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#28.1 Let x, € [0,1] have a 1 in the nth place and a 0 in all others. Then
p(Zn, ) = 1 if n # m so every ball of radius 1/3 intersect at most one x,,. Therefore
the set has not limit point.

#28.6 The map f is injective since if f(x) = f(y) then 0 = d(f(z), f(y)) = d(z,y)
which implies that x = y.

To see that f is surjective we follow the hint in the book. Assume that a ¢ f(X).
Since X is compact, f(X) is compact and hence closed (as X is a metric space and
therefore Hausdorff). Since X\ f(X) is open there exists an € > 0 such that the e-ball
centered at a is disjoint from f(X). Now inductively define z,, € X by setting z; = a
and zp41 = f(x,). Forn > 1, x, € f(X) so d(a = z1,x,) > €. Note that f", the
n-fold composition of f will also be an isometry so if n < m then x, = f*~!(z1) and
Tm = "N @moni1) 80 d(Zp, ) = d(21, Tm_ni1) > €. Therefore (as in 28.1) the set
Ty has no limit point, contradicting the compactness of X. There f is surjective and,
hence, bijective.

An isometry is continuous, and a continuous bijection of a compact space to itself is
a homeomorphism.

#29.8 First we observe that Z,, with the subspace topology inherited from R has
the discrete topology as does {1/n|n € Z4} so the two spaces are homeomorphic. Next
we note that {0} U{1/n|n € Z} is closed and bounded and therefore compact. Any set
with the discrete topology is both locally compact and Hausdorff so by Theorem 29.1
{0} U{1/n|n € Z;} is the unique one-point compactification of Z .

#33.4 First assume that f : X — [0,1] is continuous and f~!({0}) = A. Then
Un = f~1((=1/n,1/n)) are open and NU, = f~1(N(=1/n,1/n)) = f1({0}) = Aso A
is a closed Gj.

Now assume that there are open sets U, such that A = NU,. By Urysohn’s lemma
we can find continuous functions f, : X — [0,1/n?] that f, is 0 on A and 1/2" on
X\U,, and let h,, = > _; fr. The sequence of functions h,, will converge uniformly to
a function f since the sum »_ 1/2™ converge and f will be non-negative and bounded
above byl. Therefore h, converges to a function f which will be continuous since the
convergence is uniform. Then f is 0 on A and if x &€ A then there exists an U, such that
r €Uy so f(x) > 1/n?



#33.5 First we show the the existence of the function f. By 33.4 we have functions
fa, fB : X — [0,1] that vanish exactly on A and B, respectively. Then f = fAf‘lffB is the
desired function.

If f:X — [0,1] is continuous and is 0 on exactly on A and 1 exactly on B then A
is a closed G by applying 33.4 to f and B is a closed Gs by applying 33.4 to 1 — f.

#35.3 We first show that (1) = (2). Assume there is a continuous map f: X — R
that is not bounded. Then f is a homeomorphism to its graph in X x R. There is a
product metric on X xR and the subspace metric on the graph of f will be an unbounded
metric on X.

Next we show that (2) = (3). If X is not limit point compact then there exists a
countable set A that doesn’t have a limit point. Since X is metrizable it is Hausdorff. For
each x € A has a neighborhood U such that U N A has finitely many points x, x1, ..., Zy.
Let U; be a neighborhood of x that is disjoint form z;. Then the intersection of U with
N U; will be an open neighborhood of x that only contains x in its intersection with A.
In particular the subspace topology on A is the discrete topology. We can then find on
surjective, continuous function from A to Z4 (since all functions from a space with the
discrete topology are continuous) which extends to a continuous function on all of X by
the Tietze extension theorem.

Finally, we show that (3) = (1). Assume that X has an unbounded metric d. Then
there exists a sequence of points x,, with d(x1,x,) — co. But then x,, does not have a
convergent subsequence, contradiction.



