Let (Q : z0, z1, z2, z3) be a

quadrilateral in ∆. We need to show that (after possibly passing to a subsequence)
m(f(Qi)) → m(f(Q)) as i → ∞. Let φi : f(Qi) → U be the uniformizing maps. Again
by Caratheodory’s theorem the φi extend to homeomorphisms from the closures of the
domain and range. We can also normalize the maps such that φi(0) = fi(z0), φi(1) =
fi(z1) and φi(∞) = fi(z2). For each i there will be a negative real number xi such that
φi(xi) = f(z3). The modulus m(f(Qi)) will be a continuous function of xi.

The usual normal families theorems from complex analysis imply that the φi con-
verge to a holomorphic function φ. However, we need to know that this limit is the
uniformizing map for the limiting quadrilateral f(Q) and we need to understand the
boundary behavior. For this let ψ : U → Q be the uniformizing map chosen such that
after extending to the closure ψ(0) = 0, ψ(1) = z1 and ψ(∞) = z2. Let x = ψ−1(z3).
Let gi = φ−1

i ◦ fi ◦ ψ. Then the gi are K-quasiconformal homeomorphisms of U to
itself that fix 0, 1 and ∞. By the above paragraphs (after possibly passing to a subse-
quence) the gi converge in the compact-open topology to a homeomorphism g that is
also a quasi-isometry. In general a family of homeomorphisms of H̄2 that converge in the
compact-open topology when restricted to H

2 do not have to converge on the boundary.
However, when the homeomorphisms are quasi-isometries (with uniform constants) we
do get convergence on the boundary. Taking the limit of the equation φi ◦ gi = fi ◦ψ we
see that φ is the uniformizing map for f(Q) and that 1.15

Theorem 1.16 Let X be a finite area complete hyperbolic surface and QC(X;K) the
space of K-quasiconformal homeomorphisms of X (with the compact-open topology).
Then QC(X;K) is compact.

Proof: First we see that QC(X;K) is an equicontinuous family by lifting the maps to
X̃ = H

2 and applying Theorem 1.13. In fact the maps are (uniform) quasi-isometries and
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therefore for any ε > 0 there is an ε′ > 0 such that if z ∈ X≥ε then f(z) ∈ X≥ε′ . As the
ε′-thick part of X is compact this implies that for all z ∈ X the set {f(z)|f ∈ QC(X;K)}
is bounded. Therefore, by Arzela-Ascoli, QC(X;K) has compact closure in the space of
continuous maps of X to itself. If the maps converge on X we can lift them to converge
on H2. By Lemma

To see that the limit is a homeomorphism we recall that is the inverse maps are
also K-quasiconformal, equicontinuity implies that any two points some fixed distant
apart have image that is a definite distance apart and therefore the limiting map will be
injective. the property of being a quasi-isometry also passes to limits

1.3 Quasiconformal maps - analytic definition

Let I ⊂ R be an interval and f : I → R a function. Then f is absolutely continuous if
for all ε > 0 there exists a δ > 0 such that if (a1, b1), . . . , (an, bn) are disjoint intervals in
I with ∑

|bi − ai| < δ

then ∑
|f(bi)− f(ai)| < ε.

The key fact is that absolutely continuous functions satisfy the 2nd fundamental the-
orem of calculus. That is an absolutely continuous function f is differentiable almost
everywhere and

f(y)− f(x) =

∫ y

x
f ′(t)dt

for x, y ∈ I.
Now let Ω be a domain in C and f : Ω → C a function. Then f is absolutely continuous

on lines (ACL) if the restriction of the real and imaginary parts of f to almost every
horizontal and vertical segment in Ω is absolutely continuous. We can now give an
analytic definition of a K-quasiconformal homeomorphism.

Let f : Ω → Ω′ be a homeomorphism between domains in C. Then f isK-quasiconformal
(analytic definition) if

1. f is ACL (and therefore fx and fy are defined a.e).

2. |fz| ≤ K|fz| a.e.
The definition is chosen so that there is enough regularity so that Lemma 1.1 holds.

Lemma 1.17 Let f : Ω → Ω′ be a K-quasiconformal homeomorphism.∫
E
(|fz|2 − |fz|2)dxdy ≤ A(f(E))

16



Assuming Lemma 1.17 we have:

Lemma 1.18 Let
f : [0, a] × [0, 1] → [0, a′]× [0, 1]

be K-quasiconformal (analytic) with f(0, 0) = (0, 0), f(a, 0) = (a′, 0), f(0, 1) = (0, 1)
and f(a, 1) = (a′, 1). Then K ≥ a′/a with equality if and only if f is affine.

Proof: We have exactly the regularity needed to copy the proof of Lemma 1.1. In
particular the ACL assumption implies that∫ a

0
fx(x+ iy)dx = f(a+ iy)− f(0 + iy)

for almost every y ∈ [0, 1] and along with the fact partial derivatives are defined a.e. this
is enough to see that

a′ ≤
∫ 1

0

∫ a

0
(|fz|+ |fz|)dxdy.

The integrand is only measurable but we can still apply the Cauchy-Schwarz inequality
to get

(a′)2 ≤
∫ 1

0

∫ a

0

1 + |µf |
1− |µf |dxdy

∫ 1

0

∫ a

0
(|fz|2 − |fz|2)dxdy.

The integrand of this first integral is bounded by K a.e. so the integral is bounded by
Ka ·1. The second integral is bounded by a′ ·1 by Lemma 1.17. Therefore (a′)2 ≤ (Ka)a′

and the lemma follows.
If K = a′/a then as before we have the matrix of partial derivatives is diagonal

and constant except that hear the condition only holds a.e. The ACL condition is
enough to show that f is affine. In particular we have (Re f)x = a′/a, (Im f)y = 1 and
(Re f)y = (Im f)x = 0 a.e. and since f is ACL we have that for almost every y0 ∈ [0, 1]

there exists a y1 ∈ [0, 1] with f(x, y0) = a′
a x + y1 and for almost every x0 ∈ [0, a]

there exists an x1 ∈ [0, a′] such that f(x0, y) = x1 + y. By Fubini this implies that
f(x, y) = a′

a x+ y a.e. and as f is continuous this holds everywhere. 1.18

Lemma 1.19 A geometric K-quasiconformal map is ACL.

Proof: The ACL condition is local so we can assume that the domain is rectangle
R. Let Rη be the rectangle with the same base but height η. Then the function A(η) =
A(f(Rη)) is an increasing function of η. Monotonic functions are differentiable a.e. We
will show that f is absolutely continuous on every horizontal line of height η were A′(η)
exists. We can assume that A′(0) exists. The general case follows.
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Let s1, . . . , sn be a disjoint collection of intervals in the base of R of length b1, . . . , bn.
For now assume that each f(si) is rectifiable with length b′i. We’ll show this at the end.
Let Qi be the rectangle in Rη with base si and height η.

Fix an ε0, ε1 > 0. Let z0, . . . , zm be an increasing sequence of points in si with z0
and zm the endpoints and ∑

|f(zj+1)− f(zj)| ≥ b′i − ε0.

Let rj be the vertical segment in Rη above zj . Choose η sufficiently small such that the
diameter of each f(rj) is < ε1. Any path connecting the vertical sides of f(Qi) must
intersect each f(rj) and hence have length

≥
∑

(|f(zj+1)− f(zj)| − 2ε1) .

Combining inequalities we get the modulus estimate

m(f(Qi)) ≥ (b′i − ε0 − 2mε1)
2

Ai(η)
.

In particular, by choosing η sufficiently small we can assume that ε0 ≤ b′i/4 and ε1 <
ε0/(2m) and therefore

m(f(Qi)) ≥ (b′i)
2

4Ai(η)
.

As there are only finitely many intervals si if η is sufficiently small then the above
inequality holds for all i.

On the other hand, as f is a geometric K-quasiconformal map, we have

m(f(Qi)) ≤ Km(Qi) = Kbi/η

and combining and rearranging we have

(b′i)
2

bi
≤ 4KAi(η)

η
.

Summing both sides this becomes∑ (b′i)
2

bi
≤ 4K

A(η)

η
.

By the Cauchy-Schwarz inequality(∑
b′i
)2

=

(∑ b′i√
bi

·
√
bi

)2

≤
(∑ (b′i)

2

bi

)
·
(∑

bi

)
≤ 4K

A(η)

η
·
(∑

bi

)
18



and taking the limit as η → 0 we have(∑
b′i
)2 ≤ 4KA′(0) ·

(∑
bi

)
.

We are left to show that the f(si) is rectifiable. We have essentially done all the
necessary work. In particular if f(si) is not rectifiable then we can replace the constant
b′i with any N > 0 and we would have

N2 ≤ 4KA′(0) ·
(∑

bi

)
.

As the right hand side doesn’t depend on N this is a contradiction. 1.19

The ACL condition implies that the partial derivatives of f are defined a.e. By itself
this is not enough to prove that f is differentiable almost everywhere.

Lemma 1.20 Let f : Ω → Ω′ have continuous partial derivatives in a neighborhood of
z0 ∈ Ω. Then f is differentiable at z0.

Proof: We can assume that z0 = 0. We will show that for all ε > 0 there exists a
δ > 0 such

|f(z)− f(0)− xfx(0) − yfy(0)| < ε

if |z| < δ. We have the equality

f(z)− f(0)− xfx(0) − yfy(0) = (f(z)− f(x)− yfy(x))

+(f(x)− f(0)− xfx(0))

+(y(fy(x)− fy(0))).

We’ll bound each term by ε|z|/3. The key is that if we extend the difference quotients

fh(z) =
f(z + h)− f(z)

h
and f ik(z) =

f(z + ik)− f(z)

k

to be fx(z) and fy(z) when h = 0 or k = 0 then the extended functions are continuous.
In particular we can choose a δ such that if |z| < δ, |h| < δ and |k| < δ then |fh(z)| < ε/3
and |f ik(z)| < ε/3.

Lemma 1.21 If f : Ω → Ω′ is a homeomorphism and has partial derivatives a.e. then
f is differentiable a.e.
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Proof: By a (clever) application of Egoroff’s theorem we can find a measurable set
E ⊂ Ω such that the measure of Ω− E is arbitrarily small and the difference quotients

f(z + h)− f(z)

h
and

f(z + ik)− f(z)

k

converge uniformly in E to the partial derivatives fx and fy. (Egoroff’s theorem is for
sequences which is why it cannot be applied directly. However, we can define a sequence
of functions by

sup
0<|h|<1/n

∣∣∣∣f(z + h)− f(z)

h
− fx(z)

∣∣∣∣
and apply Egoroff’s theorem to this sequence.)

As E is measurable by Fubini’s theorem the intersection of E with almost every
horizontal and vertical line is measurable. Let Ey be the intersection of E with the
horizontal line of height y and similarly define Ey. When Ey (or Ex) is measurable by
the Lesbegue density theorem almost every point is a point of density. That is

lim
ε→0

m((x− ε, x+ ε) ∩Ey)

2ε
→ 1

for almost every x ∈ Ey. (Here we are parameterizing points in Ey by their x-coordinate.)
Let E′ ⊂ E be the x+ iy ∈ E such that x is a point of density of Ey and y is a point of
density of Ex. Fubini’s theorem implies that E′ has full measure in E. We will show that
f is differentiable at every point of E′. We can assume that the point we are checking is
0 ∈ E′.

We need to show that for every ε > 0 there is a δ > 0 such that if z = x + iy with
|z| < δ then

|f(z)− f(0)− xfx(0) − yfy(0)| < ε|z|.
For this we rewrite the expression as

f(z)− f(0)− xfx(0) − yfy(0) = (f(z)− f(x)− yfy(x))

+(f(x)− f(0)− xfx(0))

+(y(fy(x)− fy(0))).

and then bound each of the expressions on the right. We first observe that we get the
necessary bound if x ∈ E0 and y is small. For the first two terms we use that the
difference quotients converge uniformly to see that we can choose a δ such that if |z| < δ
(and therefore |x| < δ and |y| < δ) then∣∣∣∣f(z)− f(x)

y
− fx(x)

∣∣∣∣ < ε/3
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and ∣∣∣∣f(x)− f(0)

x
− fy(0)

∣∣∣∣ < ε/3.

For the last term we have that, as the difference quotients are continuous, so are their
uniform limits fx and fy (on E). In particular, after possibly making δ smaller we have

|fy(x)− fy(0)| < ε/3.

These three bounds give the desired estimate. It is important that while we require that
|z| < δ we only need x ∈ E0 and there is no further restriction on y. We get a similar
estimate if y ∈ E0. In particular if x1, x2 ∈ E0 and y1, y2 ∈ E0 and all four values are
sufficiently small then then the bound will hold for the entire boundary of the rectangle
[x1, x2]× [y1, y2].

We say that a rectangle is ε-good if for every z in the boundary we have

|f(z)− f(0)− xfx(0) − yfy(0)| < ε|z|.

Then we can restate the above work to say that there exists a δ > 0 such that the
rectangle [x1, x2]× [y1, y2] is ε-good if x1, x2 ∈ E0, y1, y2 ∈ E0 and |z| < δ for all points
in the rectangle.

To bound the expression for a general z0 = x0 + iy0 we first find a small ε0-good
rectangle that contains z. Here is where we use that 0 is a point of density of both E0

and E0.
We assume that x0 and y0 are both positive. The general case will follow after obvious

modifications. As 0 is a point of density of E0 for any ε0 we can find a δ0 > 0 such that
if 0 < x ≤ δ0 then

m((−x, x) ∩E0) >
2 + ε0
1 + ε0

.

As

m

((
−x, x

1 + ε0

)
∩ E0

)
≤ m

((
−x, x

1 + ε0

))
=

2 + ε0
1 + ε0

the interval (
x

1 + ε0
, x

)
contains points in E0. It is essential that this last statement holds for any x < δ0.

Therefore if x0 <
δ0

1+ε0
then there is an x1 ∈

(
x0

1+ε0
, x0

)
∩E0 and an x2 ∈ (x0, x0(1 + ε0))∩

E0. Similarly, after possibly making δ0 smaller, if y0 <
δ0

1+ε0
we can find y1, y2 ∈ E0 with

y0
1+ε0

< y1 < y0 < y2 < y0(1+ ε0). After once again possibly decreasing δ0 we can assume
that [x1, x2]× [y1, y2] is an ε0-good rectangle.
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For any z∗ ∈ [x1, x2]× [y1, y2] we have

|z∗ − z0| < ε0

and
|z∗| < (1 + ε0)|z0|.

As f is a homeomorphism, and therefore an open map, the maximum principle applies.
In particular, on [x1, x2]× [y1, y2] the function f(z), and therefore the function,

z �→ f(z)− f(0)− x0fx(0)− y0fy(0)

has maximum modulus for some z∗ = x∗ + iy∗ on the boundary of the rectangle. Using
the above bounds and that the rectangle is ε0-good we have

|f(z0)− f(0)− x0fx(0) − y0fy(0)| ≤ |f(z∗)− f(0)− x0fx(0)− y0fy(0)|
≤ |f(z∗)− f(0)− x∗fx(0)− y∗fy(0)|

+(x∗ − x0)fx(0) + (y∗ − y0)fy(0)

≤ ε0(1 + ε0)|z0|+ ε0|fx(0)||z0|+ ε0|fy(0)||z0|.

1.21

The pull back f∗m of the Euclidean measure is a Borel measure on Ω. By the Les-
begue decomposition theorem it is the sum of a measure that is absolutely continuous
with respect to Lesbegue measure and a measure that is singular with respect to Lesbe-
gue measure. Where f is differentiable the Radon-Nikodyn derivative of the absolutely
continuous measure is the Jacobian Jf .

The main difficulty of the analytic definition is that it is not clear that is invariant
under composition with conformal maps.

Given a function f : Ω → C on a domain C, then the measurable functions fx are and
fy are the distributional derivatives of f if for compactly supported smooth functions
φ : Ω → C we have ∫

Ω
fxφdxdy = −

∫
Ω
fφxdxdy

and ∫
Ω
fxφdxdy = −

∫
Ω
fφxdxdy

where φx and φy are the usual partial derivatives of φ. If f is smooth then integration
by parts gives that the usual derivatives and the distributional derivatives agree. In fact
the ACL condition is enough to guarantee this.
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Let f, fx : [0, a] → R be measurable functions with f continuous such that for all
smooth g : [0, a] → R with compact support in (0, a) we have∫ a

0
fxgdx = −

∫ a

0
fg′dx.

Show that ∫ t

0
fxdx = f(t)− f(0)

for all t ∈ [0, a] and conclude that f is absolutely continuous. In fact, we can do better.
Show that there exist a countable collection of test functions gn : [0, a] → R such that if∫ a

0
fxgdx = −

∫ a

0
fg′dx

then ∫ t

0
fxdx = f(t)− f(0).

(Hint: We only need to show that the above equation holds for a dense set of t ∈ [0, a].
Choose a countable dense subset {tn} and then for each tn choose enough functions gn,m
such that you can show that ∫ tn

0
fxdx = f(tn)− f(0).

)

Lemma 1.22 If f : Ω → C is continuous and has locally integrable distributional deriva-
tives then f is ACL.

Proof: Being ACL is a local condition so we will assume that the domain is a
rectangle R of width a and height b. Let Rη be the rectangle with the same lower side
as R but height η ≤ b. We choose a test function φ to be the product of a function that
only depends on x and another that only depends on y. That is let φ(x+ iy) = g(x)h(y).
Then we have ∫

R
fxg(x)h(y)dxdy = −

∫
R
fg′(x)h(y)dxdy.

We now choose bounded functions hn such that hn → 1 (pointwise). As g, g′ and f are
bounded and fx is integrable the products fxg and fg′ are integrable and we can apply
the dominated convergence theorem to take limits and get∫

R
fxg(x)dxdy = −

∫
R
fg′(x)dxdy
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for all g.
Now we observe that that the above equality holds if we replace R with Rη so we

have that ∫ η

0

(∫ a

0
fxg(x)dx

)
dy =

∫ η

0

(
−
∫ a

0
fg′(x)dx

)
dy

and therefore we have that ∫ a

0
fxg(x)dx = −

∫ a

0
fg′(x)dx

for almost every y ∈ [0, b]. However, the subset of y ∈ [0, a] where the equality holds will
depend on g.

We choose a countable family of gn as given by the exercise. For each n the set where∫ a

0
fxgn(x)dx = −

∫ a

0
fg′n(x)dx

has full measure in [0, b] so the intersection of the sets for all the n will still be full
measure and we have that

f(t)− f(0) =

∫ t

0
f(x)dx

for all t ∈ [0, t]. This gives the ACL condition for horizontal lines. A similar argument
gives the statement for vertical lines. 1.22

Given a curve γ in the C let γ̄ be its reflection across the R-axis and let γ+ be its
image under the folding map x+ iy �→ x+ i|y|. Given path family the meaning of Γ̄ and
Γ+ should be clear.

Proposition 1.23 If Γ = Γ̄ then λ(Γ) = 2λ(Γ+).

Proof: Let ρ be a metric that is symmetric across the R-axis; that is ρ(z) = ρ(z).
For such a metric LΓ(ρ) = LΓ+(ρ) (with the assumption that Γ = Γ̄) and if we let ρ+

be the restriction of ρ to the closure of the upper half plane we have LΓ+(ρ) = LΓ+(ρ+)
(for any metric ρ) so LΓ(ρ) = LΓ+(ρ+) (assuming that ρ is symmetric). We also observe
that A(ρ) = 2A(ρ+) and therefore

LΓ(ρ)
2

A(ρ)
= 2

LΓ+(ρ+)2

A(ρ+)
.

Let λs(Γ) be the extremal length where the supremum is restricted to symmetric metrics.
Then the above equality implies that λs(Γ) = 2λ(Γ+) so we only need to show that
λ(Γ) = λs(Γ). As we are restricting the class of metrics we have λs(Γ) ≤ λ(Γ) so we are
left to show the reverse inequality.
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Given an arbitrary metric ρ (not necessarily symmetric) let ρs(z) = (ρ(z) + ρ(z))/2
be its symmetrization. For any curve γ ∈ Γ its ρs length will be the average of the
ρ-lengths of γ and γ̄. Therefore LΓ(ρ

s) ≥ LΓ(ρ). On the other hand A(ρs) = A(ρ) so
we have

LΓ(ρ
s)2

A(ρs)
≥ LΓ(ρ)

2

A(ρ)
.

This implies that λs(Γ) ≥ λ(Γ) and the lemma follows. 1.23

Let z0 and z1 be points in the unit disk ∆ and let z0z1 be the geodesic in the hyperbolic
metric on ∆ connecting the two points, Let Az0z1 = ∆\z0z1 be the complementary
annulus. The following theorem is due to Grötzsch although we formulate it in a non-
standard way.

Theorem 1.24 Let A be an annulus in ∆ that separates z0, z1 ∈ ∆ from ∂∆. Then
m(A) ≥ m(Az0z1).

Proof: Let Γ be the collection of closed curves γ in ∆ such that both z0 and z1 have
winding number 1 with respect to γ. Then ΓA ⊂ Γ so m(A) = λ(ΓA) ≤ λ(Γ).

We can assume that z0 and z1 lie in R. Then Γ = Γ̄ and we can take advantage of
Proposition 1.23 to show that λ(Γ) = λ(ΓAz0z1

). The key point is that Γ+
Az0z1

= Γ+ and

therefore
λ(ΓAz0z1

) = 2λ(Γ+
Az0z1

) = 2λ(Γ+) = λ(Γ)

by Proposition 1.23.
We need to justify why Γ+

Az0z1
= Γ+. As ΓAz0z1

⊂ Γ we have Γ+
Az0z1

⊂ Γ+. Now take

γ ∈ Γ and we’ll show that there is γ′ ∈ ΓAz0z1
with γ+ = (γ′)+. Note that γ intersects

the intervals (−1, z0) and (z1, 1) in R (here we are assuming z0 < z1) and therefore we
can subdivide γ into two arcs a and b into two arcs with endpoints in each of the two
intervals. Then γ+ is subdivided into a+ and b+. However, if we let b− be the reflection
of b+ into the lower half plane and let γ′ = a+ ∪ b− then γ′ ∈ ΓAz0za

as desired.2 1.24

2There is one additional subtlety. While γ′ will not cross z0z1 it may intersect it. However, if we
expand ΓAz0z1 to allows such curves the modulus will be the same.
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