1. Find an differentiable atlas for \(S^1 \times S^1 \),

2. Show that if \(M \) and \(N \) are differentiable manifolds then \(M \times N \) is a differentiable manifold.

3. Find a differentiable atlas for \(\mathbb{R} \) such that the identity map is not smooth.

4. Show that for every differentiable structure on \(\mathbb{R} \) there is a smooth, strictly increasing function from \(\mathbb{R} \) to \(\mathbb{R} \) where the second copy of \(\mathbb{R} \) has the standard structure. Use this to show that any two differentiable structures on \(\mathbb{R} \) are diffeomorphic.

5. \(SL_n(\mathbb{R}) \) is the space of \(n \times n \) matrices with determinant one. Show that \(SL_n(\mathbb{R}) \) is a differentiable manifold of dimension \(n^2 - 1 \). (Hint: The space of all \(n \times n \) matrices is naturally homeomorphic to \(\mathbb{R}^{n^2} \). The determinant is then a map from \(\mathbb{R}^{n^2} \) to \(\mathbb{R} \). Show that 1 is regular value of this map.)

6. Do #5, #7 in Section 4 of Guillemin and Pollack (pages 25-26).