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Abstract

Transport phenomena in spatially periodic systems far from thermal equilibrium are considered. The main
emphasis is put on directed transport in so-called Brownian motors (ratchets), i.e. a dissipative dynamics in
the presence of thermal noise and some prototypical perturbation that drives the system out of equilibrium
without introducing a priori an obvious bias into one or the other direction of motion. Symmetry conditions for
the appearance (or not) of directed current, its inversion upon variation of certain parameters, and quantitative
theoretical predictions for speciFc models are reviewed as well as a wide variety of experimental realizations
and biological applications, especially the modeling of molecular motors. Extensions include quantum me-
chanical and collective e5ects, Hamiltonian ratchets, the in=uence of spatial disorder, and di5usive transport.
c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Outline and scope

The subject of the present review are transport phenomena in spatially periodic systems out of
thermal equilibrium. While the main emphasis is put on directed transport, also some aspects of
di1usive transport will be addressed. We furthermore focus mostly on small-scale systems for which
thermal noise plays a non-negligible or even dominating role. Physically, the thermal noise has its
origin in the thermal environment of the actual system of interest. As an unavoidable consequence,
the system dynamics is then always subjected to dissipative e5ects as well.

Apart from transients, directed transport in a spatially periodic system in contact with a single
dissipation- and noise-generating thermal heat bath is ruled out by the second law of thermody-
namics. The system has therefore to be driven away from thermal equilibrium by an additional
deterministic or stochastic perturbation. Out of the inFnitely many options, we will mainly focus on
either a periodic driving or a restricted selection of stochastic processes of prototypal simplicity. In
the most interesting case, these perturbations are furthermore unbiased, i.e. the time-, space-, and
ensemble-averaged forces which they entail are required to vanish. Physically, they may be either
externally imposed (e.g. by the experimentalist) or of system-intrinsic origin, e.g. due to a second
thermal heat reservoir at a di5erent temperature or a non-thermal bath.

Besides the breaking of thermal equilibrium, a further indispensable requirement for directed trans-
port in spatially periodic systems is clearly the breaking of the spatial inversion symmetry. There
are essentially three di5erent ways to do this, and we will speak of a Brownian motor, or equiva-
lently, a ratchet system whenever a single one or a combination of them is realized: First, the spatial
inversion symmetry of the periodic system itself may be broken intrinsically, that is, already in the
absence of the above mentioned non-equilibrium perturbations. This is the most common situation
and typically involves some kind of periodic and asymmetric, so-called ratchet potential. A second
option is that the non-equilibrium perturbations, notwithstanding the requirement that they must be
unbiased, bring about a spatial asymmetry of the dynamics. A third possibility arises as a collective
e5ect in coupled, perfectly symmetric non-equilibrium systems, namely in the form of spontaneous
symmetry breaking.

As it turns out, these two conditions (breaking of thermal equilibrium and of spatial inversion
symmetry) are generically suCcient for the occurrence of the so-called ratchet e1ect, i.e. the emer-
gence of directed transport in a spatially periodic system. Elucidating this basic phenomenon in all
its facets is the central theme of our present review.

We will mainly focus on two basic classes of ratchet systems, which may be roughly characterized
as follows (for a more detailed discussion see Section 3.3): The Frst class, called pulsating ratchets,
are those for which the above-mentioned periodic or stochastic non-equilibrium perturbation gives
rise to a time-dependent variation of the potential shape without a5ecting its spatial periodicity. The
second class, called tilting ratchets, are those for which these non-equilibrium perturbations act as
an additive driving force, which is unbiased on the average. In full generality, also combinations of
pulsating and tilting ratchet schemes are possible, but they exhibit hardly any fundamentally new
basic features (see Section 3.4.2). Even within those two classes, the possibilities of breaking thermal
equilibrium and symmetry in a ratchet system are still numerous and in many cases, predicting the
actual direction of the transport is already far from obvious, not to speak of its quantitative value.
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In particular, while the occurrence of a ratchet e5ect is the rule, exceptions with zero current are still
possible. For instance, such a non-generic situation may be created by Fne-tuning of some parameter.
Usually, the direction of transport then exhibits a change of sign upon variation of this parameter,
called current inversions. Another type of exception can be traced back to symmetry reasons with
the characteristic signature of zero current without Fne-tuning of parameters. The understanding and
control of such exceptional cases is clearly another issue of considerable theoretical and practical
interest that we will discuss in detail (especially in Sections 3.5 and 3.6).

1.2. Historical landmarks

Progress in the Feld of Brownian motors has evolved through contributions from rather di5erent
directions and re-discoveries of the same basic principles in di5erent contexts have been made
repeatedly. Moreover, the organization of the much more detailed subsequent chapters will not always
admit it to keep the proper historical order. For these reasons, a brief historical tour d’horizon seems
worthwhile at this place. At the same time, this gives a Frst =avor of the wide variety of applications
of Brownian motor concepts.

Though certain aspects of the ratchet e5ect are contained implicitly already in the works of
Archimedes, Seebeck, Maxwell, Curie, and others, Smoluchowski’s Gedankenexperiment from 1912
[1] regarding the prima facie quite astonishing absence of directed transport in spatially asymmetric
systems in contact with a single heat bath, may be considered as the Frst seizable major contribution
(discussed in detail in Section 2.1). The next important step forward represents Feynman’s famous
recapitulation and extension [2] to the case of two thermal heat baths at di5erent temperatures
(see Section 6.2).

Brillouins paradox [3] from 1950 (see Section 2.9) may be viewed as a variation of Smolu-
chowski’s counterintuitive observation. In turn, Feynman’s prediction that in the presence of a second
heat bath a ratchet e5ect will manifest itself, has its Brillouin-type correspondence in the Seebeck
e5ect (see Section 6.1), discovered by Seebeck in 1822 of course without any idea about the un-
derlying microscopic ratchet e5ect.

Another root of Brownian motor theory leads us into the realm of intracellular transport research,
speciFcally the biochemistry of molecular motors and molecular pumps. In the case of molecular
motors, the concepts which we have in mind here have been unraveled in several steps, starting
with A. Huxley’s ground-breaking 1957 work on muscle contraction [4], and continued in the late
1980s by Braxton and Yount [5,6] and in the 1990s by Vale and Oosawa [7], Leibler and Huse
[8,9], Cordova, Ermentrout, and Oster [10], Magnasco [11,12], Prost’s group [13,14], Astumian and
Bier [15,16], Peskin et al. [17,18] and many others, see Section 7. In the case of molecular pumps,
the breakthrough came with the theoretical interpretation of previously known experimental Fndings
[19,20] as a ratchet e5ect in 1986 by Tsong, Astumian and coworkers [21,22], see Section 4.6. While
the general importance of asymmetry induced rectiFcation, thermal =uctuations, and the coupling
of non-equilibrium enzymatic reactions to mechanical currents according to Curie’s principle for
numerous cellular transport processes is long known [23,24], the above works introduced for the
Frst time a quantitative microscopic modeling beyond the linear response regime close to thermal
equilibrium.

On the physical side, a ratchet e5ect in the form of voltage rectiFcation by a DC-SQUID in the
presence of a magnetic Feld and an unbiased AC-current (i.e. a tilting ratchet scheme) has been
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experimentally observed and theoretically interpreted as early as in 1967 by De Waele et al. [25,26].
Further, directed transport induced by unbiased, time-periodic driving forces in spatially periodic
structures with broken symmetry has been the subject of several hundred experimental and theo-
retical papers since the mid-1970s. In this context of the so-called photovoltaic and photorefractive
e5ects in non-centrosymmetric materials, a ground breaking experimental contribution represents the
1974 paper by Glass et al. [27]. The general theoretical framework was elaborated a few years
later by Belinicher, Sturman and coworkers, as reviewed—together with the above mentioned nu-
merous experiments—in their capital works [28,29]. They identiFed as the two main ingredients
for the occurrence of the ratchet e5ect in periodic systems the breaking of thermal equilibrium
(detailed balance symmetry) and of the spatial symmetry, and they pointed out the much more gen-
eral validity of such a tilting ratchet scheme beyond the speciFc experimental systems at hand, see
Section 5.6.

The possibility of producing a DC-output by two superimposed sinusoidal AC-inputs at frequencies
! and 2! in a spatially periodic, symmetric system, exemplifying a so-called asymmetrically tilting
ratchet mechanism, has been observed experimentally 1978 by Seeger and Maurer [30] and analyzed
theoretically 1979 by Wonneberger [31], see Section 5.12.1. The occurrence of a ratchet e5ect has
been theoretically predicted 1987 by Bug and Berne [32] for the simplest variant of a pulsating
ratchet scheme, termed on–o5 ratchet (see Section 4.2). A ratchet model with a symmetric periodic
potential and a state-dependent temperature (multiplicative noise) with the same periodicity but out
of phase, i.e. a simpliFed microscopic model for the Seebeck e5ect (see Section 6.1), has been
analyzed 1987 by BMuttiker [33] and independently by van Kampen [463].

The independent re-inventions of the on–o5 ratchet scheme 1992 by Ajdari and Prost [34] and of
the tilting ratchet scheme 1993 by Magnasco [11] together with the seminal 1994 works (ordered
by date of receipt) [12,13,15,17,35–42] provided the inspiration for a whole new wave of great the-
oretical and experimental activity and progress within the statistical physics community as detailed
in the subsequent chapters and reviewed e.g. in [14,43–61]. While initially the modeling of molec-
ular motors has served as one of the main motivations, the scope of Brownian motor studies has
subsequently been extended to an ever increasing number of physical and technological applications,
along with the re-discovery of the numerous pertinent works from before 1992. As a result, a much
broader and uniFed conceptual basis has been achieved, new theoretical tools have been developed
which lead to the discovery of many interesting and quite astonishing e5ects, and a large variety of
exciting new experimental realizations have become available.

Within the realm of noise-induced or -assisted non-equilibrium phenomena, an entire family of
well-established major Felds are known under the labels of stochastic resonance [62], noise induced
transitions [63] and phase transitions [64,65], reaction rate theory [66–68], and driven di5usive
systems [69,70], to name but a few examples. One objective of our present review is to show that
the important recent contributions of many workers to the theory and application of Brownian motors
has given rise to another full-=edged member of this family.

1.3. Organization of the paper

This review addresses two readerships: It may serve as an introduction to the Feld without requiring
any specialized preknowledge. On the other hand, it o5ers to the active researcher a unifying view
and guideline through the very rapidly growing literature. For this reason, not everything will be of
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equal interest for everybody. The following outline together with the table of contents may help to
make one’s selection.

Essentially, the subsequent eight sections (or chapters) can be divided into three units of rather
di5erent characters: The Frst unit (Section 2) is predominantly of introductory and pedagogical
nature, illustrating the basic phenomena, concepts, and applications by way of examples. Technically,
the discussion is conducted on a rather elementary level and the calculations are to a far extent
self-contained. “Standard” lines of reasoning and the derivation of basic working tools are discussed
rather detailed in mathematically heuristic but physically suggestive terms. While these parts of
Section 2 are not meant to replace a systematic introduction to the Feld of stochastic processes, they
may hopefully serve as a minimal basis for the technically less detailed subsequent sections.

Section 3 is devoted to general and systematic considerations which are relevant for the en-
tire subsequent parts of the paper. The main classes of ratchet models and their physical origin
are discussed with particular emphasis on symmetries, current inversions, and asymptotic regimes.
Sections 4–6 represent the main body of the present work and are to a large extent of review char-
acter. It was only during the completion of these chapters that the amount of pertinent literature in
this context became clear. As a consequence, speciFc new aspects of the considered ratchet systems
and of the obtained results could only be included for a selection of particularly signiFcant such
studies. Even then, the technical procedures and the detailed quantitative Fndings had to be mostly
omitted. Besides the conceptual theoretical considerations and the systematic discussion of various
speciFc model classes, a substantial part of Sections 4–6 has also been reserved for the manifold
experimental applications of those ideas.

Sections 7–9 represent the third main unit of our work, elaborating in somewhat more detail three
major instances of applications and extensions. Of methodic rather than review character are the
Frst three subsections of Section 7, illustrating a typical stochastic modeling procedure for the par-
ticularly important example of intracellular transport processes by molecular motors. The remainder
of Section 7 presents a survey of the Feld with particular emphasis on cooperative molecular mo-
tors and the character of the mechanochemical coupling. Section 8 is devoted to the discussion of
theoretically predicted new characteristic quantum mechanical signatures of Brownian motors and
their experimental veriFcation on the basis of a quantum dot array with broken spatial symmetry.
Finally, Section 9 deals with collective e5ects of interacting ratchet systems. On the one hand, we
review modiFcations of the directed transport properties of single ratchets caused by their interaction
(Section 9.1). On the other hand (Section 9.2) we exemplify genuine collective transport phenomena
by a somewhat more detailed discussion of one speciFc model of paradigmatic simplicity—meant
as a kind of “normal form” description which still captures the essence of more realistic models but
omits all unnecessary details, in close analogy to the philosophy usually adopted in the theory of
equilibrium phase transitions.

Concluding remarks and future perspectives are presented in Section 10. Some technical details
from the introductory Section 2 are contained in the appendices.

Previously unpublished research represent the considerations about supersymmetry in Section 3.5,
the method of tailoring current inversions in Section 3.6, the general treatment of the linear re-
sponse regime in Section 3.7, the approximative molecular motor model with two highly cooperative
“heads” in Section 7.5, as well as a number of additional minor new results which are indicated as
such throughout the text, e.g. various exact mappings between di5erent classes of ratchet systems.
New, mainly by the way of presentation but to some degree also by their content, are parts of
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Sections 2.1–2.4 and 6.1–6.4, the systematic ratchet classiFcation scheme and its physical basis in
Sections 3.3 and 3.4, the uniFed fast =uctuating force asymptotics in Section 5.5.1, as well as the
coherent historical review in the preceding Section 1.2.

A kind of red thread through the entire review consists in the asymptotic analysis of the so-called
fast-driving limit. By collecting and rewriting the various results spread out in the literature and
completing the missing pieces, a uniFed picture of this asymptotic regime emerges for the Frst time.
The structural similarity of these analytical results in view of the rather di5erent underlying models is
remarkable. For instance, within our standard working model—the overdamped Brownian motion in
a periodic non-equilibrium system involving some ratchet-potential V (x) of period L—the direction
of the average particle current is governed under very general circumstances by a factor of the form∫ L

0 V ′(x)[dnV (x)=dxn]2 dx with a model-dependent n-value between 1 and 3. Especially, already
within this asymptotic regime, the intriguingly complicated dependence of the directed transport,
e.g. on the detailed potential shape V (x), becomes apparent—a typical feature of systems far from
thermal equilibrium.

Basically, the review is organized in three levels (chapters, sections, subsections). While from
the logical viewpoint, additional levels would have been desirable, the present rather “=at” struc-
ture simpliFes a quick orientation on the basis of the table of contents. Throughout the main text,
cross-referencing to related subsections is used rather extensively. It may be ignored in case of a
systematic reading, but is hopefully of use otherwise.

2. Basic concepts and phenomena

This chapter serves as a motivation and Frst exposition of the main themes of our review, such
as the absence of directed transport in ratchet systems at thermal equilibrium, its generic occurrence
away from equilibrium, and the possibility of current inversions upon variation of some parameter.
These fundamental phenomena are exempliFed in their simplest form in Section 2.1, Sections 2.6–2.9,
and Section 2.11, respectively, and will then be elaborated in more generality and depth in the
subsequent chapters. At the same time, this chapter also introduces the basic stochastic modeling
concepts as well as the mathematical methods and “standard arguments” in this context. These issues
are mainly contained in Sections 2.2–2.5 and 2.10, complemented by further details in the respective
appendices. Readers who are already familiar with these basic physical phenomena and mathematical
concepts may immediately proceed to Section 3.

2.1. Smoluchowski–Feynman ratchet

Is it possible, and how is it possible to gain useful work out of unbiased random =uctuations?
In the case of macroscopic =uctuations, the task can indeed be accomplished by various well-known
types of mechanical and electrical rectiFers. Obvious daily-life examples are the wind-mill or the
self-winding wristwatch. More subtle is the case of microscopic =uctuations, as demonstrated by
the following Gedankenexperiment about converting Brownian motion into useful work. The basic
idea can be traced back to a conference talk by Smoluchowski in MMunster 1912 (published as
proceedings-article in Ref. [1]) and was later popularized and extended in Feynman’s Lectures on
Physics [2].
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Fig. 2.1. Ratchet and pawl. The ratchet is connected by an axle with the paddles and with a spool, which may lift a load.
In the absence of the pawl (leftmost object) and the load, the random collisions of the surrounding gas molecules (not
shown) with the paddles cause an unbiased rotatory Brownian motion. The pawl is supposed to rectify this motion so as
to lift the load.

2.1.1. Ratchet and pawl
The main ingredient of Smoluchowski and Feynman’s Gedankenexperiment is an axle with at one

end paddles and at the other end a so-called ratchet, reminiscent of a circular saw with asymmetric
saw-teeth (see Fig. 2.1). The whole device is surrounded by a gas at thermal equilibrium. So, if
it could freely turn around, it would perform a rotatory Brownian motion due to random impacts
of gas molecules on the paddles. The idea is now to rectify this unbiased random motion with the
help of a pawl (see Fig. 2.1). It is indeed quite suggestive that the pawl will admit the saw-teeth to
proceed without much e5ort into one direction (henceforth called “forward”) but practically exclude
a rotation in the opposite (“backward”) direction. In other words, it seems quite convincing that the
whole gadget will perform on the average a systematic rotation in one direction, and this in fact
even if a small load in the opposite direction is applied.

Astonishingly enough, this naive expectation is wrong: In spite of the built in asymmetry, no
preferential direction of motion is possible. Otherwise, such a gadget would represent a perpetuum
mobile of the second kind, in contradiction to the second law of thermodynamics. The culprit must
be our assumption about the working of the pawl, which is indeed closely resembling Maxwell’s
demon. 1 Since the impacts of the gas molecules take place on a microscopic scale, the pawl needs
to be extremely small and soft in order to admit a rotation even in the forward direction. As
Smoluchowski points out, the pawl itself is therefore also subjected to non-negligible random thermal
=uctuations. So, every once in a while the pawl lifts itself up and the saw-teeth can freely travel
underneath. Such an event clearly favors on the average a rotation in the “backward” direction in
Fig. 2.1. At overall thermal equilibrium (the gas surrounding the paddles and the pawl being at
the same temperature) the detailed quantitative analysis [2] indeed results in the subtle probabilistic
balance which just rules out the functioning of such a perpetuum mobile.

1 Both Smoluchowski and Feynman have pointed out the similarity between the working principle of the pawl and that
of a valve. A valve, acting between two boxes of gas, is in turn one of the simplest realizations of a Maxwell demon
[71]. For more details on Maxwell’s demon, especially the history of this apparent paradox and its resolution, we refer
to the commented collection of reprints in [72].
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A physical system as described above will be called after Smoluchowski and Feynman. We will
later go one step further and consider the case that the gas surrounding the paddles and the pawl are
not at the same temperature (see Section 6.2). Such an extension of the original Gedankenexperiment
appears in Feynman’s lectures, but has not been discussed by Smoluchowski, and will therefore be
named after Feynman only.

Smoluchowski and Feynman’s ratchet and pawl has been experimentally realized on a molecu-
lar scale by Kelly et al. [73–76]. Their synthesis of triptycene[4]helicene incorporates into a single
molecule all essential components: The triptycene “paddlewheel” functions simultaneously as circu-
lar ratchet and as paddles, the helicene serves as pawl and provides the necessary asymmetry of
the system. Both components are connected by a single chemical bond, giving rise to one degree
of internal rotational freedom. By means of sophisticated nuclear magnetic resonance (NMR) tech-
niques, the predicted absence of a preferential direction of rotation at thermal equilibrium has been
conFrmed experimentally. The behavior of similar experimental systems beyond the realm of thermal
equilibrium will be discussed at the end of Section 4.5.2.

2.1.2. Simpli8ed stochastic model
In the sense that we are dealing merely with a speciFc instance of the second law of thermo-

dynamics, the situation with respect to Smoluchowski–Feynman’s ratchet and pawl is satisfactorily
clariFed. On the other hand, the obvious intention of Smoluchowski and Feynman is to draw our
attention to the amazing content and implications of this very law, calling for a more detailed expla-
nation of what is going on. A satisfactory modeling and analysis of the relatively complicated ratchet
and pawl gadget as it stands is possible but rather involved, see Section 6.2. Therefore, we focus
on a considerably simpliFed model which, however, still retains the basic qualitative features: We
consider a Brownian particle in one dimension with coordinate x(t) and mass m, which is governed
by Newton’s equation of motion 2

m Mx(t) + V ′(x(t)) = −
 ẋ(t) + �(t) : (2.1)

Here V (x) is a periodic potential with period L,

V (x + L) = V (x) (2.2)

and broken spatial symmetry, 3 thus playing the role of the ratchet in Fig. 2.1. A typical example is

V (x) = V0[sin(2�x=L) + 0:25 sin(4�x=L)] ; (2.3)

see Fig. 2.2.
The left-hand side in (2.1) represents the deterministic, conservative part of the particle dynamics,

while the right-hand side accounts for the e5ects of the thermal environment. These are energy
dissipation, modeled in (2.1) as viscous friction with friction coeCcient 
, and randomly =uctuating
forces in the form of the thermal noise �(t). These two e5ects are not independent of each other since
they have both the same origin, namely the interaction of the particle x(t) with a huge number of

2 Dot and prime indicate di5erentiations with respect to time and space, respectively.
3 Broken spatial symmetry means that there is no �x such that V (−x) = V (x + Ux) for all x.
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Fig. 2.2. Typical example of a ratchet-potential V (x), periodic in space with period L and with broken spatial symmetry.
Plotted is the example from (2.3) in dimensionless units.

microscopic degrees of freedom of the environment. As discussed in detail in Sections A.1 and A.2
of Appendix A, our assumption that the environment is an equilibrium heat bath with temperature T
and that its e5ect on the system can be modeled by means of the phenomenological ansatz appearing
on the right-hand side of (2.1) completely Fxes [66,77–97] all statistical properties of the =uctuations
�(t) without referring to any microscopic details of the environment (see also Sections 2.9, 3.4.1
and 8.1). Namely, �(t) is a Gaussian white noise of zero mean,

〈�(t)〉 = 0 ; (2.4)

satisfying the 9uctuation–dissipation relation [79–81]

〈�(t)�(s)〉 = 2
kBT�(t − s) ; (2.5)

where kB is Boltzmann’s constant, 2
kBT is the noise intesity or noise strength, and �(t) is Dirac’s
delta function. Note that the only particle property which enters the characteristics of the noise is
the friction coeCcient 
, which may thus be viewed as the coupling strength to the environment.

For the typically very small systems one has in mind, and for which thermal =uctuations play any
notable role at all, the dynamics (2.1) is overdamped, that is, the inertia term m Mx(t) is negligible
(see also the more detailed discussion of this point in Section A.4 of Appendix A). We thus arrive
at our “minimal” Smoluchowski–Feynman ratchet model


 ẋ(t) = −V ′(x(t)) + �(t) : (2.6)

According to (2.5), the Gaussian white noise �(t) is uncorrelated in time, i.e. it is given by
independently sampled Gaussian random numbers at any time t. This feature and the concomitant
inFnitely large second moment 〈�2(t)〉 are mathematical idealizations. In physical reality, the correla-
tion time is meant to be Fnite, but negligibly small in comparison with all other relevant time scales
of the system. In this spirit, we may introduce a small time step Ut and consider a time-discretized
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version of the stochastic dynamics (2.6) of the form

x(tn+1) = x(tn) − Ut[V ′(x(tn)) + �n]=
 ; (2.7)

where tn := nUt and where the �n are independently sampled, unbiased Gaussian random numbers
with second moment

〈�2
n〉 = 2
kBT=Ut : (2.8)

The continuous dynamics (2.6) with uncorrelated noise is then to be understood [98–100] as the
mathematical limit of (2.7) for Ut→ 0. Moreover, this discretized dynamics (2.7) is a suitable
starting point for a numerical simulation of the problem. Finally, a derivation of the so-called Fokker–
Planck equation (see Eq. (2.14) below) based on (2.7) is given in Appendix B.

2.2. Fokker–Planck equation

The following four sections are mainly of methodological nature without much new physics. After
introducing the Fokker–Planck equation in the present section, we turn in Sections 2.3 and 2.4 to the
evaluation of the particle current 〈ẋ〉, with the result that even when the spatial symmetry is broken
by the ratchet potential V (x), there arises no systematic preferential motion of the random dynamics
in one or the other direction. Finally, in Section 2.5 the e5ect of an additional static “tilting”
force F in the Smoluchowski–Feynman ratchet dynamics (2.6) is considered, with the expected
result of a Fnite particle current 〈ẋ〉 with the same sign as the applied force F . Readers who are
already familiar with or not interested in these standard techniques are recommended to continue with
Section 2.6.

Returning to (2.6), a quite natural next step is to consider a statistical ensemble of these stochastic
processes belonging to independent realizations of the random =uctuations �(t). The corresponding
probability density P(x; t) in space x at time t describes the distribution of the Brownian particles
and follows as an ensemble average 4 of the form

P(x; t) := 〈�(x − x(t))〉 : (2.9)

An immediate consequence of this deFnition is the normalization∫ ∞

−∞
dx P(x; t) = 1 : (2.10)

Another trivial consequence is that P(x; t)¿ 0 for all x and t.
In order to determine the time-evolution of P(x; t), we Frst consider in (2.6) the special case

V ′(x) ≡ 0. As discussed in detail in Section A.3 of Appendix A, we are thus dealing with the
force-free thermal di5usion of a Brownian particle with a di5usion coeCcient D that satisFes
Einstein’s relation [77]

D = kBT=
 : (2.11)

4 To be precise, an average over the initial conditions x(t0) according to some prescribed statistical weight P(x; t0)
together with an average over the noise is understood on the right-hand side of (2.9).
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Consequently, P(x; t) is governed by the di5usion equation

9
9t P(x; t) =

kBT



92

9x2P(x; t) if V ′(x) ≡ 0 : (2.12)

Next, we address the deterministic dynamics �(t) ≡ 0 in (2.6). In complete analogy to classical
Hamiltonian mechanics, one then Fnds that the probability density P(x; t) evolves according to a
Liouville-equation of the form 5

9
9t P(x; t) =

9
9x

{
V ′(x)



P(x; t)

}
if �(t) ≡ 0 : (2.13)

Since both (2.12) and (2.13) are linear in P(x; t) it is quite obvious that the general case follows by
combination of both contributions, i.e. one obtains the so-called Fokker-Planck equation [99,101]

9
9t P(x; t) =

9
9x

{
V ′(x)



P(x; t)

}
+

kBT
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9x2P(x; t) ; (2.14)

where the Frst term on the right-hand side is called “drift term” and the second “di5usion term”.
While our above derivation of the Fokker–Planck equation is admittedly of a rather heuristic

nature, it is appealing due to its extreme simplicity and the intuitive physical way of reasoning. A
more rigorous calculation, based on the discretized dynamics (2.7) in the limit Ut→ 0 is provided in
Appendix B. Numerous alternative derivations can be found, e.g. in [98–105] and further references
therein. A brief historical account of the Fokker–Planck equation has been compiled in [106], see
also [107].

2.3. Particle current

The quantity of foremost interest in the context of transport in periodic systems is the particle
current 〈ẋ〉, deFned as the time-dependent ensemble average over the velocities

〈ẋ〉 := 〈ẋ(t)〉 : (2.15)

For later convenience, the argument t in 〈ẋ〉 is omitted. Obviously, the probability density P(x; t)
contains the entire information about the system; in this section we treat the question of how to
extract the current 〈ẋ〉 out of it.

The simplest way to establish such a connection between 〈ẋ〉 and P(x; t) follows by averaging
in (2.6) and taking into account (2.4), i.e. 〈ẋ〉 = −〈V ′(x(t))〉=
. Since the ensemble average means

5 Proof. Let x(t) be a solution of ẋ(t) = f(x(t)) and deFne P(x; t) := �(x − x(t)). Note that the variable x and the
function x(t) are mathematically completely unrelated objects. Then (9=9t)P(x; t) = −ẋ(t) (9=9x)�(x − x(t)) = −f(x(t))
(9=9x)�(x−x(t))=−(9=9x) {f(x(t))�(x−x(t))}=−(9=9x){f(x)�(x−x(t))} (the last identity can be veriFed by operating
with

∫
dx h(x) on both sides, where h(x) is an arbitrary test function with h(x→ ±∞) = 0, and then performing a partial

integration). Thus (2.13) is recovered for a �-distributed initial condition. Since this Eq. (2.13) is linear in P(x; t), the
case of a general initial distribution follows by linear superposition.
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by deFnition an average with respect to the probability density P(x; t) we arrive at our Frst basic
observation, namely the connection between 〈ẋ〉 and P(x; t):

〈ẋ〉 = −
∫ ∞

−∞
dx

V ′(x)



P(x; t) : (2.16)

The above derivation of (2.16) has the disadvantage that the speciFc form (2.6) of the stochastic
dynamics has been exploited. For later use, we next sketch an alternative, more general derivation:
From the deFnition (2.9) one obtains, independently of any details of the dynamics governing x(t),
a so-called master equation [99–101]

9
9t P(x; t) +

9
9x J (x; t) = 0 ; (2.17)

J (x; t) := 〈ẋ(t) �(x − x(t))〉 : (2.18)

Note that the symbols x and x(t) denote here completely unrelated mathematical objects. The master
equation (2.17) has the form of a continuity equation for the probability density associated with the
conservation of particles, hence J (x; t) is called the probability current. Upon integrating (2.18), the
following completely general connection between the probability current and the particle current is
obtained:

〈ẋ〉 =
∫ ∞

−∞
dx J (x; t) : (2.19)

By means of a partial integration, the current in (2.19) can be rewritten as − ∫ dx x 9J (x; t)=9x
and by exploiting (2.17) one recovers the relation

〈ẋ〉 =
d
dt

∫ ∞

−∞
dx x P(x; t) ; (2.20)

which may thus be considered as an alternative deFnition of the particle current 〈ẋ〉.
For the speciFc stochastic dynamics (2.6), we Fnd by comparison of the Fokker–Planck equation

(2.14) with the general master equation (2.17) the explicit expression for the probability current

J (x; t) = −
{
V ′(x)



+

kBT



9
9x

}
P(x; t) ; (2.21)

up to an additive, x-independent function. Since both, J (x; t) and P(x; t) approach zero for x→ ±∞,
it follows that this function must be identically zero. By introducing (2.21) into (2.19) we Fnally
recover (2.16).

2.4. Solution and discussion

Having established the evolution equation (2.14) governing the probability density P(x; t) our next
goal is to actually solve it and determine the current 〈ẋ〉 according to (2.19). Such a calculation is
illustrated in detail in this section.
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We start with introducing the so-called reduced probability density and reduced probability current

P̂(x; t) :=
∞∑

n=−∞
P(x + nL; t) ; (2.22)

Ĵ (x; t) :=
∞∑

n=−∞
J (x + nL; t) : (2.23)

Taking into account (2.10), (2.19) it follows that

P̂(x + L; t) = P̂(x; t) ; (2.24)

∫ L

0
dx P̂(x; t) = 1 ; (2.25)

〈ẋ〉 =
∫ L

0
dx Ĵ (x; t) : (2.26)

With P(x; t) being a solution of the Fokker–Planck equation (2.14) it follows with (2.2) that also
P(x + nL; t) is a solution for any integer n. Since the Fokker–Planck equation is linear, it is also
satisFed by the reduced density (2.22). With (2.21) it can furthermore be recast into the form of
a continuity equation

9
9t P̂(x; t) +

9
9x Ĵ (x; t) = 0 (2.27)

with the explicit form of the reduced probability current

Ĵ (x; t) = −
{
V ′(x)



+

kBT



9
9x

}
P̂(x; t) : (2.28)

In other words, as far as the particle current 〈ẋ〉 is concerned, it su<ces to solve the Fokker–Planck
equation with periodic boundary (and initial) conditions.

An interesting counterpart of (2.20) arises by operating with
∫ x0+L
x0

dx x : : : on both sides of (2.27),
namely

〈ẋ〉 =
d
dt

[∫ x0+L

x0

dx x P̂(x; t)
]

+ L Ĵ (x0; t) ; (2.29)

where x0 is an arbitrary reference position. In other words, the total particle current 〈ẋ〉 is composed
of the motion of the “center of mass”

∫ x0+L
x0

dx x P̂(x; t) plus L times the reduced probability current
Ĵ (x0; t) at the reference point x0. Especially, if the reduced dynamics assumes a steady state, char-
acterized by dP̂(x; t)=dt = 0, then the reduced probability current Ĵ (x0; t) = Ĵ

st
becomes independent

of x0 and t according to (2.27), (2.28), and the particle current takes the suggestive form

〈ẋ〉 = L Ĵ
st
: (2.30)

We recall that in general the current 〈ẋ〉 is time dependent but the argument t is omitted
(cf. (2.15)). However, the most interesting case is usually its behavior in the long-time limit,
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corresponding to a steady state in the reduced description (unless an external driving prohibits its
existence, see e.g. Section 2.6.1 below). In this case, no implicit t-dependent of 〈ẋ〉 is present any
more, see (2.30).

We have tacitly assumed here that the original problem (2.6) extends over the entire real x-axis.
In some cases, a periodicity condition after one or several periods L of the potential V (x) may
represent a more natural modeling, for instance in the original Smoluchowski–Feynman ratchet
of circular shape (Fig. 2.1). One readily sees, that in such a case (2.24)–(2.30) remain valid
without any change. We furthermore remark that the speciFc form of the stochastic dynamics
(2.6) or of the equivalent master equation (2.17), (2.21) has only been used in (2.28), while
equations (2.22)–(2.27), (2.29), (2.30) remain valid for more general stochastic dynamics.

For physical reasons we expect that the reduced probability density P̂(x; t) indeed approaches
a steady state P̂

st
(x) in the long-time limit t→∞ and hence Ĵ (x0; t)→ Ĵ

st
. From the remaining

ordinary Frst order di5erential equation (2.28) for Pst(x) in combination with (2.24) it follows that
Ĵ

st
must be zero and therefore the solution is

P̂
st
(x) = Z−1 e−V (x)=kBT ; (2.31)

Z :=
∫ L

0
dx e−V (x)=kBT ; (2.32)

while (2.26) implies for the steady state particle current the result

〈ẋ〉 = 0 : (2.33)

It can be shown that the long-time asymptotics of a Fokker–Planck equation like in (2.27), (2.28)
is unique [82,83,100,108,109]. Consequently, this unique solution must be (2.31), independent of
the initial conditions. Furthermore, our assumption that a steady state is approached for t→∞ is
self-consistently conFrmed.

The above results justify a posteriori our proposition that (2.6) models an overdamped Brownian
motion under the in=uence of a thermal equilibrium heat bath at temperature T : indeed, in the
long-time limit (steady state), Eq. (2.31) correctly reproduces the expected Boltzmann distribution
and the average particle current vanishes (2.33), as required by the second law of thermodynamics.
The importance of such consistency checks when modeling thermal noise is further discussed in
Section 2.9.

Much like in the original ratchet and pawl gadget (Fig. 2.1), the absence of an average current
(2.33) is on the one hand, a simple consequence of the second law of thermodynamics. On the
other hand, when looking at the stochastic motion in a ratchet-shaped potential like in Fig. 2.2,
it is nevertheless quite astonishing that in spite of the broken spatial symmetry there arises no
systematic preferential motion of the random dynamics in one or the other direction.

Note that if the original problem (2.6) extends over the entire real axis (bringing along natural
boundary conditions), then the probability density P(x; t) will never approach a meaningful 6 steady

6 The trivial long time behavior P(x; t)→ 0 does not admit any further conclusions and is therefore not considered as
a meaningful steady state.
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state. It is only the reduced density P̂(x; t), associated with periodic boundary conditions, which
tends toward a meaningful t-independent long-time limit. In particular, only after this mapping,
which leaves the particle current unchanged, are the concepts of equilibrium statistical mechanics
applicable.

Conceptually, the simpliFed Smoluchowski–Feynman ratchet model (2.6) has one crucial advan-
tage in comparison with the original full-blown ratchet and pawl gadget from Fig. 2.1: The second
law of thermodynamics has not to be invoked as a kind of deus ex machina, rather the absence of a
current (2.33) now follows directly from the basic model (2.6), without any additional assumptions.
As a consequence, modiFcations of the original situation, for which the second law of thermody-
namics no longer applies, are relatively straightforward to treat within a correspondingly modiFed
Smoluchowski–Feynman ratchet model (2.6), but become very cumbersome [110,111] for the more
complicated original ratchet and pawl gadget from Fig. 2.1. A Frst, very simple such modiFcation
of the Smoluchowski–Feynman ratchet model will be addressed next.

2.5. Tilted Smoluchowski–Feynman ratchet

In this section we consider the generalization of the overdamped Smoluchowski–Feynman ratchet
model (2.6) in the presence of an additional homogeneous, static force F :


 ẋ(t) = −V ′(x(t)) + F + �(t) : (2.34)

This scenario represents a kind of “hydrogen atom” in that it is one of the few exactly solvable
cases and will furthermore turn out to be equivalent to the archetypal ratchet models considered
later in Sections 4.3.2, 4.4.1, 5.2, 6.1 and 9.2. For instance, in the original ratchet and pawl gadget
(Fig. 2.1) such a force F in (2.34) models the e5ect of a constant external torque due to a load.

We may incorporate the ratchet potential V (x) and the force F into a single e5ective potential

Ve5 (x) :=V (x) − x F ; (2.35)

which the Brownian particle (2.34) experiences. E.g. for a negative force F¡0, pulling the particles
to the left, the e5ective potential will be tilted to the left as well, see Fig. 2.3. In view of 〈ẋ〉 = 0
for F =0 (see previous section) it is plausible that in such a potential the particles will move on the
average “downhill”, i.e. 〈ẋ〉¡0 for F¡0 and similarly 〈ẋ〉¿0 for F¿0. This surmise is conFrmed
by a detailed calculation along the very same lines as for F = 0 (see Section 2.4), with the result
(see [112–114] and also Vol. 2, Chapter 9 in [115]) that in the steady state (long-time limit)

P̂
st
(x) = N



kBT

e−Ve5 (x)=kBT
∫ x+L

x
dy eVe5 (y)=kBT ; (2.36)

〈ẋ〉 = LN [1 − e[Ve5 (L)−Ve5 (0)]=kBT ] ; (2.37)

N :=
kBT



[∫ L

0
dx
∫ x+L

x
dy e[Ve5 (y)−Ve5 (x)]=kBT

]−1

: (2.38)

Note that for the speciFc form (2.35) of the e5ective potential we can further simplify (2.37) by
exploiting that Ve5 (L) − Ve5 (0) = −LF . However, the result (2.36)–(2.38) is valid for completely
general e5ective potentials V ′

e5 (x) provided V ′
e5 (x + L) = V ′

e5 (x).
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Fig. 2.3. Typical example of an e5ective potential from (2.35) “tilted to the left”, i.e. F¡0. Plotted is the ex-
ample from (2.3) in dimensionless units (see Section A.4 in Appendix A) with L = V0 = 1 and F = −1, i.e.
Ve5 (x) = sin(2�x) + 0:25 sin(4�x) + x.

Fig. 2.4. Steady state current 〈ẋ〉 from (2.37) versus force F for the tilted Smoluchowski–Feynman ratchet dynamics (2.5),
(2.34) with the potential (2.3) in dimensionless units (see Section A.4 in Appendix A) with 
 = L = V0 = kB = 1 and
T = 0:5. Note the broken point-symmetry.

Our Frst observation is that a time-independent probability density P̂
st
(x) does not exclude a

non-vanishing particle current 〈ẋ〉. Exploiting (2.35), one readily sees that—as expected—the sign
of this current (2.37) agrees with the sign of F . Furthermore one can prove that the current is a
monotonically increasing function of F [116] and that for any Fxed F-value, the current is maxi-
mal (in modulus) when V (x) = const: (see Section 4.4.1). The typical quantitative behavior of the
steady state current (2.37) as a function of the applied force F (called “response curve”, “load
curve”, or (current-force-) “characteristics”) is exempliFed in Fig. 2.4. Note that the leading-order
(“linear response”) behavior is symmetric about the origin, but not the higher order contributions.

The occurrence of a non-vanishing particle current in (2.37) signals that (2.36) describes a steady
state which is not in thermal equilibrium, and actually far from equilibrium unless F is very small. 7

As mentioned already at the end of the previous section, while at (and near) equilibrium one may
question the need of a microscopic model like in (2.34) in view of the powerful principles of
equilibrium statistical mechanics, such an approach has the advantage of remaining valid far from
equilibrium, 8 where no such general statistical mechanical principles are available.

As pointed out at the end of the preceding section, only the reduced probability density P̂(x; t)
approaches a meaningful steady state, but not the original dynamics (2.34), extending over the entire
x-axis. Thus, stability criteria for steady states, both mechanical and thermodynamical, can only be

7 In particular, the e5ective di5usion coeCcient is no longer related to the mobility via a generalized Einstein relation
(2.11), i.e. De5 = kBT 9〈ẋ〉=9F only holds for F = 0 [117].

8 Note that there is no inconsistency of a thermal (white) noise �(t) appearing in a system far from thermal equilibrium:
any system (equilibrium or not) can be in contact with a thermal heat bath.
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discussed in the former, reduced setup. As compared to the usual re=ecting boundary conditions in
this context, the present periodic boundary conditions entail some quite unusual consequences: With
the deFnition �(F; x0) :=

∫ x0+L
x0

dx x P̂
st
(x) for the “center of mass” in the steady state (cf. (2.29)),

one can infer from the periodicity P̂
st
(x + L) = P̂

st
(x) and the normalization

∫ L
0 dx 9P̂st

(x)=9F = 0
that 9�(F; x0 + L)=9F = 9�(F; x0)=9F , where x0 is an arbitrary reference position. Furthermore, one
Fnds that∫ L

0
dx0

9�(F; x0)
9F =

∫ L

0
dx0

∫ L

0
dx (x + x0)

9P̂st
(x + x0)
9F = 0 : (2.39)

Excluding the non-generic case that 9�(F; x0)=9F is identically zero, it follows 9 that 9�(F; x0)=9F
may be negative or positive, depending on the choice of x0. In other words, the “center of mass”
may move either in the same or in the opposite direction of the applied force F , and this even if
the unperturbed system is at thermal equilibrium. Similarly, also with respect to the dependence of
the steady state current 〈ẋ〉 upon the applied force F , no general a priori restrictions due to certain
“stability criteria” for steady states exist.

2.5.1. Weak noise limit
In this section we work out the simpliFcation of the current-formula (2.37) for small thermal

energies kBT—see Eq. (2.44) below—and its quite interesting physical interpretation, repeatedly
re-appearing later on.

Focusing on not too large F-values, such that Ve5 (x) in (2.35) still exhibits at least one local
minimum and maximum within each period L, one readily sees that the function Ve5 (y) − Ve5 (x)
has generically a unique global maximum within the two-dimensional integration domain in (2.38),
say at the point (x; y) = (xmin; xmax), where xmin is a local minimum of Ve5 (x) and xmax a local
maximum, sometimes called metastable and activated states, respectively. Within (xmin; xmin + L) the
point xmax is moreover a global maximum of Ve5 (x) and similarly xmin a global minimum within
(xmax − L; xmax), i.e.

UVe5 :=Ve5 (xmax) − Ve5 (xmin) (2.40)

is the e5ective potential barrier that the particle has to surmount in order to proceed from the
metastable state xmin to xmin + L. Likewise,

Ve5 (xmax − L) − Ve5 (xmin) = UVe5 − [Ve5 (L) − Ve5 (0)] (2.41)

is the barrier between xmin and xmin − L. For small thermal energies

kBT�{UVe5 ; UVe5 − [Ve5 (L) − Ve5 (0)] } ; (2.42)

the main contribution in (2.38) stems from a small vicinity of the absolute maximum (xmin; xmax)
and we thus can employ the so-called saddle point approximation

Ve5 (y) − Ve5 (x) � UVe5 − |V ′′
e5 (xmax)|

2
(y − xmax)2 − |V ′′

e5 (xmin)|
2

(x − xmin)2 ; (2.43)

9 Note that we did not exploit any speciFc property of the underlying stochastic dynamics.
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where we have used that V ′
e5 (xmax)=V ′

e5 (xmin)=0 and V ′′
e5 (xmax)¡0, V ′′

e5 (xmin)¿0. Within the same
approximation, the two integrals in (2.38) can now be extended over the entire real x- and y-axis.
Performing the two remaining Gaussian integrals in (2.38) yields for the current (2.37) the result

〈ẋ〉 = L [k+ − k−] ; (2.44)

k+ :=
|V ′′

e5 (xmax)V ′′
e5 (xmin)|1=2

2� 

e−UVe5 =kBT ; (2.45)

k− := k+ e[Ve5 (L)−Ve5 (0)]=kBT

=
|V ′′

e5 (xmax − L)V ′′
e5 (xmin)|1=2

2� 

e−[Ve5 (xmax−L)−Ve5 (xmin)]=kBT ; (2.46)

where we have exploited (2.41) and the periodicity of V ′′
e5 (x) in the last relation in (2.46).

One readily sees that k+ is identical to the so-called Kramers–Smoluchowski rate [66] for tran-
sitions from xmin to xmin + L, and similarly k− is the escape rate from xmin to xmin − L. For weak
thermal noise (2.42) these rates are small and the current (2.44) takes the suggestive form of a
net transition frequency (rate to the right minus rate to the left) between adjacent local minima of
Ve5 (x) times the step size L of one such transition.

2.6. Temperature ratchet and ratchet e1ect

We now come to the central issue of the present chapter, namely the phenomenon of directed
transport in a spatially periodic, asymmetric system away from equilibrium. This so-called ratchet
e5ect is very often illustrated by invoking as an example the on–o5 ratchet model, as introduced
by Bug and Berne [32] and by Ajdari and Prost [34], see Section 4.2. Here, we will employ a
di5erent example, the so-called temperature ratchet, which in the end will however turn out to be
actually very closely related to the on–o5 ratchet model (see Section 6.3). We emphasize that the
choice of this example is not primarily based on its objective or historical signiFcance but rather on
the author’s personal taste and research activities. Moreover, this example appears to be particularly
suitable for the purpose of illustrating besides the ratchet e5ect per se also many other important
concepts (see Sections 2.6.3–2.11) that we will encounter again in much more generality in later
sections.

2.6.1. Model
As an obvious generalization of the tilted Smoluchowski–Feynman ratchet model (2.34) we con-

sider the case that the temperature of the Gaussian white noise �(t) in (2.5) is subjected to periodic
temporal variations with period T [118], i.e.

〈�(t)�(s)〉 = 2 
 kBT (t) �(t − s) ; (2.47)

T (t) = T (t + T) ; (2.48)

where T (t)¿ 0 for all t is taken for granted. Note that due to the time-dependent temperature in
(2.47) the noise �(t) is strictly speaking no longer stationary. A stationary noise is, however, readily
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recovered by rewriting (2.34), (2.47) as


 ẋ(t) = −V ′(x(t)) + F + g(t) �̂(t) ; (2.49)

where �̂(t) is a Gaussian white noise with 〈�̂(t)�̂(s)〉=2�(t−s) and g(t) := [
kBT (t)]1=2. Two typical
examples which we will adopt for our numerical explorations below are

T (t) = WT [1 + A sign{sin(2�t=T)}] ; (2.50)

T (t) = WT [1 + A sin(2�t=T)]2 ; (2.51)

where sign(x) denotes the signum function and |A|¡1. The Frst example (2.50) thus jumps between
T (t) = WT [1 + A] and T (t) = WT [1 − A] at every half-period T=2. The motivation for the square on
the right-hand side of (2.51) becomes apparent when rewriting the dynamics in the form (2.49).

Similarly as in Section 2.2, one Fnds that the reduced particle density (2.22) for this so-called
temperature ratchet model (2.34), (2.47), (2.48) is governed by the Fokker–Planck equation

9
9t P̂(x; t) =

9
9x

{
V ′(x) − F



P̂(x; t)

}
+

kB T (t)
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9x2 P̂(x; t) : (2.52)

Due to the permanent oscillations of T (t), this equation does not admit a time-independent solution.
Hence, the reduced density P̂(x; t) will not approach a steady state but rather a unique periodic
behavior in the long-time limit. 10 It is therefore natural to include a time average into the deFni-
tion (2.15) of the particle current. Keeping for convenience the same symbol 〈ẋ〉, the generalized
expression (2.26), (2.28) for this current becomes

〈ẋ〉 =
1
T

∫ t+T

t
dt
∫ L

0
dx

F − V ′(x)



P̂(x; t) : (2.53)

Note that in general, the current 〈ẋ〉 in (2.53) is still t-dependent. Only in the long time limit, cor-
responding in the reduced description to a T-periodic P̂(x; t), this t-dependence disappears. Usually,
this latter long-time limit is of foremost interest.

2.6.2. Ratchet e1ect
After these technical preliminaries, we return to the physics of our model (2.34), (2.47), (2.48): In

the case of the tilted Smoluchowski–Feynman ratchet (time-independent temperature T ), Eq. (2.37)
tells us that for a given force, say F¡0, the particles will move “downhill” on the average, i.e.
〈ẋ〉¡0, and this for any Fxed (positive) value of the temperature T . Turning to the temperature
ratchet with T being now subjected to periodic temporal variations, one therefore should expect
that the particles still move “downhill” on the average. The numerically calculated “load curve”
in Fig. 2.5 demonstrates that the opposite is true within an entire interval of negative F-values.
Surprisingly indeed, the particles are climbing “uphill” on the average, thereby performing work
against the load force F , which apparently can have no other origin than the white thermal
noise �(t).

10 Proof. Since T (t + T) = T (t) we see that with P̂(x; t) also P̂(x; t + T) solves (2.52). Moreover, for the long time
asymptotics of (2.52) the general proof of uniqueness from [83,109] applies. Consequently, P̂(x; t + T) must converge
towards P̂(x; t), i.e. P̂(x; t) is periodic and unique for t→∞.
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Fig. 2.5. Average particle current 〈ẋ〉 versus force F for the temperature ratchet dynamics (2.3), (2.34), (2.47), (2.50)
in dimensionless units (see Section A.4 in Appendix A). Parameter values are 
 = L = T = kB = 1, V0 = 1=2�, WT = 0:5,
A = 0:8. The time- and ensemble-averaged current (2.53) has been obtained by numerically evolving the Fokker–Planck
equation (2.52) until transients have died out.

Fig. 2.6. The basic working mechanism of the temperature ratchet (2.34), (2.47), (2.50). The Fgure illustrates how
Brownian particles, initially concentrated at x0 (lower panel), spread out when the temperature is switched to a very high
value (upper panel). When the temperature jumps back to its initial low value, most particles get captured again in the
basin of attraction of x0, but also substantially in that of x0 + L (hatched area). A net current of particles to the right, i.e.
〈ẋ〉¿0 results. Note that practically the same mechanism is at work when the temperature is kept Fxed and instead the
potential is turned “on” and “o5” (on–o5 ratchet, see Section 4.2).

A conversion (rectiFcation) of random =uctuations into useful work as exempliFed above is called
“ratchet e1ect”. For a setup of this type, the names thermal ratchet [7,10,11], Brownian motor
[48,118], Brownian recti8er [51] (mechanical diode [11]), stochastic ratchet [119,120], or simply
ratchet are in use. 11 Since the average particle current 〈ẋ〉 usually depends continuously on the load
force F , it is for a qualitative analysis suCcient to consider the case F = 0: the occurrence of the
ratchet e1ect is then tantamount to a 8nite current

〈ẋ〉 
= 0 for F = 0 ; (2.54)

i.e. the unbiased Brownian motor implements a “particle pump”. The necessary force F which
leads to an exact cancellation of the ratchet e5ects, i.e 〈ẋ〉 = 0, is called the “stopping force”. The
property (2.54) is the distinguishing feature between the ratchet e5ect and the somewhat related
so-called negative mobility e5ect, encountered later in Section 9.2.4.

11 The notion “molecular motor” should be reserved for models focusing speciFcally on intracellular transport processes,
see Section 7. Similarly, the notion “Brownian ratchet” has been introduced in a rather di5eren context, namely as a
possible operating principle for the translocation of proteins accross membranes [121–125].
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2.6.3. Discussion
In order to understand the basic physical mechanism behind the ratchet e5ect at F = 0, we focus

on the dichotomous periodic temperature modulations from (2.50). During a Frst time interval, say
t ∈ [T=2;T], the thermal energy kBT (t) is kept at a constant value WT [1 − A] much smaller than
the potential barrier UV between two neighboring local minima of V (x). Thus, all particles will
have accumulated in a close vicinity of the potential minima at the end of this time interval, as
sketched in the lower panel of Fig. 2.6. Then the thermal energy jumps to a value WT [1 + A] much
larger than UV and remains there during another half-period, say t ∈ [T; 3T=2]. Since the particles
then hardly feel the potential any more in comparison to the violent thermal noise, they spread out
practically like in the case of free thermal di5usion (upper panel in Fig. 2.6). Finally, T (t) jumps
back to its original low value WT [1−A] and the particles slide downhill towards the respective closest
local minima of V (x). Due to the asymmetry of the potential V (x), the original population of one
given minimum is re-distributed asymmetrically and a net average displacement results after one
time-period T.

In the case that the potential V (x) has exactly one minimum and maximum per period L (as
it is the case in Fig. 2.6) it is quite obvious that if the local minimum is closer to its adjacent
maximum to the right (as in Fig. 2.6), a positive particle current 〈ẋ〉¿0 will arise, otherwise a
negative current. For potentials with additional extrema, the determination of the current direction
may be less obvious.

As expected, a qualitatively similar behavior is observed for more general temperature modulations
T (t) than in Fig. 2.6 provided they are suCciently slow. The e5ect is furthermore robust with respect
to the potential shape [118] and persists even for (slow) random instead of deterministic changes
of T (t) [126,127], e.g. (rare) random =ips between the two possible values in Fig. 2.6, as well as
for a modiFed dynamics with a discretized state space [128,129]. The case of Fnite inertia and of
various correlated (colored) Gaussian noises instead of the white noise in (2.34) or (2.49) has been
addressed in [130] and [131], respectively. A somewhat more detailed quantitative analysis will be
given in Sections 2.10 and 2.11 below.

In practice, the required magnitudes and time scales of the temperature variations may be diCcult
to realize experimentally by directly adding and extracting heat, but may well be feasible indirectly,
e.g. by pressure variations. An exception are point contact devices with a defect which tunnels
incoherently between two states and thereby changes the coupling strength of the device to its
thermal environment [132–138]. In other words, when incorporated into an electrical circuit, such a
device exhibits random dichotomous jumps both of its electrical resistance and of the intensity of the
thermal =uctuations which it produces [139]. The latter may thus be exploited to drive a temperature
ratchet system [126].

Further, it has been suggested [140,141] that microorganisms living in convective hot springs may
be able to extract energy out of the permanent temperature variations they experience; the temper-
ature ratchet is a particularly simple mechanism which could do the job. Moreover, a temperature
ratchet-type modiFcation of the experiment by Kelly et al. [73–75] (cf. Section 2.1.1) has been
proposed in [76].

Finally, it is known that certain enzymes (molecular motors) in living cells are able to travel along
polymer Flaments by hydrolyzing ATP (adenosine triphosphate). The interaction (chemical “aCnity”)
between molecular motor and Flament is spatially periodic and asymmetric, and thermal =uctuations
play a signiFcant role on these small scales. On the crudest level, hydrolyzing an ATP molecule
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may be viewed as converting a certain amount of chemical energy into heat, thus we recover all the
essential ingredients of a temperature ratchet. Such a temperature ratchet-type model for intracellular
transport has been proposed in [7]. Admittedly, modeling the molecular motor as a Brownian particle
without any relevant internal degree of freedom 12 and the ATP hydrolysis as a mere production of
heat is a gross oversimpliFcation from the biochemical point of view, see Section 7, but may still
be acceptable as a primitive sketch of the basic physics. Especially, quantitative estimates indicate
[9,142,143] that the temperature variations (either their amplitude or their duration) within such a
temperature ratchet model may not be suCcient to reproduce quantitatively the observed traveling
speed of the molecular motor.

2.7. Mechanochemical coupling

We begin with pointing out that the ratchet e5ect as exempliFed by the temperature ratchet model
is not in contradiction with the second law of thermodynamics 13 since we may consider the changing
temperature T (t) as caused by several heat baths at di5erent temperatures. 14 From this viewpoint,
our system is nothing else than an extremely primitive and small heat engine [12]. SpeciFcally, the
example from (2.50) and Fig. 2.5 represents the most common case with just two equilibrium heat
baths at two di5erent temperatures. The fact that such a device can produce work is therefore not a
miracle but still amazing.

At this point it is crucial to recognize that there is also one fundamental di5erence between the
usual types of heat engines and a Brownian motor as exempliFed by the temperature ratchet: To this
end we Frst note that the two “relevant state variables” of our present system are x(t) and T (t). In the
case of an ordinary heat engine, these state variables would always cycle through one and the same
periodic sequence of events (“working strokes”). In other words, the evolutions of the state variables
x(t) and T (t) would be tightly coupled together (interlocked, synchronized). As a consequence, a
single suitably deFned e5ective state variable would actually be suCcient to describe the system. 15

In contrast to this standard scenario, the relevant state variables of a genuine Brownian motor
are loosely coupled: Of course, some degree of interaction is indispensable for the functioning of
the Brownian motor, but while T (t) completes one temperature cycle, x(t) may evolve in several
essentially di5erent ways (it is not “slaved” by T (t)).

12 A molecular motor is a very complex enzyme with a huge number of degrees of freedom (see Section 7). Within the
present temperature ratchet model, the ATP hydrolyzation energy is thought to be quickly converted into a very irregular
vibrational motion of these degrees of freedom, i.e. a locally increased apparent temperature. As this excess heat spreads
out, the temperature decreases again. Thus, the internal degrees of freedom play a crucial role but are irrelevant in so far
as they do not give rise to any additional slow, collective state variable.

13 We also note that a current 〈ẋ〉 opposite to the force F is not in contradiction with any kind of “stability criteria”,
cf. the discussion below (2.39).

14 In passing we notice that the case F = 0 in conjunction with a time-dependent temperature T (t) is conceptually
quite interesting: It describes a system which is at any given instant of time an equilibrium system in a non-equilibrium
(typically far from equilibrium) state.

15 Note that a Fxed sequence of events does not necessarily imply a deterministic evolution in time. In particular, small
(“microscopic”) =uctuations which can be described by some environmental (equilibrium or not) noise are still admissible.
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The loose coupling between state variables is a salient point which makes the Brownian motor
concept more than just a cute new look at certain very small and primitive, but otherwise quite
conventional thermo-mechanical or even purely mechanical engines. In most cases of practical rele-
vance, the presence of some amount of (not necessarily thermal) random =uctuations is therefore an
indispensable ingredient of a genuine Brownian motor; exceptionally, deterministic chaos may be
a substitute (cf. Sections 5.8 and 5.12.2).

We remark that most of the speciFc ratchet models that we will consider later on do have a
second relevant state variable besides 16 x(t). One prominent exception are the so-called Seebeck
ratches, treated in Section 6.1. In such a case the above condition of a loose coupling between state
variables is clearly meaningless. This does, however, not imply that those are no genuine Brownian
motors.

The important issue of whether the coupling between relevant state variables is loose or tight
has been mostly discussed in the context of molecular motors [12,16,144] and has been given the
suggestive name mechanochemical coupling, see also Sections 7.4.3 and 7.7. The general fact that
such couplings of non-equilibrium enzymatic reactions to mechanical currents play a crucial role for
numerous cellular transport processes is long known [23,24].

2.8. Curie’s principle

The main, and a priori quite counterintuitive observation from Section 2.1 is the fact that no
preferential direction of the random dynamics (2.5), (2.6) arises in spite of the broken spatial
symmetry of the system. The next surprising observation from Section 2.6 is the appearance of
the ratchet e5ect, i.e. of a Fnite current 〈ẋ〉, for the slightly modiFed temperature ratchet model
(2.6), (2.48) in spite of the absence of any macroscopic static forces, gradients (of temperature,
concentration, chemical potentials etc.), or biased time-dependent perturbations. Here the word
“macroscopic” refers to “coarse grained” e5ects that manifest themselves over many spatial periods
L. Of course, on the “microscopic” scale, a static gradient force −V ′(x) is acting in (2.6), but
that averages out to zero for displacements by multiples of L. Similarly, at most time instants t,
a non-vanishing thermal force �(t) is acting in (2.6), but again that averages out to zero over long
times or when an entire statistical ensemble is considered.

The Frst observation, i.e. the absence of a current at thermal equilibrium, is a consequence of
the second law of thermodynamics. In the second above-mentioned situation, giving rise to a ratchet
e5ect, this law is no longer applicable, since the system is not in a thermal equilibrium state.
So, in the absence of this and any other prohibitive a priori reason, and in view of the fact that,
after all, the spatial symmetry of the system is broken, the manifestation of a preferential direction
for the particle motion appears to be an almost unavoidable educated guess.

This common sense hypothesis, namely that if a certain phenomenon is not ruled out by symme-
tries then it will occur, is called Curie’s principle 17 [147]. More precisely, the principle postulates

16 While this second state variable obviously in=uences x(t) in some or the other way, a corresponding back-reaction
may or may not exist. The latter case is exempliFed by the temperature ratchet model.

17 In the biophysical literature [23,24] the notion of Curie’s principle (or Curie–Prigogine’s principle) is mostly used for
its implications in the special case of linear response theory (transport close to equilibrium) in isotropic systems, stating
that a force can couple only to currents of the same tensorial order, see also [145,146].
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the absence of accidental symmetries in the generic case. That is, an accidental symmetry may still
occur as an exceptional coincidence or by Fne-tuning of parameters, but typically it will not. Ac-
cidental symmetries are structurally unstable, an arbitrarily small perturbation destroys them [12],
while a broken symmetry is a structurally stable situation.

In this context it may be worth noting that the absence of a ratchet e5ect at thermal equilibrium
in spite of the spatial asymmetry is no contradiction to Curie’s principle: The very condition for a
system to be at thermal equilibrium can also be expressed in the form of a symmetry condition,
namely the so-called detailed balance symmetry 18 [98–101,148–152].

2.9. Brillouin’s paradox

As mentioned in Section 2.1.1, both Smoluchowski and Feynman have already pointed out the
close similarity of the ratchet and pawl gadget from Fig. 2.1 with a Maxwell demon and also with
the behavior of a mechanical valve. But also the analogy of such a ratchet device with an electrical
rectiFer, especially the asymmetric response to an external static force Feld (cf. Fig. 2.4), has been
pointed out in Feynman’s Lectures [2], see also Vol. III, Section 14-4 therein. In this modiFed
context of an electrical rectiFer, the astonishing fact that random thermal =uctuations cannot be
rectiFed into useful work is called Brillouin’s paradox [3] and has been extensively discussed, e.g.
in [100,101,153–157].

The main point of this discussion can be most easily understood by comparison with the corre-
sponding tilted Smoluchowski–Feynman ratchet model (2.34). Furthermore, we focus on the case
of an electrical circuit with a semiconductor diode. 19 With the entire circuit being kept at thermal
equilibrium, at any Fnite temperature and conductance, a random electrical noise arises and it is
prima facie indeed quite surprising that its rectiFcation by the diode is impossible. The stepping
stone becomes apparent in the corresponding Smoluchowski–Feynman ratchet model (2.34). While
its response to an external force F in Eq. (2.37) and Fig. 2.4 shares the typical asymmetric shape
with a diode, it is now clearly wrong to phenomenologically describe the e5ect of the thermal noise
in such a system by simply averaging the current 〈ẋ〉 from (2.37) with respect to F according to the
probability with which the thermal noise takes these values F . Rather, the correct modeling, which
in particular consistently incorporates the common microscopic origin of friction and thermal noise,
is represented by (2.34) (with F = 0). In contrast, the response characteristics (2.37) is already the
result of an averaging over the thermal noise under the additional assumption that F is practically
constant on the typical transient time scales of the emerging current 〈ẋ〉. It is clear, that we do
not recover the full-=edged noisy dynamics (2.34) by replacing phenomenologically F by �(t) in
(2.37), notwithstanding the fact that in (2.34) these two quantities indeed appear in the same way.
The close analogy of this situation with that in a semiconductor diode becomes apparent by consid-
ering that also in the latter case the asymmetric response characteristics is the result of a thermal
di5usion process of the electrons near the interface of the n–p junction under quasi-static conditions
and after averaging out the thermal =uctuations.

18 To be precise, detailed balance is necessary but not suCcient for thermal equilibrium [101,148]. Conversely, detailed
balance is suCcient but not necessary for a vanishing particle current 〈ẋ〉.

19 A tube diode requires permanent heating and it is not obvious how to reconcile this with the condition of thermal
equilibrium.
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This example (see also [158] for another such example) demonstrates that the correct modeling of
the thermal environment is not always obvious. Especially, taking the averaged macroscopic behavior
of the system as a starting point for a phenomenological modeling of the noisy dynamics may be
dangerous outside the linear response regime, as van Kampen and others are emphasizing since
many years [100]. Much safer is a microscopic starting point in order to consistently capture the
common origin of the dissipation and the =uctuations in the actual system of interest, as exempliFed
in Sections 2.1.2, 3.4.1 and 8.1.

Away from thermal equilibrium, the realization of the ratchet e5ect by diodes and other semicon-
ductor heterostructures is further discussed in Sections 6.1 and 8.4.

2.10. Asymptotic analysis

In the remainder of this section, we continue our exploration of the temperature ratchet model
(2.34), (2.47), (2.48) with the objective to understand in somewhat more detail the behavior of the
particle current 〈ẋ〉 at zero load F = 0 as a function of various parameters of the model. Since a
closed analytical solution of the Fokker–Planck equation (2.52) is not possible in general, we have
to recourse to asymptotic expansions and qualitative physical arguments, complemented by accurate
numerical results for a few typical cases. In the present, somewhat more technical section we analyze
the behavior of the particle current for asymptotically slow and fast temperature oscillations.

For asymptotically slow temporal oscillations in (2.48) the time- and ensemble-averaged particle
current 〈ẋ〉 approaches zero. 20 Considering that T→∞ means a constant T (t) during any given,
Fnite time interval, this conclusion 〈ẋ〉→ 0 is physically quite obvious. It can also be formally
conFrmed by the observation that

P̂
ad

(x; t) :=Z(t)−1 e−V (x)=kBT (t) (2.55)

with Z(t) :=
∫ L

0 dx e−V (x)=kBT (t) solves the Fokker–Planck equation (2.52) in arbitrarily good approxi-
mation for suCciently large T and F=0. Comparison with (2.31) shows that this so-called adiabatic
approximation (2.55) represents an accompanying or instantaneous equilibrium solution in which the
time t merely plays the role of a parameter. Introducing (2.55) into (2.53) with F=0 indeed conFrms
the expected result 〈ẋ〉 = 0.

Turning to Fnite but still large T, one expects that 〈ẋ〉 decreases proportional to T−1 in the
general case. In the special case that T (t) is symmetric under time inversion 21 , as for instance
in (2.50), (2.51), the current 〈ẋ〉 must be an even function of T and thus typically decreases
proportional to T−2 for large T. Furthermore, our considerations along the lines of Fig. 2.6 suggest
that, at least for potentials with only one maximum and minimum per period L, the current 〈ẋ〉
approaches zero from above if the minimum is closer to the adjacent maximum to the right, and
from below otherwise. Here and in the following, we tacitly assume that apart form the variation of

20 In the following we tacitly restrict ourselves to smooth T (t), like e.g. in (2.51). For discontinuous T (t), for instance
(2.50), the conclusion 〈ẋ〉→ 0 for T→∞ remains valid, but the reasoning has to be modiFed.

21 Time inversion symmetry means that there is a Ut such that T (−t) = T (t + Ut) for all t.
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the time-period T itself, the shape of T (t) does not change, i.e.

T̂ (h) :=T (Th) ; (2.56)

is a T-independent function of its dimensionless argument h with period 1.
Addressing small T, i.e. fast temperature oscillations, it is physically plausible that the system

cannot follow any more these oscillations and thus behaves for T→ 0 like in the presence of a
constant averaged temperature

WT :=
1
T

∫ T

0
dt T (t) =

∫ 1

0
dh T̂ (h) : (2.57)

Within this so-called sudden approximation we thus recover an e5ective Smoluchowski–Feynman
ratchet dynamics (2.6). In other words, we expect that 〈ẋ〉→ 0 for T→ 0. This behavior is conFrmed
by the analytical perturbation calculation in Appendix C, which yields moreover the leading-order
small-T result [118]

〈ẋ〉 = T2B
∫ L

0
dx V ′(x)[V ′′(x)]2 + O(T3) ; (2.58)

B :=
4L
∫ 1

0 dh[
∫ h

0 dĥ(1 − T̂ (ĥ)= WT )]2


3
∫ L

0 dx eV (x)=kB WT
∫ L

0 dx e−V (x)=kB WT
: (2.59)

Note that B is a strictly positive functional of T (t) and V (x) and is independent of T.
The most remarkable feature of (2.58) is that there is no contribution proportional to T indepen-

dently of whether T (t) is symmetric under time inversion or not. More according to our expectation
is the fact that the current vanishes for very weak thermal noise, as a closer inspection of (2.58)
implies: Similarly as for the weak noise analysis in Section 2.5.1, for WT → 0 the particles can never
leave the local minima of the potential V (x). In the opposite limit, i.e. for WT →∞, the potential
should play no role any more and one expects again that 〈ẋ〉→ 0, cf. Section 3.7. A more care-
ful perturbative analysis of the high-temperature limit conFrms this expectation. On the other hand,
Eq. (2.58) predicts a Fnite limit for WT →∞, implying that the limits WT →∞ and T→ 0 cannot
be interchanged in this perturbative result. In other words, the correction of order O(T3) in (2.58)
approaches zero for any Fnite WT as T→ 0, but is no longer negligible if we keep T Fxed (however
small) and let WT →∞.

The above predictions are compared with accurate numerical solutions in Fig. 2.7 for a represen-
tative case, showing very good agreement.

2.11. Current inversions

The most basic qualitative prediction, namely that generically 〈ẋ〉 
= 0, is a consequence of Curie’s
principle. In this section we show that under more general conditions than in Section 2.6.3, even the
sign of the current 〈ẋ〉 may be already very diCcult to understand on simple intuitive grounds, not
to speak of its quantitative value. This leads us to another basic phenomenon in Brownian motor
systems, namely the inversion of the current direction upon variation of a system parameter. Early
observations of this e5ect have been reported in [35,37,39,42,159,160]; here we illustrate it once
more for our standard example of the temperature ratchet.



84 P. Reimann / Physics Reports 361 (2002) 57–265

0

0.01

0.02

0.03

0.04

0.1 1 10

<
x

>.

Fig. 2.7. Average particle current 〈ẋ〉 versus period T for the temperature ratchet dynamics (2.3), (2.34), (2.47), (2.51)
in dimensionless units (see Section A.4 in Appendix A). Parameter values are F = 0, 
 = L = kB = 1, V0 = 1=2�, WT = 0:1,
A = 0:7. Solid: Time- and ensemble-averaged current (2.53) by numerically evolving the Fokker–Planck equation (2.52)
until transients have died out. Dotted: Analytical small-T asymptotics from (2.58).

Since the quantity B from (2.59) is positive, it is the sign of the integral in (2.58) which determines
the direction of the current. For the speciFc ratchet potential (see Eq. (2.3) and Fig. 2.2) used in
Fig. 2.7 this sign is positive, but one can easily Fnd other potentials V (x) for which this sign is
negative. By continuously deforming one potential into the other one can infer that there must exist
an intermediate V (x) with the property that the particle current 〈ẋ〉 is zero at some Fnite T-value.
In the generic case, the 〈ẋ〉-curve passes with a Fnite slope through this zero-point, implying [118]
the existence of a so-called “current inversion” of 〈ẋ〉 as a function of T. An example of a potential
V (x) exhibiting such a current inversion is plotted in Fig. 2.8 and the resulting current in Fig. 2.9.
As compared to the example from Fig. 2.2, the modiFcation of the ratchet potential in Fig. 2.8
looks rather harmless. Especially, the explanation of a positive current 〈ẋ〉¿0 for large T according
to Fig. 2.5 still applies. However, for small-to-moderate T this modiFcation of the potential has
dramatic consequences for the current in Fig. 2.9 as compared to Fig. 2.7.

Once a current inversion upon variation of one parameter of the model (T in our case) has been
established, an inversion upon variation of any other parameter (for instance the friction coeCcient

) can be inferred along the following line of reasoning [161]: Consider a current inversion upon
variation of T, say at T0, as given, while 
 is kept Fxed, say at 
0. Let us next consider T as
Fxed to T0 and instead vary 
 about 
0. In the generic case the current 〈ẋ〉 as a function of 
 will
then go through its zero-point at 
0 with a Fnite slope, meaning that we have obtained the proposed
current inversion upon variation of 
, see Fig. 2.10.

In other words, Brownian particles with di5erent sizes will have di5erent friction coeCcients 
 and
will thus move in opposite directions when exposed to the same thermal environment and the same
ratchet potential. Had we not neglected the inertia e5ects m Mx(t) in (2.1), such a particle separation
mechanism also with respect to the mass m could be inferred along the above line of reasoning, and
similarly for any other dynamically relevant particle properties.
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Fig. 2.8. The ratchet potential V (x) = V0[sin(2�x=L) + 0:2 sin(4�(x=L− 0:45)) + 0:1 sin(6�(x=L− 0:45))].

Fig. 2.9. Same as Fig. 2.7 but for the ratchet potential from Fig. 2.8.
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Fig. 2.10. Same as in Fig. 2.9 but with a Fxed period T = 0:17 (i.e. close to the inversion point in Fig. 2.9) and instead
with a varying friction coeCcient 
.

Promising applications of such current inversion e5ects for particle separation methods, based
on the ratchet e5ect, are obvious. Another interesting aspect of current inversions arises from the
observation that structurally very similar molecular motors may travel in opposite directions on
the same intracellular Flament (see Section 7). If we accept the temperature ratchet as a crude
qualitative model in this context (cf. Section 2.6.3), it is amusing to note that also this feature can
be qualitatively reproduced: If two types of molecular motors are known to di5er in their ATP
consumption rate 1=T, or in their friction coeCcient 
, or in any other parameter appearing in our
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temperature ratchet model, then it is possible 22 to Fgure out a ratchet potential V (x) such that they
move indeed in opposite directions.

For a more general discussion of current inversion e5ects we refer to Section 3.6 below. Additional
material on the temperature ratchet model is contained in Section 6.3.

3. General framework

In Sections 3–9 we will review theoretical extensions and their experimental realizations of the
concepts which were introduced by means of particularly simple examples in Section 2. In the present
section, we provide a Frst overview and general framework for the more detailed discussion in the
subsequent sections: The main classes of ratchet models and their physical origin are introduced.
Symmetry considerations regarding the occurrence or not of a Fnite particle current (ratchet e5ect) are
a second important issue, complemented by a general method of tailoring current inversions. Finally,
a general treatment is provided for the asymptotic regimes of small and large noise-strength and
of weak non-equilibrium perturbations. SpeciFc examples and applications of these general concepts
are mostly postponed to later sections.

3.1. Working model

In hindsight, the essential ingredient of the ratchet e5ect from Section 2.6.2 was a modiFcation of
the Smoluchowski–Feynman ratchet model (2.6) so as to permanently keep the system away from
thermal equilibrium. We have exempliFed this procedure by a periodic variation of the temperature
(2.48) but there clearly exists a great variety of other options. In view of this example, the following
guiding principles should be observed also in more general cases: (i) We require spatial periodicity
and either invariance or periodicity under translations in time. (ii) All forces and gradients have to
vanish after averaging over space (“coarse graining” over many spatial periods), over time (in the
case of temporal periodicity), and over statistical ensembles (in the case of random =uctuations).
(iii) The system has to be driven permanently out of thermal equilibrium and there should be no
symmetries which prohibit a ratchet e5ect a priori. According to Curie’s principle we can there-
fore expect the generic appearance of a Fnite particle current 〈ẋ〉. (iv) In view of the title of our
present study, we will mostly (not exclusively) focus on models with a Fnite amount of thermal
noise. 23

According to these preliminary considerations, we adopt as our basic working model the over-
damped one-dimensional stochastic dynamics


 ẋ(t) = −V ′(x(t); f(t)) + y(t) + F + �(t) ; (3.1)

〈�(t)�(s)〉 = 2
kBT�(t − s) ; (3.2)

22 See also Section 3.6 for a detailed proof.
23 Note that (iv) is not a consequence of (iii), as demonstrated by any dissipative driven system at zero temperature.
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where 
 is the viscous friction coeCcient and V ′(x; f) :=V (x; f)=9x. With respect to its spatial
argument x, the potential is periodic for all possible arguments f(t), i.e.

V (x + L; f(t)) = V (x; f(t)) (3.3)

for all t and x. Along the same line of reasoning as in Section A.4 of Appendix A, inertia ef-
fects are neglected and thermal =uctuations are modeled by uncorrelated (white) Gaussian noise
�(t) of zero average and intensity 2 
 kBT (see also Section 3.4.1 below). Finally, F is a constant
“load” force. Since such a bias violates the above requirement (ii), it should not be considered as
part of the system but rather as an externally imposed perturbation in order to study its response
behavior.

We furthermore assume that f(t) and y(t) are either periodic or stochastic functions of time t.
In the case that one or both of them are a stochastic process, we make the simplifying assumption
that this process is stationary, and in particular statistically independent of the thermal noise �(t)
and of the state of system x(t). With the symbol 〈·〉 we henceforth indicate an ensemble average
over realizations of the stochastic dynamics (3.1), i.e. a statistical average with respect to the ther-
mal noise �(t) and in addition with respect to f(t) and=or y(t) if either of them is a stochastic
process.

The quantity of central interest is the average particle current (cf. (2.15))

〈ẋ〉 := 〈ẋ(t)〉 : (3.4)

In most cases 24 we will furthermore focus on the behavior of the particle current in the long-time
limit t→∞ (cf. Section 2.4). If both f(t) and y(t) are random processes in time, then the existence
of a stationary long-time limit and its uniqueness are taken for granted. If f(t) and=or y(t) is a
periodic function of t, then the existence of a unique periodic long-time behavior is assumed and
a time average is tacitly incorporated into 〈ẋ〉 (cf. Eq. (2.53)). Both, for random and periodic
processes, this long time limit of the current can usually be identiFed, due to ergodicity reasons,
with the time-averaged velocity of a single realization x(t) of the stochastic dynamics (3.1), i.e. with
probability 1 we have that

〈ẋ〉 = lim
t→∞

x(t)
t

; (3.5)

independent of the initial condition 25 x(0).

24 There are only very few investigations on transient features of ratchet systems [162–167].
25 Proof. The time-averaged current from (3.4) can be rewritten as 〈ẋ〉=〈limt →∞ t−1 ∫ t

0 ẋ(t′) dt′〉=limt →∞〈x(t)−x(0)〉=t.
The random process x(t) − x(0) exhibits on top of the systematic drift 〈x(t) − x(0)〉=t a certain random dispersion (or
di5usion) of the order

√
2De5 t for large t, cf. Eq. (3.7). Due to the division by t it follows that this dispersion is

negligible, i.e. 〈ẋ〉 = limt →∞[x(t) − x(0)]=t = limt →∞x(t)=t with probability 1 for any realization x(t).
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A further quantity of interest is the e1ective di1usion coe<cient

De5 := lim
t→∞

1
2t
〈[x(t) − 〈x(t)〉]2〉 : (3.6)

For −V ′(x(t); f(t))+y(t) ≡ 0, the e5ective di5usion coeCcient (3.6) agrees with the bare coeCcient
(2.11), independent of F . In general, its determination is a diCcult time-dependent problems 26 and
we will restrict ourselves to a few special cases.

On a suCciently coarse grained scale in space, the motion of the particle x(t) takes the form of
single “hopping” events which are independent of each other and equally distributed. According to
the central limit theorem [100], a statistical ensemble of particles x(t) with initial condition x(0)=x0

thus approaches a Gaussian distribution [117,168–174]

P(x; t) � 1√
4�De5 t

exp
{
− [〈ẋ〉t − x0]2

4De5 t

}
(3.7)

for large times t. As far as the objective of particle separation is concerned, we see that not only a
large di5erence or even opposite sign of the velocities 〈ẋ〉 is important (cf. Section 3.6), but also the
e5ective di5usion coeCcients and the time t (or, equivalently, the length 〈ẋ〉t of the experimental
device) play a crucial role [34,170,172,174,175] see also Section 6.6. A purely di5usive (〈ẋ〉 = 0)
particle separation scheme will be discussed in Section 5.11.

Once in a while, certain extensions of the above framework will appear, e.g. an additional Fnite
inertia term m Mx(t) on the left-hand side of (3.1) or two instead of one spatial dimensions, see e.g. in
Sections 5.8 and 5.9, respectively. Furthermore, models with a time- or space-dependent temperature
in (3.2) will be discussed in Sections 6.1–6.3, and similarly in Section 6.4) models with a time-
or space-dependent friction. Deviations of the spatial periodicity (3.3) may arise in the form of
some amount of quenched spatial disorder (Section 6.8) or as a superposition of several periodic
contributions with incommensurate periods (Section 4.5.1). The case of a spatially discretized state
variable is reviewed in Section 6.7. A class of models with a non-trivial dependence of the process
f(t) upon the state x(t) of the system appears in Section 6.2 and in Section 7. Generalizations of
a more drastic nature are addressed in Sections 8 and 9.

If y(t) is a periodic function of time, say

y(t + T) = y(t) ; (3.8)

then we can assume without loss of generality, that∫ T

0
dt y(t) = 0 ; (3.9)

26 While for the current it is suCcient to consider an auxiliary dynamics with periodic boundary conditions, which
approaches a stationary (if f(t) and y(t) are random processes) or periodic long time limit (cf. Section 2.4), no such
simpliFcation is possible with respect to the e5ective di5usion coeCcient. In particular, the e5ective di5usion coeCcient
is in general no longer related to the mobility via a generalized Einstein relation (2.11), i.e. De5 = kBT 9〈ẋ〉=9F only holds
when f(t) ≡ 0, y(t) ≡ 0, and F = 0.
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thanks to the free constant F in (3.1). Similarly, if y(t) is a stationary stochastic process then we
can assume that

〈y(t)〉 = 0 : (3.10)

Without loss of generality, it is also suCcient to concentrate on f(t) which are unbiased in the same
sense as in (3.9), (3.10).

As far as unbiased stationary random processes are concerned, two examples are of particular
importance due to their archetypal simplicity. To be speciFc, we will use the symbol f(t), while
completely analogous considerations can of course be immediately transcribed to y(t) as well. The
Frst example is a so-called symmetric dichotomous noise or telegraphic noise [63,176–178], i.e.
a stochastic process which switches back and forth between two possible “states” +# and −# with
a constant probability $ per time unit. In the stationary state the distribution of the noise

%(f) := 〈�(f − f(t))〉 (3.11)

is thus given by

%(f) = 1
2[�(f − #) + �(f + #)] ; (3.12)

independent of the time t in (3.11). One furthermore Fnds that the correlation is given by

〈f(t)f(s)〉 = #2e−|t−s|=& ; (3.13)

where & := 1
2$ is the correlation time and 27

#2 := 〈f2(t)〉 =
∫ ∞

−∞
dff2%(f) (3.14)

is the variance (independent of t).
Being abundant in natural systems as well as in technological applications, a stationary Gaussian

distributed noise f(t) is clearly a second type of random =uctuations that warrants to be analyzed
in more detail. In the simplest case, these stationary Gaussian =uctuations are furthermore unbiased,
and Markovian. 28 According to Doob’s theorem [100], f(t) is thus a so-called Ornstein–Uhlenbeck
process [99,101], characterized by a stationary probability distribution

%(f) = (2�#2)−1=2 e−f2=2#2
(3.15)

and the same correlation as in (3.13). So, the variance #2 and the correlation time & are the model
parameters for both, dichotomous noise and Ornstein–Uhlenbeck noise.

27 Note that # in (3.14) is consistent with (3.12) and (3.15).
28 The future of f(t) only depends on its present state, not on its past [101].
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3.2. Symmetry

3.2.1. De8nitions
The potential V (x; f(t)) is called spatially symmetric or simply symmetric if there exists a Ux

such that

V (−x; f(t)) = V (x + Ux; f(t)) (3.16)

for all x and t. In other words, we will use the notions “symmetry” and “asymmetry” as synonyms
for “spatial isotropy” and “anisotropy”, respectively.

A further important symmetry regards the unbiased tilting process y(t): If y(t) is periodic in
time and there exists a Ut such that −y(t) = y(t + Ut) for all t then we call y(t) “inversion
symmetric” or simply symmetric. By performing the symmetry transformation twice, it follows that
y(t) =y(t + 2Ut) and under the assumption that T is the fundamental time-period, i.e. the smallest
&¿0 such that y(t + &) = y(t), the symmetry condition takes the form [39]

− y(t) = y(t + T=2) : (3.17)

If y(t) is a stationary stochastic process, then we call it symmetric if all statistical properties of the
process −y(t) are the same as those of y(t), symbolically indicated as

− y(t)=y(t) : (3.18)

Examples are the symmetric dichotomous noise and the Ornstein–Uhlenbeck process as introduced
at the end of the preceding subsection, or the symmetric Poissonian shot noise from Section 5.5.
Note that the assumption of an unbiased y(t), see (3.9), (3.10), does not yet imply that y(t) is
symmetric.

Regarding nomenclature, an asymmetric potential is also called a ratchet potential. On the other
hand, the dynamics (3.1) will be termed Brownian motor, ratchet dynamics, or simply ratchet not
only if the potential V (−x; f(t)) is asymmetric but also if the driving y(t) is asymmetric, while the
potential may then be symmetric.

3.2.2. Conclusions
From the deFnition (3.16) it follows that a L-periodic potential V (x; f(t)) is symmetric if and

only if it is of the general form

V (x; f(t)) =
∞∑
n=1

an(f(t)) cos(2�nx=L) : (3.19)

Here and in the following, trivial freedoms in the choice of the x- and V -origins are neglected. In
the speciFc case (3.16) this means that we have silently set Ux = 0 and a0(f(t)) = 0 in (3.19).
Similarly, one sees that the symmetry condition (3.17) for a periodic, deterministic driving y(t) is
equivalent to a Fourier representation of the general form

y(t) =
∑

n=1;3;5;:::

bn cos
(

2�nt
T

+ )n

)
: (3.20)
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In the case that y(t) is a stochastic process, the symmetry condition (3.18) is equivalent to the
requirement that all its odd moments vanish [179,180], i.e.

〈y(t1)y(t2) · · ·y(t2n+1)〉 = 0 (3.21)

for all integers n¿ 0 and all times 29 t1; t2; : : : ; t2n+1. Basically, the reason for this is that the stochastic
process y(t) is completely speciFed by the set of all its multiple-time joint probability distributions
(Kolmogorov-theorem) and those are in turn completely Fxed by all its moments [100]. On this
basis, the equivalence of (3.18) and (3.21) follows.

If the potential V (x; f(t)) respects the symmetry condition (3.19) and the driving y(t) either
(3.20) or (3.21) then we can conclude that the long-time-averaged particle current (3.5) vanishes in
the absence of a static tilt F in (3.1), i.e.

〈ẋ〉 = lim
t→∞

x(t)
t

= 0 : (3.22)

For a proof, we recall that the current in (3.5) is independent of the initial condition x(0) and we
may thus choose x(0) = 0. If both, V (x; f(t)) and y(t) are symmetric according to (3.16)–(3.18),
or equivalently (3.19)–(3.21), then it follows that a realization x(t) of the random process (3.1),
(3.2) with F = 0 in (3.1) occurs with the same probability as its mirror image −x(t). Hence, we
can infer from (3.5) that 〈ẋ〉 = −〈ẋ〉, implying (3.22). In other words, the main conclusion of this
subsection is that if both, the potential V (x; f(t)) and the driving y(t) are symmetric according to
(3.16)–(3.21) then the average particle current (3.5) is zero.

If the potential and the driving y(t) do not both satisfy their respective symmetry criteria, then,
according to Curie’s principle, a Fnite average current is expected in the generic case. The exceptional
(non-generic) cases with zero current (3.22) in spite of a broken symmetry are either in some sense
“accidental” [12] (analogous to the current inversion in Fig. 2.9) or can be traced back to certain
“hidden” symmetry reasons of a more fundamental and systematic nature. Examples of the latter
type will be the subject of Sections 3.5 and 6.4.1, see also the concluding remarks in Section 10.

The generalization of these symmetry considerations to the case of a quasiperiodic driving y(t)
is due to [181], while an extension to two-dimensional systems (cf. Section 5.9) and models with
an internal degree of freedom (cf. Section 6.5) is contained in [182,183] and [184], respectively.

3.3. Main ratchet types

In this section we introduce the classiFcation scheme underlying the organization of Sections
4–6. Some general physical considerations complementing this abstract classiFcation are summarized
in Section 3.4.

As already discussed in Section 2.6, of foremost interest is usually the current 〈ẋ〉 in the long-time
limit in the absence of a static tilt F in (3.1). If both, the potential V (x; f(t)) and the tilting force
y(t) are symmetric, then a vanishing current will be the result (see preceding subsection). The
following classiFcation of the di5erent types of ratchet models is on the one hand, based on the
systematic breaking of this symmetry, on the other hand, it follows to some extent the historically
grown, non-systematic nomenclature.

29 Here and in what follows we tacitly assume that all multiple-time moments of the process y(t) exists.



92 P. Reimann / Physics Reports 361 (2002) 57–265

There are two fundamental classes of ratchet models arising from (3.1). The Frst one are models
with y(t) ≡ 0, which we denote as pulsating ratchets. The second are models with f(t) ≡ 0, called
tilting ratchets [49].

Within the realm of pulsating ratchets (y(t) ≡ 0), the Frst main subclass is obtained when f(t)
in (3.1) is additive, i.e.

V (x; f(t)) = V (x) [1 + f(t)] : (3.23)

Such models carry the name 9uctuating potential ratchets. The summand 1 is a matter of convention,
re=ecting a kind of “unperturbed” contribution to the total potential. The class of =uctuating potential
ratchets contains as special case the on–o1 ratchets when f(t) can take only two possible values,
one of them being −1 (potential “o5”). Without loss of generality, the other value can then be
assumed to be +1.

One readily sees that the potential V (x; f(t)) on the left-hand side of (3.23) satisFes the sym-
metry condition (3.16) if and only if V (x) on the right-hand side of (3.23) is symmetric as well.
Furthermore, it is obvious that a symmetric V (x) in (3.23) always results in a vanishing current 〈ẋ〉,
whatever the properties of f(t) are. We will therefore focus on the simplest non-trivial scenario,
namely asymmetric potentials V (x) in combination with symmetric f(t). As the word “=uctuat-
ing potential” already suggests, we will mainly focus on random f(t), though periodic f(t) are in
principle meant to be equally covered by this name.

A second subclass of pulsating ratchets, called traveling potential ratchets, have potentials of the
form

V (x; f(t)) = V (x − f(t)) : (3.24)

The most natural choice, already suggested by the name “traveling potential”, are f(t) with a
systematic long time drift u := limt→∞ f(t)=t. As a consequence, f(t) can only be a veritable
periodic function or stationary stochastic process after subtraction of this systematic drift. We will
call such a model a genuine traveling potential ratchet scheme. This slight extension of our general
framework will be justiFed by our demonstration that such a model is exactly equivalent either to a
tilting ratchet or to a so-called improper traveling potential ratchet, for which already the “original”
f(t) is a periodic function or a stationary stochastic process. Within a traveling potential ratchet
scheme, the potential V (x; f(t)) on the left-hand side of (3.24) never satisFes the symmetry criterion
(3.16), independently of whether the potential V (x) on the right-hand side is symmetric or not. Both,
the genuine and improper schemes are therefore interesting to study since a symmetric potential V (x)
is su<cient for current generation. Especially, the word “ratchet” does not necessarily refer to an
asymmetric potential V (x) in this context.

Next, we turn to the tilting ratchet scheme, characterized by f(t) ≡ 0 and thus

V (x; f(t)) = V (x) (3.25)

in (3.1). When V (x) is a ratchet potential, then we will restrict ourselves mostly to symmetric y(t).
If y(t) is a stochastic process, we speak of a 9uctuating force ratchet. The case of a tilting ratchet
with a periodic driving y(t) is of particular experimental relevance and carries the obvious name
rocking ratchet [42].
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Coming to symmetric potentials V (x) in (3.25), a broken symmetry of y(t) turns out to be
necessary and generically also suCcient for a Fnite current 〈ẋ〉. We will use the name asymmetrically
tilting ratchet if y(t) is not symmetric, independently of whether it is a periodic function or a
stochastic process, and independently of whether V (x) is symmetric or not.

A further important class of ratchets is given by models of form the (3.1), (3.3) with both
f(t) ≡ 0 and y(t) ≡ 0 but instead with a space- or time-dependent temperature T in (3.2).
They carry the names Seebeck ratchets and temperature ratchets, respectively. In the case of a
space-dependent temperature, T (x) is assumed to have the same periodicity L as the potential V (x).
In the case of a time-dependent temperature T (t), again a periodic or stochastic, stationary behavior is
assumed. We anticipate that models of this type are obviously not pulsating ratchets in the original
sense, but—as will be demonstrated in Sections 6:1 and 6:3—they can be mapped onto genuine
pulsating ratchets. Also discussed in this context (Section 6.2) will be the so-called Feynman
ratchets, i.e. the extension of the isothermal Smoluchowski–Feynman ratchet and pawl from Fig. 2.1
to the non-equilibrium case involving simultaneously two thermal baths at di5erent temperatures.
Starting with a faithful two-dimensional model, which is in fact equivalent to a generalized =uctuating
potential scheme, additional simpliFcations give rise to a one-dimensional, Seebeck ratchet-like
approximative description. Finally, the case of a varying friction coeCcient in (2.11) (temporal
and=or spatial) is denoted as friction ratchet. In Section 6.4.1, we show that such a modiFcation of
the Smoluchowski–Feynman ratchet model (2.5), (2.6) does not break the detailed balance symmetry
and thus does not admit a ratchet e5ect, 30 in contrast to a modiFed, so-called memory-friction
modelling as discussed in Section 6.4.3.

We remark that the main idea of the above classiFcation scheme is the identiFcation of di5erent
basic minimal models. Clearly, there are many possible combinations and generalizations, e.g. a
simultaneously pulsating and tilting ratchet or the simultaneous breaking of more than one symmetry.
Especially, there exist numerous pulsating ratchet schemes involving potentials V (x; f(t)) which go
beyond the special cases of =uctuating potential and traveling potential ratchets. Such generalizations
will not be systematically analyzed since no fundamentally new phenomena are expected. They are,
however, realized in some interesting experimental systems and will be discussed in such speci8c
contexts.

3.4. Physical basis

The physical situations in which a model of form (3.1)–(3.3) may arise are extremely diverse.
Therefore, a systematic discussion makes little sense and we restrict ourselves in this section to a
few general remarks before turning to the various concrete systems in the subsequent chapters.

The stochastic process x(t) in (3.1) has as state space the entire real axis and for simplicity is
often called a “Brownian particle”. While in some cases, x(t) indeed represents the position of a
true physical particle, in others it may also refer to some quite di5erent type of collective degree
of freedom or relevant (slow) state variable. Examples which we will encounter later on are the
chemical reaction coordinate of an enzyme, the geometrical conFguration or some other internal
degree of freedom of a molecule, the position of the circular ratchet in Fig. 2.1 with respect to

30 Especially, such a modiFcation requires a correct handling of the non-trivial overdamped limit m→ 0 in (2.1), see
Section 6.4.1.
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the pawl, the Josephson phase in a SQUID (superconducting quantum interference device), and the
collective angular variable in phenomenological models for pinned charge density waves. In many
cases the state variable x(t) is thus originally of a phase-like nature with a circle as state space. The
expansion to the real axis is immediate and has the additional advantage of counting the number of
revolutions. Accordingly, the periodicity (3:3)—a central property of our model—may have its root
either in a true spatial periodicity of the physical system or in the phase-like nature of the original
state variable.

3.4.1. Thermal environment
Another central feature in our working model (3.1), (3.2) is the presence of a thermal environ-

ment. In this section we continue and extend our discussion from Section 2.1.2 (see also Section A.1
in Appendix A) regarding the physical origin of the particularly simple form of the system–bath in-
teraction in (3.1), (3.2), namely an additive white Gaussian noise and an additive viscous dissipation
proportional to the instantaneous system velocity.

Adopting a phenomenological approach, in many cases [66,99,101] such an ansatz has proven to
provide a rather faithful modeling, justiFed by its agreement with experimental measurements and
the intuitive physical picture that has emerged on the basis of those observations.

A di5erent approach starts with a microscopic modeling of the system of actual interest and
its thermal environment. In the following we brie=y sketch the main steps of such an approach.
For a somewhat more detailed illustration of these general concepts for speciFc physical examples
we also refer to Sections 7:2, 7:3, and 8:1. On the one hand, such a microscopic foundation pro-
vides a physical picture of why the phenomenological modeling (3.1), (3.2) is successful in such
a wide variety of di5erent systems. On the other hand, a feeling for the conditions under which
such a modeling is valid is acquired as well as an idea of how to modify the model when they
break down.

Our starting point is a Hamiltonian of the general form

H =
p2

2m
+ Vs(x) +

N∑
j=1

p2
j

2mj
+ Vb(x; x1; : : : ; xN ) ; (3.26)

where x and p are the coordinate and momentum of the actual system of interest, while xj and pj

are those of the numerous (N�1) microscopic degrees of freedom of the environment. The last term
in (3.26) is a general interaction potential, including the coupling between system and environment.
To keep things simple, we restrict ourselves to a single relevant (i.e. “slow”) state variable x(t),
e.g., the cartesian coordinate of a particle in the absence of magnetic Felds or the Josephson phase
in a SQUID. We remark that in other cases, e.g. the chemical reaction coordinate of an enzyme, the
geometrical conFguration, or some other internal degree of freedom of a molecule, the respective
“slow” relevant state variable x(t) is usually a generalized coordinate (a non-trivial function of the
cartesian coordinates of the nuclei, cf. Section 7.2), and similarly for the “fast” bath degrees of
freedom xj(t). As a consequence, the kinetic energy terms are of a more complicated form than in
(3.26) and with respect to the potential terms there exists no longer a meaningful distinction between
the “actual system of interest” and the “environment plus the system–bath coupling”. In those cases,
our general line of reasoning remains still valid, but the detailed calculations become more involved
[92,93,150,185].
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Elimination of the bath degrees of freedom: Having set the stage (3.26), our next goal is to get
rid of the environmental degrees of freedom xj(t). To this end, we start by formally solving
the respective equations of motions for any prescribed function x(t) and initial conditions )0 :=
(x1(0); p1(0); : : : ; xN (0); pN (0)) at time t0 = 0. In other words, we can write down (formal) solutions
xj(t; [x(t′)]; )0) which are at the same time functions of t and )0 and functionals of the (explicitly
still unknown) system dynamics x(t′) for t′ ∈ [0; t]. Introducing these solutions into the equation of
motion for the system x(t) is equivalent to a Newtonian dynamics of the general structure 31

m Mx(t) = f(x(t); t; [x(t′)]; )0) : (3.27)

In most cases, an explicit analytical expression for f(x(t); t; [x(t′)]; )0) is not available 32 since
this would require analytical solutions xj(t; [x(t′)]; )0) of a high dimensional chaotic dynamics and
would in fact comprise the derivation of the basic principles of equilibrium statistical mechanics as
special case. Rather, one proceeds the other way round, exploiting the fact that the environment is a
thermal equilibrium heat bath and thus statistical mechanical principles can be invoked. Namely, one
assumes that the systems initial conditions x(0) and p(0) are arbitrary but Fxed, while the initial
state of the bath )0 is randomly sampled from a canonical probability distribution 33 P()0) ˙
exp{−H (x(0); p(0); )0)=kBT}. It is via this randomness of the environmental initial conditions )0

that the system dynamics (3.27) acquires itself a stochastic nature. Denoting the average over those
initial conditions by

f̃(x(t); t; [x(t′)]) := 〈f(x(t); t; [x(t′)]; )0)〉 ; (3.28)

we can decompose the right-hand side of (3.27) into a sum of three terms,

m Mx(t) = −V ′(x(t)) − h(x(t); t; [ẋ(t′)]) + �(x(t); t; [x(t′)]; )0) ; (3.29)

where the Frst term is determined by the instantaneous state of the system, the second by its past
history, and the third term is of microscopic origin, giving rise to the stochastic nature of the
dynamics. Their explicit deFnitions are

V ′(x(t)) := − f̃(x(t); t; [x(t′) ≡ x(t)]) ; (3.30)

h(x(t); t; [ẋ(t′)]) := − f̃(x(t); t; [x(t′)]) + f̃(x(t); t; [x(t′) ≡ x(t)]) ; (3.31)

�(x(t); t; [x(t′)]; )0) :=f(x(t); t; [x(t′)]; )0) − f̃(x(t); t; [x(t′)]) : (3.32)

Here, [x(t′) ≡ x(t)] means that the function x(t′) keeps the same value x(t) for all times t′ ∈ [0; t]
and is understood as a formal functional argument rather than an actual solution of the real system

31 The explicit but formal expression of f(x(t); t; [x(t′)]; )0) in terms of the potentials in (3.26) and the formal solutions
xj(t; [x(t′)]; )0) is straightforward but of no further use, see below. Especially, f(x(t); t; [x(t′)]; )0) in (3.27) has nothing
to do with f(t) from (3.1).

32 The only solvable exception—the so-called harmonic oscillator bath—arises when Vb(x; x1; : : : ; xN ) in (3.26) is a
quadratic function of its arguments and thus the bath-dynamics is not chaotic, see Section 8.1.

33 The physical origin of this canonical description is a “superbath” to which the bath of actual interest is weakly
coupled.
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dynamics (3.29). Further, the modiFed functional argument [ẋ(t′)] on the left-hand side of (3.31) is
justiFed by the fact that any function x(t′) with t′ ∈ [0; t] can be reconstructed from the knowledge
of x(t) and ẋ(t′). Finally, we remark that the source of randomness )0 enters via the “noise” (3.32),
which has a vanishing mean value by construction.

Observing that for x(t′) ≡ x(t) the bath keeps its initial canonical probability distribution and
expressing the force on the right-hand side of (3.27) in terms of the potentials in (3.26) one can
infer from (3.28) and (3.30) that

V (x) = Vs(x) − kBT ln
∫ N∏

j=1

dxj exp{−Vb(x; x1; : : : ; xN )=kBT} : (3.33)

In general, the bare system potential is thus renormalized (dressed) by the eliminated degrees of
freedom of the environment and plays a role similarly to a free energy rather than a (bare) energy
[92,93,150,186]. However, if the potential Vb(x; x1; : : : ; xN ) is translation invariant (i.e. equal to Vb(x+
�; x1+�; : : : ; xN +�) for all �) then the renormalization in (3.33) boils down to an irrelevant additive
constant.

Linearized friction and thermal #uctuations: While all so far formal manipulations are still exact,
we Fnally make two approximations with respect to the “friction” term (3.31). First, we functionally
expand h(x(t); t; [ẋ(t′)]) with respect to ẋ(t′). Considering that h(x(t); t; [ẋ(t′) ≡ 0]) = 0 (cf. (3.31))
and that t′ ∈ [0; t], the leading-order approximation is

h(x(t); t; [ẋ(t′)]) �
∫ t

0
ds

�h(x(t); t; [ẋ(t′) ≡ 0])
�ẋ(s)

ẋ(s) : (3.34)

Second, we exploit the assumed property that the relevant state variable x(t) changes “slowly” in
comparison with the environment, hence ẋ(s) � ẋ(t) for all s-values which notably contribute in
(3.34) (Markov approximation). By closer inspection one sees that within the same approximation
the remaining integral does no longer explicitly depend on t. As a result, we approximately Fnd a
friction term of the following general form:

h(x(t); t; [ẋ(t′)]) � 
(x(t))ẋ(t) : (3.35)

As far as the omitted corrections on the right-hand side of (3.35) are not incidentally identically
zero, by neglecting them we are tampering with the original equilibrium environment with the
consequence of a (possibly very small but generically non-vanishing) breaking of thermal equilibrium
and thus a violation of the second law of thermodynamics, see also Sections 2.9 and 8.1. This
shortcoming can only be remedied by a corresponding adjustment of the =uctuations in (3.32) in the
following way: Along a similar line of reasoning as in [97] (see also Section A.1 in Appendix A)
one can show that the speciFc structure (3.29), (3.35) of the dynamics together with the requirement
that the environment is at thermal equilibrium (respects the second law of thermodynamics) uniquely
determine all statistical properties of those properly adjusted =uctuations appearing in (3.29). Namely,
they are necessarily an unbiased Gaussian white noise whose correlations satisfy a =uctuation–
dissipation relation of the form

〈�(x(t); t; [x(t′)]; )0)�(x(s); s; [x(s′)]; )0)〉 = 2
(x(t))kBT�(t − s) : (3.36)
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As already noticed below (2.5), the function 
(x) may thus be viewed as the coupling strength to
the thermal environment.

If the potential Vb(x; x1; : : : ; xN ) is known to be translation invariant then not only the renor-
malization of the potential in (3.33) reduces to an irrelevant additive constant but also the spatial
dependence of the friction coeCcient 
(x) disappears. In the overdamped limit m→ 0 we thus ex-
actly recover our “unperturbed” working model 34 (3.1), (3.2). This omission of the inertia term in
(3.1) is usually a quite satisfactory approximation for the typically very small systems under consid-
eration, cf. Section A.4 in Appendix A. A noteworthy exception is the case of a SQUID system, 35

for which both the overdamped limit (3.1) as well as the case with Fnite inertia describe realistic
experimental situations of interest, see Section 5.10.

The translation invariance of Vb(x; x1; : : : ; xN ) and thus the x-independence of the system–bath
coupling 
 arises naturally if the periodic potential in (3.1) and the thermal environment have di5erent
physical origins. Since this is the case in most concrete examples which we will consider or at least
it can be assumed without missing basic new e5ects, we will mostly focus on an x-independent
friction coeCcient 
 henceforth. Prominent examples with x-dependent friction coeCcients 
(x) are
discussed in Sections 6.4.2 and 7.3.

One basic assumption in our so far discussion has been the existence of a clear-cut separa-
tion between the characteristic time scales governing the “slow” system variable and those of the
environment, with the consequence of a memoryless friction mechanism and uncorrelated thermal
=uctuations. However, there exist physical systems for which this assumption is not fulFlled. One
reason may be that one has overlooked additional relevant “slow” state variables and thus one
simply has to go over to a higher dimensional vector x(t) in the above calculations. However,
in some cases the necessary dimensionality of x(t) may become very high, while those additional
dimensions are actually of no further interest, so that keeping a memory-friction and correlated
noise may be more convenient. Restricting ourselves to the simpler case with a translation invariant
potential Vb(x; x1; : : : ; xN ), approximation (3.34) takes the general form

h(x(t); t; [ẋ(t′)]) �
∫ t

−∞
ds 
̂(t − s)ẋ(s) ; (3.37)

where we have assumed that ẋ(t) = 0 for all 36 t6 0 in order to uniquely deFne the evolution of
the integro-di5erential equation (3.29), and hence the lower integration limit could been extended
to −∞. Similarly as in (3.36), the assumption of thermal equilibrium then implies [97] that the
properly adjusted =uctuations appearing in (3.29) are necessarily an unbiased Gaussian noise whose
correlation satisFes a =uctuation–dissipation relation of the form

〈�(x(t); t; [x(t′)]; )0)�(x(s); s; [x(s′)]; )0)〉 = 
̂(|t − s|)kBT : (3.38)

Examples of this type will be discussed in Sections 6.4.3 and 8.1.

34 For the sake of notational simplicity only we have not included f(t); y(t), and F into the deFnition of Vs(x) form
(3.26).

35 The reason is that the “e5ective inertia” in a SQUID has a “macroscopic” origin, namely the capacitance of the
considered circuit, cf. Section 5.10.

36 This can be physically realized by means of a time-dependent potential Vs(x; t) in (3.26) which keeps x(t) at a Fxed
position for t6 0 and switches to the actual potential of interest for t¿0.
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It should be emphasized that the dynamics (3.29) reproduces the correct equilibrium distribution
P(x; p) ˙ exp{−[p2=2m + V (x)]=kBT} in the long-time limit, independently of the choice of 
(x)
or 
̂(t) in (3.35)–(3.38). Especially, this distribution is exactly identical to the steady state result
for the original system (3.30)–(3.32) before making any approximations [93]. Moreover, the second
law of thermodynamics is strictly satisFed in all cases. It is only away from equilibrium that the
speciFc choice of 
(x) or 
̂(t) becomes important 37 and that the approximations made in (3.35)–
(3.37) may have a noticeable e5ect.

In general, the above program of identifying “slow” and “fast” variables, establishing the micro-
scopic model (3.26), and determining 38 
(x) or 
̂(t) according to (3.34) cannot be practically carried
out [93]. The same applies for a well-controlled justiFcation of the approximation (3.34), although
this linearization turns out to provide remakably good approximations in a large variety of di5erent
systems. One reason may be the fact that in most cases only terms of odd order in the system
velocity will contribute to the omitted corrections on the right-hand side of (3.34) due to symmetry
reasons. In view of those practical diCculties we are thus in some sense back at a phenomenological
modeling which draws its legitimation from the comparison with experimental Fndings. However, as
already mentioned, the microscopic modeling provides a general framework (functional form) for a
large class of approximate models and a feeling for their wide range of applicability as well as for
possible reasons in case they fail.

3.4.2. Non-equilibrium perturbations
There are two main types of possible “perturbations” of the “unperturbed” equilibrium system

(3.1) with f(t) ≡ 0; y(t) ≡ 0, and F = 0. The Frst acts essentially like the force F in (3.1), i.e. the
system x gains (or looses) energy if it is displaced by one spatial period L. For instance, this may be
a homogeneous force acting on a true Brownian particle or an angular momentum-type perturbation
if x was originally of a phase-like nature. In any case, such a perturbation interacts directly with the
state variable x. The unbiased, time-dependent part of such a perturbation gives rise to the “tilting
force” y(t) and the systematic part to the “static force” F in (3.1). The second possible type of
perturbations interacts directly with the system variable x but does not lead to an energy change if
x is displaced by one period L. A simple example is an electrical dipole with a single rotational
degree of freedom in a homogeneous electrical Feld.

Another option is a perturbation which does not directly interact with the state variable x, but
rather a5ects the physical mechanism responsible for the periodic potential in (3.1). Either some
“internal degree of freedom” of the system x is excited, which modiFes the interaction with the
periodic potential [13], or the periodic potential itself may be a5ected by the perturbation [187].
For instance, an electrical Feld may change the internal charge distribution (electrical polarization)
of a neutral Brownian particle or of the periodic substrate with which it interacts. This type of
perturbation gives rise to a “pulsating potential” V (x; f(t)) in (3.1). Depending on the details of
the system, either one of the three basic types (=uctuating, improper traveling, or genuine traveling

37 An obvious example is the mobility in the absence of the system potential Vs(x), independently of whether the system
is close to or far from equilibrium. Other observables which signiFcantly depend on the choice of 
(x) or 
̂(t) are escape
rates (even so-called equilibrium rates) [66], as well as the particle current and the e5ective di5usion from (3.4) and
(3.6).

38 The explicit determination of V (x) according to (3.33) may still be feasible.
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potential) arises in its pure form, or a combination thereof, possibly even with a tilting ratchet
admixture, is encountered.

One possible origin of those di5erent types of “perturbations” may be an experimentally applied
external 8eld. While periodic signals then clearly represent the standard case, random perturbations
have been realized as well [188]. Another possibility is a system-intrinsic source of “perturba-
tions”, usually of stochastic nature. The origin of such an intrinsic noise source may be either a
non-equilibrium heat bath or a second thermal heat bath 39 at a di5erent temperature than the
�(t)-bath. As far as the tilting ratchet scheme is concerned, the coexistence of such an extra heat
bath and the thermal �(t)-bath, which both interact directly with the state variable x but practically
not with each other, may be experimentally tailored, but is not very common in natural systems.
Exceptions are electrical circuits, where non-equilibrium =uctuations, e.g. dichotomous noise [193] or
shot noise (see Vol. 1 of [115]) may naturally arise, and experimental analog electronic circuits for
dichotomous [194,195] or Gaussian [196] colored noise. More common are sources of noise which
manifest themselves via an internal degree of freedom and thus lead to a pulsating ratchet scheme.
Examples are catalytic chemical reactions with reactant and product concentrations far from their
equilibrium ratio, or excitations induced by electromagnetic irradiation. Another example is a modi-
Fed Feynman ratchet as discussed in Section 6.2. In such cases, the coexistence of two practically
independent sources of the noises �(t) and f(t) in (3.1) is indeed realistic.

At Frst glance, the property (3.3) that the potential is changing its shape in perfect synchrony over
arbitrary distances x might appear somewhat strange. However, this is in fact very natural if either x
is of a phase-like character or if the pulsating potential mechanism is caused by an internal degree of
freedom of the system x. Also experimentally imposed external perturbations usually do not cause an
asynchronous pulsating potential scheme. Asynchronously pulsating potentials [197–202] can only
be expected if x is a space-like variable and if the potential is subjected to independent “local”
non-equilibrium noise sources, or in a speciFcally tailored experimental setup.

In the case of stochastic “perturbations” f(t) or y(t) in (3.1), we have assumed stationarity and
especially x-independence of their statistical properties. Similarly as for the thermal noise �(t), this
re=ects the assumption that their origin is a “huge” heat bath which is practically not in=uenced
by the behavior of the “small” system x(t). A more drastic assumption in (3.1) is the implicit
omission of a back-coupling mechanism (“active decoupling”) [11,12,15] to the f(t)- or y(t)-heat
bath, analogous to the dissipation mechanism in the case of the equilibrium �(t)-bath. This means
that the coupling to this former bath is very weak and that this bath is very far away (“highly
excited”) from equilibrium with respect to the �(t)-bath at temperature T . Only then, the e5ect of
the =uctuations f(t) or y(t) are still appreciable while the corresponding back-coupling e5ects are
negligible. 40 In Section 7 we will encounter a speciFc model where such a back-coupling mechanism
is fully taken into account (see Section 7.3.1). Furthermore, it will be demonstrated explicitly how

39 Microscopic models for two (or more) coexisting thermal heat baths at di5erent temperatures have been discussed in
[189–192]. In the case of a tilting ratchet scheme it turns out that a ratchet e5ect (cf. Section 2.6.2) is only possible for
a correlated (non-white) thermal noise y(t) and a concomitant memory friction term, see Section 6.4.3. A generalization
of these microscopic models to the case that one bath is out of equilibrium is also possible.

40 For example, the origin of f(t) or y(t) may be a second thermal equilibrium bath at a temperature much higher than
T . Though such a model may not be very realistic it is of great conceptual appeal as one of the simplest models for a
system far from equilibrium [189]: Two thermal equilibrium baths are connected through a single degree of freedom x(t)
and can be exploited to do work. A concrete example is the Feynman ratchet in Section 6.2.
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this back-coupling may again become negligible as the corresponding source of noise is driven far
away from equilibrium (see Section 7.4.2). Another example with a non-trivial back-coupling appears
in Section 6.2.

Note that if f(t) or y(t) are such that a periodic perturbation of the system arises, then those
back-coupling e5ects are also omitted in our model (3.1) but in this case such an omission is very
common. The actual justiFcation for doing so, however, follows in fact along the same line of
reasoning as for random perturbations.

In all those various cases, it is clear that the system can never reach a thermal equilibrium state
even in the long-time limit: either this is prohibited by a permanent periodic perturbation or a second
heat bath out of equilibrium or at equilibrium but with a temperature di5erent from T . In either
case, the second law of thermodynamics cannot be applied, i.e. the symmetry of detailed balance is
violated. In the absence of any other prohibitive symmetries, which we have systematically broken
by our classiFcation scheme (cf. Section 3.3), we thus expect the generic occurrence of the ratchet
e5ect 〈ẋ〉 
= 0 according to Curie’s principle. The corresponding intuitive microscopic picture is a
permanent energy =ow from the source of the perturbations f(t) or y(t)—be it a periodic external
driving or a second heat bath—into the thermal bath at temperature T via the single common degree
of freedom x(t).

3.5. Supersymmetry

In this section we continue our symmetry considerations from Section 3.2, where we have seen
that breaking thermal equilibrium, or equivalently, breaking the symmetry of detailed balance in
whatever way, in a periodic, asymmetric system, is generically suCcient for the ratchet e5ect to
manifest itself: In general, the occurrence of a Fnite current in such systems is the rule rather than
the exception, in accord with Curie’s principle. We thus more and more return to Smoluchowski
and Feynman’s point of view that away from thermal equilibrium, the absence rather than the
presence of directed transport in spite of a broken symmetry is the truly astonishing situation. In
this section, an entire class of such intriguing exceptional cases is identiFed which do not exhibit a
ratchet e5ect in spite of broken thermal equilibrium and broken symmetry. Especially, such systems
(cf. Eqs. (3.1), (3.2) with F = 0) exhibit zero current 〈ẋ〉 for any choice of the friction 
, the
temperature T , the amplitude and characteristic time scale of the drivings f(t) and y(t), etc., much
like the symmetric systems from Section 3.2. In contrast to usual current inversions (cf. Sections 2.11
and 3.6), no Fne-tuning of those parameters is thus required in order that 〈ẋ〉 = 0.

3.5.1. De8nitions
We begin with the following deFnitions: We call a potential V (x; f(t)) with a periodic function

f(t) supersymmetric if there exist Ux; Ut; UV such that −V (x; f(t))=V (x+Ux; f(−t+Ut))+UV
for all x and t. If f(t) is a stochastic process then we call the potential V (x; f(t)) supersymmetric
if for any x all statistical properties of −V (x; f(t)) and V (x + Ux; f(−t)) + UV are the same
(no Ut is needed since f(t) is stationary). Especially, a static potential is supersymmetric if −V (x)=
V (x + Ux) + UV for all x. Note that while we can and will choose the t- and V -origins such that
Ut = 0 and UV = 0, the same is not possible for Ux. In fact, by applying the above deFned
supersymmetry transformation twice, we can conclude that V (x + 2Ux; f(t)) = V (x; f(t)) for all x
and t. Under the assumption that L is the fundamental period of V (x; f(t)), i.e. the smallest z¿0 with
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V (x + z; f(t)) = V (x; f(t)), we can henceforth focus on Ux = L=2. In summary, the supersymmetry
criterion can thus be symbolically indicated (cf. (3.18)) for both, periodic and stochastic f(t) as

− V (x; f(t))=̂V (x + L=2; f(−t)) : (3.39)

Turning to the driving y(t), we will call it supersymmetric if for a periodic y(t) we have that
−y(t) = y(−t + Ut) for all t and an appropriate Ut, which can be transformed to zero as usual.
For a stochastic y(t) we speak of supersymmetry if −y(t) and y(−t) are statistically equivalent. In
other words, supersymmetry means for both, periodic and stochastic y(t), a parity-time-invariance
of the form

− y(t)=̂y(−t) : (3.40)

Regarding our above introduced notion of supersymmetry we remark that for undriven (f(t) ≡
0; y(t) ≡ 0; F = 0) systems (3.1), a connection with supersymmetric quantum mechanics [203,204]
has been Frst pointed out in [205] and has been further developed in [206,207], see also the [208]
for a review. The basic idea is to transform the Fokker–Planck equation (cf. Section 2.2) associated
with the undriven stochastic dynamics (3.1) into a SchrModinger-type equation [99–101,209,210].
By replacing in this equation the potential by its supersymmetric partner potential (in the quantum
mechanical sense) a new SchrModinger equation emerges which can be transformed back into a new
Fokker–Planck equation. The potentials of the original and the new Fokker–Planck equations then
coincide (up to irrelevant shifts Ux and UV ) if and only if the supersymmetry condition (3.39)
is satisFed. In the presence of a periodic driving y(t) (but still f(t) ≡ 0; F = 0) in the stochastic
dynamics (3.1), a similar line of reasoning has been developed in [211], yielding the supersymmetry
condition (3.40). The case of various stochastic drivings y(t) has been addressed in [212,213]. Here,
we will borrow the previously established notion of “supersymmetry” for the conditions (3.39),
(3.40), but we will neither exploit nor further discuss their connection with quantum mechanical
concepts.

3.5.2. Main conclusion
We now come to the central point of this section: We consider the general stochastic dynamics

(3.1), (3.2) with F = 0 together with the usual assumptions on f(t) and y(t) from Section 3.1. By
introducing z(t) := x(−t)+L=2, we can infer that ż(t) := − ẋ(−t), i.e. the averaged currents satisfy 41

〈ż〉 = −〈ẋ〉. In doing so, we have exploited that only deterministic and=or stationary stochastic
processes appear in (3.1), (3.2), hence the evolution of the dynamics backward in time does not
give rise to any problem. Especially, −�(−t) is statistically equivalent to the forward Gaussian
white noise �(t). On the other hand, if both V (x; f(t)) and y(t) are supersymmetric according to
(3.39), (3.40) then one can readily see that z(t) satisFes the same dynamics (3.1) as x(t). Due to
the self-averaging property of the current in (3.5) it follows that 〈ż〉 = 〈ẋ〉. In view of our previous
Fnding 〈ż〉=−〈ẋ〉 we arrive at our main conclusion: if both V (x; f(t)) and y(t) are supersymmetric
according to (3.39), (3.40) then the average particle current 〈ẋ〉 is zero, see also [214–217].

41 Note that it is not possible to derive this conclusion 〈ż〉 = −〈ẋ〉 from (3.5). The reason is that the initial and
Fnal times exchange their roles when going over from x(t) to z(t) and thus the implicit assumption in (3.5) that the
initial time is kept Fxed while t→∞ is no longer fulFlled for z(t). The properly generalized version of (3.5) reads
〈ẋ〉 = limt−t0 →∞[x(t) − x(t0)]=[t − t0], from which one readily recovers 〈ż〉 = −〈ẋ〉.
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Fig. 3.1. Example of a supersymmetric potential V (x; f(t)) (in arbitrary units) of the type (3.41) at an arbitrary but Fxed
f(t)-value.

We emphasize again that the conclusion 〈ẋ〉 = 0 only holds true if either both, the potential and
the driving are symmetric or if both of them are supersymmetric. In any other case, 〈ẋ〉 
= 0 is
expected generically. Especially, a symmetric but not supersymmetric potential in combination with
a supersymmetric but not symmetric driving generically implies 〈ẋ〉 
= 0 (see Sections 3.5.3 and 5.12
for more details and examples).

3.5.3. Examples
Next we turn to the discussion of examples. Our Frst observation is the following completely

general implication of the supersymmetry condition (3.39): For any minimum of V (x; f(t)), say
at x = xmin, there exists a corresponding maximum at x = xmin + L=2 and vice versa. 42 For the
rest, the condition (3.39) is still satisFed by a very large class of potentials and their exhaustive
characterization on an intuitive level seems rather diCcult. Here, we restrict ourselves to two suCcient
(but not necessary) simple criteria, which are still very general, namely:

1. The potential V (x; f(t)) is of the general form

V (x; f(t)) =
∑

n=1;3;5;:::

0n(f(t)) cos
(

2�nx
L

+  n(f(t))
)

and f(t) time-inversion invariant ;

(3.41)

where time-inversion invariance of f(t) means, in the same sense as in (3.40), that f(−t)=̂f(t). A
typical example of this type (3.41) of supersymmetric potential V (x; f(t)) is depicted in Fig. 3.1.
Note that in general not only the shape of V (x; f(t)) but also the location of the extrema may still

42 Since this property holds separately for any given f(t)-value, xmin and xmax may in general still depend on t.
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be di5erent for any f(t)-value. One readily sees that (3.41) indeed implies (3.39). For =uctuating
potential ratchets, i.e. V (x; f(t)) = V (x)[1 + f(t)], and especially for static potentials V (x), also the
inverse can be shown, i.e. (3.41) is an exhaustive characterization of supersymmetric potentials in
these special cases, but not in general.

2. A second class of supersymmetric potentials V (x; f(t)) is obtained by means of the represen-
tation

V (x; f(t)) = V+(x; f(t)) + V−(x; f(t)) ; (3.42)

V±(x; f(t)) :=
V (x; f(t)) ± V (x;−f(t))

2
; (3.43)

i.e. the potential is decomposed into symmetric and antisymmetric contributions with respect to f(t),

V±(x;−f(t)) = ±V±(x; f(t)) : (3.44)

Then, the following conditions are suCcient for the potential V (x; f(t)) to be supersymmetric:

V+(x; f(t)) =
∑

n=1;3;5;:::

0n(f(t)) cos
(

2�nx
L

+  n(f(t))
)

and V−(x + L=2; f(t))

= V−(x; f(t)) and f(t) supersymmetric : (3.45)

One readily veriFes that these conditions (3.45) in combination with (3.42), (3.44) indeed imply
(3.39), i.e. V (x; f(t)) is supersymmetric. A simple example is a supersymmetric f(t) and

V (x; f(t)) = V1(x) + V2(x)f(t) ; (3.46)

where V1(x) is a static supersymmetric potential (cf. Eq. (3.41) and Fig. 3.1) and where V2(x) is an
arbitrary L=2-periodic function. In other words, in (3.42) the potential V+(x; f(t)) is independent
of f(t) and V−(x; f(t)) is linear in f(t).

Next, we come to the supersymmetry conditions 43 for the driving y(t). If y(t) is periodic then
condition (3.40) of supersymmetry is equivalent to a Fourier representation of the general form

y(t) =
∞∑
n=1

$n sin(2�nt=T) : (3.47)

A typical example of such a supersymmetric y(t) is depicted in Fig. 3.2. For a stochastic y(t) we
can rewrite (3.40) as

〈y(t1)y(t2) · · ·y(tn)〉 = (−1)n〈y(−t1)y(−t2) · · ·y(−tn)〉 (3.48)

for all integers n¿ 1 and all times t1; t2; : : : ; tn (see also the discussion below Eq. (3.21)). Note that
out of the three possible symmetry properties of y(t), namely (ordinary) symmetry, supersymmetry,
and time-inversion invariance, two always imply the third. All three invariance properties are indeed

43 They can of course be immediately transcribed into corresponding supersymmetry conditions for f(t) as well.
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Fig. 3.2. Example of a supersymmetric T-periodic driving y(t) (in arbitrary units) of the type (3.47).

satisFed for many particularly simple examples y(t) which we will treat in more detail below, for
instance symmetric dichotomous noise and Ornstein–Uhlenbeck noise (see Section 3.1), as well as
symmetric Poissonian shot noise (see Section 5.5). Note also that arbitrary linear combinations of
supersymmetric drivings are again supersymmetric.

A few speciFc examples which, prima facie quite astonishingly, produce zero current due to super-
symmetry reasons are worth mentioning: The Frst set of examples are tilting ratchets
(f(t) ≡ 0) with a supersymmetric potential like in Fig. 3.1 and a periodic driving y(t) like in
(3.47), see also Fig. 3.2, or with a symmetric dichotomous noise y(t), an Ornstein–Uhlenbeck noise
y(t), or a symmetric Poissonian shot noise y(t). On the other hand, a symmetric, but not super-
symmetric potential V (x) (e.g. (3.19) with a1 
= 0 and a2 
= 0) in combination with a supersymmetric
but not symmetric driving y(t) (e.g. (3.47) with $1 
= 0 and $2 
= 0) does generically produce a Fnite
current 〈ẋ〉, see Section 5.8.

A summary of the symmetry considerations for tilting ratchets with periodic drivings (i.e. rocking
ratchets and asymmetrically tilting ratchets) is depicted in Fig. 3.3. In order to bring out the essential
features as clearly as possible, we have chosen in this Fgure stylized, non-smooth potentials V (x)
and drivings y(t) and we have restricted ourselves to time-periodic y(t).

In the case of a pulsating ratchet (y(t) ≡ 0), a symmetric dichotomous noise f(t), an Ornstein–
Uhlenbeck noise f(t), a symmetric Poissonian shot noise f(t), or a periodic f(t) of the form
(3.47) yields 〈ẋ〉 = 0 if one of the following two conditions is met: (i) The potential V (x; f(t))
is for any given f(t)-value of the form (3.39), see also Fig. 3.1. We recall that not only the
shape of V (x; f(t)) but also the location of the extrema may be di5erent for any f(t)-value, i.e.
both =uctuating potential ratchets and (improper) traveling potential ratchets are covered. (ii) The
potential V (x; f(t)) respects supersymmetry when f(t) = 0 and is augmented for f(t) 
≡ 0 by a
=uctuating potential term V2(x)f(t) with an arbitrary L=2-periodic function V2(x), see (3.46).
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Fig. 3.3. Summary of the symmetry considerations for tilting ratchets with potentials Vi(x) and periodic drivings yi(t) (in
arbitrary units). i= 1: symmetric and supersymmetric. i= 2: symmetric but not supersymmetric. i= 3: supersymmetric but
not symmetric. i = 4: neither symmetric nor supersymmetric (but still satisfying (3:9)). The particle current (3:5) vanishes
for arbitrary combinations of potentials and drivings which are either both symmetric or both supersymmetric. For any
other combination of potentials and drivings, a Fnite current arises generically.

3.5.4. Discussion
As long as V (x; f(t)) and y(t) are supersymmetric, the property 〈ẋ〉= 0 is robust with respect to

any change of the friction 
, temperature T , amplitude and characteristic time scale of the drivings
f(t) and y(t) etc. Much in contrast to ordinary current inversions, we thus Fnd 〈ẋ〉 = 0 without
8ne-tuning any of these model parameters. The same is of course true for symmetric instead of
supersymmetric V (x; f(t)) and y(t). Note that this conclusion is no contradiction to Curie’s principle
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since a generic variation within the entire class of admitted ratchet models also involves a change
of V (x; f(t)) and y(t) such that these symmetries are broken, see also the concluding discussion in
Section 10.

In the above respect, but also upon comparison of (3.19)–(3.21) with (3.41), (3.47), (3.48),
the formal structure and the consequences of symmetry and supersymmetry are remarkably similar.
There is, however, also one fundamental di5erence which appears if an additional inertia term m Mx(t)
is included on the left-hand side of the general ratchet dynamics (3.1): While symmetry implies
〈ẋ〉= 0 even in the presence of inertia e1ects, the same conclusion no longer applies in the case of
supersymmetry. For instance, a rocking ratchet with a cosine potential V (x) and a driving y(t) like
in Fig. 3.2 implies 〈ẋ〉= 0 in the overdamped limit [31,218,219] but generically 〈ẋ〉 
= 0 if inertia is
included [220]. In the opposite limit of a deterministic Hamiltonian rocking ratchet dynamics (Fnite
inertia, vanishing dissipation and thermal noise) a condition [221] reminiscent of supersymmetry will
be discussed in Section 5.8. In the intermediate regime of Fnite inertia and dissipation, no comparable
symmetry concept is known. Since the current changes always continuously upon variation of any
model parameter, it follows that for any suCciently small deviations from a perfectly supersymmetric
situation, e.g. in the presence of a very small ineria term, the current 〈ẋ〉 will still be arbitrarily
small [215]. In the following we focus again on the overdamped limit.

3.5.5. Generalizations
We close with a brief look at the ratchet classes with both f(t) ≡ 0 and y(t) ≡ 0 in (3.1) but

instead with a varying temperature T in (3.2): In the case of Seebeck ratchets, characterized by a
space-dependent, L-periodic temperature T (x), we speak of a (spatially) symmetric system if both,
V (x) and T (x) satisfy the symmetry condition (3.16) with the same Ux, which may be transformed
to zero as usual, i.e.

V (−x) = V (x) and T (−x) = T (x) [symmetry] : (3.49)

Similarly, supersymmetry is deFned by the following condition for the potential together with a
modiFed such condition for the temperature:

− V (x) = V (x + L=2) and T (−x) = T (x + L=2) [supersymmetry] : (3.50)

Along the same line of reasoning as in Section 3.2, i.e. by considering the mirror image −x(t)
of x(t), one readily Fnds that the average current 〈ẋ〉 indeed vanishes if the symmetry conditions
(3.49) are satisFed. On the other hand, by considering z(t) := x(−t) + L=2, one veriFes that 〈ẋ〉 = 0
if supersymmetry (3.50) is respected.

Finally, in the case of temperature ratchets, characterized by a time-dependent temperature T (t),
a zero current 〈ẋ〉 = 0 is recovered provided that either

V (−x) = V (x) [symmetry] ; (3.51)

independently of the properties of T (t), or that

− V (x) = V (x + L=2) and T (t) time-inversion invariant [supersymmetry] : (3.52)

Comparison with (3.16) and (3.41) conFrms once more the similarity between pulsating ratchets and
temperature ratchets (see also Section 6.3).
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Further generalization to higher dimensional systems are also possible but not further pursued
here, see also Section 9.2.3.

3.6. Tailoring current inversions

The argument which we have invoked at the end of Section 2.11 can be considerably generalized as
follows: We consider any ratchet model of the general form (3.1)–(3.3), usually (not necessarily 44 )
with F = 0 in (3.1), and possibly also with an x- and=or t-dependent temperature T in (3.2). Next,
we focus on an arbitrary parameter � of the model and we prescribe an arbitrary reference value �0.
Under the only assumption that two potentials Vi(x; f(t)), i=0; 1, with opposite currents 〈ẋ〉 at �=�0

exist, we can then construct a third potential, say V30(x; f(t)), with the property that the current 〈ẋ〉
as a function of the parameter � exhibits a current inversion at the prescribed reference value �0.

The proof of this proposition is almost trivial. Namely, we deFne a set of potentials

V3(x; f(t)) := 3V1(x; f(t)) + (1 − 3)V0(x; f(t)) ; (3.53)

parametrically dependent on 3∈ [0; 1]. In other words, the potentials V3(x; f(t)) continuously inter-
polate between the above deFned two potentials Vi(x; f(t)), i = 0; 1, with opposite current directions
at � = �0. Under the tacit assumption that the current 〈ẋ〉 changes continuously upon variation of
3, it follows that it vanishes at a certain intermediate potential V30(x; f(t)). We remark that this
assumption is very weak: For instance, one can show that a non-vanishing thermal noise �(t) in
(3.1) is suCcient, but by no means necessary. Since the sign of 〈ẋ〉 is robust against small changes
of Vi(x; f(t)), it can furthermore be taken for granted that V30(x; f(t)) is a generic potential in
the sense that the dynamics (3.1) is neither symmetric nor supersymmetric, nor exhibits any other
“accidental” symmetry. In other words, we are dealing with the generic case that, upon varia-
tion of the parameter �, the current 〈ẋ〉 exhibits an isolated zero, i.e. a genuine current inversion,
at � = �0.

If the condition that two potentials Vi(x; f(t)) with opposite current directions at � = �0 exist
is not fulFlled, then also a current inversion at �0 is obviously not possible, i.e. this condition is
both necessary and suCcient. For instance, if the driving y(t) is symmetric and the temperature T
independent of x then we know that V (−x; f(t)) yields a current opposite to that associated with
V (x; f(t)). Hence, we can choose as V0(x; f(t)) any potential with 〈ẋ〉 
= 0 and as V1(x; f(t)) a
slightly deformed modiFcation of V0(−x; f(t)) to conclude that a current inversion exists always.

We may also consider some characteristic property of the driving y(t) as variable and instead
leave all the other ingredients (especially the potential) of the ratchet dynamics (3.1) Fxed. If the
existence of two special drivings yi(t), i = 0; 1, with opposite currents at � = �0 is known, then we
can prove along the same line of reasoning as above that there exists at least one 3∈ (0; 1), say 30,
such that

y3(t) := 3y1(t) + (1 − 3)y0(t) ; (3.54)

44 Note that current inversions upon variation of any model parameter can obviously be enforced by applying an appro-
priately chosen external force F [54,195,222,223].
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produces a current inversion at the arbitrarily prescribed reference parameter value �0. For instance,
if V (x; f(t)) is symmetric (and the temperature T constant) then we know that an asymmetric
y(t) generically produces a current 〈ẋ〉 
= 0 and −y(t) a current in the opposite direction. Hence,
an appropriate asymmetric driving y(t) can be tailored which separates particles on opposite sides
of an arbitrarily prescribed parameter value �0. Since y(t) is typically generated by an externally
applied Feld, such a separation scheme may be of considerable experimental interest.

At this point it is worth recalling that once a current inversion upon variation of one model
parameter has been established, the existence of an inversion upon variation of any other parameter
follows along the same line of reasoning as in Section 2.11.

Current inversions upon changing certain parameters of the system have been studied for the
Frst time in the context of photovoltaic e5ects in non-centrosymmetric materials [159,160]. Early
observations in simple theoretical models as we study them here are due to [35,37,39,42]. Since
then the search and control of current inversions has been attracting much attention with respect
to the possibility of new particle separation technologies based on the ratchet e5ect. Moreover,
multiple current inversions have been exempliFed, e.g. in [170,223–232]. In the latter case, particles
with parameter values within a characteristic “window” may be separated from all the others. The
Frst systematic investigation of such multiple inversions from [232] suggest that it may always be
possible to tailor an arbitrary number of current inversions at prescribed parameter values. However,
a corresponding generalization of our rigorous proof has not yet been established.

Our method of tailoring current inversions implies that, in general, the direction of the particle
current, and even more so its quantitative magnitude, depends in a very complicated way on many
details of the ratchet potential V (x; f(t)) and=or on the driving y(t). In this respect, the leading order
small-T behavior of the temperature ratchet in (2.58) is still a rather simple example. Therefore, any
heuristic “explanation” or simple “rule” regarding current directions should make us suspicious unless
it is accompanied by a convincing (and usually rather severe) restriction on the admitted potentials
V (x; f(t)) and=or the driving y(t). Otherwise, one can typically construct even quite innocent looking
counter-examples of such a “rule”.

The above described procedure is a very simple and universal tool for the construction of current
inversions per se. However, little control over the more detailed dependence of the current as a
function of the considered parameter � is possible in this way. For instance, the maximal magnitudes
of the currents may be very di5erent in the positive and negative directions. Likewise, we can
hardly avoid ending up with a quite complicated looking potential V30(x) and=or driving y30(t).
For both purposes, “symmetrically” shaped current inversions as well as “simple” potentials and=or
drivings which do the job, more detailed analytical predictions are invaluable. For instance, the
results depicted in Fig. 2.9 have not been obtained directly by the above construction scheme.
Rather, the approximation (2.58) has been exploited in order to obtain such an “innocent” looking
ratchet potential with a current inversion.

3.7. Linear response and high-temperature limit

For vanishing f(t), y(t), and F we recover a Smoluchowski–Feynman ratchet in (3.1), yielding
zero current (3.5) in the long-time limit (steady state), see Sections 2:1–2:4. In the case of a tilting
ratchet scheme, an interesting question regards the linear response behavior in the presence of a weak
but Fnite driving y(t) (while f(t) and F are still zero), i.e. the behavior of the averaged long-time
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current (3.5) in linear order 45 y(t). In the case of a symmetric driving y(t) (cf. (3.17) and (3.18))
no such linear contribution can arise, since the averaged long-time current is clearly invariant under
inversion of the driving amplitude, y(t) �→ −y(t). In the general (asymmetric) case, we can expand
y(t) into a Fourier series, which does not exhibit a constant term since y(t) is unbiased, see (3.9) or
(3.10). In linear order y(t), the net current follows simply by summing up all the contributions of
the single Fourier modes. Since each Fourier mode corresponds to a symmetric driving, the resulting
net current is zero. A similar line of reasoning applies for pulsating ratchets with a weak driving f(t)
(and y(t)=F =0). An exception is a genuine traveling potential scheme with a systematic long-time
drift u := limt→∞f(t)=t. In this case, the above Fourier expansion of f(t) cannot be applied any
more and indeed a Fnite linear order f(t) contribution to the current is observed generically, see
Section 4.4.1. In other words, for tilting ratchets, 9uctuating force ratchets, and improper traveling
potential ratchets no directed current occurs within the linear response regime (linear order y(t)
and f(t), respectively). The same conclusions obviously extends to systems with simultaneously
small but Fnite y(t) and f(t) (but still F = 0). Due to their equivalence with =uctuating potential
ratchets, the conclusion also carries over to temperature ratchets (cf. Section 6.3) with a small
perturbation of the temperature T (t) about the (Fnite) average value WT .

In the above line of reasoning we have tacitly assumed analyticity of the current with respect to the
amplitude of the perturbations y(t) and f(t) and that a Fourier expansion 46 of these perturbations
is possible. (Especially, for a stochastic process, the word “weak perturbation” refers to its intensity,
but not necessarily to its instantaneous value at any given time t.) Though this may be diCcult to
rigorously justify in general, a more careful analysis of each speciFc case (known to the present
author) shows that the conclusion of vanishing linear response remains indeed correct.

Another limit which admits a completely general conclusion is that of asymptotically large tem-
peratures T in (3.1), (3.2): Again one Fnds that the current 〈ẋ〉 always approaches zero in the
limit T →∞. While this result is physically rather suggestive (the e5ect of the potential V (x; f(t))
is completely overruled by the noise �(t)) the technical details of the mathematical proof go beyond
the scope of this review. In those numerous cases for which the current also vanishes for T → 0,
a bell-shaped 〈ẋ〉-versus-T curve is thus recovered.

We Fnally remark that in the limit of asymptotically strong drivings y(t) and=or f(t), no generally
valid predictions are possible.

3.8. Activated barrier crossing limit

For many of the above-deFned classes of ratchets (3.1) it may turn out that in the absence of
the thermal Gaussian noise (T = 0), the particle x(t) is conFned to a restricted part of one spatial
period for all times. In the presence of a small amount of thermal noise, the particle will be able to
cross the previously forbidden regions by thermal activation. Yet, such events will be rare and after
each thermally activated transition from one spatial period into an adjacent one, the particle will
again remain there for a long time. Since the duration of the actual transition events is negligible
in comparison with the time the particle spends in a quasi steady state (metastable state) between

45 Formally, this amounts to replacing y(t) by 4y(t) and then performing a series expansion in 4 while keeping y(t)
Fxed.

46 Or any other series expansion in terms of symmetric basis functions.
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the transitions, it follows that the probability for a transition per time unit can be described in very
good approximation by a constant rate. 47

Denoting the rate for a transition to the right by k+ and to the left by k−, the average particle
current readily follows 48 as

〈ẋ〉 = L [k+ − k−] : (3.55)

For a special case, this result has been derived explicitly already in Eq. (2.44). Exploiting the rate
description for the transitions once more, also the e5ective di5usion coeCcient (3.6) can be readily
evaluated [100] with the result

De5 =
L2

2
[k+ + k−] : (3.56)

The very same conclusions (3.55), (3.56) hold true if transitions are not excluded but still very rare
at T = 0. This may be the case for instance in a tilting ratchet (f(t) ≡ 0) when y(t) is a Gaussian
random process with a small intensity

∫
dt〈y(t)y(0)〉. On the other hand, genuine traveling potential

ratchets will turn out to support an appreciable particle current typically even for T = 0 and are
henceforth excluded.

The evaluation of the current (3.55) and the di5usion coeCcient (3.56) has thus been reduced
to the determination of certain rates k across rarely visited regions between some type of e5ective
local potential wells or periodic attractors (if f(t) or y(t) is periodic in t). In the case that both
f(t) and y(t) are stochastic processes (possibly one of them identically zero), this problem of
thermally activated surmounting of a potential barrier with randomly =uctuating shape has attracted
considerable attention since the discovery of the so-called resonant activation e5ect [238], see [68]
for a review. On condition that a rate description of the barrier crossing problem is possible, i.e. the
transitions are rare events especially in comparison with the time scale of the barrier =uctuations [68],
the =uctuating barrier crossing problem is thus equivalent to determining the current and di5usion in
a ratchet model. A large body of analytical results on the former problem [239–254] are thus readily
applicable for our present purposes. Particularly closely related to the resonant activation e5ect are
the theoretical works [158,255] on externally driven molecular pumps (cf. Section 4:6:1) and their
experimental counterparts in [256,257].

If f(t) and=or y(t) are periodic in time with a large period T then a close connection to the
phenomenon of stochastic resonance [62] can be established. If the time period T is not very
large, then this problem of thermally activated escape over an oscillating potential barrier represents
a formidable technical challenge [258]. The few so far available results on weak [259,260], slow
(but beyond the adiabatic approximation) [261], fast [262], and general oscillations [263,264] can
again be readily adapted for our present purposes via (3.55), (3.56).

47 If f(t) or y(t) is periodic in time, then we will have a quasi periodic behavior between transition events and the
transition probability is only given by a constant after “coarse graining” over one time-period.

48 We tacitly focus here on the simplest and most common case with just one metastable state per period L. For more
general cases, the current and the e5ective di5usion coeCcient can still be expressed in closed analytical form in terms of
all the involved transition rates, but the formulas become more complicated, see [233–235] and further references therein.
For special cases, such formulas have been repeatedly re-derived, e.g. in [236,237].
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One basic conclusion of all the above-mentioned analytical studies of the thermally activated
escape over =uctuating or oscillating barriers is that those rates become exponentially small with
decreasing thermal noise strength, much like in the simple explicit example (2.45), (2.46). On top
of that, also the ratio k+=k− generically becomes either exponentially small or large. In other words,
practically only transitions in one direction occur in the course of time and x(t) basically simpliFes
to a unidirectional Poissonian hopping process [100]. This type of unidirectionality is a distinct
weak-noise feature. As soon as the thermal noise-strength increases, the stochastic trajectory x(t)
always displays appreciable displacement in both directions.

Though a substantial part of the present author’s contributions to the Feld under review is con-
cerned with the evaluation of such thermally activated rates over =uctuating or oscillating barriers,
we desist from going into any further details of these technically rather involved theories.

4. Pulsating ratchets

In this section we focus on the pulsating ratchet scheme, i.e. we consider a stochastic dynamics
of the form


 ẋ(t) = −V ′(x(t); f(t)) + �(t) ; (4.1)

complemented by the =uctuation–dissipation relation (3.2) for the thermal noise �(t) and the peri-
odicity condition (3.3) for the potential. Further, f(t) is assumed to be an unbiased time-periodic
function or stationary stochastic process. As compared to the general working model (3.1) we have
set the load force F equal to zero on the right-hand side of (4.1) since this case is usually of
foremost interest.

4.1. Fast and slow pulsating limits

We consider an arbitrary (unbiased, i.e. 〈f(t)〉= 〈f(0)〉= 0) stochastic process f(t) and assume
that its stationary distribution %(f) (see (3.11)) and thus especially its variance 〈f2(t)〉 = 〈f2(0)〉
(see (3.14)) is always the same, while its correlation time 49

& :=

∫∞
−∞ dt〈f(t)f(s)〉

2〈f2(t)〉 ; (4.2)

characterizing the decay of the correlation 〈f(t)f(s)〉=〈f(t−s)f(0)〉, can be varied over the entire
positive real axis. More precisely, we assume that the process f(t) can be written in the form

f(t) = f̂(t=&) ; (4.3)

where f̂(h) is a suitably deFned, Fxed reference process with dimensionless time-argument h,
cf. (2.56). The statistical properties of the process f(t) then depend solely on the parameter &, while
%(f) is &-independent. One readily sees that the examples of dichotomous and Ornstein–Uhlenbeck
noise from (3.12)–(3.15) are of this type. This so-called constant variance scaling assumption

49 By means of a calculation similar to that in Section A.2 of Appendix A one can show that the intensity
∫

dt〈f(t)f(s)〉
and hence the correlation time (4.2) is always non-negative.
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[265] is “natural” in the same sense as it is natural to keep in a time-periodic perturbation f(t) the
amplitude Fxed while the frequency is varied, cf. Section 2.10.

For very small &, the noise f(t) changes very quickly, while its strength
∫

dt〈f(t)f(s)〉 tends to
zero (see also footnote 49). Thus, for &→ 0 (fast pulsating limit) there will be no e5ect of f(t) in
(4.1), i.e. we recover a Smoluchowski–Feynman ratchet with 〈ẋ〉=0. Similarly, for &→∞ the noise
becomes very slow, f(t) � f = const: (adiabatic approximation, see also Section 2.10). Since for
any Fxed value of f we have again a Smoluchowski–Feynman ratchet in (4.1), the result 〈ẋ〉 = 0
subsists after averaging over all those Fxed f-values according to %(f). The very same conclusion
〈ẋ〉 = 0 holds for periodic functions f(t) in the limits of asymptotically long and short periods T
and can be furthermore extended also to generic traveling potential ratchets (cf. Section 4:4:1). In
other words, we arrive at the completely general result that for any type of pulsating ratchet (4.1),
the current 〈ẋ〉 disappears both in the fast and slow pulsating limit.

We exemplify the leading-order correction to this asymptotic result 〈ẋ〉 = 0 for the case that
f(t) is an arbitrary stationary stochastic process with very small correlation time &. Generalizing an
argument form [68,246] we can, within a leading-order approximation, substitute in (4.1) the random
process V (x; f(t)) for any Fxed x by an uncorrelated Gaussian process with the same mean value

V0(x) := 〈V (x; f(t))〉 =
∫ ∞

−∞
df%(f)V (x; f) (4.4)

and the same intensity
∫

dt C(x; t), where the correlation C(x; t) is deFned as

C(x; t) := 〈V ′(x; f(t))V ′(x; f(0))〉 − [V ′
0(x)]2 : (4.5)

An alternative representation of C(x; t) analogous to the second equality in (4.4) is given by

C(x; t) =
∫ ∞

−∞
df1 df2%(f1; f2; t)V ′(x; f1)V ′(x; f2) ; (4.6)

where %(f1; f2; t) is the joint two-time distribution of the stationary process f(t), i.e.

%(f1; f2; t) := 〈�(f(t) − f1) �(f(0) − f2)〉 : (4.7)

Referring to [68,246] for the calculational details, one obtains in this way the result

〈ẋ〉 =
L


2kBT

∫ L
0 dx V ′

0(x)
∫∞
−∞ dt C(x; t)∫ L

0 dx eV0(x)=kBT
∫ L

0 dx e−V0(x)=kBT
: (4.8)

Note that the e5ective potential V0(x) is again L-periodic. Under the conditions that T¿0 and that
(4.5) decays exponentially in time, the result (4.8) gives the leading order contribution for small
correlation times & of f(t). Using (4.3) we can infer that∫ ∞

−∞
dt C(x; t) = &

∫ ∞

−∞
dh Ĉ(x; h) ; (4.9)

where Ĉ(x; t) is deFned like in (4.5) but with f̂(h) instead of f(t) and thus the integral on the
right-hand side of (4.9) is &-independent. In other words, the asymptotic current (4.8) grows linearly
with the correlation time &.
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In the special case that V (x; f(t)) is of the =uctuating potential ratchet form V (x)[1 + f(t)], the
small-& result from [266] is readily recovered from (4.8), namely

〈ẋ〉 =
2L&〈f2(t)〉 ∫ L

0 dx [V ′(x)]3


2kBT
∫ L

0 dx eV (x)=kBT
∫ L

0 dx e−V (x)=kBT
; (4.10)

see also [267].
A similar leading order correction of the adiabatic approximation 〈ẋ〉 = 0 is possible for large &

[266] but leads to a complicated formal expression which still depends on much more details of the
noise than in (4.8).

For periodic driving f(t), expansions along the lines of Appendix C can be undertaken, see
Section 6.3. Technically similar calculations can also be found in [268,269] for fast and in [261] for
slow periodic driving. We will not pursue this task here any further, 50 ; 51 since the main conclusion
follows from the already complicated enough result (4.8), namely that a Fnite current 〈ẋ〉 is gener-
ically expected for driving signals f(t) with a Fnite characteristic time scale and that its sign and
magnitude depend very sensitively on the details of the potential V (x) and the driving f(t).

4.2. On–o1 ratchets

The on–o5 ratchet scheme has been introduced in a speciFc theoretical context in 1987 by Bug
and Berne [32] and has been independently re-invented as a general theoretical concept in 1992 by
Ajdari and Prost [34]. In its latter form it is of archetypal simplicity and the predicted occurrence of
the ratchet e5ect has been veriFed by several experimental implementations. The model is a special
case of the overdamped one-dimensional Brownian motion dynamics (4.1), namely


 ẋ(t) = −V ′(x(t))[1 + f(t)] + �(t) ; (4.11)

where V (x) is spatially periodic, asymmetric “ratchet” potential. The function f(t) is restricted to
the two values ±1, so the potential in (4.11) is either “on” or “o5”.

In the simplest case the potential V (x) has one maximum and minimum per spatial period L
(for examples see Figs. 2.2 and 4.1), the potential di5erence between maxima and minima is much
larger than the thermal energy kBT , and f(t) is a time-periodic function with long sojourn-times in
the +1-state (potential “on”). Under these premises the analysis of the model proceeds in complete
analogy to Fig. 2.6. Qualitatively, a net pumping of particles into the positive direction will occur
if the minima of V (x) are closer to their neighboring maxima to the right than to the left (“forward
on–o5 ratchet”), otherwise into the negative direction. 52 Quantitatively, the average current 〈ẋ〉

50 In the special case of slow on–o5 and slow, traveling potential ratchets, the qualitative behavior will become intuitively
clear later on.

51 If V (x; f(t)) is of the =uctuating potential ratchet form V (x)[1 + f(t)] it is possible to show that 〈ẋ〉 vanishes faster
than proportional to &−1 in the slow driving limit &→∞ for both, periodic and stochastic f(t). In the latter case, this
conclusion is also contained implicitly in the calculations of [266].

52 A computer animation (Java applet) which graphically visualizes the e5ect is available on the internet under [270].
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Fig. 4.1. Schematic illustration of a piecewise linear “saw-tooth” ratchet potential V (x) (in arbitrary units), consisting
of two continuously matched linear pieces per period L, one with negative and one with positive slope, but otherwise
asymmetric.

can be readily expressed in closed analytical form [34] apart from an error function, which has to
be evaluated numerically. Similarly, one can readily evaluate [34] the e5ective di5usion coeCcient
(3.6). Depending on their friction coeCcient 
, di5erent species of particles which are initially mixed
(say x(0) = 0 for all of them) will exhibit after a time t di5erent displacements 〈ẋ〉t and dispersions√

2De5 t and thus can be separated for suCciently large t, see also Eq. (3.7).
For more general potentials V (x) and drivings f(t), things become more complicated. As seen in

Section 4.1, the current 〈ẋ〉 approaches zero both for very fast and slow switching of f(t) between
±1. As long as the potential V (x) is suCciently similar to the simple examples from Figs. 2.2 and
4.1, a single maximum of 〈ẋ〉 develops at some intermediate switching time. For more complicated,
suitably chosen potentials V (x), the existence of current inversions follows from Section 3.6 and has
been exempliFed in [271], see also [216,272]. For a few additional quantitative analytical results we
also refer to the subsequent Section 4.3 on =uctuating potential ratchets, which includes the on–o5
scenario as a special case.

4.2.1. Experimental realizations
The theoretically predicted pumping e5ect 〈ẋ〉 
= 0 has been demonstrated experimentally by

Rousselet et al. [38] by means of colloidal polysterene latex spheres, suspended in solution and
exposed to a dielectric “ratchet” potential, created by a series of interdigitated “Christmas-tree” elec-
trodes which were deposited on a glass slide by photolithography and which were turned on and
o5 periodically. With one adjustable parameter, accounting for the uncertainty about the shape of
the one-dimensional “e5ective” potential V (x), the agreement of the measured currents 〈ẋ〉 with the
theory from [34] turned out to be quite good for all considered particle diameters between 0.2
and 1�m.
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A very similar experimental setup was used by Faucheux and Libchaber [273] (see also [778]) but
they went one step further in that they studied solutions containing two di5erent species of particles at
a time, and demonstrated experimentally that they can be separated. Again, the quantitative Fndings
depend on the particle size not only via the corresponding viscous friction coeCcient 
 but also via
slightly di5erent “e5ective” potentials V (x).

A further experimental veriFcation of the on–o5 ratchet scheme by Faucheux et al. [274] works
with single 1:5�m diameter polysterene spheres, conFned to an e5ective one-dimensional “ratchet”
potential by laser–optical trapping methods (optical tweezers). The characteristics of such an optical
ratchet potential can be determined with satisfactory accuracy, leading to a quite good quantitative
agreement of the observed ratchet e5ect with the simple theory from [34] without any adjustable
parameters.

A Frst step towards a practically usable pumping and separation device was achieved by Gorre-
Talini et al. [275] (see also [276]). Due to their well deFned geometry, also in this experiment
latex spheres diluted in water with diameters mostly between 0.5 and 2:5�m were used, but in
principle nothing speaks against replacing them e.g. by micrometer sized biological objects like DNA,
viruses, or chromosomes. The main ingredient for creating the (electrostatic) “ratchet” potential is
an optical di5raction grating, commercially available in a variety of periods and asymmetries. This
setup overcomes many of the practical drawbacks of its above-mentioned predecessors, agrees well
with the simple theory from [34] without any Ftting, and the predicted separating power may well
lead to the development of a serious alternative to existing standard particle separation methods.

As regards transport and separation of DNA, all the so far discussed setups are expected to
cease working satisfactorily for DNA fragments below one kilobase. By means of an interdigitated
electrode array 53 Bader and coworkers [277,278] successfully micromachined an on–o5 ratchet on a
silicon-chip, capable to transport DNA molecules of 25–100 bases in aqueous solution. With some
improvements, such a “lab-on-a-chip” device could indeed provide a feasible alternative to the usual
electrophoresis methods for nucleic acid separation, one of the central preprocessing tasks, e.g. in
the Human Genome Project [277–279].

As pointed out in [276], not only the separation of large DNA molecules by present standard
methods seems to have become one of the major bottlenecks in sequencing programs [280], but
also chromosomes, viruses, or cells exhibiting major biological di5erences may only di5er very little
from the physicochemical viewpoint, thus making their separation highly challenging [281,282].

4.3. Fluctuating potential ratchets

The =uctuating potential ratchet model has been introduced practically simultaneously 54 in 1994
by Astumian and Bier [15] and independently by Prost et al. [13]. The model is given by the same
type of overdamped dynamics as the on–o5 ratchet in (4.11) except that the amplitude modulations
f(t) are no longer restricted to the two values ±1. In other words, the time-dependent potential
V (x)[1 + f(t)], to which the Brownian particle x(t) is exposed, has always the same shape but its

53 About 100 metallic strips perpendicular to the transport axis with alternating smaller and larger spacings are either
alternatingly charged (“on”) or all uncharged (“o5”).

54 The closely related work by Peskin et al. [17] came somewhat later and mainly focuses on the special case of an
on–o5 ratchet.
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amplitude changes in the course of time between two or more values. Thus the on–o5 scheme is
included as a special case throughout the considerations of this section.

One central and completely general feature of the =uctuating potential ratchet scheme readily
follows from (4.11). Namely, within each spatial period there are x-values where V ′(x) is zero.
These points cannot be crossed by x(t) in the overdamped dynamics (4.11) without the help of the
=uctuations �(t). In other words, in an overdamped 9uctuating potential ratchet, thermal noise is
indispensable for a 8nite current 〈ẋ〉. A second, completely general conclusion has been pointed out
already in Section 3.3, namely that only asymmetric potentials V (x) admit a ratchet e1ect.

For the latter reason, we will mainly concentrate on the simplest non-trivial case of an asymmetric
potential V (x) in combination with a symmetric driving f(t). As usual, one option in (4.11) is a
periodic driving f(t), see e.g. [271,283,554]. For asymptotic results for fast periodic driving f(t) we
refer to Section 6.3. In the following we focus, in accordance with most of the existing literature,
on the two particularly simple examples of a stationary random processes f(t) as introduced in
Section 3.1, see also the asymptotic result (4.10) for general fast stochastically =uctuating potentials.

A well-known experimental phenomenon which can be interpreted by means of a =uctuating
potential ratchet scheme is the photoalignement (absorbtion-induced optical reorientation) of nematic
liquid crystals [284–286,779], exemplifying the general considerations in [13]. Another realization
by means of a Josephson junction device similarly to that proposed in [287] (cf. Section 5.7.3) is
presently planned by the same authors. The large variety of potential applications of the =uctuating
potential ratchet mechanism for small-scale pumping devices is the subject of [283].

4.3.1. Dichotomous potential 9uctuations
The case that the amplitude modulations f(t) in (4.11) are given by a symmetric dichotomous

noise (see (3.12), (3.13)) has been considered in [13,15,17]. A numerical simulation of the time
discretized stochastic dynamics (4.11) similarly as in equation (2.7) is straightforward. Equivalent to
this stochastic dynamics is the following master equation for the joint probability densities P±(x; t)
that at time t the particle resides at the position x and the dichotomous process f(t) is in the states
±#, respectively:

9
9t P+(x; t) =

9
9x

{
(1 + #)V ′(x)



P+(x; t)

}
+

kBT



92

9x2P+(x; t) ;

− $P+(x; t) + $P−(x; t) ; (4.12)

9
9t P−(x; t) =

9
9x

{
(1 − #)V ′(x)



P−(x; t)

}
+

kBT



92

9x2P−(x; t) ;

− $P−(x; t) + $P+(x; t) : (4.13)

The derivation of the Frst two terms on the right-hand side of (4.12) and (4.13) is completely
analogous to the derivation of the Fokker–Planck equation (2.14): The Frst terms (drift terms)
account for the Liouville-type evolution of the probability densities P±(x; t) under the action of
the respective force Felds −V ′(x)[1 ± #]. The second terms (di5usion terms) describe the di5usive
broadening of the probability densities due to the thermal white noise �(t) of strength 2
kBT in
(4.11). The last two terms in (4.12) and (4.13) are loss and gain terms due to the transitions of
f(t) between the two “states” ±# with transition probability (=ip rate) $.
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For the marginal density P(x; t) :=P+(x; t) + P−(x; t) one recovers from (4.12), (4.13) a master
equation of the general form (2.17), whence the particle current (2.19) follows. Like in Section 2.4,
one sees that it suCces to focus on spatial periodic “reduced” distributions P̂±(x + L; t) = P̂±(x; t)
in order to calculate the average current 〈ẋ〉 and that in the long-time limit t→∞ a unique steady
state P̂

st
±(x) is approached. However, explicit analytical expressions for the probability densities

and the particle current in the steady state can only be obtained in special cases. A prominent
such case is that of a “saw-tooth” ratchet potential as depicted in Fig. 4.1. Within each interval of
constant slope V ′(x), the steady state solutions of (4.12), (4.13) can be readily determined which
then have to be matched together. For the straightforward but rather tedious technical details of such
a calculation we refer to [15,288]. The resulting expression for the current 〈ẋ〉 is awkward and not
very illuminating. Qualitatively, the results are like for the on–o5 scheme (see also Fig. 2.6): If the
local minima of the saw-tooth potential are closer to their neighboring maxima to the right than to the
left, then the current is positive for all Fnite temperatures T and =ipping rates $ of the dichotomous
noise, and (cf. Section 3.1) the current approaches zero if T or $ tends either to zero or to inFnity
[13,15].

As long as the potential is suCciently similar to a saw-tooth potential such that one can identify
essentially one steep and one =at slope per period L, qualitatively unchanged results are obtained, and
similarly for more general potential =uctuations f(t). In this sense, the “natural” current direction
in a pulsating ratchet is given by the sign of the steep potential slope.

For more general potentials V (x), the same qualitative asymptotic features are expected for large
and small T and $. However, as shown in Section 3.6, the current direction may change as a function
of any model parameter. So, general hand weaving predictions about the sign are impossible, not to
mention quantitative estimates for 〈ẋ〉, as already the small-& result (4.10) demonstrates.

A case of particular conceptual interest is the singular perturbation expansion about the unper-
turbed situation with vanishing thermal noise, T = 0, and vanishing particle current 〈ẋ〉 = 0. On
condition that the local potential extrema subsist for all values of f(t), i.e. |#|¡1, the transitions
between neighboring minima of the potential will be very rare for small T . As a consequence, the
current 〈ẋ〉 can be described along the activated barrier crossing approach from Section 3.8. Specif-
ically, for our present situation of thermally assisted transitions across barriers with dichotomous
amplitude =uctuations, the results of the singular perturbation theory from [254] are immediately
applicable.

While for the case of a saw-tooth ratchet potential V (x), which is subjected to symmetric di-
chotomous amplitude =uctuations f(t) in (4.11), current inversions can be ruled out [15], for more
complicated =uctuations f(t) this is no longer the case: The occurrence of a current inversion in
a saw-tooth potential V (x) has been demonstrated for asymmetric (but still unbiased) dichotomous
noise [216,271,272], for sums of dichotomous processes [266], and for a three-state noise [289].
Originally, the inversion e5ect has been reported in those works [216,266,271,272,289] for certain
parameters characterizing the noise f(t), but according to Section 3.6 the e5ect immediately carries
over to any parameter of the model.

4.3.2. Gaussian potential 9uctuations
Next we turn to the second archetypal driving f(t), namely correlated Gaussian noise of the

Ornstein–Uhlenbeck type (3.13), (3.15). If both, the thermal noise and the Ornstein–Uhlenbeck
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noise-driven barrier =uctuations are suCciently weak, transitions between neighboring potential wells
of V (x) are rare, and a considerable collection of analytical results [68,243,244,246–248] (see also
further references in [68])—obtained in the context of the “resonant activation” e5ect—can be im-
mediately applied via (3.55).

Fast #uctuations (multiplicative white noise): In Section 4.1 we have discussed for a general =ash-
ing ratchet scheme the asymptotics for a stochastic f(t) with small correlation time & under the as-
sumption that the distribution (3.11) of the noise is kept Fxed upon variation of & (constant variance
scaling). In the special case that the general =ashing potential V (x; f(t)) in (3.1) depends linearly
on its argument f(t), as it is the case in our present =uctuating potential ratchet model (4.11), a
second interesting scaling for small & is possible: Namely, one keeps the intensity

∫
dt〈f(t)f(0)〉 of

the noise constant upon variation of &. The distinguishing feature of this so-called constant intensity
scaling [265] is the emergence of a sensible white noise limit &→ 0 in the sense that the e5ect of the
noise f(t) approaches a non-trivial limiting behavior (for constant variance scaling the noise has no
e5ect for &→ 0). Since the limit depends on the detailed properties of the noise f(t), we focus on
the archetypal example of Ornstein–Uhlenbeck noise (3.13), (3.15) with a constant (&-independent)
intensity

Q := #2=& ; (4.14)

i.e. the variance #2 acquires an implicit dependence on &. In other words, the correlation (3.13)
takes the form

〈f(t)f(s)〉 = 2Q�&(t − s) ; (4.15)

where

�&(t) :=
1
2&

e−|t|=& (4.16)

approaches a Dirac delta function for &→ 0.
While this choice of f(t) is clearly of little practical relevance, it gives rise to a model that

shares many interesting features with more realistic setups, but, in contrast to them, can be solved in
closed analytical form [290]. Furthermore, this exactly solvable model will serve a the basis for our
discussion of collective phenomena in Section 9.2. A mathematically similar setup, however, with
as starting point a rather di5erent physical system, will also be encountered in Section 6.1.

The fact that the coupling strength V ′(x(t)) of the noise f(t) in (4.11) depends on the state
x(t) of the system (so-called multiplicative noise) makes the white noise limit &→ 0 for constant
intensity scaling subtle (so-called Ito-versus-Stratonovich problem [63,99–101]). The basic reason is
[291] that the &→ 0 limit does not commute with the m̂→ 0 limit in (2.1) and the Ut→ 0 limit
in (2.7). We will always assume in the following that the m̂→ 0 and Ut→ 0 limits are performed
Frst and that & becomes small only afterwards. For the sake of completeness, we mention that this
sequence of limits amounts [291] to treating the multiplicative noise in (4.11) in the so called sense
of Stratonovich [63,99–101], though we will not make use of this fact in the following but rather
implicitly derive it.

No such problem arises as far as the (additive) thermal noise �(t) in (4.11) is concerned. Hence,
we can replace for the moment the Dirac delta in (3.2) by the pre-Dirac function �&(t) from (4.16)
and postpone the limit &→ 0 according to our purposes. It follows that in (4.11) the sum of the
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two independent, unbiased, �&-correlated Gaussian noises −V ′(x(t))f(t) and �(t) are statistically
equivalent 55 to a single unbiased Gaussian multiplicative noise �&(t) of the form

ẋ(t) = −V ′(x(t))



+ g(x(t))�&(t) ; (4.17)

g(x) :=

[
kBT



+ Q
(
V ′(x)




)2
]1=2

(4.18)

with correlation

〈�&(t)�&(s)〉 = 2�&(t − s) : (4.19)

By means of the auxiliary variable

y(x) :=
∫ x

0

d Wx
g( Wx)

; (4.20)

it follows from (4.17) that y(t) :=y(x(t)) satisFes the stochastic dynamics

ẏ(t) = − d
dy

)(x(y(t))) + �&(t) ; (4.21)

where x(y) is the inverse of (4.20) (which obviously exists) and where

)(x) :=
∫ x

0
d Wx

V ′( Wx)

g2( Wx)

: (4.22)

Next we perform the white noise limit &→ 0 in (4.21). The corresponding Fokker–Planck equation
for P(y; t) follows by comparison with (2.6) and (2.14), reading

9
9t P(y; t) =

9
9y

{[
d

dy
)(x(y))

]
P(y; t)

}
+
92

9y2P(y; t) : (4.23)

The probability densities P(x; t) and P(y; t) are connected by the obvious relation [101]

P(x; t) =
∫ ∞

−∞
dy �(x − x(y))P(y; t) = P(y(x); t)=g(x) : (4.24)

Upon introducing (4.24) into (4.23) we Fnally obtain a Fokker–Planck equation (2.17) for P(x; t)
with probability current

J (x; t) = −
{
V ′(x)



+ g(x)

9
9xg(x)

}
P(x; t) : (4.25)

55 Proof. The two noises �1(t) := − V ′(x(t))f(t) + �(t) and �2(t) :=
√

2g(x(t))�&(t) with g(x) from (4.18) and �&(t)
from (4.19) are both Gaussian, have zero mean, and the same correlation, thus all their statistical properties are the
same.
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Along the same calculations as in Section 2.4 one now can derive for the reduced density (2.22) in
the steady state the result [112–115] (see also (2.36))

P̂
st
(x) = N

e−)(x)

g(x)

∫ x+L

x
dy

e)(y)

g(y)
; (4.26)

where the normalization N is Fxed through (2.25), and for the particle current (2.26) one Fnds

〈ẋ〉 = LN[1 − e)(L)−)(0)] : (4.27)

Discussion: Our Frst observation is [290,292] that the sign of the current is completely determined
by the (reversed) sign of )(L)−)(0)=)(L) (note that )(0)=0). Especially, the current vanishes if
and only if )(L)=)(0)=0. As expected, this is the case in the absence of the potential =uctuations
(Q = 0, cf. Section 2.4) or if V (x) is symmetric. In any other case, we can infer that the current
will be typically non-zero, notwithstanding the fact that only white noises are acting.

These basic qualitative conclusions become immediately obvious upon inspection of the trans-
formed dynamics (4.21): The e5ective potential )(x(y)) from (4.22) is periodic in y if and only if
)(L)=0. In this case an e5ective Smoluchowski–Feynman ratchet (2.6) arises with the result 〈ẏ〉=0.
If )(L) 
= 0, we are dealing in (4.21) with a tilted Smoluchowski–Feynman ratchet (cf. Section 2.5),
yielding a current 〈ẏ〉 with a sign opposite to that of )(L). Considering that the ensemble average
〈ẋ〉 is equivalent to the time average of a single realization (3.5) and similarly for y(t), it follows
from (4.20) that

〈ẏ〉 =
〈ẋ〉
L

∫ L

0

dx
g(x)

; (4.28)

especially the sign of 〈ẋ〉 must be equal to that of 〈ẏ〉. Remarkably, this exact relation (4.28) between
the currents in the original (4.17) and the transformed (4.21) dynamics remains valid for arbitrary
(not necessarily Gaussian white) noises �&(t) [293].

As an example we consider a piecewise linear potential with three continuously matched linear
pieces per period L with the following slopes: V ′(x) = −1 for −2¡x¡0, V ′(x) = 3 for 0¡x¡1,
and V ′(x) = 2−3 for 1¡x¡2, where 3∈ (0; 2) is a parameter that can be chosen arbitrarily. Hence,
the potential V (x) has a minimum at x = 0 and barriers of equal height 2 at x = ±2. Outside this
“fundamental cell” of length L = 4 the potential is periodically continued. 56 One then Fnds from
(4.22) that

)(L) =
2Q(1 − 32)[Q3(2 − 3) − 3T ]

(T + Q)(T + Q32)(T + Q(2 − 3)2)
: (4.29)

As expected, )(L) and thus the current (4.27) vanishes for 3 = 1, while for any 3 
= 1 the quantity
)(L) changes sign at Q = 3T=3(2 − 3). It follows that the current 〈ẋ〉, considered as a function of
either T or Q undergoes a current reversal. Similar reversals as a function of any model parameter
follow according to Section 3.6.

56 In doing so we are working in dimensionless units (cf. Section A.4 in Appendix A) with UV =2, L=4, and 
=kB =1.
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A somewhat similar observation of a current inversion arising upon considering a slight mod-
iFcation of a symmetric saw-tooth potential V (x) has been reported for dichotomous (and other)
potential =uctuations in [229], see also [216,271,272,294].

A modiFed ratchet model dynamics, without any thermal noise and no particular relation between
g(x) and V (x) comparable to (4.18), but instead with a Gaussian multiplicative colored noise of Fnite
correlation time & in (4.17) has been studied numerically and by means of various approximations
in [292,293]. The physical viewpoint in these works is thus closely related to that of the Seebeck
ratchet scheme from Section 6.1 rather than the =uctuating potential ratchet model of the present
section.

4.4. Traveling potential ratchets

In this section we consider a special case of the stochastic dynamics (4.1) of the form


 ẋ(t) = −V ′(x(t) − f(t)) + �(t) : (4.30)

As usual, we are concentrating on the overdamped limit and the thermal =uctuations are modeled by
unbiased Gaussian white noise �(t) of strength 2
kBT . Further, V (x) is a periodic, but not necessarily
asymmetric potential with period L. Thus, the e5ective potential experienced by the particle in (4.30)
is traveling along the x-axis according to the function f(t), which may be either of deterministic or
stochastic nature.

Upon introducing the auxiliary variable

y(t) := x(t) − f(t) ; (4.31)

in (4.30), we obtain


 ẏ(t) = −V ′(y(t)) − 
 ḟ(t) + �(t) ; (4.32)

whence the average velocity 〈ẋ〉 of the original problem follows as

〈ẋ〉 = 〈ḟ〉 + 〈ẏ〉 : (4.33)

4.4.1. Genuine traveling potentials
As a Frst example of a so-called genuine traveling potential ratchet we consider a deterministic

function f(t) of the form

f(t) = ut : (4.34)

In other words, the potential V (x − f(t)) in (4.30) is given by a periodic array of traps (local
minima of the potential), traveling at a constant velocity u along the x-axis. Hence, (4.30) mod-
els basically the working principle of a screw or a screw-like pumping device—both invented by
Archimedes [295]—in the presence of random perturbations. Qualitatively, we expect that the Brow-
nian particle x(t) will be dragged into the direction of the traveling potential traps. Next, we note
that with (4.34), the auxiliary y-dynamics (4.32) describes the well-known overdamped motion in
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a “tilted washboard” potential 57 [99,112–115]. Quantitatively, upon comparison of (4.31)–(4.34)
with (2.34)–(2.37) the average velocity in the steady state takes the form

〈ẋ〉 = u− LkBT [e
uL=kBT − 1]



∫ L

0 dx
∫ x+L
x dy e[V (y)−V (x)+(y−x)
u]=kBT

: (4.35)

Though this formula looks somewhat complicated, one sees that typically 〈ẋ〉 
= 0 with the expected
exceptions that either u = 0 or V ′(x) ≡ 0. Especially, a broken spatial symmetry of the potential
V (x) is not necessary for a 8nite current 〈ẋ〉. Furthermore, thermal noise is not necessary either:
For T → 0 one obtains directly from (4.31), (4.32) that

〈ẋ〉 =




u− L∫ L
0 dx=(u + V ′(x)=
)

if u + V ′(x)=
 
= 0 for all x ;

u otherwise :
(4.36)

This deterministic behavior already captures the essential features of the more involved Fnite-T
expression (4.35): Namely, 〈ẋ〉 has always the same sign as u but is never larger in modulus, in
agreement with what one would have naively expected. 58 Furthermore, there are two basic “modes”
of motion in (4.36). In the Frst case in (4.36), i.e. for large speeds u, the Brownian particle is only
“loosely coupled” to the traveling potential (cf. Section 2.7), it behaves like a swimmer a=oat on
the surface of the ocean and may thus be called a Brownian swimmer [296]. In the second case
in (4.36), i.e. for small speeds u, we have a Brownian surfer [296], “riding” in a tightly coupled
way on the traveling potential 59 in (4.30), (4.34). The current 〈ẋ〉 tends to zero for both very
small and very large speeds u, and has a maximum at the largest u which still supports the surFng
mode.

More general types of genuine traveling potential ratchets are obtained by supplementing the
uniformly traveling contribution in (4.34) by an additional unbiased periodic function of t or by a
stationary random process. In the transformed dynamics (4.32) this yields a tilting ratchet mechanism
with an additional constant external force −
u as treated in Section 5 in more details.

Applications: Out of the innumerable theoretical and experimental applications of the above de-
scribed simple pumping scheme (4.34) we can only mention here a small selection. The most obvious

57 Note that a positive velocity u corresponds to a washboard “tilted to the left”.
58 Particles x(t), moving opposite to the traveling potential in (4.30), or, equivalently, particles y(t) sliding down the

tilted washboard faster than in the absence of a potential V (y) (faster than −ḟ(t) = −u) would indeed be quite unex-
pected. Since we did not Fnd a rigorous proof in the literature, we give one herewith: If a function f(x) is concave on
an interval I , i.e. f(3x + (1 − 3)y)6 3f(x) + (1 − 3)f(y) for all 3∈ [0; 1] and x; y∈ I , then it follows by induction
that f(N−1∑N

i=1 Xi)6N−1∑N
i=1 f(Xi) for all X1; :::;N ∈ I . Choosing u¿V ′(x)=
 for all x (especially u¿0), f(x) = 1=x,

I = [0;∞], and Xi = u + V ′(i=N ) it follows for N →∞ that u−1 = [
∫ 1

0 dx (u + V ′(x))]−16
∫ 1

0 dx (u + V ′(x))−1. Work-
ing in dimensionless units with L = 
 = 1 (cf. Section A.4 in Appendix A) we can infer that 〈ẋ〉¿ 0 in (4.36) if
u¿ 0, and similarly 〈ẋ〉6 0 if u6 0. Choosing f(x) = exp{−x}, I = R, Xi = V (i=N ) − V (i=N + z) it follows that
1 = exp{∫ 1

0 dx [V (x+ z)−V (x)]}6 ∫ 1
0 dx exp{V (x+ z)−V (x)} for any z. Hence,

∫ 1
0 dx

∫ x+1
x dy exp{u(y− x) +V (y)−

V (x)} =
∫ 1

0 dz exp{uz} ∫ 1
0 dx exp{V (x + z) − V (x)}¿ ∫ 1

0 dz exp{uz} = [exp{u} − 1]=u. It follows that 〈ẋ〉¿ 0 in (4.35)
if u¿ 0, and similarly 〈ẋ〉6 0 if u6 0.

59 In the corresponding noiseless tilted washboard dynamics (4.32), the particle y(t) permanently travels downhill in the
Frst case, while it quickly comes to a halt in the second.
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one is a particle, either suspended in a =uid or =oating on its surface, in the presence of a traveling
wave [296–301]. The resulting drift (4.36) has been predicted in the deterministic case (T=0) already
by Stokes [302]. In the presence of thermal =uctuations (T¿0), the closed analytical solution (4.35)
has been pointed out in [298,300]. The e5ect of 8nite inertia has been discussed in [296], based on
the known approximative solutions for the corresponding tilted washboard dynamics [99]. A model
with an asymmetric potential V (x) and a dichotomous instead of a Gaussian white noise �(t) in
(4.30) has been studied in [301] with the possibility of current inversions as its most remarkable
feature, i.e. particles can now even move in the direction opposite to that of the velocity u. This
result can be readily understood as a consequence of the ratchet e5ect in the equivalent =uctuating
force ratchet (4.32), (4.34), cf. Section 5.5.2. Further generalizations for superpositions of traveling
waves in arbitrary dimensions are due to [297,303], which will be discussed in somewhat more
detail in Section 4.5.1.

The mesoscopic analog of Archimedes’ water pump is the adiabatic quantum electron pump by
Thouless [304]. This theoretical concept has been realized in a quantum dot experiment in [305],
triggering in turn further theoretical studies [306–308]. Similar single electron pumps, however,
operating in the classical regime [305], have been realized in [309–312]. For additional closely
related single-electron pumping experiments, see also [313,314].

A theoretical analysis of di5usion (unpredictability) in clocked reversible computers in terms of
a Brownian motion in a traveling potential is given in [315].

Experimental studies of Brownian particles (2�m diameter polysterene spheres in water), moving
on a circle in the presence of a traveling optical trap, have been reported in [316] and are in good
agreement with the simple theoretical model (4.30), (4.34).

Single-electron transport by high-frequency surface acoustic waves in a semiconductor heterostruc-
ture device has been demonstrated for example in [317]. A more sophisticated variant with excitons
(electron–hole pairs) instead of electrons, which is thus able to transport “light”, has been realized
in [318].

Though an asymmetry in the periodic potential V (x) is not necessary to produce a current in
(4.30), (4.34), one may of course consider traveling ratchet-shaped potentials nevertheless. This
situation has been addressed for instance in [319,320], leading to interesting e5ects for traveling
wave trains of Fnite spatial extension (i.e. V ′(x)→ 0 for x→ ± ∞) which are re=ected at a wall
and then pass by the same particle again in the opposite direction [296].

One basic e5ect of pumping particles by a traveling potential is a concentration gradient. The
inversions, namely making a potential travel by exploiting a particle =ux (e.g. due to a concentration
gradient) is also possible [321], as exempliFed by the chiral dynamics of a “molecular wind-mill”
[322]. Note that useful (mechanical) work can be gained in either way.

A number of further applications in plasma physics and quantum optics have been compiled in
[296]. In fact, a great variety of engines are operating in a cyclic manner with a broken symmetry
between looping forward and backward and may thus be classiFed as ratchet systems, typically of
the traveling potential type. The examples of screws, water pumps, propellers, or equally spaced
traveling cars (representing the traveling potential minima for the passengers) demonstrate a certain
danger of invoking an overwhelming practical relevance while the underlying basic principle may
become trivial from the conceptual viewpoint of contemporary theoretical physics. Furthermore,
these largely mechanical examples together with our above Fndings that neither a broken symmetry
nor thermal noise are necessary, current inversions are impossible, and the tight x(t)-to-f(t)-coupling
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(see Section 2.7) in the most important case of small speeds u show that many characteristic aspects
of the Brownian motor concept are actually absent in genuine traveling potential ratchets.

While the general framework in Section 3.1 has been purposefully set such as to include traveling
potential ratchets, they are at the boarder line in so far as they often involve a quite obvious a priori
preferential direction of transport. The boarder between the realm of Brownian motors and that of
“pumping between reservoirs” is deFnitely crossed when in addition the spatial periodicity and noise
e5ects play no longer a central role.

4.4.2. Improper traveling potentials
Next, we turn to the simples type of a so-called improper traveling potential ratchet, arising

through a modiFcation of the driving function f(t) from (4.34) of the form

f(t) = ut −
∫ t

0
dt′

∞∑
i=−∞

niL�(t′ − &i) ; (4.37)

where, the coe<cients ni are either deterministically 8xed or randomly sampled integers (not
necessarily positive). Thus, most of the time the function f(t) changes at a constant rate u, but at
the special instants &i it jumps by an integer multiple of the spatial period L. These times are assumed
to be ordered, &i+1¿&i, and may be either regularly or randomly spaced. The main idea is to choose
them such that f(t) in (4.37) becomes an unbiased periodic function of time or a stochastic process
with zero average (hence the name “improper traveling potential”). In other words, extending the
meaning of the symbol 〈ḟ〉 analogously as in (3.5) we require that

〈ḟ〉 = lim
t→∞

f(t)
t

= 0 (4.38)

so that 〈ẋ〉= 〈ẏ〉 in (4.33), i.e. on the long term the discontinuous jumps in (4.37) have to counter-
balance the continuous change ut. This condition is satisFed if and only if

Tu Wn = L ; (4.39)

where we have introduced

Wn := lim
k →∞

1
2k + 1

k∑
i=−k

ni ; (4.40)

T := lim
k →∞

1
2k + 1

k∑
i=−k

(&i+1 − &i) : (4.41)

Especially, the so deFned limits (4.40), (4.441) are assumed to exist and to be independent of the
considered realization in the case that the summands are randomly sampled.

Regarding examples, the simplest choice of the coeCcients ni in (4.37) is ni = 1 for all i. On the
other hand, the simplest choice of the times &i arises if they are regularly spaced. Then T in (4.41)
is obviously equal to this spacing, i.e.

&i = iT + const : (4.42)
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Another simple option are random &i with a Poisson statistics, i.e. the probability to have m time
points in a time interval of duration t¿ 0 is

Pm(t) =
(t=T)m

m!
e−t=T : (4.43)

Then, in accordance with (4.41), T is again the mean value of &i+1 − &i.
Returning to general processes (4.39) with integers ni respecting (4.38) or equivalently (4.39), we

now come to the central point of this section, consisting in the following very simple observation:
Since the discontinuous jumps of the driving f(t) in (4.37) are always integer multiples of the period
L and the potential V (x) is L-periodic, the jumps of f(t) in (4.37) do not have any e1ect whatsoever
on the stochastic dynamics (4.30)! In other words, the genuine traveling potential ratchet (4.30),
(4.34) is equivalent to the improper traveling potential ratchet (4.30),(4.37), (4.38). Especially, the
results (4.35), (4.36) for the current 〈ẋ〉 can be taken over unchanged. Due to (4.33), (4.38) the
same results are moreover valid for 〈ẏ〉. With (4.37) the term ḟ(t) in the y-dynamics (4.32) takes
the form

ḟ(t) = u−
∞∑

i=−∞
niL�(t − &i) : (4.44)

In other words, we have found that the dynamics (4.32), (4.44) with (4.38) or equivalently (4.39),
admits a closed analytic solution. In the special case of a Poisson statistics (4.43) the random process
(4.44) is called a Poissonian shot noise [178,323–326]. Its mean value is zero owing to (4.38), and
its correlation is found to be

〈ḟ(t) ḟ(s)〉 =
n2L2

T
�(t − s) ; (4.45)

n2 := lim
k →∞

1
2k + 1

k∑
i=−k

n2
i ; (4.46)

i.e. the shot noise is uncorrelated in time (white noise). The conclusion that a stochastic dynamics
(4.32) in the presence of a white shot noise [327–330] or an unbiased periodic driving of the form
(4.44) (with ni being integers) and simultaneously a white Gaussian noise �(t) is equivalent to the
Brownian motion in a traveling potential or in a tilted washboard potential and thus exactly solvable
is to our knowledge new.

Generalizations, equivalences, applications: Generalizations of the above arguments are obvious
and we only mention here a few of them. First, an arbitrary periodic f(t) in (4.30) is equivalent to
a dynamics (4.32) with a homogeneous periodic driving force ḟ(t). Due to the periodicity of f(t),
this force is unbiased in the sense of (4.38) and due to (4.33) the currents of the original (4.30) and
the transformed dynamics (4.32) are thus strictly equal. Such a dynamics (4.32) will be considered
under the labels “rocking ratchets” and “asymmetrically tilting ratchets” in Section 5. Both these
classes of ratchets are thus equivalent to a Brownian motion in a back-and-forth traveling periodic
potential. As we will see, a Fnite current 〈ẋ〉 = 〈ẏ〉 
= 0 generically occurs if V (x) and=or ḟ(t) is
asymmetric (see Section 3.2) and unless both of them are supersymmetric according to Section 3.5.
An inversion of the current upon variation of an arbitrary parameter of the model can be designed
along the same line of reasoning as in Section 3.6.
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The above exempliFed procedure of transforming a genuine into an improper traveling poten-
tial ratchet is obviously very general. Due to (4.38) this transformed model can then be mapped
once more onto an unbiased tilting ratchet scheme (4.32). In short, genuine and improper traveling
potential models are equivalent to each other and moreover equivalent to a tilting ratchet.

Finally, we turn to a modiFcation of the (genuine) uniformly traveling potential (4.30), (4.34),
namely the case that f(t) and thus the periodic potential advance in discrete steps:

f(t) =
∫ t

0
dt′

∞∑
i=−∞

�i �(t′ − &i) : (4.47)

As seen before, steps �i = niL do not have any e5ect on the dynamics (4.30). Thus, the simplest
non-trivial case arises when two subsequent steps add up to one period L :

�2i = iL; �2i+1 = iL + 3; 3∈ (0; L) : (4.48)

We furthermore assume that the jumping times &i are regularly spaced

&2i = iT; &2i+1 = iT + &; &∈ (0;T) : (4.49)

For 3 = L=2 and &=T=2 the signal f(t) in (4.47) is thus a discretized version of (4.34) advancing
at equidistant steps in time and in space with the same average speed u = L=T. For other values
of 3 and &, every second step is modiFed. More steps per period, random instead of deterministic
times &i and many other generalizations are possible but do not lead to essential new e5ects.

Recalling that jumps of f(t) by multiples of L do not a5ect the dynamics (4.30), we can infer
that (4.47)–(4.49) is equivalent to

f(t) =

{
0 if t ∈ [0; &) ;

3 if t ∈ [&;T) ;

f(t + T) = f(t) ; (4.50)

i.e. f(t) periodically jumps between the two values 0 and 3. Such a genuine traveling potential
advancing in discrete steps is thus equivalent to a periodic switching between two shifted potentials.
The periodicity of f(t) in (4.50) implies (4.38), thus the current in (4.33) agrees with that of the
transformed dynamics (4.32), featuring an unbiased additive force ḟ(t) with �-peaks of weight 3 at
t = iT and weight −3 at t = iT+ &. As before, this equivalent dynamics establishes the connection
of a stepwise traveling potential with the rocking and asymmetrically tilting ratchet schemes from
Section 5.

Without going into the details of the proofs we remark that: (i) A symmetric potential V (x) in
combination with & =T=2 in (4.49) implies 〈ẋ〉= 0 for any 3 in (4.48). (ii) A symmetric potential
V (x) at temperature T =0 implies 〈ẋ〉=0 for any & and 3. (iii) For T¿0, 3 
=L=2, & 
=T=2 a current
〈ẋ〉 
= 0 is generically expected [214]. (iv) If V (x) is asymmetric [40,331] or f(t) supports more
than two e5ectively di5erent discrete states (cf. (4.50)), i.e. when transitions between more than two
shifted potentials are possible [332,333], then a ratchet e5ect 〈ẋ〉 
= 0 is expected generically.

Apart from those peculiarities, one expects basically the same qualitative behavior as for the
uniformly traveling potential case (4.34). Quantitative results, conFrming this expectation, are



P. Reimann / Physics Reports 361 (2002) 57–265 127

exempliFed in [40,333]. Like in the continuously traveling potential case, there are again two basic
modes of motion (cf. the discussion below (4.36)): One which is “loosely” coupled to the traveling
potential (Brownian swimmer), and one in which the particle “rides” on the traveling wave (Brownian
surfer). This clear cut distinction is washed out by the thermal noise. The detailed dependence of
〈ẋ〉 on model parameters like 3, &, or 
 shows furthermore certain traces [40] of the discrete jumps
in (4.47) which are not present in the continuously traveling counterpart (4.34).

An experimental realization of directed motion by switching between two shifted ratchet shaped
potentials has been reported in [334]. The moving particle is a mercury droplet of about 1 mm in
diameter and the two shifted ratchet potentials are created by suitably positioned electrodes. Both,
for periodic and stochastic switching between the two ratchet potentials, the measured displacements
agree very well with the simple T = 0 theory from [40].

The same ratchet scheme has been implemented experimentally for �m-sized latex spheres in
[276]. The setup is similar to the one by Rousselet et al. [38] and by Faucheux and Libchaber [273]
described in Section 4.2.1 and thus the same uncertainties when comparing measurements with theory
arise. The main di5erence in [276] is that now two superimposed “Christmas-tree electrodes” are
used, shifted against each other so as to generate the two shifted ratchet potentials by switching
the applied voltage. A further di5erence with the on–o5 experiments [38,273] is that in such a
traveling potential-type setup [276] thermal =uctuations are negligible in very good approximation
(cf. Section 4.4.1). For two di5erent species of highly diluted particles (latex spheres with 0.2 and
0:5�m diameters) the theoretically predicted e5ect that for a suitable choice of parameters, only one
of them appreciably moves, was qualitatively veriFed in the experiment [276].

4.5. Hybrids and further generalizations

4.5.1. Superpositions of traveling potentials
In this section we consider combinations and other extensions of the =uctuating potential and

traveling potential ratchet schemes from (4.11) and (4.30). As a Frst example, we consider a pulsating
potential ratchet dynamics (4.1) involving superpositions of several traveling potentials [297,303]

V (x; f(t)) =
∑

i

Vi(x − uit) ; (4.51)

Vi(x + Li) = Vi(x) : (4.52)

At variance with all other cases considered in this chapter, the potential (4.51) is thus not periodic
in the spatial variable x unless the periods Li are all commensurable with each other.

The starting point for an approximate treatment is an expansion of the single-potential result (4.35)
up to the Frst non-trivial order in V (x)=kBT , which turns out to be the second order [297,298]. The
next salient point is that for several potentials one simply can, within the same approximation,
add up the contributions from all the single potentials provided that their traveling speeds ui and
periods Li are, in modulus, di5erent from each other. In other words, up to second order, no mixed
contributions in the amplitudes of the traveling potentials appear [297,303]. Basically, the reason is
that the mismatch of the di5erent temporal and spatial periods only leads to oscillating mixed terms
which average out to zero in the long run. Proceeding along this line of reasoning, the Fnal result
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for the net current 〈ẋ〉 is

〈ẋ〉 =
∑

i

ui

[∫ Li

0

dx
Li

V 2
i (x)

(kBT )2 − 0i

e0i − 1

∫ Li

0

dx
Li

∫ x+Li

x

dy
Li

Vi(x)Vi(y)
(kBT )2 e0i(y−x)=Li

]
;

0i := 
uiLi=kBT ; (4.53)

where it is assumed that both terms in the square brackets are small in comparison to unity, i.e.
Vi(x)=kBT needs to be small, but also 0i should be not too large in modulus. SpeciFcally, for
sinusoidal traveling potentials of the general form

V (x; f(t)) =
∑

i

Ai sin
(

2�
Li

(x − uit) + )i

)
; (4.54)

one obtains

〈ẋ〉 =
1

2(kBT )2

∑
i

ui A2
i

[
1 +

(
Liui


2�kBT

)2
]−1

: (4.55)

Thus, already with two superimposed potentials with opposite speeds u1 and u2 and |u1| 
= |u2|,
|L1| 
= |L2| one can tailor the two amplitudes A1 and A2 such that the current (4.55) will change its
direction either upon variation of the temperature T or, at a Fxed but Fnite T , upon variation of the
friction coeCcient 
. While for transport based on a single traveling potential, thermal =uctuations
are not important (cf. Section 4.4.1), they are thus indispensable for this type of particle separation
scheme [297].

There is no reason to expect that the above e5ect is restricted to potentials of small amplitudes, but
beyond this regime quantitative analytical progress becomes cumbersome. Qualitatively, the following
very simple prediction is worth mentioning: We consider in (4.1) a potential that is given as a linear
combination of two potentials, moving uniformly in opposite directions, i.e. f(t) = ut and

V3(x; f(t)) := 3V1(x + ut) + (1 − 3)V0(x − ut) ; (4.56)

where 3 is a control parameter and the spatial periods of V0(x) and V1(x) may or may not agree.
Similarly as in Section 3.6 one sees that for a “generic” choice of V0(x) and V1(x) (no “accidental
symmetries” of V3(x; f(t)) for any 3∈ (0; 1)) a 3-value must exist at which the current 〈ẋ〉 exhibits
an inversion upon variation of an arbitrarily chosen parameter of the model (4.1). Note that in
contrast to the prediction from (4.53) the present conclusion holds even if the thermal noise �(t) in
(4.1) is zero, see Eq. (4.36).

Another variation with one static and one traveling potential, i.e.

V (x; f(t)) :=V0(x) + V1(x − ut) ; (4.57)

has been analyzed in [335] in the zero temperature limit �(t) ≡ 0 in (4.1). If at least one of the
two potentials V0(x), V1(x) is asymmetric and their relative amplitudes are properly chosen then
the traveling potential is able to drag the particle x(t) in (4.1) into one direction. However, if the
traveling direction is reversed (u �→ −u), the particle cannot be dragged in that direction anymore due
to the asymmetry of the potential. The possibility of such a behavior becomes particularly obvious
in the case of small speeds u such that the particle tends to follow one of the instantaneous local
minima of the total potential V (x; f(t)) in (4.57): For a very small amplitudes of V1(x), the particle
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clearly cannot be dragged into either direction, while for very large amplitudes it can be dragged
into both directions. Thus there must be an intermediate amplitude of transition from localized to
commoving behavior. Due to the spatial asymmetry, this transition amplitude is typically not the
same for positive and negative speeds and commoving behavior in only one direction is recovered.

4.5.2. Generalized pulsating ratchets and experimental realizations
In the remainder of this section we focus again on periodic potentials (3.3) in the genuine pulsating

potential ratchet setting (4.1). Still, the various possibilities of how to choose V (x; f(t)) obviously
rule out an exhaustive discussion. We will restrict ourselves to a few representative examples which
cover most of the existing experimental and theoretical literature and which already exhibit all main
features that one may possibly expect in more general cases.

The simplest example is a hybrid of a uniformly traveling and simultaneously =uctuating potential
ratchet of the form

V (x; f(t)) = V (x − ut)[1 + f̃(t)] ; (4.58)

where f(t) := ut and the auxiliary function f̃(t) := f̃(f(t)=u) is assumed to be a periodic function
of its argument. By means of the same transformation of variables as in (4.31)–(4.33) one can map
this model onto a purely =uctuating potential ratchet with a superimposed tilt. Thus a Fnite current
〈ẋ〉 is generic and the possibility of current inversions is also immediately obvious.

A similar hybrid of a traveling and simultaneously =uctuating potential ratchet arises if f(t) is
not given by ut in (4.58) but instead increases in discrete steps like in (4.47). In the simplest case, a
model which switches either regularly or randomly between two di5erent potentials Vm(x) (m= 1; 2)
arises (cf. Eq. (4.50)), which both have the same shape but are shifted against each other and
moreover di5er in their amplitudes. Observing that the on–o5 ratchet is a special case and exhibits
current inversions for suitably tailored potentials [40] (cf. Section 4.2), the same property follows
for the present more general situation.

Going just one step further, one may consider in (4.1) the case of a periodic or random switching
between two potentials Vm(x) (m = 1; 2) which have the same spatial period L but are otherwise
completely independent of each other. The generic occurrence of a non-vanishing current 〈ẋ〉 and
the existence of current inversions for suitably chosen potentials is obvious.

An experimental study of such a system has been performed by Mennerat-Robilliard et al. [336].
Laser-cooled rubidium atoms in the presence of two suitably chosen counterpropagating electro-
magnetic waves can switch between two e5ective optical potentials Vm(x) with the above described
properties. The switching is caused by absorption–spontaneous emission cycles of the rubidium atoms
and results in an average velocity 〈ẋ〉 of the atoms of about 0:1 m=s. While the simple stochastic
dynamics (4.1) with two alternating potentials Vm(x) is suCcient for a qualitative explanation of
the observed results, a quantitative comparison would require a semiclassical or even full quantum
mechanical treatment (see also Section 8.4).

Another generalization are the so-called asynchronously pulsating ratchets [197] (see also Sec-
tions 3.4.2 and 6.7) and especially the so-called sluice–ratchet scheme [198,199,201]. In this latter
case, the amplitudes of every second potential barrier are periodically oscillating in perfect synchrony,
similarly as for a =uctuating potential ratchet. The rest of the potential barriers are also synchronously
oscillating in the same way, but with a time-delay of T=4 (where T is the time-period). Thus, the
Brownian particle x(t) moves forward somewhat similar to a ship in an array of sluices and may
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achieve 100% eCciency in the adiabatic limit T→∞ (see Section 6.9). An experimental realization
by semiconductor superlattice heterostructures is due to [200,202].

We close with three promising experimental implementations of a pulsating ratchet scheme on
a molecular scale which have so far been partially realized. The Frst one is based on the single
triptycene[4]helicene molecules which we already encountered in Section 2.1. By means of certain
chemical processes which basically play the role of the non-thermal potential =uctuations in the
pulsating ratchet scheme, Kelly et al. [337–339] achieved a unidirectional intramolecular rotary
motion. The system is so far only a “partial” Brownian motor in that only rotations by 120◦ have
been realized.

Monodirectional rotation in a helical alcene molecule with a deFnite chirality (broken symmetry)
has been investigated by Koumura et al. [338,340]. Basically, ultraviolet radiation induces transitions
between two ratchet-shaped potentials which are identical except that they are shifted by half a
period. In other words, a photochemical two-state pulsating (or traveling) potential ratchet scheme
as anticipated theoretically in [13,28] is realized. Chemically, the light-induced switching between
the two potentials corresponds to a cis–trans isomerization, and each such transition is followed by
a thermally activated relaxation process. While experimentally, each of the partial steps of a full
cycle has so far been only demonstrated separately, there seems no reason why the system should
not be able to also rotate continuously.

Finally, Gimzewski et al. [341,342] have visualized single propeller-shaped molecular rotors
(hexa-tert-butyl decacyclene) deposited on a Cu-surface by means of scanning tunneling microscopy
(STM). Under appropriate conditions, the molecule is observed to perform a thermally driven rotary
Brownian motion within an environment which gives rise to a highly asymmetric, ratchet-shaped
e5ective potential of interaction with the rotor. In principle, we are thus dealing with another molec-
ular realization of a Smoluchowski–Feynman ratchet and pawl gadget (cf. Section 2.1), but in the
present case the time resolution of the STM was too low to conFrm the absence of a preferential
direction of rotation. As the authors in [341,342] propose, with the help of a second non-thermal
source of noise, for example a tunnel current, it should be possible to realize a ratchet e5ect in terms
of a preferential direction of rotation. Considering that such a tunnel current would not directly in-
teract with the angular state variable of the system but rather with some internal degree of freedom
(of the environment), a pulsating ratchet scheme is expected according to our general analysis from
Section 3.4.2.

4.6. Biological applications: molecular pumps and motors

Consider an isothermal chemical reaction in the presence of a catalyst protein, i.e. an enzyme.
In the simplest case, the reaction can be described by a single reaction coordinate, cycling through
a number of chemical states. A suitable working model is then an overdamped Brownian particle
(reaction coordinate) in the presence of thermal =uctuations in a periodic potential. The local minima
within one period represent the chemical states and looping once through the chemical cycle in one
or the other direction is monitored by a forward or backward displacement of the reaction coordinate
by one spatial period. Completing a cycle in one direction means that one entity of reactant molecules
have been catalyzed into product molecules, while a cycle in the other direction corresponds to the
reverse chemical reaction.
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Since our so simpliFed model is nothing else than a Smoluchowski–Feynman ratchet (2.6), the
absence of a net current signals that we are dealing with a chemical process at equilibrium, i.e.
the concentrations of reactants and products are at their equilibrium values and are not changing on
the average under the action of the enzyme.

If the concentrations of the reactants and products are away from their equilibrium (detailed
balance) ratio, then the catalyst molecule will loop through the chemical reaction cycle prefer-
ably in one way, namely such that the reaction proceeds towards equilibrium. In the corresponding
Smoluchowski–Feynman ratchet model, the periodic potential has to be supplemented by a constant
tilt, 60 resulting in a stochastic dynamics of the form (2.34). Note that while the environment of the
catalyst is out of equilibrium as far as the concentrations of reactants and products are concerned,
the properties of the random environmental noise and of the dissipation mechanism in (2.34) are
still the same as for the equilibrium system (2.6).

Usually, one or several transitions between chemical states may also be (in a probabilistic or de-
terministic sense) accompanied by a change of the geometrical shape (mechanical conFguration) of
the catalyst molecule (“mechanochemical coupling”). Transitions between such conFgurations may
then be exploited for doing mechanical work. Due to the preferential direction in which these transi-
tions are repeated as time goes on, one can systematically accumulate useful mechanical energy out
of the chemical energy by keeping up the non-equilibrium concentrations of reactants and products.
This conversion of chemical into mechanical energy reminds one of the working of a macroscopic
combustion engine, except that everything is taking place on a molecular scale and thus thermal
=uctuations must be added to the picture.

Similarly as for the chemical reaction coordinate, in the simplest case the changes of the geo-
metrical conFguration can be described by a single mechanical coordinate, originally living on a
circle but easily convertible to a periodic description on the real axis. In the absence of chemical
reactions, another Smoluchowski–Feynman ratchet dynamics (2.6) for the mechanical state variable
arises. One suggestive way to include the e5ect of the chemical reaction is the traveling potential
scheme (4.30), where x(t) and f(t) are the mechanical and chemical state variables, respectively.
Thus, the traveling potential proceeds in a preferential direction in accord with the chemical reaction
and thereby is dragging the mechanical coordinate along the same preferential direction. 61 Another
possibility is that, instead of producing a traveling potential, the chemical process gives rise to a
=uctuating potential to which the mechanical coordinate is exposed, or an even more general type
of pulsating periodic potential (4.1).

This general scheme seems to be indeed exploited by nature for numerous intracellular transport
processes [23,24]. An example are “molecular pumps” (enzymes) in biological membranes, which
transfer ions or small molecules from one side of the membrane to the other by catalyzing ATP
(adenosine triphosphate) into ADP (adenosine diphosphate) and Pi (inorganic phosphate) [187,343].
Another example, also fueled by ATP, are “molecular motors” which are able to travel along

60 For a proper description of an out of equilibrium catalytic cycle on a more sophisticated level, see Section 7.3.2.
This description is in terms of a discrete chemical state variable m. On the same level, a consistent description in terms
of a continuous state variable x does not seem to exist (see also [186]) unless it is basically equivalent to the discrete
description (activated barrier crossing limit, see Section 3.8).

61 Properly speaking, there is also a back-reaction of the mechanical on the chemical state variable. A more detailed
discussion of the present modeling framework is given in Section 7.
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intracellular polymer Flaments. A detailed discussion of the latter example will be presented in
Section 7, especially in the Fnal Section 7.7. Finally, we remark that in principle nothing speaks
against the possibility that the general scheme could be realized not only for enzymes (proteins) but
also for much simpler kinds of catalysts.

4.6.1. Externally driven molecular pumps
Molecular pumps are enzymes that use energy from ATP hydrolysis to create and maintain con-

centration gradients of ions or other small molecules like sugars (glucose) or amino acids across
membranes. As discussed before, such a chemical process requires that the concentrations of reactants
and products are kept away from their equilibrium ratio. In living cells, this task is accomplished
by intracellular “energy factories”, maintaining the concentration of ATP about six decades above
its thermal equilibrium value.

Experimentally, there exists another interesting option [16,187], namely to suppress ATP hydrolysis
either by low temperature or by bringing the ATP concentration close to its equilibrium value and
instead apply an external time-dependent electric Feld. Without the Feld and in the absence of
ATP hydrolysis, we thus recover the Smoluchowski–Feynman model (2.6) for the mechanical state
variable x(t) of the molecular pump. 62

Since ATP hydrolysis is suppressed, the chemical state variable, previously denoted by f(t), can
be omitted in the following discussion and the same symbol f(t) is now used for the external Feld.
We Frst consider the case that the Feld f(t) only couples to the mechanical coordinate x(t) of
the enzyme but not to the pumped molecule (e.g. ions are excluded if f(t) is an electrical Feld).
As a consequence, the e5ective potential V (x; f(t)) experienced by the mechanical state variable
x(t) changes its shape as a function of f(t) but will maintain always the same spatial periodicity.
The corresponding model dynamics is thus of the general form (4.1). Though the detailed shape of
the =uctuating periodic potential V (x; f(t)) is usually not known, the occurrence of a ratchet e5ect
is generically expected for a very broad class of periodic or randomly =uctuating external driving
signals f(t). In other words, the molecular pump starts to loop in one or the other preferential
direction and so pumps molecules across the membrane. An external driving can thus substitute for
the chemical energy from ATP hydrolysis to power the molecular pump, i.e. f(t) in (4.1) may
represent either the chemical reaction coordinate or the external driving Feld, the main consequence
〈ẋ〉 
= 0 is the same.

The more general case that the external Feld not only induces a pumping of molecules across the
membrane but also leads to a production of ATP out of ADP and Pi is discussed in [21,22]. Finally,
ATP-driven pumping may also induce electrical Felds in the vicinity of the enzyme [21,22].

If the substance transported by the molecular pump itself couples to the external Feld f(t), e.g.
a ion when f(t) is an electrical Feld, then the total potential experienced by the mechanical state
variable x(t) acquires a tilt in addition to the periodic contribution. If the mechanical coordinate x(t)
does not couple to the Feld, then the periodic contribution to the total potential is always the same
and we recover the tilting ratchet scheme from Section 5. If the Feld a5ects both the transported
substance and the enzyme, a combined pulsating and tilting ratchet mechanism will result.

62 We recall that the mechanical coordinate represents the geometrical shape of the enzyme. Since ions or molecules are
mechanically transferred through the membrane, a displacement of the mechanical coordinate monitors at the same time
the pumping of ions or molecules.
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For periodic Felds f(t), this e5ect has been discovered experimentally in [19,20,188] and ex-
plained theoretically in [21,22,344,345] by means of a model with a discretized mechanical coordi-
nate, hopping between four states at certain rates which change under the in=uence of the Feld f(t).
Employing the same type of models, the possibility that also a randomly =uctuating Feld f(t) of
zero average may put molecular pumps to work was Frst predicted in [158,255] and subsequently
veriFed experimentally in [256,257]. Though these and later discussions [346–348] are conducted
mainly in the language of discrete state kinetic models, the underlying physical picture is equivalent
to the spatially continuous ratchet paradigm [16,187,294,349,350]. Indeed, a plot reminiscent of a
=uctuating potential ratchet (restricted to a fraction of the full spatial period) appears already in
[255] and a full-=edged traveling ratchet scheme is depicted in [351]. Note also the close connection
to the resonant activation e5ect from Section 3.8.

5. Tilting ratchets

5.1. Model

At the focus of this chapter is the one-dimensional overdamped stochastic dynamics


 ẋ(t) = −V ′(x(t)) + y(t) + �(t) : (5.1)

Here, as discussed in detail in Section 3.1, V (x) is a L-periodic potential, �(t) is a white Gaussian
noise of strength 2
kBT , and y(t) is either an unbiased T-periodic function or an unbiased stationary
random process (especially independent of �(t) and x(t)). With respect to the load force F from
(3.1), we immediately focus on the case of main interest F = 0.

According to Curie’s principle (Section 2.7), noise induced transport is expected when the system
is permanently kept away from thermal equilibrium and does not exhibit a spatial inversion symmetry.
Within the model (5.1), these requirements can be met in two basic ways: The Frst option is an
asymmetric “ratchet-potential” V (x) in combination with a perturbation y(t) which is symmetric
under inversion y(t) �→ −y(t) (see Section 3.2 for a precise deFnition), amounting to a “=uctuating
force ratchet” if y(t) is a random process, and to a “rocking ratchet” if y(t) is periodic in t. The
second option is a spatially symmetric V (x) in combination with a broken symmetry of y(t), called
an “asymmetrically tilting ratchet”.

A few models which go beyond the basic form (5.1) are also included in the present section:
Before all, this concerns the discussion of photovolatic e5ects in Section 5.6. Moreover, the in=uence
of Fnite inertia is discussed in Section 5.8, while two-dimensional generalizations are the subject of
Section 5.9.

5.2. Adiabatic approximation

The simplest situation in (5.1) arises if the changes of y(t) in the course of time are extremely slow
[11]. Then, at any given instant t, the particle current has practically the same value as the steady
state current (2.37) for the tilted Smoluchowski–Feynman ratchet (2.34) with a static tilt F = y(t).
Like in Section 2.10, this so-called adiabatic approximation thus corresponds to an accompanying
steady state description in which the time t plays the role of a parameter.
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For a periodic driving y(t + T) = y(t), the time-averaged current (3.5) in the adiabatic approxi-
mation thus follows as [11,42,52]

〈ẋ〉 =
1
T

∫ T

0
dt v(y(t)) =

∫ 1

0
dh v(ŷ(h)) ; (5.2)

v(y) :=
LkBT [1 − e−Ly=kBT ]



∫ L

0 dx
∫ x+L
x dz e[V (z)−V (x)−(z−x)y]=kBT

; (5.3)

ŷ(h) :=y(hT) : (5.4)

Similarly as in Section 2.10, it is assumed that apart from the variation of the time-period T itself,
the shape of y(t) does not change, i.e. ŷ(h) is a T-independent function of h. As a consequence, the
right-hand side of (5.2) is independent of T, in close analogy to Eq. (2.57). In the zero-temperature
limit T → 0, one Fnds similarly as in (4.36) that

v(y; T = 0) =





 L∫ L
0 dx=(y − V ′(x))

if y 
=V ′(x) for all x ;

0 otherwise :

(5.5)

For Fnite but very small temperatures T this result is only slightly modiFed if y 
=V ′(x) for all
x. In the opposite case, there are (y-dependent) solutions x = xmax and x = xmin of y = V ′(x) with
the property that xmax maximizes V (x) − xy within the interval [xmin; xmin + L] and xmin minimizes
V (x) − xy within [xmax − L; xmax], cf. Section 2.5.1. From (2.40)–(2.46) we can read o5 that

v(y) = L[k+ − k−]

=
L|V ′′(xmax)V ′′(xmin)|1=2

2�

e−UV (y)=kBT [1 − e−yL=kBT ] ; (5.6)

UV (y) :=V (xmax) − V (xmin) − (xmax − xmin)y (5.7)

for suCciently small temperatures such that kBT�UV (y);UV (y) − yL.
If y(t) in (5.1) is an unbiased stochastic process with an extremely large correlation time

(cf. (4.2))

& :=

∫∞
−∞ dt 〈y(t)y(s)〉

2〈y2(t)〉 ; (5.8)

then one obtains along the same line of reasoning as in (5.2) the adiabatic approximation [352]

〈ẋ〉 =
∫ ∞

−∞
dy %(y)v(y) : (5.9)

Here, %(y) is the distribution of the noise (cf. (3.11))

%(y) := 〈�(y − y(t))〉 (5.10)
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and it is required that %(y) does not change upon variation of the correlation time &. We have
encountered this so-called constant variance scaling assumption already in Section 4.1 and it is
obviously the counterpart of the T-independence of ŷ(h) from (5.4) in the case of a periodic
driving y(t).

For general analytic conclusions, the adiabatic expressions (5.2) or (5.9) are still too complicated,
one has to plot concrete examples with the help of (5.3) numerically. Only in particularly simple
special cases one may also be able to directly predict the direction of the current. Such an example
arises if y(t) can take only two possible values ±y0 with very rare deterministic or random =ips,
and V (x) exhibits a very simple ratchet proFle, consisting essentially of one steep and one =at slope
(see e.g. Fig. 2.2 or 4.1). Upon increasing y0, the condition y 
= 0 for all x in (5.5) will be Frst
satisFed either for y=y0 or y=−y0 with a resulting T =0 current in (5.2) or (5.9) with a sign equal
to that of the =at slope. The intuitive picture is simple: out of the two tilted asymmetric potentials
V (x)∓y0x, one does not exhibit any extrema and thus supports a permanent downhill motion, while
the other still exhibits extrema which act as motion-blocking barriers. One may go one step further
and again decrease y0 until both V (x)∓y0x exhibit potential barriers and thus prohibit deterministic
motion. One readily sees that the barrier induced by the steeper slope of V (x) is higher than that
induced by the =atter slope. With (5.6) it follows again that for weak thermal noise the current goes
into the direction of the =at slope of V (x). Similarly, for an asymmetrically tilting ratchet with only
two possible values y± for y(t) and a symmetric potential V (x), the sign of the bigger slope y± in
modulus dictates the sign of the current 〈ẋ〉.

Numerical evaluations [11,15,42,116,182,183,193,224,228,236,265,352–357] of the adiabatic ex-
pressions (5.2) or (5.9) for more complicated drivings y(t) but still relatively “simple” potentials
like in Figs. 2.2 and 4.1 lead to analogous conclusions.

Another noteworthy feature arises if only small y-values are known to play a signiFcant role in
the expression for the adiabatic current (5.2) or (5.9). For T = 0 it immediately follows from (5.5)
that 〈ẋ〉 = 0. For T¿0 and suCciently small y, one may linearize (5.3) to obtain

v(y) = yL2

[


∫ L

0
dx e−V (x)=kBT

∫ L

0
dx eV (x)=kBT

]−1

: (5.11)

Since y(t) is unbiased, see (3.9) or (3.10), one recovers again 〈ẋ〉 = 0 from (5.2) or (5.9), in
agreement with the general prediction from Section 3.7.

5.3. Fast tilting

In the case of a stochastic process y(t) with a very small correlation time (5.8) one may proceed
under the assumption of constant variance scaling along the same line of reasoning like for the
fast pulsating ratchet scheme in Section 4.1. Thus, we can replace in leading-order & the random
precess y(t) by a white Gaussian noise with the same intensity

∫
dt 〈y(t)y(0)〉 = 2&〈y2(0)〉. Like

in Section 4.3.2, the resulting two independent Gaussian white noises in (5.1) can be lumped into a
single Gaussian white noise. We thus recover an e5ective Smoluchowski–Feynman ratchet, implying
that in leading order & no current 〈ẋ〉 is obtained. 63 Since it is not possible to extend the above

63 Strictly speaking, our argument is only valid for T¿0. The conclusion, however, also remains true for T = 0, see at
the end of Section 5.5.
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simple type of argument to higher orders in &, such higher order results have to be derived separately
for each speciFc type of noise y(t). Similarly, for periodic perturbations y(t) one Fnds zero current
in leading order of the period T and one has to proceed to higher orders. The main conclusion of
those various expansions, reviewed in more detail in the next section, is that the current 〈ẋ〉 for fast
tilting ratchets vanishes in leading order and depends on the detailed properties of y(t) in higher
orders, i.e. no simple universal results as for the pulsating ratchets in Section 4.1 are accessible.

5.4. Comparison with pulsating ratchets

From Section 5.2 we can infer as a Frst major di5erence in comparison with the pulsating ratchet
scheme that for tilting ratchets, a 8nite current 〈ẋ〉 is generically observed in the limit of adiabat-
ically slow tilting. Since in experiments it is often diCcult to go beyond the adiabatic regime, this
feature is an invaluable advantage of the tilting ratchet paradigm. An interesting exceptional class
of asymmetrically tilting ratchets will be discussed in Section 5.12.

Our second conclusion is that the “natural” current direction in 9uctuating force and rocking
ratchets is given by the sign of the 9at potential slope. Comparison with Section 4.3.1 shows that
this “natural” direction is just opposite to the “natural” direction in a 9uctuating potential ratchet.
A similar “natural” direction can be identiFed for asymmetrically tilting ratchets. However, precise
criteria of “simplicity” such that this natural current direction is actually realized are not available. 64

Opposite current directions can deFnitely been observed in more complicated potentials V (x) and
also for “simple” potentials outside the adiabatic regime. Examples will be given later and can also
been constructed along the lines of Section 3.6.

A third major di5erence in comparison with the =uctuating potential ratchet model is that thermal
noise is not indispensable for the occurrence of the ratchets e1ect provided suCciently large tilting
forces y(t) appear in (5.2) or (5.9) such that a Fnite velocity in (5.5) is possible. This feature is
of particular conceptual appeal in the case of a stationary stochastic process y(t) with unrestricted
support of %(y), e.g. a Gaussian distributed noise. In the absence of the thermal noise �(t) in (5.1)
we obtain a ratchet e5ect for a system in a non-equilibrium environment of archetypal simplicity, 65

see also Section 3. Such models have been extensively studied under the label colored noise problem,
see [67] for a review.

In Section 5.3 we have found that (within a constant variance scaling scheme) the current vanishes
in leading order of the characteristic time scale in the fast tilting limit. Along a completely analogous
line of reasoning one sees that for a Gaussian noise driven =uctuating potential ratchet within a
constant intensity scaling scheme the current still vanishes in the white noise limit, while it remains
Fnite for a =uctuating potential ratchet, see Section 4.3.2 (for a traveling potential ratchet this limit
is not well deFned). In other words, both in the fast and slow driving limits, pulsating and tilting
ratchets behave fundamentally di1erent.

64 Such precise criteria would probably be very complicated (in the worst case a huge lookup table) and thus of little
practical use and moreover di5erent for any type of ratchet. On the other hand, there will be also many “complicated”
examples which nevertheless lead to a “natural” current direction.

65 We may always consider y(t) + �(t) in (5.1) as a single noise, stemming from one and the same non-equilibrium
heat bath, but for T 
= 0 this viewpoint is not very “natural”.



P. Reimann / Physics Reports 361 (2002) 57–265 137

5.5. Fluctuating force ratchets

In this section we consider the tilting ratchet scheme (5.1) with a spatially asymmetric, L-periodic
potential V (x) and a =uctuating force y(t) which is given by a stationary stochastic process, sym-
metric under inversion y(t) �→ −y(t) (in the statistical sense, see Section 3.2), hence in particular
unbiased (3.10).

Physically, this gives rise to a model of paradigmatic simplicity for a system under the in=uence
of a non-thermal heat bath. Similarly as for the so-called “colored noise problem” [67], the setup
is mainly of conceptual interest, while its direct applicability to real systems is limited, see also
Sections 3.4.2 and 5.5.2.

As argued in the preceding section, if y(t) is another Gaussian white noise then we are dealing
with an e5ective Smoluchowski–Feynman ratchet. Hence, to obtain directed transport one either has
to invoke a correlated (non-white), Gaussian or non-Gaussian noise (“colored noise”), giving rise to
a so-called correlation ratchet 66 [265,353], or a white, non-Gaussian noise.

As far a Gaussian colored noise is concerned, its properties are completely Fxed by the Frst and
second moments 〈y(t)〉 = 〈y(0)〉 and 〈y(t)y(s)〉 = 〈y(t − s)y(0)〉 [100,101]. Focusing on unbiased
stationary examples, the distribution is thus always given by (3.15), while the correlation 〈y(t)y(s)〉
can be chosen largely arbitrarily. 67 The simplest example is Ornstein–Uhlenbeck noise with an
exponentially decaying correlation (3.11).

A standard example of a non-Gaussian colored noise is the symmetric dichotomous noise from
(3.12)–(3.13). A further example of interest is its generalization with three instead of two states
[358], i.e. the noise y(t) can take three possible values, y(t)∈{−B; 0; B}. The transition rates from
±B to 0 are deFned as 1=& and the backward rates from 0 to ±B as 3=&,

k±B→ 0 = 1=& ; k0→±B = 3=& : (5.12)

This so-called three state noise is thus characterized by the three parameters B; &; 3¿0. Note that the
so deFned & is proportional but in general not identical to the correlation time deFned in (5.8). The
rather lengthy expression for the proportionality factor follows from a straightforward calculation
but is of no further interest for us. In the context of the above three state noise, & will always
be understood as given by (5.12) rather than (5.8). The special case of a dichotomous noise is
recovered in the limit 3→∞.

Finally, so-called symmetric Poissonian shot noise is deFned as [178,323–326]

y(t) =
∞∑

i=−∞
yi�(t − &i) ; (5.13)

where the “spiking times” &i are independently sampled (thus Poissonian) random numbers with
average interspike distance

T := lim
k →∞

1
2k + 1

k∑
i=−k

(&i+1 − &i) : (5.14)

66 The same name has been introduced in [17] for a =uctuating potential ratchet in our present nomenclature.
67 One obvious restriction is that the intensity

∫
dt 〈y(t)y(s)〉 and hence the correlation time in (5.8) must not be

negative nor inFnite.
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Furthermore, the spiking amplitudes yi in (5.13) are random numbers, independent of each other and
of the &i, distributed according to some symmetric distribution P(yi). SpeciFcally, we will consider
the example

P(yi) =
1

2A
e−|yi|=A ; (5.15)

yielding a correlation of the form

〈y(t)y(s)〉 = 2A2T−1�(t − s) ; (5.16)

i.e. this type of shot noise is uncorrelated (white noise) with two model parameters T and A. Yet,
in close analogy to correlated noise (cf. Sections 4.1 and 5.2), the T-dependence of y(t) is of the
form ŷ(t=T) with a suitably deFned, T-independent Poissonian white shot noise ŷ(t).

Note that a similar (but asymmetric) type of Poissonian shot noise has already been encoun-
tered in (4.43)–(4.45) and will later appear again in the asymmetrically tilting ratchet scheme in
Section 5.12.2. Throughout the present review, Poissonian shot noise (symmetric or not) will be em-
ployed as an interesting abstract example process of archetypal simplicity. For concrete applications
in various contexts of electronic devices and solid state physics see for instance [137]. For models of
chemical reactions and other transport processes in gases we refer to [359]. We furthermore remark
that the above Poissonian symmetric shot noise can be recovered [326] as a limiting case of the
three state noise (5.12) if

&→ 0; 3→ 0; B→∞;

T := &=23; A := &B Fxed : (5.17)

5.5.1. Fast 9uctuating forces
We Frst address the case of a correlation ratchet (colored noise y(t)) in the regime of small

correlation times & in (5.8). Examples are a dichotomous noise or an Ornstein–Uhlenbeck noise,
cf. (3.12)–(3.15). As mentioned before (see Section 5.3), a simple leading-order & argument as
for the pulsating ratchet scheme in Section 4.1 yields the trivial result 〈ẋ〉 = 0, i.e. the correlation
ratchet is in some sense reluctant to obey Curie’s principle in the fast noise regime. Higher order &
contributions require a separate perturbation calculation for each type of noise y(t), similar in spirit
as the example in Appendix C.

The result of such perturbation calculations for various types of noises y(t), among others sym-
metric dichotomous noise, three-state noise, and Ornstein–Uhlenbeck noise, can be written in the
general form [35,49,352,358,360]

〈ẋ〉 = −&3L〈y2(0)〉

kBT

Y1[〈y2(0)〉=(kBT )2]
∫ L

0 dx [V ′(x)]3 + Y2
∫ L

0 dx V ′(x)[V ′′(x)]2∫ L
0 dx eV (x)=kBT

∫ L
0 dx e−V (x)=kBT

; (5.18)

where Y1;2 are dimensionless and &-independent characteristic numbers of the speciFc noise y(t)
under consideration. For instance, for a dichotomous process one has [49,352,360]

Y (DN)
1 = 1; Y (DN)

2 = 1 : (5.19)
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For Ornstein–Uhlenbeck noise one can infer from [35,37,265,292,293,352] that

Y (OU)
1 = 0; Y (OU)

2 = 1 : (5.20)

For the three-state noise from (5.12) one has [358]

Y (3)
1 = [3)− )2 − 1]=)3; Y (3)

2 = 1=) ; (5.21)

where the so-called “=atness” is deFned as

) := 〈y4(0)〉=〈y2(0)〉2 : (5.22)

For the speciFc case of the three-state noise in (5.12) one obtains the result ) = 1 + 1=23, which
has to be substituted in (5.21).

The following assumptions are crucial for the validity of (5.18): (i) constant variance scaling of
the colored noise y(t); (ii) Fnite thermal noise strength T¿0; (iii) smooth potential V (x). It is
not proven but may be expected as an educated guess that the general form (5.18) of the small-&
asymptotics remains valid even beyond the various examples of colored noises y(t) so far covered
in [35,49,265,352,358,360].

Turning to the case of the symmetric Poissonian white shot noise (5.13), (5.15) one readily
recovers the asymptotic behavior [126] for small characteristic times in (5.14) from the behavior of
the three-state noise (5.18), (5.21) in the limit (5.17). Remarkably, the result is then again given by
the same formula as in (5.18) if one makes the “natural” replacement

&3〈y2(0)〉2 �→ T3A4 (5.23)

and with

Y (shot)
1 = −1; Y (shot)

2 = 0 : (5.24)

Our Frst observation in (5.18) is that 〈ẋ〉 vanished not only in leading order &, as already mentioned
above, but also in second order, i.e. the fast 9uctuating force ratchet is very reluctant to produce
a current. Second, the functional dependence on the potential V (x) in (5.18) becomes identical to
the =uctuating potential asymptotics in (4.10) when Y2 → 0 (e.g. for shot noise) and identical to the
asymptotics for the temperature ratchet in (2.58) when Y1 → 0 (e.g. for Ornstein–Uhlenbeck noise).
This comparison gives also a quantitative =avor about the necessary caution to be observed when
comparing “natural” directions in =uctuation force and =uctuating potential ratchets.

Regarding the quantity Y1 in (5.18), it has been conjectured in [35,49] that, for a rather general
class of colored noises y(t), it is given by a simple function of the =atness (5.22), e.g. Y1 = 2 − )
for dichotomous and Ornstein–Uhlenbeck noise, and by (5.21) for the three-state noise (5.12).
So far neither a proof nor a counterexample seems to be known. The coeCcient Y2 depends in
general on additional details of the noise y(t). E.g. for Gaussian noise (3.15) but with a correlation
which is not given by the pure exponential decay (3.13), the =atness in (5.22) is obviously always
the same, while the expression for Y2 is in general di5erent from the one in (5.20), as can be
concluded from [37,227] (see also footnote 69 below).
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The direction of the current in (5.18) is determined by the characteristics Y1;2 of the noise y(t)
and the integrals over [V ′(x)]3 and V ′(x) [V ′′(x)]2. The latter fact makes once more explicit the
warning from Section 3.6 that beyond the most primitive potential shapes, there exists no simple
rules and natural directions any more, the sign of 〈ẋ〉 depends on all the details of V (x) [265].
Another surprising observation [35] is that a current inversion solely upon changing the statistical
properties of the noise y(t) is possible. An example [358] is the three-state noise (5.12) which in
the shot noise limit (5.17) gives, according to (5.24), rise to a current direction in (5.18) opposite
to that for the dichotomous noise limit 3→∞ (see (5.19)), at least for 〈y2(0)〉�kBT . In fact, when
〈y2(0)〉�kBT such an inversion upon changing the noise statistics will occur for any potential V (x)
due to the factorization of the noise- and potential-properties in the numerator of (5.18) and is thus
of a very di5erent nature than the inversion-tailoring procedure from Section 3.6.

For the case of Ornstein–Uhlenbeck noise y(t), the existence of rather simple looking potentials
V (x) has been Frst pointed out in [265] which give rise in the adiabatic limit &→∞ to a current
〈ẋ〉 in the corresponding “natural” direction (see Section 5.4), but in the opposite direction in the
small-& limit according to (5.18), (5.20). As a consequence, a current inversion upon variation of the
correlation time & has been predicted theoretically and veriFed by precise numerical results in [265].
An analogous theoretical prediction and numerical veriFcation in the case of dichotomous noise
y(t) is due to [250]. Considering that for simple (saw-tooth-like, but smooth) potentials V (x), the
“natural” current direction will deFnitely be recovered in the adiabatic limit &→∞ (cf. Section 5.2),
a current inversion as a function of the correlation time & follows also for a three-state noise with
suitably chosen parameters in (5.12) [224], see also [352,358,361,362]. A similar conclusion was
reached in [226] for a modiFed three-state noise y(t) with broken symmetry by cycling through the
three states in a preferential sequence (see also [333]). We remark that the three-state noise y(t)
from [226] is supersymmetric according to (3.40), hence V (x) must not be supersymmetric (but may
still be symmetric) in order that 〈ẋ〉 
= 0.

We recall that mere the existence of current inversions as exempliFed above are just special cases
of our general current inversion tailoring procedure from Section 3.6. For a more detailed quantitative
control of the e5ect, analytical approximations as exploited above are however invaluable.

We conclude our discussion of the fast potential =uctuation asymptotics with some remarks regard-
ing the validity conditions (i)–(iii) mentioned below (5.22). First, if the potential V (x) is not smooth,
then the second integral in (5.18) is ill-behaving. The adequate small-& analysis becomes much more
involved and yields an “anomalous” &5=2 leading-order behavior [49,360,363]. Paradoxically, a piece-
wise linear saw-tooth potential (Fig. 4.1), originally introduced as a stylized approximation of more
realistic, smooth potentials in order to simplify the mathematics, actually makes the calculations
more diCcult for &→ 0. Second, we remark that while we are exclusively using here a constant
variance scaling for the noise y(t), in the literature on the small-& asymptotics a constant intensity
scaling is often (but not always) employed. Third, in the case T = 0, which we excluded so far, one
Fnds within the realm of constant variance scaling that for small & the current 〈ẋ〉 approaches zero
faster than any power of & (for constant intensity scaling see [361]).

5.5.2. Speci8c types of 9uctuating forces
Beyond the fast and adiabatically slow =uctuating force limits, there has been a great variety of

analytical and numerical studies. We restrict ourselves to a brief overview of the main analytical
results and numerically observed e5ects together with the few so far suggested or actually realized
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experimental systems. For a more detailed discussion of the interesting special features in each
particular case we refer to the cited works.

Dichotomous noise: For a dichotomous process y(t) (see (3.12), (3.13)) closed, though not very
transparent analytical solutions are possible for T = 0 and arbitrary V (x) [35,193,352,364] and for
arbitrary T and piecewise linear V (x) [15,288,352,365] along the same lines as for the =uctuating
potential scheme described in Section 4.3.1.

For T=0 one sees from (5.5), (5.9), (3.12) that in the adiabatic limit the current vanishes for small
amplitudes # of y(t). Upon increasing #, the current 〈ẋ〉 as a function of #, sets in continuously but
with a jump in its derivative when one of the two e5ective potentials V (x) ∓ #x in (5.1) ceases to
exhibit barriers against overdamped deterministic motion. A similar discontinuous derivative appears
when the extrema of the other e5ective potential disappear. Upon adding in (5.1) a load force F
(and keeping # Fxed), two analogous jumps in the “di5erential resistance” 9〈ẋ〉=9F arise, while 〈ẋ〉
itself is always continuous. The same features are recovered [193,195] not only in the adiabatic limit
but for any Fnite correlation time &, basically because the noise y(t) may remain with small but
Fnite probabilities in the same state +# or −# for arbitrary long times.

If 〈ẋ〉 
= 0 for T =0, then a straightforward perturbation expansion for small but Fnite T is possible
with the expected result of small corrections to the unperturbed result 〈ẋ〉. More challenging is
the case that 〈ẋ〉 = 0 for T = 0, calling for a so-named singular perturbation theory for small T ,
see Section 3.8. This task has been solved in [250] by a rate calculation based on WKB-type
methods which become asymptotically exact for small T for both, arbitrary correlation times & and
arbitrary (smooth) potentials V (x). The connection between the rates obtained in this way and the
current then follows as usual from (3.55), yielding a very good agreement with accurate numerical
results [250].

An experimental ratchet system with additive dichotomous =uctuations has been proposed by way
of combining in an electric circuit two components that will both be discussed separately in more
detail below: On the one hand, an asymmetric DC-SQUID (superconducting quantum interference
device) threatened by a magnetic =ux gives rise to an e5ective ratchet-shaped potential for the phase,
see [354] and Section 5.10. On the other hand, a point contact with a defect, tunneling incoherently
between two states, can act as a source of dichotomous noise, see [193] and Section 5.12.2. Studies
based on an experimental analog electronic circuit have been performed for negligibly small thermal
noise T → 0 both in the overdamped limit as well as in the presence of a Fnite inertia term m Mx(t) on
the right-hand side of (5.1) in [194,195]. Inertia-like e5ects have also been theoretically addressed,
both for dichotomously =uctuating potential and =uctuating force ratchets, in [366].

Gaussian noise: The simplest type of Gaussian noise y(t) is Ornstein–Uhlenbeck noise, char-
acterized by an exponentially decaying correlation (3.13), (3.15). A Frst, numerical study of the
corresponding correlation ratchet dynamics (5.1) has been reported in [11], recognizing as main dif-
ference in comparison, e.g. with dichotomous noise, the fact that even in the absence of the thermal
noise (T = 0), a ratchet e5ect 〈ẋ〉 
= 0 arises generically for any Fnite intensity 68 of y(t).

The case T =0 has been further studied analytically for small & in [35,265,292,293] and especially
in [37], indicating that even within the restricted class of Gaussian colored noises y(t), the direction

68 The reason is the inFnite support of the distribution %(f) in (3.15) as compared to the bounded support e.g. for
dichotomous noise in (3.12), thus the potential barrier cannot block completely any transport.
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of the current may change solely by modifying the statistical properties of this Gaussian noise. 69

This prediction has been numerically corroborated and extended to the Fnite-T regime in [227,367],
revealing moreover multiple current inversions beyond the realm of small &. Additional details of the
T = 0 case have been studied theoretically in [131,196,368–370] and by means of an experimental
analog electronic circuit in [196].

Very accurate numerical results over extended parameter regimes as well as two di5erent analytical
approximations for arbitrary (smooth) potentials V (x) and Ornstein–Uhlenbeck noise of arbitrary
correlation time & in the activated barrier crossing regime (i.e. weak noises �(t) and y(t)) are con-
tained in [265]. These approximations exploit the connection (3.55) between the particle current
〈ẋ〉 and the rate expressions from a path-integral [247] and a so-called generalized uniFed colored
noise approximation [248,249], originally derived in the context of the so-called “resonant activa-
tion” e5ect. While the path integral method yields qualitatively the correct behavior over the whole
& regime, including the occurrence and location of current inversions, the generalized uniFed colored
noise approximation is limited to small & values, where it is superior to the path integral approach.
Supplementary studies along the same lines with particular emphasis on the above-mentioned
accurate numerical methods and results are contained in [367,371].

For tilting ratchets driven by Ornstein–Uhlenbeck noise y(t), several groups have studied in
detail the e1ect of 8nite inertia, i.e. if on the right-hand side of (5.1) a term m Mx(t) is included 70

[119,156,222,223,372,373]. Analytically, this problem represents a considerable technical challenge
and the results of various approximative approaches are not always compatible. The upshot of those
analytical as well as numerical explorations is the convincing demonstration that also the particle
mass is a parameter, upon variation of which the current may change sign, i.e. a mass-sensitive
particle separation is feasible. Similar conclusions have been reached in [195,366] for dichotomous
instead of Ornstein–Uhlenbeck noise y(t).

Shot noise: The symmetric Poissonian shot noise (5.13) is of interest for several reasons. First, it
demonstrates that the appearance of a net current in the =uctuating potential scheme (5.1) it is not
necessary that the noise y(t) is correlated in time [126]. Second, its “natural direction” is typically
opposite to that of correlated noise y(t) in the adiabatic limit. E.g. in a saw-tooth potential V (x),
the current direction turns out to have the same qualitative features as for the on–o5 saw-tooth
potential [126] treated in Section 4.2 if one identiFes the characteristic time T from (5.14) with
the correlation time in the on–o5 scheme. An intuitive explanation of this prima facie astonishing
similarity follows from the discussion of the three-state noise in [35] in combination with its shot
noise limiting behavior according to (5.17). Since for shot noise there is no correlation time, and the
noise distribution %(y) is not well deFned, an adiabatic limit in the sense of (5.9) does not exist.
The regime of a slow time scale T in (5.14) is therefore of a fundamentally di5erent nature. Again
analogous to the on–o5 scheme, one Fnds [126] that the current approaches zero as T becomes
very large (both for constant variance and constant intensity scaling).

69 For an unbiased, stationary Gaussian process, the statistical properties are completely determined by its correlation
〈y(t)y(s)〉 = 〈y(t − s)y(0)〉. While Y1 = 2 −) in (5.18) is always zero, Y2 may change its sign upon modiFcation of the
correlation. The prediction from [37] is that the sign of Y2 is given by that of

∫
dt t2〈y(t)y(0)〉.

70 The case without a white Gaussian noise �(t) but instead with an Ornstein–Uhlenbeck noise y(t), an additional periodic
(rocking) force, and possibly also a memory friction (cf. Section 6.4.3) has been considered numerically in [119].
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5.6. Photovoltaic e1ects

In this section we discuss experimental ratchet systems which cannot be realistically captured by
the simple model (5.1) but are is physically closely related to it.

In non-centrosymmetric materials, photocurrents are induced by short-wavelength irradiation
(optical or X-ray illumination) in the absence of any externally applied Felds [374]. Experimental
observations of this so-called photovoltaic e1ect 71 in ferroelectrics, piezoelectrics, and pyrroelectrics
such as BaTiO3 or LiNbO3 can be traced back at least to the mid-1960s. The basis of its correct
theoretical explanation was laid 1974 by Glass et al. [27], recognizing that it is not a surface or
interface e5ect—in contrast e.g. to photovoltaic e5ects occurring in n–p junctions (see Sections 6.1
and 8.4)—but rather a bulk phenomenon with the asymmetry of the crystal lattice 72 playing a
central role. Furthermore, they already touch upon the points that the absence of thermal equilib-
rium is another crucial precondition, that the e5ect should be a general property of a large class of
materials, 73 and that the e5ect may be an attractive new method of energy conversion in large-area
pyroelectric polymers or ceramics, acting e.g. as “solar cells”.

These basic ideas have been subsequently developed into a full-=edged theory by Belinicher,
Sturman, and others. Several hundred experimental and theoretical papers on the subject are re-
viewed in [28,29] and various general conclusions therein are remarkably similar to those of our
present paper. For instance, the counterpart of the Smoluchowski–Feynman Gedankenexperiment in
this context corresponds to the question why a steady state photovoltaic e5ect cannot exist under
isotropic thermal blackbody irradiation. To answer such questions it is pointed out 74 that in the
absence of

gradients in concentration, temperature, or light intensity : : : the current direction is controlled
: : : by the internal symmetry. It constitutes the generation of a directed current in a uniform
medium on homogeneous illumination : : : in any medium (without exception) that lacks a center
of symmetry : : : The absence of a center of symmetry : : : results in a current in virtually any
nonequilibrium stationary state. There is no current in thermodynamic equilibrium, in accordance
with the second law of thermodynamics : : : Under the nonequilibrium conditions provided by
illumination, that detailed balancing mechanism is violated and the asymmetry in the elementary
processes gives rise to a current : : : The photovoltaic e5ect is a kinetic e5ect and thus has
various extensions. Uniform illumination in the absence of a center of symmetry may produce
not only an electrical current but also =uxes of other quantities: heat (photothermal e5ect),
neutral particles, spin, etc. On the other hand, light beams do not exhaust the nonequilibrium
sources. : : : The disequilibrium may be not only due to light but to sound or to colliding or
isotropic particle =uxes etc.

71 Practically synonyms are “photorefractive e5ect” and “photogalvanic e5ect”.
72 Most of these systems exhibit a spatial periodicity, but this is de facto not an indispensable prerequisite in this context.
73 Examples are monocrystalline piezoelectric materials, such as ferroelectric ceramics, or liquids and gases showing

natural optical activity due to a chirality of their constituent molecules. More recent systems are provided by asymmetric
semiconductor superlattices and heterostructures [375].

74 In the following we are quoting from [29], but most of these statements can be found already in [28].
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Another point already recognized in various studies during the 1970s and reviewed in [28,29]
is the fact that the photovoltaic e5ect is a non-linear e1ect in the irradiation 8eld amplitude, no
current arises within the realm of linear response (cf. Section 5.5.1). Furthermore, current reversals
upon changing the frequency or polarization of the irradiation [159,160] and upon changing the
temperature [160] have been observed in this context.

The microscopic theoretical analysis is conducted in terms of electron scattering processes in solids
[28,29] and goes beyond our present scope. Though such an approach has little in common with
our present working model (5.1), it is remarkable that veritable one-dimensional e1ective ratchet
potentials exactly like in Fig. 2.1 are appearing in the discussion along these lines. We mention
that it is not immediately obvious whether the e5ects of the irradiation, treated on an adequate
quantum mechanical level, should be associated with a =uctuating force or rather with a rocking
ratchet scheme: On the one hand, besides the direct interaction with the electrons, there may also
be non-negligible e5ects of the irradiation on the host material, giving typically rise to a =uctuating
potential ratchet mechanism [13]. On the other hand, the naive viewpoint that a signal, which is
typically a monochromatic electrical wave, induces an electrical current suggests that the classiFcation
as a rocking ratchet—as adopted in the following—may be justiFed.

The photovoltaic e5ect is practically exploited in holography, beam ampliFcation and correction,
wavefront reversal, etc. [29]. Basic research activity has somewhat decreased in recent years, fo-
cusing, e.g. on the so-called mesoscopic photovoltaic e1ect, where random impurities in conductors
or microjunctions imitate local symmetry breaking [376,377], on X-ray-induced giant photovoltaic
e5ects [378], and on photovoltaic e5ects in asymmetric semiconductor heterostructures and superlat-
tices [375].

Another variation of the photovoltaic e5ect has been theoretically studied in [379,380]. Namely, in
a mesoscopic, disordered normal-metal ring, a breaking of the inversion symmetry can be achieved by
a static magnetic =ux threatening the ring, which survives even after averaging over the quenched
disorder of the individual samples. As theoretically predicted in [379,380], in such a setup the
non-linear response to an additional high-frequency electromagnetic Feld is a directed ring-current.
While somewhat similar “persistent currents” may also exist at thermal equilibrium, i.e. in the
absence of the high-frequency Feld, only away from equilibrium these currents can be exploited
to do work, i.e. we are dealing with a veritable ratchet e5ect. Note that the basic ingredients are
remarkably similar to the SQUID ratchet systems from Sections 5.7.3 and 5.10, but the detailed
physical mechanisms are completely di5erent.

Finally, worth mentioning in this context is also the generation of directed photocurrents in un-
doped, bulk semiconductors with an intact centrosymmetry by adjusting the relative phases of two
optical beams at frequencies ! and 2!, see [381–383,780,781] and further references therein and
also the discussion at the end of Section 8.3 below. Such a modiFed photovoltaic e5ect leads us
beyond the realm of the rocking ratchet scheme and will be treated in more detail under the label
asymmetrically tilting ratchets in Sections 5.12.1 and 8.3.

5.7. Rocking ratchets

In this section we address the tilting ratchets dynamics (5.1) with an L-periodic, asymmetric
potential V (x) and a T-periodic, symmetric external driving force y(t).
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5.7.1. Fast rocking limit
In contrast to the slow rocking limit (adiabatic approximation), the regime of very high frequen-

cies has turned out to be rather obstinate against analytical approximations or intuitive explanations.
Attempts have been made [228,268,269] but cannot be considered as fully satisfactory. Numeri-
cal results, on the other hand, show [42] as a quite remarkable feature that in the fast rocking
regime, the “natural” current direction (i.e. the one realized for “simple” potentials V (x) suCciently
similar to the asymmetric saw-tooth potential from Fig. 4.1) is just opposite to the one for slow
rocking. In order to Fnally conclude this issue, we sketch in the following the main steps of an
analytical solution of the fast rocking asymptotics (details of these calculations will be presented
in [384]).

Under the assumption that the T-periodic function y(t) in (5.1) is of the form (5.4), the asymp-
totics of the current 〈ẋ〉 in (5.1) for small T can be in principle determined along the same lines
as in Appendix C. In practice, the calculations become extremely tedious since, as we will see, to
obtain the Frst non-trivial contribution to the current, one has to go up to the fourth order in T.
Things can be simpliFed a lot by mapping (5.1) onto an equivalent improper traveling potential
ratchet dynamics (cf. (4.32)) as follows: With the deFnition

X (t) := x(t) − T



ŷ 1(t=T) ; (5.25)

where (cf. (5.4))

ŷ 0(h) := ŷ(h) = y(hT) ; (5.26)

ŷ i(h) :=
∫ h

0
dsŷ i−1(s) +

∫ 1

0
ds sŷ i−1(s) ; i = 1; 2; : : : ; (5.27)

one readily Fnds from (5.1) that


 Ẋ (t) = −V ′
(
X (t) +

T



ŷ 1(t=T)

)
+ �(t) : (5.28)

Since the relations ŷ i(h+1)= ŷ i(h) and
∫ 1

0 dh ŷ i(h)=0 are fulFlled for i=0; it follows with (5.27)
by induction that the same relations are respected for i = 1; 2; : : : . Using the self-averaging property
(3.5) of the particle current, we can thus infer from (5.25) that

〈ẋ〉 = 〈Ẋ 〉 : (5.29)

After expanding on the right-hand side of (5.28)

V ′
(
X (t) +

T



ŷ 1(t=T)

)
=

∞∑
k=0

V (k+1)(X (t))
k!

[
Tŷ 1(t=T)




]k
; (5.30)

one sees that in comparison with (5.1) we have “gained” one order of T, the “perturbation” in
(5.30) is of leading-order T only. Due to this simpliFcation, the approach from Appendix C is now
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applicable with a reasonable e5ort and yields the leading-T result [384]

〈ẋ〉 =
2T4LY

∫ L
0 dx V ′(x)[V ′′′(x)]2


5
∫ L

0 dx eV (x)=kBT
∫ L

0 dx e−V (x)=kBT
; (5.31)

Y :=
∫ 1

0
dh[ŷ 2(h)]2 : (5.32)

Here, we have exploited that y(t) in (5.1) is symmetric (cf. (3.17)), otherwise additional terms of
order T4 would appear in (5.31), see Section 5.12.1 below.

Our Frst conclusion from (5.31) is that the fast rocking ratchet is exceedingly reluctant to produce
a current, all contribution up to the order T3 are zero. This fact suggest that also a simple intuitive
explanation of the current direction may be very diCcult to Fgure out. Second, for suCciently simple
(saw-tooth-like but smooth) potentials V (x), the sign of the current in (5.31) is dictated by that of
the steeper slope of V (x), and this independently of any further details of the driving y(t). Our
result (5.31) thus correctly reproduces the numerical observation [42] that the “natural” current
direction of the fast and slow rocking ratchets are opposite. In other words, a current inversion
upon variation of T is typical (“natural”) in rocking ratchet systems at Fnite temperatures T¿0.

We Fnally remark that—much like in the approximation (2.58) for the temperature ratchet—the
limits T→ 0 and T →∞ do not commute, i.e. (5.31) is not valid for a Fxed (however small)
T if one lets T →∞, cf. Section 3.7. In the special case of a fast sinusoidal driving y(t) with
asymptotically small amplitude our result (5.31) reproduces the one from [269]. Also worth noting
is that (5.31) is strictly quadratic in the driving amplitude (see (5.32)). Deviations from this strictly
quadratic behavior are expected only in the next-to-leading-order T contributions that have been
neglected in (5.31). For this reason, the limit of asymptotically large driving amplitudes can once
again not be interchanged with the fast driving limit T→ 0.

5.7.2. General qualitative features
A Frst remarkable feature of a periodically rocked ratchet dynamics (5.1) occurs if in the deter-

ministic limit (T → 0). Namely, the current 〈ẋ〉 as a function of the rocking amplitude y(t), but also
as a function of other parameters, displays a complex structure of constant “plateaux” which are
separated by discontinuous jumps [11,39,42,51,228,354,368]. For a qualitative explanation we Frst
note that the current 〈ẋ〉, understood as a long-time average (3.5), is independent of the initial con-
dition 75 x(t0) [39]. The emergence of the current-plateaux can be analytically understood in detail
for a saw-tooth potential V (x) and a driving which periodically jumps between a few discrete values
[39,228], while in more complicated cases numerical solutions must be invoked [11,42,354]. Very
loosely speaking, the deterministic dynamics (5.1) with periodic y(t) and �(t) ≡ 0 is equivalent to
a two-dimensional autonomous dynamics and thus admits as attractors generalized Fxed points and
periodic orbits, where the word “generalized” refers to the fact that we identify x and x + L as far
as the attracting set is concerned. Thus, in the long time limit, that is, after transient e5ects have
died out, the particle is displaced by some multiple m of the spatial period L after a certain multiple

75 This property readily follows from the fact that x(t0) and x(t0) + L obviously lead to the same 〈ẋ〉 and that di5erent
trajectories x(t) cannot cross each other [39].
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n of the time period T, i.e.

〈ẋ〉 = (L=T)(m=n) : (5.33)

Remarkably, though 〈ẋ〉 is independent of the initial condition, several generalized periodic attractors
(with the same m=n) may still coexist [42]. The structural stability of these attractors implies that as
a function of various model parameters, the ratio m=n and thus 〈ẋ〉 jumps only at discrete points and
is constant in between. In other words, a kind of locking mechanism is at work, closely related to the
one responsible for the Shapiro steps in symmetric potentials with an extra tilt F on the right-hand
side of (5.1) [385,386]. Further intriguing features, like the appearance of Devil’s staircases of
current-plateaux or current reversals of 〈ẋ〉 as a function of the driving amplitude y(t), are discussed
in detail in [39,42,51,228].

Upon including the thermal noise in (5.1), the details of the complex behavior of 〈ẋ〉 as a function
of various model parameters is washed out. While for simple, saw-tooth-type potentials V (x) like
in Figs. 2.2 and 4.1 and not too large rocking amplitudes, the deterministic (T = 0) current 〈ẋ〉 is
known [11,39,42,228] to always exhibit the same direction, a current inversion for suCciently fast
driving sets in as soon as a Fnite amount of thermal noise (T¿0) is added, as conFrmed by our
perturbative result (5.31).

If the deterministic current (T = 0) vanishes, then for weak thermal noise (small T ) an activated
barrier crossing problem arises which can be reduced to an escape rate problem via (3.55). In
general, analytical progress requires technically sophisticated path-intergal and WKB-type singular
perturbation methods which are beyond our present scope, see also Section 3.8.

Both, in the limits of small and large driving amplitudes one can readily see that the current ap-
proaches zero. Hence, there must be an “optimal” amplitude in between for which the current is maxi-
mized. Typically, the dependence of 〈ẋ〉 upon the amplitude is roughly speaking of a single-humped
shape [39,42], onto which, however, the previously described (non-monotonic) Fne-structure for
small or zero thermal noise intensity is superimposed.

5.7.3. Applications
An experimental realization of a rocking ratchet system has been reported in [387]: a mercury drop

in a capillary with a periodically but asymmetrically varying diameter is subjected to an oscillating
external electrical force of electrocapillary nature. While thermal =uctuations are negligible and the
experimental situation is at most qualitatively captured by the one-dimensional model dynamics (5.1),
besides the directed transport itself also the “resonance-like” dependence of the current 〈ẋ〉 upon the
rocking amplitude, as predicted theoretically, has indeed been observed in the experiment.

Several further experimental realizations of the rocking ratchet scheme have been proposed: In
[354] it has been demonstrated that the phase across an asymmetric SQUID threatened by a magnetic
=ux may be modeled by a rocking ratchet dynamics. For more details we refer to Section 5.10 below.

A second realization of the rocking ratchet scheme has been suggested in [388]: The proposed
system consists of a one-dimensional 76 parallel array of Josephson junctions with alternating criti-
cal currents and junction areas in the overdamped limit, see also Section 9.1. In such a system, it can
be shown that the relevant soliton-type solutions (also referred to as kinks, vortices, or =uxons) are
approximately governed by a one-dimensional overdamped dynamics in an e5ective pinning potential

76 Practically, a closed-loop topology can replace the straight periodic setup of inFnite length.
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which can be chosen ratchet-shaped. In other words, such a Josephson kink can be considered
as quasi-particle (endowed with e5ective mass, velocity, interaction with other kinks, and other
particle-like properties) moving in an e5ective one-dimensional ratchet potential along the array and
can be observed by measuring the time- and space-resolved DC voltage along the array. Taking
into account an external periodic driving and thermal =uctuations, a rocking ratchet setup is thus
recovered. The technical details of the problem are rather involved and Fnally require a numeri-
cal evaluation, see [388] for more details. SigniFcant experimental progress towards a realization of
the ratchet e5ect in such sorts of Josephson junction arrays has been accomplished in [389].
A modiFcation, based on a continuous, one-dimensional long Josephson junction (of annular shape),
has been put forward in [287]. An e5ective ratchet potential for the kink dynamics emerges either by
applying an external magnetic Feld and choosing a properly deformed shape of the annular Joseph-
son junction or by modulating its width. A further option is to deposit a suitably shaped “control
line” on top of the junction in order to modulate the magnetic =ux through it [390]. In either way,
not only rocking ratchets—as in [388,389]—but also 9uctuating potential ratchets (not necessarily
overdamped) can be realized [287,390]. Further theoretical as well as experimental studies along
closely related lines by several groups are currently in progress, see also Sections 5.6 and 8.4.

As a third realization of the rocking ratchet scheme, it has been proposed in [391] that the
application of an alternating current to a superconductor, patterned with an asymmetric pinning
potential, can induce a systematic directed vortex motion. Thus, by an appropriate choice of the
ratchet-shaped pinning potential, the rocking ratchet scheme can be exploited to continuously remove
unwanted trapped magnetic =ux lines out of the bulk of superconducting materials. Quantitative
estimates [391] show that thermal =uctuations are practically negligible in this application of the
rocking ratchet model (5.1). For a two-dimensional version [392] of the same idea see Section 5.9.

Finally, it has been predicted [237] within a simpliFed hopping-model (activated barrier crossing
limit) for a crystalline surface, consisting of atomically =at terraces and monoatomic steps, that by
application of an AC-Feld a surface-smoothening can be achieved due to an underlying rocking
ratchet mechanism. First experimental Fndings which can be attributed this theoretically predictied
e5ect are due to [393].

For additional experimental realizations see also Section 8.4.

5.8. In9uence of inertia and Hamiltonian ratchets

The rocking ratchet dynamics (5.1) supplemented by a Fnite inertia term m Mx(t) on the right-hand
side is not only of experimental interest (cf. the asymmetric SQUID model in Section 5.10 below)
but exhibits also interesting new theoretical aspects. 77 Without the noise �(t), the periodically driven
deterministic dynamics is equivalent to a three-dimensional autonomous dynamics and thus in general
admits chaotic attractors in the “generalized” sense speciFed at the beginning of this section.
Numerical simulations [170,230,231,394,395] show that a chaotic behavior is indeed realized in
certain parameter regions of the model. As another crucial di5erence in comparison with the over-
damped case, the current in the long time average (3.55) in general still depends on the initial
conditions [170,221].

77 Regarding the issue of Fnite inertia in traveling potential ratchets, Seebeck ratchets, =uctuating force ratchets, and
quantum ratchets see Sections 4.4.1, 6.1, 5.5.2, and 8:1, respectively.
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As a function of various model parameters, the current shows a still much more complex behav-
ior than in the overdamped case, including multiple inversions even for a “simple” potential-proFle
like in Fig. 2.2. For very weak damping, the sign of the current is in fact predominantly oppo-
site to that in the overdamped limit [170]. These general features of 〈ẋ〉 are expected to be robust
also against a certain amount of noise. The same is not expected for further interesting details
of the deterministic dynamics reported in [170,230,231,394–396], some of them strikingly remi-
niscent of previous Fndings in the context of deterministic di5usion in symmetric one-dimensional
maps [397–403].

Of signiFcant conceptual interest is the noiseless case in the limit of vanishing dissipation, i.e. a
conservative (Hamiltonian) deterministic rocking 78 ratchet dynamics

m Mx(t) = −V ′(x(t)) + y(t) : (5.34)

The salient di5erence in comparison with a dissipative system is the time-inversion invariance pro-
vided the time-periodic driving y(t) =y(t +T) satisFes (after an irrelevant shift of the time origin)
the symmetry condition [251,221]

y(−t) = y(t) ; (5.35)

see also below 79 Eq. (3.41). Another basic feature is the generic appearance of (Hamiltonian)
chaos with its complicated hierarchical Fne structure of disjoint stochastic (chaotic) layers, islands,
KAM-tori, etc. [405–407]. As a consequence, the behavior of the system depends in general on
the initial conditions 80 unless one is in the limiting case of strong (hyperbolic) Hamiltonian chaos
[165,404,408,409]. Strictly speaking, this case is not generic but it is often adopted as an approx-
imation for suCciently strong perturbations of an integrable system with initial conditions in that
stochastic layer which contains ẋ-values of either sign. While di1usive transport with its intriguing
anomalous features (e.g. so-called L]evy =ights) has been analyzed in great detail [405–407], our
understanding of directed transport in such a system with broken symmetry is considerably less well
developed.

Under the assumptions that the symmetry (5.35) is respected it has been predicted in [221] that
〈ẋ〉 = 0 provided the initial condition x(0); ẋ(0) is part of a stochastic layer which also contains an
initial condition with ẋ(0)=0. Especially, this prediction is independent of whether the potential V (x)
is asymmetric or not. The basic reason is that such a trajectory x(t), due to ergodicity reasons, gives
on the one hand, rise to the same average current (3.5) as its time-inverted counterpart z(t) := x(−t),
i.e. 〈ẋ〉 = 〈ż〉. On the other hand, one also concludes that ż(t) = −ẋ(−t) and thus 〈ẋ〉 = −〈ż〉. As a
consequence, it follows [221] that 〈ẋ〉=0. A similar conclusion holds [221] if the symmetry conditions
from Section 3.2 are respected by the potential V (x) and the periodic driving y(t) (cf. Eqs. (3.16)
and (3.17)). Accordingly, the symmetry condition (5.35) may be considered in some sense as the
Hamiltonian counterpart of the supersymmetry concept for overdamped systems (see Section 3.5.4).
These di5erent symmetries have been explored in quantitative detail in [215] by means of a kinetic

78 A Hamiltonian generalized traveling potential ratchet model has been considered in [404].
79 Note that in the present context of Hamiltonian ratchets the word “rocking ratchet”—unlike in the rest of this review—

is not necessarily reserved for symmetric drivings y(t), i.e. y(t) is T-periodic but need not satisfy (3.17).
80 The dependence of the current (3.5) on the initial conditions x(t0); ẋ(t0), and especially on the “initial phase” t0 in

y(t0) is obvious in the special case that V ′(x) ≡ 0 in (5.34). Though this special case is untypical in that it does not
exhibit chaos, it still captures some of the essential physics of the general case.
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Boltzmann-equation approach with special consideration of the weak and strong damping regimes.
Returning to the limit of a Hamiltonian rocking ratchet, we can conclude that if neither of the
above-mentioned symmetry conditions is satisFed then the occurrence of a Fnite current 〈ẋ〉 (ratchet
e5ects) is generically expected (and numerically observed) [166,215,221,782].

On the other hand, if the initial condition x(0); ẋ(0) is not part of a stochastic layer which also
contains an initial condition with ẋ(0) = 0 then generically 〈ẋ〉 
= 0 even if the symmetry conditions
(5.35) or (3.16) and (3.17) are respected. Examples with a Fnite current in spite of the symmetry
property (5.35) are discussed in [165,408,409] (see also the previous footnote 80).

Though it may be diCcult in practice, in principle the entire phase space of the Hamiltonian
dynamics (5.34) can be decomposed into its di5erent ergodic components, 81 each of them charac-
terized by its own particle current 〈ẋ〉. Next, we observe [408,409] that the “fully averaged particle”
current according to the uniform (microcanonical) phase space density can be written as∫ T

0
dt
∫ L

0
dx
∫ ∞

−∞
dp ẋ = lim

p0 →∞

∫ T

0
dt
∫ L

0
dx
∫ p0

−p0

dp
9H
9p ; (5.36)

cf. Sections 2.4 and 3.1. Since the Hamiltonian of the dynamics (5.34) is H =p2=2m+V (x)−xy(t) it
follows that the microcanonically weighted average velocity over all ergodic components in (5.36) is
equal to zero [408,409]. An immediate implication of this “sum rule” is that a necessary requirement
for directed transport is a mixed phase space since the microcanonical distribution is the unique
invariant (reduced) density in this case and is always approached in the long time limit. In other
words, even in the absence of the above-mentioned symmetries, systems with strong (hyperbolic)
chaos do not admit a ratchet e5ect [408,409].

While in [221,782] the above mentioned L]evy =ights are proposed as the main reason for di-
rected transport in Hamiltonian ratchets, the emphasis in [408,409] is put on the picture that trans-
port in the chaotic layers has its origin in the “unbalanced” currents within the regular islands.
The situation in systems with a more than two-dimensional phase space (bringing along Arnold
di5usion) has so far not been considered at all.

5.9. Two-dimensional systems and entropic ratchets

By explicitly keeping the dynamics that governs the driving y(t) or f(t) in the basic ratchet model
dynamics (3.1)–independently of whether a back coupling is absent (see Section 3.4.2) or present
(see Section 7.3.1)—one trivially ends up with a two-dimensional system. In this section, however,
genuine vectorial generalizations of the basic model (3.1) are considered. The simplest case of such a
two-dimensional ratchet system consists of two completely independent equations of the form (5.1),
one for each spatial dimension x1 and x2. Pro forma, one may then deFne a common total potential
V (x1; x2) as the sum of the two individual potentials. Such a system o5ers the possibility to separate
particles with di5erent ratios 〈ẋ1〉=〈ẋ2〉 according to their traveling direction in the x1–x2-plane.

81 In the typical case, some of them are regular and some of them are chaotic. Furthermore, the borderlines between
them are the intact KAM tori. Their number is inFnite and they are arranged in a very complicated hierarchical pattern
[405–407].
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A more complicated situation arises if the dynamics involves a non-trivial common potential
V (x1; x2), periodic and=or asymmetric in only one or both arguments. An example of this kind
(periodic in one component only) has been treated already in the context of Feynman’s ratchet in
Eqs. (6.4)–(6.7), see also [410]. Another example (periodic in both components) which, instead
of the usual linear directed transport, leads to a permanent circular motion of particles, has been
worked out in [411], see also [412,413]. In fact, by giving up the requirement of a simple pe-
riodicity of the system along any straight spatial direction, it should be in principle possible to
direct particles along arbitrarily pre-assigned pathways in properly designed two-dimensional sys-
tems [414,415], possibly even along di5erent routes for di5erent species of particles with identical
seeds.

In [116] a two-dimensional potential landscape V (x1; x2) was considered which consists of one
straight “valley” along the x1-axis and periodically repeated “side valleys” of Fnite length (dead
ends). If the angle between those side-valleys and the x1-axis is di5erent from ±�=2 then the spatial
symmetry along the x1-direction is broken and a time-periodic rocking force generically induces a
Fnite current 〈ẋ1〉. Since this ratchet e5ect will occur even if there are no potential barriers along the
x1-axis, i.e. V (x1; x2 = 0) = const., the name entropic ratchet has been coined for this system [116].
Moreover, if an additional bias F is applied along the x1-axis, a non-monotonic behavior of 〈ẋ1〉
as a function of F may result [116]. This so-called negative di1erential resistance has also been
previously observed in the closely related context of networks with dead-ends, see [416] and further
references therein. Very similar two-dimensional entropic ratchet schemes have been proposed in
[417] for the purpose of separating DNA molecules (see also [418–421] and Section 5.12.1), in [392]
for the purpose of pumping, dispersing, and concentrating =uxons in superconductors by electrical
AC-currents (cf. Section 5.7.3), and in [422] for the purpose of rectifying electronic currents with
the help of the Coulomb blockade e5ect, see also [423].

Another two-dimensional rocking ratchet scheme is obtained by choosing a potential V (x1; x2)
which has basically the e5ect of a two-dimensional, periodic array of obstacles (“scatterers”). The
spatial symmetry is broken by the shape of the single obstacles, in the simplest case a triangle.
In its simplest form, such a setup can be imagined as a Galton-board-type device with a broken
spatial (“left–right-”) symmetry. This basic idea has been put forward already in the context of the
photovoltaic e5ect in non-centrosymmetric materials, see Section 5.5. For the purpose of separating
macromolecules such as DNA, two-dimensional arrays of obstacles (“sieves”) have been proposed
and quantitatively analyzed in [146,282,413,424–426]. The technological feasibility of such sieves—
however with symmetric obstacles—has been demonstrated already before these works in [427]. An
experimental implementation of the same basic concept has been realized in [428] for the purpose of
transporting and separating phospholipid molecules in a two-dimensional =uid bilayer. In contrast to
other standard separation methods, such a rocking ratchet system is re-usable and enables continuous
operation.

Experimentally, transport of electrons in two-dimensional periodic arrays of triangular antidot
scatterers under far-infrared irradiation has been demonstrated in [429]. With an approximative clas-
sical description of the system being justiFed in the considered parameter regime, essentially a
two-dimensional rocking ratchet scheme is thus recovered.

A further two-dimesional SQUID ratchet system will be treated in Section 5.10 below. Also the
experimental ratchet devices described in Section 4.2.1 and at the end of Sections 4.4.2 and 8.4
–though admitting suggestive and rather faithful e5ective one-dimensional descriptions—are strictly
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speaking of two-dimensional character. A three-dimensional ratchet dynamics is discussed in Sec-
tion 6.6. Further models with two degrees of freedom are treated in Sections 6.5 and 7.6.

5.10. Rocking ratchets in SQUIDs

In the theoretical work [354] it has been demonstrated that the phase across an asymmetric SQUID
(superconducting quantum interference device) threatened by a magnetic =ux may be modeled by
a one-dimensional rocking ratchet dynamics (cf. Section 5.7.3). The starting point is the standard
RSJ model (resistively shunted junction model, also called Steward–McCumber model) for the phase
di5erence ’ of the macroscopic quantum mechanical wave function across a conventional Josephson
junction

<0C
2�

M’(t) +
<0

2�R
’̇(t) + Ic sin ’(t) = I(t) + �(t) ; (5.37)

where C, R, and Ic are the capacitance, resistance, and critical current of the junctions, I(t) is
the electrical current =owing through the junction, and <0 := h=2e is the =ux quantum. Thermal
=uctuations are modeled by unbiased Gaussian white noise �(t) of strength 2kBT=R. For the total
phase di5erence across a series of two identical such Josephson junctions one recovers [354] the
same Eq. (5.37) except that ’(t) is replaced by ’(t)=2 and the noise strength 2kBT=R by kBT=R.
Next, one considers a SQUID with the usual “loop”-geometry, formed by two conducting “arms” in
parallel, but with two identical Josephson junctions in series in one “arm”, and a third junction with
characteristics C ′; R′, and I ′c in the other “arm”. The total current Itot through the conducting loop
follows by adding the currents through both arms. Under the assumption that the loop inductance
is much smaller than <0=(Ic + I ′c + Itot(t)) (see also the discussion below (5.51)), the total phase
di5erence ’ across the loop is then governed by the equation [354]

<0

2�

(
C
2

+ C ′
)

M’(t) +
<0

2�

(
1

2R
+

1
R′

)
’̇(t) = −V ′(’(t)) + Itot(t) + �tot(t) ; (5.38)

V (’) := − Ic
2

cos(’=2) − I ′c cos(’ + 2�<=<0) ; (5.39)

where < is the total magnetic =ux threatening the loop and where �tot(t) is a Gaussian white noise
with correlation

〈�tot(t)�tot(s)〉 = 2kBT
(

1
2R

+
1
R′

)
�(t − s) : (5.40)

The noise- and time-averaged “phase current” 〈’̇〉 is connected to the averaged voltage U across
the loop according to the second Josephson equation [354]

U =
<0

2�
〈’̇〉 (5.41)

and thus directly accessible to an experimental measurement. In other words, for appropriately chosen
external currents Itot(t) and (static) magnetic Felds, a rocking ratchet dynamics is recovered from
(5.38), which is in particular of the overdamped form (5.1) if IcR2C; I ′cR′2C ′�<0, cf. Section A.4 in
Appendix A. Potentials (5.39) with additional Fourier modes may be obtained by more complicated
SQUIDs with additional “arms” in parallel.
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Next, we turn to one of the 8rst systems for which a ratchet e1ect has been theoretically
described and experimentally measured [25,26]. While these early works focus on the realm of
adiabatically slow rocking, the extension beyond this regime has been realized experimentally very
recently in [182,183]. The setup consists of the following two-dimensional modiFcation of the above
described rocking ratchet SQUID system (5.37)–(5.41): The starting point is a SQUID with the
usual “loop”-geometry, consisting of one Josephson junction in each of the two parallel “arms” of
the loop. The phase across the junctions in the left (index “l”) and right (index “r”) arm are thus
both governed by an equation of the form (5.37). The di5erence between the two phases due to the
vector potential of the enclosed magnetic =ux is governed by the “=ux quantization” relation

’l − ’r = 2�<tot=<0 : (5.42)

The enclosed =ux <tot is divided between an externally applied magnetic 9ux < and the =ux from
the circulating current in the loop, yielding [430]

<tot = <− [LlIl − LrIr] ; (5.43)

where Ll; r are the inductances of the two junctions. Under the simplifying assumptions that

Cl = Cr =:C; Rl = Rr =:R (5.44)

and with the deFnitions

Ic :=
Ic; l + Ic; r

2
; 0I :=

Ic; l − Ic; r
Ic; l + Ic; r

; (5.45)

WL :=
Ll + Lr

2
; 0L :=

Ll − Lr

Ll + Lr
; (5.46)

’ :=
’l + ’r

2
;  :=

’l − ’r

2
; (5.47)

it follows by adding and subtracting the two equations of the form (5.37) with indices “l” and “r”
that [182,183]

<0C
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2�R
’̇(t) = −9V (’(t);  (t); t)

9’ +
Itot(t)

2
+ �1(t) ; (5.48)
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9 + �2(t) ; (5.49)

V (’;  ; t) := − Ic[cos’ cos  − 0I sin ’ sin  ] +
�

4<0 WL

[
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�
− < + WL0LItot(t)

]2

: (5.50)

Here, Itot(t) := Il(t)+Ir(t) is the total electrical current =owing through the SQUID and �(t) (i=1; 2)
are two unbiased Gaussian white noises with correlation

〈�i(t)�j(s)〉 =
kBT
R

�ij�(t − s) : (5.51)

Finally, the time-averaged voltage U across the loop is again given by (5.41).
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Our Frst observation is that for WL�<0=(Ic + Itot(t)) it follows from (5.50) that  � �<=<0 and
we are left with an e5ective one-dimensional problem (5.48). The same type of approximation has
been made in the derivation of (5.38)–(5.40). In any case, the potential (5.50) is periodic in the
variable ’, while the  -dependence is conFned by the quadratic term on the right-hand side. On
condition that < is not a multiple of <0=2 and that either 0I 
= 0 or 0L 
= 0, the potential (5.50) is
neither inversion symmetric under (’;  ) �→ (−’;  ) nor (’;  ) �→ (−’;− ), thus a ratchet e5ect is
theoretically predicted and has been experimentally observed [182,183]. Especially, a non-vanishing
externally applied magnetic Feld is necessary, since otherwise < = 0.

Given that the above conditions (2<=<0 not an integer and 0I 
= 0 or 0L 
= 0) are fulFlled, it is
instructive to rewrite (5.48)–(5.50) in the form

<0C
2�

M’(t) +
<0

2�R
’̇(t) = −9Ṽ (’(t);  (t))

9’ +
Itot(t)

2
+ �1(t) ; (5.52)
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9 − 0LItot(t)
2

+ �2(t) ; (5.53)

Ṽ (’;  ) := − Ic[cos’ cos  − 0I sin ’ sin  ] +
<0

4� WL

[
 − �<

<0

]2

: (5.54)

In other words, a two-dimensional rocking ratchet scheme is recovered, with a “rocking force” which
acts along the ’-direction if 0L = 0 and points into a more general direction in the ’– -plane
if 0L 
= 0.

Further studies on related Josephson ratchet systems are addressed in Sections 5.7.3 and 9.1, see
also Section 5.6.

5.11. Giant enhancement of di1usion

In this section we return to the overdamped, one-dimensional tilting ratchet scheme (5.1), however,
with the e5ective di1usion coe<cient (3.6) rather than the particle current being the quantity of our
interest. To this end, it turns out that the asymmetry of the potential V (x) in (5.1) is not essential,
and we will therefore focus on the simplest case of a symmetric, periodic potential V (x).

In contrast to the investigation of directed transport in terms of 〈ẋ〉, studies of di5usive transport
in periodic driven systems are still rather scarce. While the determination of the e5ective di5usion
coeCcient is, in general, technically more demanding (cf. Section 3.1) its relevance e.g. for particle
separation purposes may well be comparable to the schemes based on directed transport.

The e5ective di5usion coeCcient De5 from (3.6) in systems like (5.1) but in the absence of an
external driving y(t) has been considered in [431] with the main result that De5 is for non-trivial
potentials V (x) always smaller than the bare di5usion coeCcient (2.11). Di5usive separation of parti-
cles in the same system (5.1) but with a static tilt y(t) ≡ F (cf. (2.34)) has been addressed in [432],
demonstrating an improvement of one to two orders of magnitude in selectivity as compared with
conventional continuous Feld free-=ow electrophoresis methods, see also [117,173,174]. Asymptotic
results for fast pulsating and =uctuating force ratchet schemes have been derived in [433] and [434],
respectively. Here, we will focus on the case of a deterministic, time-periodic perturbation y(t) in
(5.1), naturally arising in typical experimental settings. Related studies are [170,386,435–437] and
especially the work of Gang et al. [438]. Our present system is a conceptually simpler and more
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Fig. 5.1. (a) Symmetric saw-tooth potential V (x) with period L and barrier height V0. (b) Time-periodic, piecewise constant
driving force y(t) with model parameters y0 (“tilt”), tt (“tilting-time”), and tw (“waiting-period”).

e5ective variation of the setup from [386,438] which enables a controlled selective enhancement of
di5usion that in principle can be made arbitrarily strong.

We focus on the simplest case of a symmetric sawtooth potential V (x) with period L and barrier
height V0 (Fig. 5.1a) and a time-periodic driving force y(t) with three states y0; 0, and −y0. As
illustrated in Fig. 5.1b, time-segments of length tt with a constant tilt y(t) = ±y0 are separated by
“waiting-periods” tw with vanishing y(t). Further, we henceforth restrict ourselves to weak thermal
noise �(t), i.e. kBT�V0.

We assume that y0¿2V0=L and that the initial particle distribution at time t = 0 consists of a very
narrow peak at a minimum of the potential V (x), say at x= 0. As long as t6 tt we have y(t) ≡ y0,
so the peak moves to the right under the action of the deterministic forces and also broadens slightly
due to the weak thermal noise in (5.1). The deterministic time tn at which the peak crosses the nth
maximum of V (x) at x = (n− 1=2)L while y(t) = y0 is acting, can be readily Fgured out explicitly
[228]. If now tt just matches one of those times tn, then the original single peak is split into two
equal parts and if the subsequent “waiting-interval” tw with y(t) ≡ 0 is suCciently long the two
parts will proceed towards the respective nearest minimum of V (x) at x = (n − 1)L and x = nL.
The result consists in two very sharp peaks after half a period t = tt + tw of the driving force y(t).
Similarly, after a full period & := 2(tt + tw) one obtains three narrow peaks at x = −L; 0; L with
weights 1

4 ;
1
2 ;

1
4 , respectively. For the variance 〈x2(t)〉 − 〈x(t)〉2 one thus obtains the result L2=2. In

the same way one sees that after n periods the variance amounts to nL2=2, yielding for the e5ective
di5usion coeCcient (3.56) the expression

De5 = L2=8(tt + tw) : (5.55)

In the case that tt does not match any of the times tn, the initial single peak is split after half a
period t = tt + tw into two peaks with unequal weights. If tt is suCciently di5erent from any tn
and the thermal =uctuations are suCciently weak, one of those two peaks has negligible weight.
Consequently, after a full period almost all particles will return to x = 0. The e5ective di5u-
sion coeCcient De5 is therefore very small, in particular much smaller than for free thermal
di5usion (2.11).

An example of the e5ective di5usion coeCcient De5 as a function of tt is depicted in Fig. 5.2a.
As usual (cf. Section 3.6) such a multi-peak-structure of De5 is not only expected upon variation of
tt but also by keeping tt Fxed and varying for instance the friction coeCcient 
, corresponding to
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Fig. 5.2. (a) E5ective di5usion coeCcient (3.56) in units of the “bare” D from (2.11) versus scaled “tilting-time”
t̃t := ttV0=
L2 from numerical simulations of the stochastic dynamics (5.1). The wiggles re=ect the statistical uncer-
tainty due to the Fnite though extensive number of realizations. The relevant dimensionless parameters in Fig. 5.1 are
kBT=V0 = 0:01; twV0=
L2 = 0:375, and y0L=V0 = 3. Theoretical predictions for the height of the peaks from (5.55) are
indicated by stars. In addition, the theoretical estimate for the peak-widths at half-height from [228] are indicated by
arrows. (b) E5ective di5usion coeCcient versus friction coeCcient 
 from simulations of (5.1) with kBT=V0 = 0:005 and
y0L=V0 =22. The times tt and tw = tt are both kept at Fxed values and also deFne 
0 via 
0 =(2Ly0−4V0)=L2tt . Theoretical
predictions are indicated analogous to (a).

the situation that di5erent types of particles are moving in the same rocked periodic potential.
As Fig. 5.2b demonstrates, the dynamics (5.1) can indeed act as an extremely selective device for
separating di5erent types of particles by controlled, giant enhancement of di1usion. Closer inspection
shows [228] that the peaks in the e5ective di5usion coeCcient De5 can in fact be made arbitrarily
narrow and high by decreasing the temperature or increasing V0 at Fxed T while at the same time
keeping y0L=V0 large. Similarly, as for the friction coeCcient 
, particles can also be separated, e.g.
according to their electrical charge since this implies di5erent values of the “coupling-parameters”
V0 and y0.

All these Fndings are obviously robust against various modiFcations of the model as long as one
maintains periodicity in space and time and suCciently long “waiting-periods” tt with y(t) ≡ 0
between subsequent “tilting-times” with non-vanishing y(t). A practical realization of such a particle
separation device should be rather straightforward.

5.12. Asymmetrically tilting ratchets

In this section we consider the ratchet model dynamics (5.1) with a symmetric, L-periodic potential
V (x) in combination with a driving y(t) of broken symmetry, either periodic or stochastic.

If the characteristic time scale of the driving y(t) is very large, the adiabatic approximation (5.2)
for the periodic and (5.9) for the stochastic case can be applied. Exploiting the symmetry of V (x),
a straightforward calculation conFrms the expected property that v(y) in (5.3) is an odd function of
its argument. In general, the contributions of y and −y in (5.2) or (5.9) will not cancel each other
and hence 〈ẋ〉 will generically be di5erent from zero. However, even though y(t) is asymmetric,
prominent examples exist for which the contributions of y and −y do cancel each other, namely
those respecting supersymmetry (3.40). Examples are a periodic driving y(t) of the form (3.47) with
$1 
= 0 and $2 
= 0 or the example depicted in Fig. 3.2. In this case, 〈ẋ〉→ 0 as the characteristic time
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scale of y(t) tends to inFnity, which is a quite exceptional feature within the class of tilting ratchets.
Since for fast driving the current approaches zero as well, a qualitative behavior which in fact is
reminiscent of a pulsating ratchet arises. It is worth emphasizing, since it may appear counterintuitive
at Frst glance, that a symmetric, but not supersymmetric potential V (x) (e.g. in (3.19) with a1 
= 0
and a2 
= 0) combined with a supersymmetric but not symmetric y(t) (e.g. in Fig. 3.2) generically
does lead to a ratchet e5ect 82 〈ẋ〉 
= 0, see also Fig. 3.3. If moreover Fnite inertia e5ects m Mx(t) are
included on the right-hand side of (5.1) then supersymmetry does no longer prohibit a current and
thus even a pure sinusoidal potential V (x) may be chosen.

5.12.1. Periodic driving
The case of slow periodic driving is covered by the adiabatic approximation (5.2). In the opposite

case of a very small period T, one Fnds along the same line of reasoning as in Section 5.7.1 the
leading-order asymptotics [384]

〈ẋ〉 =
T4L[Y−

∫ L
0 dx [V ′′′(x)]2 + Y+

∫ L
0 dx [V ′′(x)]3=2kBT ]

4
5
∫ L

0 dx eV (x)=kBT
∫ L

0 dx e−V (x)=kBT
; (5.56)

Y± :=
∫ 1

0
dh[ŷ 0(h) ± 2ŷ 2(h)][ŷ 2(h)]2 ; (5.57)

where ŷ 0(h) and ŷ 2(h) are deFned in (5.26) and (5.27). Here we have exploited the symmetry
of V (x). In the completely general case, the asymptotic current 〈ẋ〉 is given by the sum of the
contributions in (5.31) and (5.56).

We notice that if the potential V (x) is not only symmetric but also supersymmetric then∫ L
0 dx [V ′′(x)]3 = 0 and thus the sign of the current in (5.56) is dictated solely by that of Y−.

On the other hand, for a supersymmetric driving y(t), both coeCcients Y± in (5.57) vanish, that is,
〈ẋ〉 approaches zero even faster than T4 as T→ 0.

The possibility that a directed current, or, equivalently, a Fnite voltage under open circuit condi-
tions, may emerge in a symmetric periodic structure when driven by unbiased, asymmetric microwave
signals of the form

y(t) = $1 cos(2�t=T) + $2 cos(4�t=T + <) ; (5.58)

has been reported for the Frst time in the experimental work by Seeger and Maurer [30]. From
the traditional viewpoint of response theory in this context, the basic mechanism responsible for
producing a DC-output by an unbiased AC-input (5.58) then amounts to the so-called harmonic
mixing of the two microwaves of frequencies 2�=T and 4�=T in the non-linear response regime.
The electrical transport in such quasi-one-dimensional conductors is usually described in terms of
pinned charge density waves, which in turn are modeled phenomenologically as an overdamped
Brownian particle in a symmetric, periodic “pinning” potential [31,218–220]. The particle couples to
the externally applied Feld (5.58) via an e5ective charge, i.e. we recover exactly the asymmetrically

82 To dissolve any remaining doubts, we have veriFed this fact by numerical simulations. A similar prediction has been
put forward previously in [439,440] without, however, recognizing the subtleties of supersymmetry in this context.
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tilting ratchet model (5.1). We remark that both in the experimental work [30] and in the subsequent
theoretical studies [31,218–220] no emphasis is put on the fact of generating a DC-output by means
of an unbiased AC-input per se, and in this sense the ratchet e5ect has been observed only implicitly.
Also worth mentioning is that the “pinning”-potential V (x) is usually assumed to be of sinusoidal
shape and thus respects supersymmetry. Since the driving (5.58) becomes supersymmetric for <=�=2,
the current 〈ẋ〉 will exactly vanish at this point [31,218,219]. This feature does no longer arise for
symmetric but not supersymmetric potentials V (x) or if Fnite inertia e5ects [220] become relevant,
see also [215,395].

In the context of current generation by photovoltaic e5ects (cf. at the end of Section 5.6) very
closely related theoretical and experimental investigations are due to [381–383,780,781]. The same
basic idea to produce a directed current by means of the asymmetric tilting ratchet scheme has also
been exploited experimentally in a process called zero-integrated Feld gel electrophoresis 83 which
uses unbiased pulsed electric Felds to separate chromosomal DNA [417–421,441–443].

The ratchet e5ect in a periodically driven, asymmetrically tilting ratchet has been independently
re-discovered in [39]. Moreover, the complex structure of the current 〈ẋ〉 at T =0, featuring plateaux
and Devil’s staircases, similarly as for the rocking ratchet system in Section 5.7.2, has been demon-
strated for especially simple examples of asymmetrically tilting ratchet models in [39]. Further vari-
ations and extensions of such theoretical models, the details of which go beyond our present scope,
can be found in [215,259,356,417,419–421,441,444–447]. For Hamiltonian (Fnite inertia, vanishing
dissipation and thermal noise) and quantum mechanical asymmetrically tilting ratchet systems we
refer to Sections 8.3 and 8.4, respectively.

5.12.2. Stochastic, chaotic, and quasiperiodic driving
The generation of directed transport in symmetric, periodic potentials V (x) by an asymmetric

stochastic driving y(t) of zero average in (5.1) has been for the Frst time exempliFed in [327–330]
for the case of Poissonian white shot noise, 84 see also [179,448]. At zero thermal noise (T = 0),
a closed analytical solution is available [327,329], while for T¿0 one has to recourse to asymptotic
expansions, piecewise linear potentials, or numerical evaluations [328,330]. Besides the fact of a
white-noise-induced directed transport in symmetric potentials per se, the most remarkable Fnding is
that the current always points into the same direction as the �-spikes of the asymmetric shot noise for
any periodic potential (symmetric or not, but di5erent from the trivial case V ′(x) ≡ 0). We are thus
facing one of the rare cases for which our procedure of tailoring current inversions (see Section 3.6)
cannot be applied unless an additional systematic bias F is included in (5.1). Leaving aside minor
di5erences in the �-spikes statistics (cf. footnote 84) the basic reason for this unidirectionality can
be readily understood by the mapping onto an improper traveling potential ratchet scheme according
to (4.31), (4.32) and our discussion of the corresponding current (4.33), (4.35), (4.38).

The generic occurrence of a ratchet e5ect whenever y(t) breaks the symmetry (3.18) has been
pointed out in [353] and exempliFed by means of an asymmetric two-state noise y(t) in the adiabatic
limit, cf. (5.9). Similar conclusions have been reached in [179,180]. In the case of an asymmetric

83 The gel network in which the DNA moves does not exhibit the usual spatial periodicity but rather acts as a random
potential (due to basically static obstacles) in three dimensions.

84 The speciFc shot noise considered in [327–330] is of the form (4.43), (4.44) but with the weights ni in (4.44) not
being integers but rather exponentially distributed, positive random numbers, see also (5.13), (5.15).
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dichotomous noise y(t) and without thermal =uctuations (T=0) in (5.1), the exact analytical solution
for arbitrary noise characteristics and potentials has been Fgured out and discussed from di5erent
viewpoints in [193,355,364,449,450]. Similarly as in (5.17), the above-mentioned shot noise model
[327,329] is recovered as a special limit [326] from this analytical solution for dichotomous noise.
Approximations and analytically soluble particular cases in the presence of a Fnite amount of thermal
noise (T¿0) have been elaborated in [288,365]. Regarding the asymptotics of fast asymmetric tilting
we remark that the expression (5.18) vanishes for symmetric potentials V (x), hence a signiFcantly
di5erent structure of the leading-order behavior is expected (compare also the corresponding results
(5.31) and (5.56) for periodic y(t)). For asymmetric dichotomous noise such an asymptotics has
been derived in [365] within a constant intensity scaling scheme, while for constant variance scaling,
as we mainly consider it in our present review, such an asymptotics has not yet been worked out.

Turning to applications, it has been argued in [353] that the absence of a priori symmetry rea-
sons and thus the appearance of an asymmetric noise y(t) should be a rather common situation in
many systems far from equilibrium, especially in biochemical contexts involving catalytic cycling
(cf. Sections 4.6 and 7). SpeciFcally, if y(t) represents a source of unbiased non-equilibrium cur-
rent =uctuations then an asymmetrically tilting ratchet scheme can be readily realized by means of
a Josephson junction [355,449,450], see (5.37). A concrete such source of current =uctuations has
been pointed out in [193]. Namely, an asymmetric dichotomous noise may arise intrinsically in point
contact devices with a defect which tunnels incoherently between two states [132–138]. A modiFed
Josephson junction system with an asymetric total noise composed of two correlated symmetric noise
sources has been proposed in [451,452], see also [453–455].

It is well-known [397–399,456–458] that in many situations, a low dimensional dynamical system
exhibiting deterministic chaos can induce similar e5ects as a veritable random noise. 85 In the present
case of the asymmetrically tilting ratchet scheme, the emergence of directed transport (ratchet e5ect)
when the driving y(t) is generated by a low dimensional chaotic dynamics has been demonstrated
in [36], see also [179,180,459].

Another interesting intermediate between a stochastic and a periodic driving is represented by the
case of a quasiperiodic driving y(t), bringing along the possibility of a strange non-chaotic attractor
[460]. Asymmetrically tilting ratchets of this type have been studied in [181].

6. Sundry extensions

In this section we address various signiFcant modiFcations and extensions of the pulsating and
tilting ratchet schemes from Sections 4 and 5 as well as an additional important observable in the
context of Brownian motors, namely their eCciency. Remarkably, while most of those generalizations
are conceptually very di5erent from a pulsating or tilting ratchet in the original sense, an approximate
or even exact mathematical equivalence can be established in several cases. In other cases, both the
physics and the mathematics are fundamentally di5erent.

85 In fact, we may consider a noise (stochastic process) as generated by a chaotic deterministic dynamics in the limit of
inFnitely many dimensions. The close similarity between deterministic chaos and noise is also exploited in any numerical
pseudo-random number generator.
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6.1. Seebeck ratchets

In this section we consider periodic systems under the in=uence of thermal =uctuations, the inten-
sity of which exhibits a spatial variation with the same periodicity as the relevant potential, while
no other non-equilibrium perturbations are acting.

In a closed circuit composed of two dissimilar conductors (or two dissimilarly doped semicon-
ductors) a permanent electric current arises when their junctions are kept at di5erent temperatures
[461]. This constitutes a thermoelectric circuit that converts thermal energy into electrical energy.
The e5ect has been discovered in 1822 by Seebeck and has been exploited, e.g. to provide electrical
power for satellites. In essence, the Seebeck e5ect has the following microscopic origin: Due to the
di5erent Fermi-levels prevailing in each of the conductors, a kind of e5ective potential ramp for the
electrons arises at the junction. 86 Moving along the circuit in a deFnite direction, the electrons will
encounter at one junction an increasing potential ramp and at the other junction a decreasing coun-
terpart. When looping in the opposite direction, the roles of the ramps is exchanged. While sliding
down a decreasing ramp is “for free”, climbing up an increasing ramp requires thermal activation.
Therefore, if one junction is kept at a higher temperature than the other, the looping of electrons in
one direction is more likely than in the other.

Expanding the circular motion through the closed circuit to the real axis yields a periodic e5ective
potential V (x) and a periodic temperature proFle T (x). Both have the same spatial period and each
of them is typically symmetric under spatial inversion. The spatial symmetry of the system is broken
in that the two periodic functions V (x) and T (x) are out of phase. 87 The simplest model for the
electron motion consists in an overdamped dynamics like in (4.17) with

g(x) = [kBT (x)=
]1=2 : (6.1)

This model has been studied by BMuttiker [33] and independently by van Kampen [463], and
has been further discussed by Landauer [464]. Later, similar models, either derived from a micro-
scopic description of the environment in terms of harmonic oscillators (cf. Section 8.1), or based
on a phenomenological approach have been considered in [190,191,465,466] and [292,293,467,468],
respectively, see also Section 6.4.

Though the physical systems behind this Seebeck ratchet model and the one in (4.17) are quite
di5erent, the mathematics is practically the same and in this sense the Seebeck ratchet is closely
related to a 9uctuating potential ratchet [51]. One di5erence is that in one case the potential V (x)
is asymmetric and the =uctuations of this potential of course “in phase” with the “unperturbed”
(average) potential, while in the other case the symmetry is broken due to a phase shift between V (x)
and T (x). A second possible di5erence is that after the white noise limit &→ 0 in (4.19) the adequate
treatment of the multiplicative noise in (4.17) may not always be in the sense of Stratonovich. For
instance, if the dynamics (4.17) arises as limiting case with negligible inertia e5ects (white noise
limit &→ 0 in (4.19) before the limit of vanishing mass) then [291,465,466,469,470] a white noise
�(t) in the sense of Ito [63,99] arises in (4.17). As a consequence, the second summand in (4.25)

86 Within this very elementary picture we neglect electron–electron interaction e5ects in the form of screening by
inhomogeneous charge densities around these potential ramps [462].

87 A ratchet e5ect also arises for asymmetric V (x) and=or T (x) in phase, however, typically in a quite di5erent physical
context, see Section 4.3.2.
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takes the modiFed form 9g2(x)=9x and the integrand in (4.26) acquires an extra factor g(y)=g(x).
A still di5erent treatment of the thermal noise �(t) in (4.17) may be necessary in physical contexts
without an inertia term right from the beginning, see [463,464,471] and further references therein.
Independent of these details, the main conclusion is that 〈ẋ〉 
= 0 if and only if∫ L

0

V ′(x)
T (x)

dx 
= 0 (6.2)

provided that both, V (x) and T (x) are L-periodic. 88 One readily veriFes that the two “systematic”
conditions implying 〈ẋ〉 = 0 are indeed the symmetry and supersymmetry criteria from (3.49) and
(3.50), respectively.

Though the Seebeck ratchet thus exhibits striking similarities with a =uctuating potential ratchet,
the equivalence is not exact. However, such an exact equivalence can be readily established with
respect to the more general class of pulsating ratchet models by choosing �(t) ≡ 0 and 89

V ′(x; f(t)) = V ′(x) +
√

2
kBT (x)f(t) ; (6.3)

with f(t) being a �-correlated Gaussian noise. The basic physical picture underlying this mathe-
matical equivalence is rather simple: Thermal =uctuations with a spatially periodic variation of their
strength (temperature) may equivalently be viewed as (very fast) potential =uctuations (cf. Sec-
tion 4.3.2). We furthermore remark that by Frst applying the transformation (6.3) to a pulsating
ratchet, and then considering the symmetry and supersymmetry criteria (3.16) and (3.39) for such a
pulsating ratchet model, one indeed recovers the corresponding original criteria for Seebeck ratchets
in (3.49) and (3.50), respectively.

Besides the Seebeck e5ect itself, another application of the model may be the electron motion
in a superlattice irradiated by light through a mask of the same period but shifted with respect
to the superlattice [33]. In such a case, it may no longer be justiFed to neglect inertia e5ects in
the stochastic dynamics (4.17). The so-called underdamped regime of such a dynamics, i.e. friction
e5ects are weak in comparison to the inertia e1ects, has been analytically treated in [472] by
generalizing the methods developed in [473].

There are several well-known phenomena which may in fact be considered a close relatives of
the Seebeck e5ect and thus as further instances of the corresponding ratchet scheme: First, we may
augment our closed circuit, composed of two di5erently doped semiconductors, by a piece of a metal
wire. In other words, we are dealing with an electrical circuit that contains a semiconductor diode
(n–p junction). Again, an electrical current results if the diode is kept at a temperature di5erent from
the rest of the circuit (thermogenerator), see also Sections 2.9 and 8.4. Second, the same device
can also act as a photodiode or photoelement by exposing the n–p junction to a source of light.
Especially, in the case of black-body irradiation, one basically recovers the previous situation with
two simultaneous heat baths at di5erent temperatures. Third, one may replace the semiconductor

88 Similarly as in Eq. (4.27), the sign of the current 〈ẋ〉 is found to be opposite to the sign of the intergal on the
left-hand side of (6.2). Therefore, a current inversions upon variation, e.g. of 
 is not possible in this model.

89 Strictly speaking, (6.3) does still not respect the L-periodicity (3.3). To remedy this =aw, one has to multiply the
square-root in (6.3) by a factor @(x), deFned as @(x) := 1 for x∈ [0; x0); @(x) := − 1 for x∈ [x0; L), and @(x + L) := @(x).
The reference position x0 is then chosen such that

∫ L
0 @(x)[T (x)]1=2 dx = 0 with the result that (3.3) is indeed satisFed.

Note that this extra factor @(x) in (6.3) does not a5ect the stochastic dynamics (3.1) in any noticeable way.
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Fig. 6.1. Same as Fig. 2.1 but with the ratchet and pawl kept at a di5erent temperature than the paddles and its
surrounding gas.

diode by a tube diode. In this context, the two above mentioned ways of generating an electrical
current are then closely related to the so-called Richardson-e5ect and photoe5ect, respectively.

6.2. Feynman ratchets

Throughout the discussion of Smoluchowski and Feynman’s Gedankenexperiment in Section 2.1.1,
we have assumed that the entire gadget in Fig. 2.1 is surrounded by a gas at thermal equilibrium.
In his lectures [2], Feynman also goes one step further in considering the case that the gas around
the paddles is in a box at temperature T1, while the ratchet and pawl are in contact with a di5erent
bath (e.g. another gas in a box) at temperature T2 
=T1, see Fig. 6.1.

While Feynman’s discussion [2] focuses on a thermodynamic analysis of this nonequilibrium
system and apparently contains a misconception [110,111,474,475], here we concentrate on its mi-
croscopic modeling in terms of a stochastic process. Our Frst observation is that there are essentially
two relevant (slow) collective coordinates: One is an angle, which characterizes the relative position
of the pawl and an arbitrary reference point on the circumference of the ratchet in Fig. 6.1 and
which we will henceforth consider as expanded to the entire real axis and denoted as x(t). As we
have seen in Section 2.1.1, the possibility that the pawl spontaneously (due to thermal =uctuations)
lifts itself up so that the ratchet can freely rotate underneath, is a crucial feature of the system.
Therefore, another relevant collective coordinate is the “height” h(t) of the pawl, i.e. its position in
the direction perpendicular to x (the “radial” direction in Fig. 6.1).

The next modeling step consists in taking into account the thermal environment of the paddles,
governing the state variable x(t), and the second heat bath, governing the dynamics h(t) of the pawl.
A realistic description both of the impacts of the gas molecules on the paddles (e.g. by means of
a Boltzmann equation [215]) and of the thermal =uctuations of the pawl on a microscoping footing
is very involved. Along the general spirit of Section 2.1, a phenomenological modeling is the only
realistically practicable modeling approach. In a Frst approximation [111,474], these environmental
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e5ects may be modeled by an overdamped dynamics for both x(t) and h(t), i.e.


1ẋ(t) = −9V (x(t); h(t))
9x + �1(t) ; (6.4)


2ḣ(t) = −9V (x(t); h(t))
9h + �2(t) (6.5)

with two independent white (thermal) Gaussian noises

〈�i(t)�j(s)〉 = 2
ikBTi�ij�(t − s) ; (6.6)

at temperatures T1 and T2, respectively [110]. The interaction between x(t) and h(t) arises through
the common potential V (x; h) which incorporates the fact that the pawl is (weakly) pressed against
the ratchet (e.g. by a spring or due to its own elasticity) and the constraint that the pawl can-
not penetrate the ratchet. The latter, non-holonomous constraint can be included by appropriate
“potential walls” into V (x; h). An explicit example [111] is

V (x; h) = Ah +
�

h− H (x)
; (6.7)

where A is the “spring constant” of the pawl, H (x) is the geometrical proFle of the ratchet, and �
is a parameter characterizing the “steepness” of the potential walls which account for the constraint
h¿H (x).

Note that (6.4) seems in fact to perfectly 8t into the general framework of a 9uctuating potential
ratchet scheme (4.1). However, it actually goes somewhat beyond this scheme in that our usual
assumption of the “potential =uctuations” h(t) being independent of the system x(t) is no longer
respected, there is a “back-coupling” in (6.5).

In spite of the various so far made approximations, the model is still only tractable by means of
numerical simulations. Detailed quantitative results of such simulations can be found in [111,474].
Here, we proceed with the additional approximation that the pawl remains permanently in contact
with the ratchet, i.e. the constraint h¿H (x) is replaced by h=H (x). Physical realizations of such a
modiFed system with a Fxed, one-dimensional “track” (x; H (x)) of the pawl can be readily Fgured
out. Moreover, it is clear that in those regions of the track with a small slope H ′(x), the noise acting
on x(t) dominates, while the noise acting on h(t) dominates for large slopes H ′(x). In other words,
an e5ective one-dimensional ratchet dynamics with a state-dependent e5ective temperature T (x) is
recovered [111,475–477]: The Feynman ratchet can be approximately reduced to a Seebeck ratchet
model.

The main results of such a simpliFed one-dimensional description are qualitatively the same as
for the more complicated two-dimensional original model (6.4)–(6.7) [111,478]: If the paddles
experience a higher temperature than the pawl (T1¿T2) then the rotation is in the direction naively
expected already in Fig. 2.1. Remarkably, for T1¡T2 the direction is inverted, i.e. the pawl preferably
climbs up the steep slope of the ratchet proFle H (x).

Experimental realizations of the above Feynman ratchet and pawl gadget are not known. In order
that thermal =uctuations will play any signiFcant role, such an experiment has to be carried out on a
very small scale. Quantitative estimates in [111] indicate that the necessary temperature di5erences
in order to achieve an appreciable ratchet e5ect are probably not experimentally feasible. However,
modiFed two-dimensional settings of the general form (6.4)–(6.7), e.g. with �2(t) consisting of a
thermal noise at the same temperature as �1(t) and a superimposed external driving, may well be
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experimentally realizable, see Section 5.9. Finally, a Feynman ratchet-type model for a molecular
motor (cf. Section 7) has been proposed in [5,6], though this model was later proven unrealistic by
more detailed quantitative considerations [142,143].

6.3. Temperature ratchets

The properties and possible applications of the temperature ratchet [118] with time-periodic tem-
perature variations (2.6), (2.47) have been discussed in detail in Sections 2.6, 2.10 and 2.11. A
modiFed model in which the temperature changes T (t) are governed by a dichotomous random
process (cf. Eqs. (3.11)–(3.13)) has been studied in [126,127,479,480]. The resulting, so-called
composite noise �(t) gives rise to a “minimal” ratchet model in (2.6) in the sense that �(t) is a
stationary, unbiased, white noise with correlation

〈�(t)�(s)〉 = 2
kBT (1 + #2)�(t − s) : (6.8)

The noise is, however, not a thermal noise (e.g. it is not Gaussian distributed), thus the generic ap-
pearance of the ratchet e5ect is not in contradiction to the second law of thermodynamics
[126,127,479,480].

Next, we consider again the general case that T (t) may be either a periodic function or a random
process, satisfying T (t)¿ 0 for all t. Introducing the auxiliary time [118,481]

t̂(t) :=
∫ t

0
dt T (t)= WT ; (6.9)

WT := lim
t→∞

1
t

∫ t

0
dt T (t) ; (6.10)

it follows that the temperature ratchet dynamics (2.48) can be rewritten in terms of y(t̂) := x(t(t̂))
in the form


 ẏ(t̂) = −V ′(y(t̂))[1 + f(t̂)] + W�(t̂) ; (6.11)

f(t̂) :=
dt(t̂)
dt̂

− 1 ; (6.12)

where t(t̂) is the inverse of (6.9) (which obviously exists) and where W�(t̂) is a Gaussian white noise
with correlation

〈 W�(t̂) W�(ŝ)〉 = 2
kB WT�(t̂ − ŝ) ; (6.13)

which is moreover statistically independent of f(t̂). Exploiting (6.9), (6.10) one can furthermore
show that f(t̂) is unbiased.

In general, if T (t) is a stochastic process then the relation between properties of y(t̂) and x(t) is
not obvious, since the time-transformation (6.9) is di5erent for each realization of T (t). However,
with respect to the steady state current we can infer from the self-averaging property (3.5) in
combination with (6.9) that

〈ẏ〉 = 〈ẋ〉 : (6.14)
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If T (t) is a periodic function of t then the very same conclusion follows immediately. In other
words, from (4.11), (6.11), (6.14) we can conclude that, at least with respect to the particle current,
the temperature ratchet (2.6), (2.47) is exactly equivalent to a 9uctuating potential ratchet (4.11),
independently of whether the time variations of T (t) are given by a periodic function or a stochastic
process. On the other hand, a =uctuating potential ratchet can be mapped onto a temperature ratchet,
provided f(t)¿ − 1 for all t in (4.11). Especially, from the asymptotics (4.10) for fast stochastic
potential =uctuations the corresponding result [126,479,480] for a temperature ratchet is recovered.
Likewise, from the prediction (2.58) for a periodically modulated temperature ratchet we can read
o5 the asymptotics for ratchets with fast, periodically =uctuating potentials. For similar reasons,
the qualitative analysis of the temperature ratchet for slow dichotomous temperature variations in
Fig. 2.6 is practically the same as for the on–o5 ratchet scheme [34].

The basic physical picture behind this equivalence of a temperature ratchet and a =uctuating
potential ratchet is as follows: Very loosely speaking, one may mimic temperature modulations
by potential modulations since, under many circumstances, it is mainly the ratio of potential and
temperature which plays the dominant role in transport phenomena (cf. Fig. 2.6).

We Fnally recall that, apart from “accidental” cases, the “systematic” conditions implying 〈ẋ〉= 0
are the symmetry and supersymmetry criteria from (3.51) and (3.52), respectively. Not surprisingly,
these are practically the same as the corresponding criteria of symmetry (3.16) and supersymmetry
(3.39) for a =uctuating potential ratchet V (x; f(t)) = V (x)[1 + f(t)].

6.4. Inhomogeneous, pulsating, and memory friction

6.4.1. A no-go theorem
In the preceding sections we have discussed modiFcations of the Smoluchowski–Feynman ratchet

model (2.6) with either a spatial or a temporal variation of the temperature T in (2.5). In the generic
case, a Fnite particle current 〈ẋ〉 results in such a model, as expected from Curie’s principle. In
the following, we discuss an apparently rather similar modiFcation of the Smoluchowski–Feynman
ratchet model (2.5), (2.6), namely spatial and=or temporal variations of the friction coeCcient 
,
with the rather unexpected result that the average particle current in the steady state is always
zero.

In the case of a non-constant friction coe<cient 
(x; t), the overdamped limit m→ 0 is a subtle
issue [463,465,466,482,483] and one better keeps a Fnite mass m in (2.1) right away. The corre-
sponding Fokker–Planck equation for the probability density P = P(x; v; t) follows along the same
line of reasoning as in Section 2.2 and Appendix B with the result [99]

9
9t P = −v

9
9xP +

1
m
9
9v

{
V ′(x) + 
(x; t)v +


(x; t)kBT
m

9
9v

}
P ; (6.15)

where v := ẋ. Going over to the reduced density P̂(x; v; t) (cf. (2.22)), which is periodic in x but
still satisFes (6.15), one readily veriFes that the Boltzmann distribution

P̂
st
(x; v) = Z−1exp{−[mv2=2 + V (x)]=kBT} (6.16)
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is a steady state solution (cf. (2.31)). Under the suCcient (but not necessary) condition that 
(x; t)¿0
for all x and t (and that T¿0) this long time asymptotics can be proven to be furthermore unique
[82,83,100,108,109]. The remarkable feature of the steady state distribution (6.16) is that the friction
coeCcient 
(x; t) does not appear at all. For 
 = const: we are dealing with an equilibrium system
and the second law of thermodynamics implies the result

〈ẋ〉 = 0 (6.17)

for similar reasons as in Section 2.1. Considering that (6.16) does not depend on the friction coef-
Fcient, it is quite plausible that the result (6.17) carries over to arbitrary 
(x; t). The same conclu-
sion is corroborated [191,465,466,468] by a more detailed calculation similarly as in Sections 2.3
and 2.4.

The basic physical reason behind the result (6.17) is that the model (2.1), (2.5) describes an
equilibrium system for arbitrary 
(x; t): In fact, we have noticed below Eq. (2.5) that the friction
coeCcient can also be considered as the coupling strength between the system and its thermal
environment. In the absence of other perturbations, the model (2.1) thus continues to describe an
equilibrium system even for a non-constant coupling 
(x; t). Since an equilibrium system reaches
an equilibrium state in the long time limit, the second law of thermodynamics can be invoked and
(6.17) follows. (Only the transient dynamics depends on the details of 
(x; t).) Thus, there is no
contradiction to Curie’s principle: The current-prohibiting symmetry, which is easily overlooked at
Frst glance, is in fact once again the detailed balance symmetry.

Returning Fnally to the overdamped limit m→ 0, we only state here the outcome of a more
rigorous analysis [463,465,466,482,483], namely that this limit cannot be consistently carried out in
the stochastic dynamics (2.1) itself but only on the level of the Fokker–Planck equation (6.15), with
the result of a probability current in (2.17) of the form like in (2.21) with 
(x; t) in place of 
. The
conclusion (6.17) then follows along the same line of reasoning as in Section 2.4.

6.4.2. Inhomogeneous and pulsating friction
The microscopic origin of a time-independent inhomogeneous friction mechanism 
(x) has been

discussed in Section 3.4.1, namely a broken translation invariance of the thermal environment with
respect to the relevant (slow) state variable(s) of interest. Physical examples are the Brownian motion
near geometrical conFnements of the =uid due to deviations from Stokes friction [373,468,484–486],
phase-dependent dissipation in Josephson junctions due to the interference of pair and quasiparticle
tunneling currents [487], generic chemical reactions [488,489] (cf. Section 3.4.1), and protein friction
in molecular motors, see Section 7.3. In the following, we restrict ourselves to the most important
case that 
(x) is strictly positive and exhibits the same periodicity L as the potential V (x).

As mentioned in the preceding subsection, the overdamped limit in the presence of an inhomo-
geneous friction amounts [463,465,466,482,483] to replacing 
 by 
(x) in (2.17), (2.21). By means
of the transformation

Wx(x) :=
∫ x

0
dx′
√


(x′)= W
 ; (6.18)

W
 :=
[∫ L

0

dx′

L

√

(x′)

]2

; (6.19)
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the Fokker–Planck equation for P( Wx; t) takes exactly the constant friction form (2.14) if one replaces
x by Wx and 
 by W
. Including the “perturbations” f(t), y(t), and F (cf. (3.1)), the transformed
equivalent Langevin equation takes the form

W
 Ẇx(t) = − WV ′( Wx(t); f(t)) +
√

W
=
( Wx)[y(t) + F] + �(t) ; (6.20)

where 
( Wx) := 
(x( Wx)) and

WV ( Wx; f(t)) :=V (x( Wx); f(t)) + (kBT=2) ln(
( Wx)= W
) : (6.21)

With (6.18), (6.19) one sees that WV ( Wx) and 
( Wx) exhibit again the same periodicity L as V (x)
and 
(x).

In other words, we have mapped the original overdamped ratchet dynamics with inhomogeneous
friction to our standard working model (3.1) with the only exception that the homogeneous external
perturbation [y(t) +F] acquires a spatially periodic multiplicative factor. Namely, an originally pure
tilting ratchet now picks up some pulsating potential admixture, while a static force F is now
accompanied by a modiFcation of the static part of the periodic potential proFle. As a consequence,
the basic qualitative features of such inhomogeneous friction ratchet models can be readily understood
on the basis of our previously discussed results. For instance, a ratchet e5ect may now arise even
if both V (x; f(t)) and 
(x) are symmetric according to (3.16) but each with a di5erent Ux-value,
i.e. they are out of phase, since this gives rise to a genuine e5ective ratchet potential with broken
symmetry in (6.21). Regarding various interesting quantitative results for several speciFc models we
refer to [190,191,465–467,490–493].

An additional time-dependence of the friction 
(x) may arise under certain temporal variations
of the system-plus-environment which are suCciently slow in comparison with the characteristic
relaxation time of the environment in order to always maintain an (approximate) accompanying
equilibrium state of the bath. In such a case, the time dependence of 
(x; t) may be absorbed
into the potential and the forces appearing on the right-hand side of the properly rewritten original
stochastic dynamics (3.1) similarly as in Section 6.3. Afterwards, the remaining x-dependence can
again be transformed away as in (6.20).

The special instance of a pulsating potential V (x; f(t)) in combination with a pulsating friction
coe<cient 
(x; f(t)), both with the same periodicity in x, has been studied in the case of a di-
chotomous driving f(t) in [468]. Since detailed balance symmetry gets lost in this way and in
the absence of special symmetries, a ratchet e5ect is recovered [468] for such a pulsating friction
ratchet. Especially, both V (x; f(t)) and 
(x; f(t)) may be symmetric according to (3.16) but each
with a di5erent Ux-value, i.e. they are out of phase. As a further generalization, the transition prob-
abilities between the two states of f(t) may also periodically vary with x. Unless both of them are
in phase with 
(x; f(t)), a ratchet e5ect is then generically observed even in the absence of the
potential 90 V (x; f(t)).

90 A trivial example is: if f(t) is in state 1 then for x∈ [0; L] the friction 
(x) is non-zero only within [0; 3L=4] and the
transition probability into state 2 only within [L=2; 3L=4]; if f(t) is in state 2 then everything is shifted by L=2.
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6.4.3. Memory friction and correlated thermal noise
Instead of forcing an unbiased (F = 0) system of the general form (3.1) by means of the pertur-

bations f(t) or y(t) away from thermal equilibrium, one may as well consider a modiFcation of the
friction term 
ẋ(t) (while f(t) = y(t) = 0). Much like in the previous subsection, the overdamped
limit becomes then rather subtle and one better keeps a Fnite mass m in the original description
(2.1). The simplest such generalization [66,79–81,84,89,92–96] includes a so-called linear memory
friction of the form

m Mx(t) + V ′(x(t)) = −
∫ t

−∞

̂(t − t′) ẋ(t′) dt′ + �(t) ; (6.22)

see also Sections 3.4.1 and 8.1 (the lower integration limit 0 in (8.4) is recovered from (6.22) by
observing that ẋ(t) ≡ 0 for times smaller than the initial time t = 0). The proper generalization
(cf. (2.5), (3.2)) of the 9uctuation–dissipation relation then reads [66,79–81,84,89,92–96]

〈�(t)�(s)〉 = 
̂(|t − s|)kBT ; (6.23)

see also (3.37), (3.38). Unless �(t) is a stationary Gaussian process with zero mean and correlation
(6.23), the environment responsible for the dissipation and =uctuations in (6.22) cannot be a thermal
equilibrium bath [97] and therefore a ratchet e5ect is expected generically (and indeed observed), as
exempliFed in [119]. Especially, the fact that some noise (Gaussian or not) is uncorrelated (white)
does not necessarily imply that its origin is a thermal equilibrium environment nor does a correlated
noise exclude thermal equilibrium.

6.5. Ratchet models with an internal degree of freedom

In this section we brie=y review Brownian motors which posses—in addition to the mechanical
coordinate x—an “internal degree of freedom” analogous to the chemical state variable of molecular
motors (cf. Sections 4.6 and 7), but without the main intention of representing a faithful modeling
of such intracellular transport processes. Another closely related model class are the two-dimensional
tilting ratchet systems from Section 5.9.

The so-called active Brownian particles [228,494,495] with an “energy depot” as additional inter-
nal variable have been considered in [496,497] under the in=uence of a static ratchet potential. The
internal energy depot models the capability to take up energy from the environment, store it, and
(partially) convert it into directed motion. While the original, phenomenological model dynamics
from [496,497] does not Ft into the generalized pulsating ratchet scheme from (7.3), it is possible to
transform it into an equivalent form closely related to (7.3), namely a combined =uctuating potential
and temperature ratchet with a back-coupling mechanism. Upon variation of the noise strength or
of the energy supply, a remarkably rich behavior of the particle current 〈ẋ〉, both in magnitude and
sign, is recovered [496,497].

A di5erent type of “active Brownian particles”, namely a reaction–di1usion system with one
species of particles possessing a =uctuating potential ratchet type internal degree of freedom (chem-
ical reaction cycle), has been demonstrated in [498] to induce a pattern forming process. Note also
the connection of this setup with the collective ratchet models from Section 9.
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A precursor of a two-headed motor enzyme model is the “elastic dumb-bell” from [41], consisting
of two point-like Brownian particles which are linked by a (passive) elastic spring, and which move
in either the same or two di5erent (shifted) on–o5 ratchet potentials, see also [499] and [500]
for the cases of =uctuating and traveling potential ratchet schemes, respectively. The corresponding
“rocking-ratchet” situation, i.e. a static ratchet potential but a periodically varying external driving
force, has been studied in [501] and extended in [502] and [184] to the cases when each of the two
particles moves in a two-dimensional ratchet potential and in a one-dimensional symmetric periodic
potential, respectively. The analogous “=uctuating force ratchet” in the limit of a “rigid dumb-bell”
has been considered in [368,499,503]. Note that there exists a close connection to the models for
single molecular motors in Section 7.6, especially those in [445,504–506].

A Frst experimental realization of such a two-head-like system with an active, spring-like element
was reported as early as 1992 [507]: a curved strip of gel with periodically varying curvature (by
externally applied electric Felds) moves in a worm-like fashion with its two ends (“heads”) along a
ratchet-shaped substrate. A second experimental ratchet system with an “internal degree of freedom”
was presented in [508]: a water droplet in oil is positioned on a ratchet shaped surface and its
shape (internal degree of freedom) is periodically changed by means of externally applied electric
Felds. With the shape also the contact angles between the droplet and the surface change, with the
result of a systematic directed motion. Since the droplet covers several periods of the ratchet, the
rough picture is a somewhat similar worm-like motion as before, though the actual systems and their
possible applications are of course completely di5erent.

A Brownian particle in a periodic electric potential with an autonomously rotating “internal electric
dipole” has been theoretically analyzed in [509]. Since the direction of this rotation breaks the spatial
symmetry, the periodic potential may be chosen symmetric in this model. While there exists a close
formal analogy with the traveling potential ratchet scheme from Section 4.4.1, the physical picture
is di5erent [300].

6.6. Drift ratchet

In this section we discuss in some detail the so-called drift ratchet scheme [175] which resembles
a rocking ratchet but at the same time goes substantially beyond our original tilting ratchet model
from (5.1). We will outline the theoretical framework of a particle separation device based on this
drift ratchet scheme, presently under construction [510] in the laboratories of the Max-Planck-Institut
in Halle (Germany).

The system basically consists of a piece of silicon—a so-called silicon wafer—pierced by a huge
number of identical pores with a ratchet-shaped (periodic but asymmetric) variation of the diameter
along the pore-axis [510], see Figs. 6.2 and 6.3. The pores are Flled with a liquid (e.g. water) which
is periodically pumped back and forth in an unbiased fashion, i.e. such that no net motion of the
liquid is produced on the average. Suspended into the liquid are particles of micrometer size and
the objective is to separate them according to their size.

For a theoretical description of the particle motion we consider a single, inFnitely long pore under
the idealizing assumptions that the particles have spherical shape, that the suspension is suCciently
diluted such that particle interaction e5ects are negligible, and that the interaction with the pore walls
can be captured by perfectly re=ecting boundary conditions. For the typical parameter values of the
real experiment, buoyancy e5ects due to the in=uence of gravitation as well as inertia e5ects of the
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Fig. 6.2. Scanning-electron-microscope picture of a silicon wafer, pierced by a huge number of practically identical pores
with pore-distances of 1:5�m and pore-diameters of about 1�m.

Fig. 6.3. Schematic cross-section (x–z-plane) through a single pore with an experimentally realistic, ratchet-shaped variation
of the diameter along the pore axis (z axis).

particle are negligibly small, i.e., the particle dynamics in the viscous liquid is strongly overdamped.
Assuming that the three-dimensional time-dependent velocity Feld ṽ(̃x; t) of the liquid is known,
the particle x̃(t) is governed by the deterministic dynamics ˙̃x(t) = ṽ(̃x(t); t). Here, ṽ(̃x; t) is, strictly
speaking, not the velocity Feld of the =uid alone but rather the speed with which a spherical particle
with center at x̃(t) and a small but Fnite radius is carried along by the surrounding liquid. This
deterministic dynamics induced by the streaming liquid has to be complemented by the di5usion
of the micrometer sized particle due to random thermal =uctuations �̃(t), which are caused by the
impacts of the surrounding liquid molecules, and which we model in the usual way as Gaussian
white noise. We thus end up with the following stochastic dynamics for the trajectory x̃(t) of a
microsphere inside a single pore:

˙̃x(t) = ṽ(̃x(t); t) + �̃(t) : (6.24)

The vector components �i(t); i = 1; 2; 3, of the noise �̃(t) are unbiased Gaussian processes with
correlation

〈�i(t)�j(s)〉 =
2kBT



�ij�(t − s) : (6.25)

The friction coeCcient 
 is in very good approximation given by Stokes law 6�RC, where R is the
particle radius and C the viscosity of the liquid.

In view of the external, time-periodic pumping of the liquid through the pores, the above so-called
drift-ratchet scheme has a certain similarity to a rocking ratchet system. On the other hand, it
also reminds one of the hydrodynamic ratcheting mechanism based on the so-called Stokes drift
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Fig. 6.4. Numerical simulation of the stochastic dynamics (6.24), (6.25) for a pore shape as depicted in Fig. 6.3, at
room temperature (T = 293 K). The friction coeCcient 
 in (6.25) is given by Stokes law 6�RC, where R is the particle
radius and C = CRCwater the viscosity of the liquid in units of the viscosity Cwater of water. The velocity Feld in (6.24)
has been obtained numerically with a sinusoidal pumping of the liquid at a frequency of 40 and 100 Hz. The pumping
amplitude A is chosen as A=2L, where L=6�m is the period of the ratchet-shaped pore in Fig. 6.3. Depicted is the time-
and ensemble-averaged particle current 〈ż〉 along the pore axis (z-axis) versus the particle diameter for various driving
frequencies and viscosities.

[296–298,300,301] as discussed in the context of traveling potential ratchets in Sections 4.4 and 4.5.
However, in contrast to both, the rocking as well as the traveling potential ratchet paradigms, in the
present case (6.24) no “ratchet-potential” is involved. 91 Furthermore, the dynamics within a single
pore is still a complicated three-dimensional problem that cannot be reduced in a straightforward
manner to an e5ective one-dimensional model.

After one period of driving, the liquid in the pore returns to the same position from where it started
out. Why should we not expect the same null-e5ect for the suspended particles? The basic reason is
as usual the far from equilibrium situation, created in the present case by the periodic pumping, in
combination with Curie’s principle, which predicts the generic appearance of a preferential direction
of the stochastic particle dynamics with broken spatial symmetry (6.24). The physical mechanism for
the emergence of such a non-vanishing net particle current are the thermal di5usion between “liquid
layers” of di5erent speed and the collisions with the pore walls: Through the asymmetry of the
pore-proFle, an asymmetry between pumping forth and back arises for both the thermal inter-layer
di5usion and the collisions with the pore-walls, resulting in a non-vanishing particle displacement
on average after one driving period. The fact that the excursions of the particles during one driving
period are typically much larger than the net displacement after one period (see Fig. 6.4) motivates
the name “drift ratchet”.

The calculation of the velocity Feld ṽ in (6.24) is a rather involved hydrodynamic problem in
itself. For details of the necessary approximations (and their justiFcation) in order to make the
problem tractable at least by numerical methods we refer to [175]. Once such an approximation for

91 Under the assumption of an incompressible =uid, i.e. ∇̃ · ṽ= 0, the velocity Feld ṽ appearing in (6.24) can be written
as the curl of some vector potential, but never as the gradient of a scalar potential.
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Fig. 6.5. Time evolution of the particle density (within the liquid-plus-particle suspension) along the z-axis starting with
a homogeneous initial distribution (normalized to unity). The pore length (along the z-axis) is 126�m and the extension
Uz of each of the two adjacent basins along the z-axis is 24�m. Other details are like in Fig. 6.4 with particle radius
R = 0:36�m, pumping frequency 100 Hz, pumping amplitude A = L, and relative viscosity CR = 0:5.

Fig. 6.6. Ratio P2=P1 of particle densities for two types of particles versus time t. The setup is the same as in Fig. 6.5
but with a pumping amplitude A = 2L and with radii of the two types of particles R1 = 0:36�m and R2 = 0:7�m
(corresponding to opposite current directions in Fig. 6.4). The ratio of the densities P2=P1 refers to the border of the
right basin at z = 87�m (=126=2�m + 24�m). Solid line: Overall homogeneous initial densities. Dashed line: initially
homogeneous densities in the pore region and vanishing densities in the two basin regions.

ṽ is available, the numerical simulation of the stochastic dynamics is straightforward. Typical results
for realistic parameter values are depicted in Fig. 6.4, demonstrating that the direction of the particle
current depends very sensitively on the size of the particles.

While, according to Section 3.6, such current inversions are a rather common phenomenon, the
distinguishing feature of our present device is its highly parallel architecture: 92 a typical silicon
waver contains about one million pores per square centimeter. On the other hand, the pores in a
real silicon wafer are not of inFnite length—as so far assumed—but rather the wafer is connected
at both ends to basins of the liquid-plus-particle suspension and the actual pumping device. For
practical applications, not the steady state current in an inFnite pore is of main importance, but
rather the time needed to achieve reasonably large concentration di5erences between the two basins
(see also the discussion below equation (3.7)). We now focus on the case of two identical basins,
each of an extension Uz along the z-axis and of the same cross section as the wafer (perpendicular
to the z-axis). The typical time evolution of the particle density for such a setup is depicted in
Figs. 6.5 and 6.6. These calculations predict a remarkable theoretical separating power of the device.
Its experimental realization—presently under construction [510]—thus appears to be a promising new
particle separation device, possibly superior to existing methods for particles sizes on the micrometer
scale.

92 We remark that also the experimental systems from [38,273,276] (discussed in Section 4.2.1 and at the end of
Section 4.4.1) include a parallelization in two dimensions, while in the present case three dimensions are exploited.
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6.7. Spatially discrete models and Parrondo’s game

The spatially discretized counterpart of our working model (3.1) arises when the state variable
x(t) is restricted to a set of discrete values xi. In the simplest case, the time evolution is given by
a so-called Markov-chain dynamics, i.e. transitions are only possible between neighboring states xi
and xi±1, and they are governed by transition rates ki→ i±1(t), which in general may still depend on
time. As a consequence, the probability distribution Pi := 〈�(xi − x(t))〉 evolves in time according to
a master equation of the form

Ṗi(t) = −[ki→ i+1(t) + ki→ i−1(t)]Pi(t) + ki+1→ i(t)Pi+1(t) + ki−1→ i(t)Pi−1(t) : (6.26)

The spatial periodicity of the system implies that there is an integer l with the properties that

xi+l = xi + L ; (6.27)

ki+l→ j+l(t) = ki→ j(t) (6.28)

for all i and j.
A periodic Markov-chain model (6.26)–(6.28) may arise in several di5erent contexts. The most

prominent is the activated barrier crossing limit as discussed in Section 3.8, i.e. the spatially con-
tinuous dynamics (3.1) is characterized by rare transition events between metastable states xi. In the
simplest (and most common) case l = 1, i.e. there is only one metastable state xi per spatial period
L and the rates are—possibly after temporal coarse graining (see Section 3.8)—independent of time.
While the actual calculation of those rates k± := ki→ i±1 is in general highly non-trivial, once they
are given, the determination of the current and the di5usion coeCcient is straightforward, see (3.55),
(3.56) and the footnote 48.

The problem of calculating the rates ki→ i±1(t) simpliFes a lot if the characteristic time scale
of the driving f(t) and=or y(t) in (3.1) is much larger than the intrawell relaxation time within
any metastable state (but not necessarily larger than the characteristic interwell transition times
1=ki→ i±1(t) themselves). Under these circumstances, an adiabatic approximation like in Section 2.10
can be adopted, with the result that at any given time t, the rates ki→ i±1(t) are given by a Kramers–
Smoluchowski-type expression analogous to (2.45). Comparing (3.1) with (2.34), we see that in those
rate expressions not only the instantaneous e5ective potential Ve5 (x; t) = V (x; f(t)) − xy(t) − xF
(cf. (2.35)) depends on f(t) and=or y(t), but also the locations xmin = xi of the metastable states
(local minima) and of the activated states (local maxima) xmax. Besides the slow variations of f(t)
and=or y(t), the implicit assumptions of this approximation are that the number of metastable states
within one spatial period L is the same for all times t, that their position changes in the course of time
continuously or with not too big jumps, and that the potential barriers between any two of them is
much larger than the thermal energy kBT . Within these restrictions, any spatially continuous class of
ratchets from Section 3.3 immediately entails a spatially discretized counterpart. Especially, we note
that the characteristic features of the di5usion ratchet scheme will be a time-dependent temperature
T (t) in the Kramers–Smoluchowski rates (2.45), while for a Seebeck ratchet (Section 6.1), the
e5ective barriers UVe5 and pre-exponential factors in (2.45) have to be calculated along the lines
of Section 4.3.2.
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Along this general ideology, the spatially discretized on–o5 ratchet scheme (see Section 4.2)
has been worked out in [172,511], while a modiFed on–o5 description of a Feynman ratchet (see
Section 6.2) is due to [478]. As another variation, an asynchronously pulsating on–o5 model
(cf. Section 3.4.2) has been put forward in [197]. In such a model, (6.28) is no longer satis-
Fed and instead within each spatial period L the potential switches independently between its on-
and an o5-state. If these switching events within neighboring periods are correlated or anticorrelated,
the current is enhanced as compared to the completely uncorrelated case [197]. Related, spatially
continuous, asynchronously pulsating ratchet models have been studied in [198–202].

Spatially discretized pulsating ratchet models have been addressed in [129,512], temperature ratch-
ets in [128,129], traveling potential ratchets in [164], and rocking ratchets in [129,172,512], see also
[233,234,236,237,513] for the case of extremely slow rocking.

For biological intracellular transport processes (cf. Sections 4.6 and 7), spatially discretized de-
scriptions arise naturally and have been analyzed in detail e.g. in [8,9,16,22,186,187,514–520].

In all those works, the above-mentioned approximation of the rates ki→ i±1(t) by instantaneous
Kramers–Smoluchowski-type expressions (2.45) have been exploited. The advantage of such an
approach is that closed analytical solutions can often be obtained, especially if the driving f(t),
y(t), and=or T (t) jumps (either periodically or randomly) between only a few di5erent values. Since
the main qualitative Fndings are very similar as for the spatially continuous case (see Sections 4 and
5) we do not discuss these features in any further detail at this place. We only remark that if the
spatially continuous model leads to a vanishing current in the adiabatically slow driving case (e.g. for
=uctuating potential and temperature ratchets), then at least two metastable states xi per period L (i.e.
l¿ 2) are required for a ratchet e5ect in the spatially discrete counterpart [511]. In any other case,
one metastable state xi per period L (i.e. l = 1) is suCcient. Such spatially discretized, adiabatically
driven models with a minimal number l of states per period are sometimes called minimal ratchets
in view of their mathematical and conceptual simplicity.

We emphasize again that while discrete models are usually easier to analyze than their spatially
continuous counterparts, the actual hard problem has now been shifted to justifying such a discretized
modeling and to determine the rates (“phenomenological model parameters”) either from a more
detailed (usually continuous) description (cf. Section 3.8) or from experimental observations.

A second context in which a spatially discretized dynamics (6.26) arises is the numerical method
for solving the originally continuous problem (3.1) which has been introduced in [358] and applied
to various speciFc models in [162,250,366,521,522]. Choosing the rates ki→ i±1(t) according to
the recipe from [358], this numerical scheme approximates the solution of the continuous system
better and better as the number of states l per period increases. Conversely, the often analytically
solvable models with only very few states xi per period L may be still considered as a Frst rough
approximation of the spatially continuous problem.

Another cute application of the discretized on–o5 ratchet scheme has been invented by
Parrondo [523–529]. Namely, the spatially discretized random dynamics for both the on- and the
o5-conFgurations of the potential are re-interpreted as games, and by construction each of these two
games in itself is fair (unbiased). The astonishing phenomenon of the ratchet e5ect then translates
into the surprising observation that by randomly switching between two fair games one ends up
with a game which is no longer fair. This so-called Parrondo paradox is thus in some sense the
game theoretic transFguration of Brillouin’s paradox from Section 2.9. Generalizations are obvious:
For instance, by switching between two games, each (weakly) biased into the same direction, the
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resulting game may be biased just in the opposite direction. Another option is to take as starting
point for the translation into a game a ratchet model di5erent from the on–o5 scheme [530,531],
and so on.

6.8. In9uence of disorder

In this section we brie=y review some basic e5ects which arise if the periodicity of the potential
(3.3) is modiFed by a certain amount of quenched spatial disorder. Our starting point is an “unper-
turbed”, strictly periodic system in the activated barrier crossing limit as discussed in Section 3.8,
i.e. transitions between neighboring spatial “cells” of length L can be described by “hopping”-rates
k+ and k− to the right and left, respectively. Without loss of generality we furthermore assume that
the unperturbed current 〈ẋ〉 in (3.55) is positive, i.e.

k+¿k− : (6.29)

In the simplest case we may now introduce a quenched randomness as follows: For each pair of
neighboring cells we interchange with a certain probability p the original transition rates k+ and k−
to the right and left. For instance, in a piecewise linear “saw-tooth potential” as depicted in Fig. 4.1,
such an interchange of the transition rates can be realized by randomly inverting the orientation of
each single saw-tooth with probability p independently of each other. Without loss of generality we
can restrict ourselves to probabilities

06p6 1
2 : (6.30)

The following basic e5ects have been unraveled by Derrida and Pomeau [233,234]: Upon increas-
ing p the particle current 〈ẋ〉 monotonically decreases from its initial value (3.55) and vanishes for
p¿p1, where

p1 :=
k−

k+ + k−
: (6.31)

More precisely, for p¿p1 the mean displacement 〈x(t)〉 grows asymptotically slower than linearly
with t. The e5ective di5usion coeCcient (3.6) increases monotonically from its unperturbed value
(3.56) and diverges at p = p2, where

p2 :=
k2−

k2
+ + k2−

: (6.32)

For p26p6p3, where

p3 :=

√
k−√

k+ +
√

k−
; (6.33)

a superdi5usive behavior arises (De5 =∞), i.e. the dispersion 〈[x(t)−〈x(t)〉]2〉 grows asymptotically
faster than linearly with t, switching over [532] to a subdi5usive behavior (slower than linear growth
of the dispersion, i.e. De5 = 0) for p3¡p6 1=2. (Note that 0¡p2¡p1¡p3¡1=2.) At least in the
regimes where they are Fnite, the quantities 〈ẋ〉 and De5 are self-averaging, i.e. the same (Fnite)
value is observed with probability 1 for any given realization of the quenched disorder. A simple
intuitive explanation of these results does not seem possible, which may not be so surprising in view
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of the above-mentioned self-averaging issue and other subtle problems of commuting limits in this
context, see [235,532,533] and references therein.

More general, but still uncorrelated randomizations of the transition rates between pairs of neigh-
boring “cells” of length L are given already by Derrida in [234]. A variety of cases with correlated
randomization has been discussed in [534] (see also the review [532]) together with several inter-
esting physical applications.

A bold but apparently quite satisfactory approximative extension beyond the activated barrier
crossing limit has been proposed in [171]: The basic idea is to evaluate, either analytically or
numerically, for the unperturbed (strictly periodic) ratchet dynamics both the current 〈ẋ〉 and the
di5usion coeCcient De5 . Introducing these results for 〈ẋ〉 and De5 into (3.55) and (3.56) yields
formal expressions for the rates k± even though these rates no longer adequately describe the actual
transitions between neighboring “cells”. Assuming that a randomization of the ratchet potential can
still be captured by a corresponding randomization of the formal forward and backward rates k±, one
thus can continue to use Derrida and Pomeau’s formulas [233,234] for an approximative description
of such a randomized ratchet dynamics. For the example of an on–o5 ratchet scheme, a fair agreement
of this approximative approach with accurate numerical simulations has been reported in [171].

Another, more systematic Frst step beyond the activated barrier crossing limit is due to [535], con-
sidering a =uctuating force ratchet with a very general disordered potential V (x) that is (additively)
driven by asymptotically weak symmetric Poissonian shot noise (cf. Section 5.5).

A deterministic (T = 0) rocking ratchet model with quenched spatial disorder has been addressed
in [536]. Similarly as before, the current decreases and the (deterministic) di5usion accelerates with
increasing disorder, but apparently these quantities no longer exhibit the experimentally important
self-averaging property. Results more in accordance with the above described standard scenario of
Derrida and Pomeau are recovered upon including inertia e5ects [396]. A similar overdamped case
but with Fnite T and adiabatically slow rocking has been addressed in [537].

6.9. E<ciency

The issue of eCciency of Brownian motors has recently developed into an entire subFeld of its
own right. Here, we restrict ourselves to a very short overview.

The most widely accepted de8nition of the e<ciency for a ratchet dynamics of the general form
(3.1) is given by the ratio R of the average mechanical work per time unit 〈ẋ〉 F produced by the
“energy transducer” x(t) and the average net power input 〈Pin〉 stemming from the external driving
f(t) and=or y(t), i.e.

R :=
〈ẋ〉F
〈Pin〉 : (6.34)

Both averages in this equation are meant with respect to all random processes and time-periodicities
involved in (3.1) and transients are assumed to have died out. For ergodicity reasons, both aver-
ages can then also be rewritten as long time averages for a single realizations of the stochastic
dynamics (3.1), cf. (3.5). In order to quantitatively calculate the eCciency (6.34) for the di5er-
ent classes of ratchet models (3.1), a very general and elegant framework has been developed by
Sekimoto [321,474,538–540], unifying and putting on Frm grounds the various previously proposed,
model-speciFc expressions for 〈Pin〉 in (6.34).



P. Reimann / Physics Reports 361 (2002) 57–265 177

As pointed out in Section 3.4.2, the origin of a random external driving f(t) and=or y(t) may
be conceived as a thermal heat bath, very weakly coupled to the system variable x(t) in order that
back-coupling (friction-type) e5ects are negligible, 93 but at a temperature much higher than the
temperature T of the thermal noise �(t). From the viewpoint of a Carnot machine, the temperature
T is thus to be associated with the cooler heat bath and the maximally achievable Carnot e<ciency
is practically 100%. If the external driving is not random but periodic, it is quite suggestive that
the same conclusion with respect to the achievable eCciency still carries over.

While it is not yet clear whether eCciency issues are of major relevance in practical applications
of the ratchet e5ect or for intracellular transport processes, their principle interest has stimulated a
considerable amount of theoretical studies. Apparently the Frst such discussion goes once again back
to Feynman’s lectures [2], though the conclusion that under certain conditions the maximal Carnot
eCciency is reached, cannot be upheld 94 against more detailed studies of microscopic Feynman
ratchet models [110,111,474,475,558], see also Section 6.2. For a representative example, a maximal
eCciency of the order of 10−4 has been obtained in [474].

ECciency aspects of photovoltaic and photorefractive e5ects in non-centrosymmetric materials
(see Section 5.6) are surveyed in [28]. Typical values of the eCciency in real materials are found
to be 10−3–10−2, while theoretical situations with up to 100% eCciency are conceivable [28]. The
existence of the so-called reversible ratchet models which achieve in certain limits the maximal
possible eCciency of 100% has also been demonstrated for rocking ratchets 95 in [542,543], for
generalized pulsating ratchets (i.e. neither of the purely =uctuating nor traveling potential type) in
[198,199,201], and for an even more general class of models in [544]. A Frst condition for reaching
the maximal Carnot eCciency of 100% is that the system is at every given time instant in a quasi
equilibrium state [545]. Especially, all temporal variations due to the external driving f(t) and=or
y(t) must be adiabatically slow. A second condition is [198,199,201] that the current 〈ẋ〉 approaches
zero not faster than proportional to the inverse characteristic time scales of f(t) and y(t) in the
adiabatic limit. E.g. for =uctuating potential ratchets and the closely related temperature ratchets
(cf. Section 6.3), the maximal Carnot eCciency cannot be reached since the latter condition is not
met (see Section 4.1).

The eCciency of a Seebeck ratchet model (see Section 6.1) with a temperature T (x) which
varies periodically in space between two di5erent values T1 and T2¿T1, has been addressed in
[470,540,546,547]. According to [470,546], for a suitable choice of the model parameters, an eC-
ciency arbitrarily close to the maximal Carnot eCciency (T2 − T1)=T2 can be reached. The above
mentioned requirement that the system is at any time in a quasi-equilibrium state may then be granted
by the overdamped limit m→ 0, entailing a vanishingly small relaxation time of the particle x(t)
towards local thermal equilibrium. On the other hand, in [540,547] it is argued that Carnot eCciency
is unattainable in such systems. A related model of a non-isothermal electrical circuit with a diode
(thermogenerator, see Section 6.1) has been analyzed from the viewpoint of eCciency in [157].
While this one-diode setup, much like its mechanical Feynman ratchet counterpart, always leads to

93 We remark that Sekimoto’s framework [321,474,538–540] for evaluating the eCciency in (6.34) remains valid even
when such back-coupling e5ects are included, as it is the case, e.g. for the Feynman ratchet model in Section 6.2 or the
molecular motors studied in Section 7.

94 The same misguided method of calculating eCciencies has been adopted in [7], see also [475,476].
95 However, under typical conditions only a few percent are actually reached [493,541].
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an eCciency smaller than the Carnot value, an extended model with two diodes may approach this
theoretical upper limit for the eCciency arbitrarily close [548], demonstrating that even a system
which is simultaneously in contact with more than one heat bath may still operate reversibly, see
also [543].

Universal, i.e. largely model-independent features of eCciencies for ratchet models close to ther-
mal equilibrium (Onsager regime of linear response) have been worked out in [14,478,538,544].
Remarkably, by moving out of the linear response regime into the far from equilibrium realm the
eCciency may not necessarily decrease [544]. Similarly, for some ratchet models, the eCciency may
even increase upon increasing the temperature T of the thermal heat bath both, for systems near
[544] and far from equilibrium [129,522,549], in contrast to what one would expect from a Carnot
eCciency point of view.

As already mentioned, =uctuating potential ratchets and temperature ratchets cannot reach the max-
imal Carnot eCciency. SpeciFcally, the on–o5 scenario leads under typical conditions to eCciencies
of a few percent [198,511,521,522,544]. However, in the case that many on–o5 ratchet are coupled
together (see Section 7.4.4) the eCciency may again reach values of 50% and beyond [14,550].
ECciencies of at most a few percent have also been reported for =uctuating potential ratchets (see
Section 4.3) [129], temperature ratchets (see Section 6.3) [128–130], and coupled rocking ratchets
[551] (see Eq. (9.34)).

Based on experimental measurements of intracellular transport processes, the possibility that the
molecular motor kinesin (cf. Section 7) may reach an eCciency as high as 50% or even 80–95%
is discussed in [519] and [515,516], respectively, see also [300,552].

Other deFnitions of eCciencies than in (6.34) have been introduced and discussed in [12,300,544,
553–559]. Related quantities like entropy production, Kolmogorov information entropy, and algorith-
mic complexity have been explored in [190,478,521,522]. Evidently, with respect to the deFnitions of
such alternative eCciency-type quantities it does not make sense to ask whether they are “right” or
“wrong” (apart from the trivial requirement that they are “well-deFned” in the mathematical sense).
Rather, the crucial question regards their usefulness [544]. For instance, it may be possible to agree
on one such quantity as being a particularly appropriate quality measure in a certain context [12].
In many cases this will indeed be the standard “eCciency for generating force” (6.34). However,
in other cases, it may be important to accomplish a certain task not only by means of a minimal
amount of input energy—as in (6.34)—but in addition within a prescribed, Fnite amount of time.
This constrained optimization task is the basis of the alternative “eCciency of transportation” concept
from [300,555,556], which has been to some extent anticipated in [553], and which is also closely
related to the issue of Fnite-time thermodynamics [560–562]. For further details, we refer to the
above-cited original works, see also at the end of Section 8.4.

7. Molecular motors

In this section we exemplify in detail the typical stochastic modeling procedure by elaborating
the general scheme from Section 4.6 for a particularly important special case of intracellular trans-
port, namely so-called motor enzymes or molecular motors which are able to travel along polymer
Flaments inside a cell. SpeciFcally, we shall focus on molecular motors from a subfamily of the
so-called kinesin superfamily, which are capable of operating individually. For the two other main
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superfamilies of motor enzymes (myosin and dynein) many of the basic qualitative modeling ingredi-
ents remain the same as for kinesin, while the details are di5erent [563,564]; we will brie=y address
the case of molecular motors which only can operate collectively, e.g. the so-called myosin II subfam-
ily, later in this chapter. More involved variants of intracellular transport like rotary mechanochem-
ical energy transducers are treated e.g. in [565–569]. Also not covered by the present section are
“Brownian ratchets”—a notion which has been coined in a rather di5erent context, namely as a pos-
sible operating principle for the translocation of proteins across membranes [121–125]. A collection
of computer animations which visualize several of these intracellular transport processes is available
on the internet under [570].

7.1. Biological setup

The most primitive living cells are the so-called prokaryotes, i.e. cells without a nucleus (mostly
bacteria) [343]. Their interior is basically one large soup without any internal partition. Since prokary-
otic cells are at the same time very small, the intracellular transport of various substances can be
accomplished passively, namely through thermal di5usion. In contrast, eucaryotic cells (the con-
stituents of any multicellular organism) are not only higher organized but also considerably larger
so that passive di5usive transport becomes too ineCcient [571]. Their distinguishing features are
the existence of a cell nucleus (responsible for the storage and transcription of the genetic mate-
rial), many other internal compartments, called organelles, and a network of polymer Flaments—the
“cytoskeleton”—which organizes and interconnects them. These Flaments radiate from a structure
near the nucleus called the centrosome to the periphery of the cell and so support the shape of
the cell. Besides several other intracellular functions, which go beyond our present scope, they act
as a circulatory system, connecting and feeding distinct regions of the cell. They are paths along
which nutrients, wastes, proteins, etc., are transported in packages, called vesicles, by speciFc motor
proteins (mechanoenzymes).

One major type of such polymer Flaments are Fbers of proteins called microtubuli, with the con-
stituent protein “tubulin”—a dimer of two very similar globular proteins (0-tubulin and E-tubulin)
about 4 nm in diameter and 8 nm long [343]. The microtubulus is composed of typically 13 protoFl-
aments (rows of tubulin-dimers) that run parallel to the axis of the Fber. The emerging shape of
the microtubulus resembles that of a hollow, moderately =exible tube with an outer diameter of
about 25 nm, and inner diameter of about 17 nm, and an overall length of up to a few �m. Due to
the asymmetry of the tubulin-dimers, the tube has a polarity, one end exposes only 0-tubulin, and
the other only E-tubulin. On top of that, the tube exhibits a deFnite chirality or helicity since the
dimer-rows of neighboring parallel protoFlaments are shifted against each other.

One speciFc motor enzyme which can travel on a microtubulus and pull along various objects
like chromosomes, viruses, or vesicles with chemicals in it, is the protein “kinesin” [343,563]. The
necessary energy to move against the viscous drag is supplied by the so-called ATPase, i.e. the
exothermic chemical hydrolysis of ATP (adenosine triphosphate) into ADP (adenosine diphosphate)
and Pi (inorganic phosphate). The shape of a single kinesin molecule is rather elongated, about
110 nm in length and about 10 nm in the other two spatial directions. One of its ends consists of a
bifurcated “tail”, capable of grasping the cargo to be carried, then follows a very long rod-shaped
middle segment, the 0-helical coiled-coil stalk, while the other end bifurcates into two identical
globular “heads” or “motor domains” [143,572]. In spite of the nomenclature, the functioning of
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the heads is actually quite similar to that of human legs, proceeding along the microtubulus in
a “step-by-step” or “hand-over-hand” fashion [573]. We emphasize that the comparison with the
walking of a human is common but should not be overstretched: There is evidence that the bound
head in fact produces a rotation that “swings” the second head towards its next binding site [143,563].
The reason is that the kinesin as a hole seems to possess an (approximate) axis of rotational symmetry
by 180◦, implying that we should think of the two heads not as “right and left feet” but rather as
“two left feet” [143]. Each single foot, on the other hand, does not share this (spatial inversion-)
symmetry, it has well distinguishable “heel” and “Fngers”.

Each head comprises in particular a microtubulus-binding site as well as an ATP-binding site,
called the ATP-binding pocket. Accordingly, each head can bind and hydrolyze ATP on its own. The
underlying chemical reaction cycle consists of the following four 96 basic steps (and corresponding
states) with the result of about 20kBT energy gain per cycle [9]: State 1: The motor domain is
interacting with the environment and attached to the microtubulus, but without anything else bound
to it. Transition into state 2: The head binds one ATP molecule out of the environment in its ATP
binding pocket. Transition into state 3: The ATP is broken up into ADP and Pi—the so-called
power-stroke—with the above-mentioned energy gain of about 20kBT . Transition into state 4: The
Pi is released from the ATP binding pocket and simultaneously the aCnity to the microtubulus
decreases dramatically, so that the head typically detaches. Transition into state 1: The ADP is
released, the aCnity to the binding sites (E-tubulin) of the microtubulus becomes again large, with
the result that the head will, after some random di5usion, attach to one of them, and we are back
in state 1.

The “energy factories” of the cell are constantly supplying fresh ATP and removing the used ADP
and Pi, thereby keeping the concentration of ATP inside the cell about 6 decades above its thermal
equilibrium (detailed balance) value, so that the probability of an inverse (endothermic) chemical
cycle, transforming ADP and Pi back into ATP is completely negligible.

It is noteworthy that the heads do not hydrolyze ATP at any appreciable rate unless they interact
with the microtubulus, indicating that at least part of the chemical cycle is intimately coupled to the
binding to a microtubulus [573]. The hydrolyzing step takes place while the head is attached to the
microtubulus; the subsequent release of Pi enables the head to release its hold so that it can take
another step on its journey along the microtubulus. The key to the energy transduction is thus the
large change in aCnity between the heads of the motor protein and the protein Flament on which it
walks. A particularly strong aCnity develops between the microtubulus-binding site of a head and
the E-tubulin monomers. As a consequence, each tubulin dimer can bind at most one head and thus
a single head has to cover the length of two dimers (about 16 nm) during each step of the motor
enzyme along the microtubulus. To complete the picture, it should be mentioned that the motor
enzyme proceeds along the microtubulus in a straight way, it does not “spiral” around the hollow
tube during its journey [143,502,573,575]. Rather it follows with high Fdelity a path parallel to the
protoFlaments so that the helicity of the microtubulus most likely plays no essential role; the main
origin of the spatial asymmetry as far as the kinesin walk is concerned is that of the constituent
dimers of the microtubulus together with that of the binding sites of the single heads. Remarkably,
each given species of the kinesin superfamily can travel only in one preferential direction along the

96 Additional intermediate steps can be identiFed [574] but are usually neglected due to their short lifetimes.
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microtubulus, but di5erent species may move in opposite directions though they may be of striking
structural similarity [143,572,576–579].

Kinesin is a so-called processive motor enzyme, that is, it can operate individually. A single
kinesin molecule can cover a distance of the order of 1�m before it may loose contact with the
microtubulus and di5uses away [563,572,580,581], and this possibly even against an opposing force
of up to 5 pN [142,582]. The reason seems to be on the one hand that the time-interval during which
a single head is detached from the microtubulus while “stepping forward” is relatively short (one
speaks of a high “duty ratio”) and on the other, that the two heads coordinate their actions so that
at least one head is always attached [574]. A striking manifestation of this coordination is the fact
[143,563] that apparently it is the energy gain out of the power stroke of the “front” head which
triggers the “rear” head to make a step forward.

For a more detailed exposition of the biophysical basics and experimental Fndings we refer to the
excellent recent monograph by Howard [519].

7.2. Basic modeling-steps

7.2.1. Biochemical framework
Our Frst step in modeling a motor enzyme consists in recalling the description of a general

biochemical reaction [185,583–589]: In principle, the starting point should be a quantum chemical
ab initio treatment of all the electrons and atomic nuclei of the molecules involved in the reac-
tion. Due to the clear cut separation of electron and nuclei masses, the electron dynamics can be
adiabatically eliminated for each Fxed geometrical conFguration of the nuclei (Born–Oppenheimer
approximation [584,586]) with the result of an e5ective potential energy landscape for the nuclei’s
motion alone. In principle, there are many quantum mechanical energy eigenstates of the electrons
for any Fxed conFguration of the nuclei, giving rise to a multitude of possible “potential energy
surfaces” in the conFguration space of the nuclei [584,586–588]. We assume that only one of them
(the ground state energy of the accompanying electrons) is relevant in our case and especially is
always well separated from all the other potential energy surfaces. In other words, the e5ective
potential landscape governing the dynamics of the nuclei is single valued and no excitations of
the electronic states are involved in the reaction cycle. Since the nuclei are already fairly massive
objects, quantum mechanical e5ects will often play only a minor role for their dynamics, and we
can focus on an approximate classical treatment. Indeed, while for very simple chemical reactions,
a semiclassical or fully quantum chemical treatment may be necessary and still feasible, classical
molecular dynamics is the only practically realistic approach in the case of a complex biomolecular
system with hundreds or thousands of atoms, as we consider it here. In other words, all the relevant
quantum mechanics of the system is assumed to be already encapsulated in the e5ective potential in
which the nuclei move. 97

So far our description still comprises both the molecular motor 98 and its environment, typically
some aqueous solution containing in particular ATP, ADP, and Pi molecules in certain concentrations.
The role of the environment is twofold: On the one hand, it acts as a heat bath, giving rise to

97 Several of the above assumptions are in fact not necessary for the validity of our Fnal reduced description (see below),
i.e. after the elimination of the (fast) bath degrees of freedom and the discretization of the chemical state variables.

98 More precisely: the compound motor–Flament system, see below.
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randomly =uctuating forces and to the associated damping (energy dissipation) mechanism in the
molecular motor’s dynamics. On the other hand, it represents a source and sink of the reactants
(ATP molecules) and products (ADP and Pi) of the chemical reaction cycle.

The in=uence of that part of the environment which acts as thermal heat bath can be taken into
account along the same line of reasoning as in Sections 2.1.2 and 3.4.1. The result is a classical
stochastic dynamics for the motor enzyme with a certain type of random noise and dissipation term,
possibly supplemented by a renormalization of the e5ective potential landscape and the nuclear
masses [92,93]. Under the assumption that the typical potential barriers are large compared to the
thermal energy kBT , the conFgurations of the motor enzyme (deFned by the coordinates of the
nuclei) will be restricted for most of the time to the local minima (metasable states) of the potential
landscape and small =uctuations there about, 99 while transitions between di5erent local minima are
rare events.

In the case of simple chemical reactions, these transitions furthermore occur practically always
along the same “most probable escape path”, called also “chemical pathway”, “reaction path”, or
“intrinsic reaction coordinate” in this context [583,587,588]. One thus can describe all the essential
conFgurations of the reaction in terms of this single intrinsic reaction coordinate and small (thermal)
=uctuations there about. The latter can again be taken into account by means of dissipation and
=uctuation terms in complete analogy to the above-mentioned modeling of the thermal heat bath
[92,93,185]. As a result, a renormalization of the potential, the noise, the dissipation mechanism,
etc., in the stochastic dynamics of the “intrinsic reaction coordinate” will arise, but the main point is
that Fnally an e5ective description of the entire reaction in terms of a single generalized coordinate
(also called collective coordinate, state variable or reaction coordinate) can be achieved, see also
Section 3.4.1.

In the case of complex biomolecules such as a motor enzyme, di5erent possible paths between
the various metastable states may be realized with non-negligible probability [574,589]. In such a
case, more than one collective coordinate (state variable) has to be kept in order to admit a faithful
representation of all the possible pathways in the reduced description. Moreover, only some of those
state variables can be identiFed with chemical reaction coordinates, while others are of a more
mechanical or geometrical nature (see below). Finally, these concepts can also be generalized to
cases without a clear cut distinction of metastable states and rare transition events, i.e. some of
the (non-chemical) state variables may be governed by a predominantly relaxational or di5usive
dynamics.

Often, an equivalent way to discriminate relevant (generalized) coordinates which should be ex-
plicitly kept from “irrelevant noise” which can be savely eliminated is according to their characteristic
time scale [93,150,186] (see also Section 3.4.1): On the smallest time scales (femtoseconds) the mo-
tion of the molecule consists of fast but small =uctuations, while signiFcant conformational changes
will develop only on a much slower time scale of milliseconds.

7.2.2. Mechanical and chemical state variables
For realistic systems, the above program—starting with the full quantum mechanical problem

and ending with a simple approximate dynamics in terms of a few relevant classical stochastic
variables—cannot be practically carried out. Therefore, a phenomenological modeling, roughly based

99 Trivial neutral translational and rotational degrees of freedom are assumed to have been eliminated already.
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on the above intuitive picture and supplemented by experimental evidence is necessary, see also
Section 3.4.1. In the case of a motor enzyme like kinesin, the picture one has in mind is the
following: The actual chemical conversion of ATP into ADP and Pi takes place in relatively well
deFned and small regions of the enzyme—the ATP binding pockets of the two heads. This chemical
cycle is captured by a set of chemical reaction coordinates or state variables y. On the other hand,
the much larger conformational changes of the enzyme as a whole are represented by a di5erent set
of “mechanical” 100 collective coordinates or state variables x. Note that both y and x are ultimately
describing nothing else than the geometrical conFguration of the nuclei, but the distinction between
chemical and mechanical coordinates are both conventional and suggestive. 101

Particularly diCcult to explicitly derive from Frst principles is the central feature of the enzymatic
chemical reaction cycle, namely that reactant and product molecules can be exchanged with the
environment. Typically, such events are possible (with non-negligible probability) only in certain
speciFc conFgurations of the enzyme and it is assumed that the collective coordinates (x; y) are ca-
pable to faithfully monitor such events and, in particular, of whether some reactant=product molecule
is presently attached to one of the heads or not. 102 The binding probabilities for both reactants and
products depend on their concentrations in the environment of the enzyme. The fact that these de-
pendences should be simply proportional to the respective concentrations is very suggestive and we
will take it for granted in the following without any further derivation from a more fundamental
description.

It is quite plausible that whether or not one or both heads of the kinesin are attached to the
microtubulus will have a signiFcant in=uence on both, the chemical reaction process and the me-
chanical behavior [519,582]. A priori, we should therefore not speak of an isolated kinesin but
rather of the compound kinesin–microtubulus system. However, similar as for the previously dis-
cussed attachment and detachment of reactants and products, the attachment and detachment of the
heads as well as the in=uence of the microtubulus in the attached state can be represented by the
relevant collective coordinates (x; y) of the motor enzyme alone, if they have been appropriately
chosen.

7.2.3. Discrete chemical states
We recall that the “mechanical coordinates” x describe conFgurational changes of the enzyme

as a whole, while the actual chemical ATPase is monitored by the “chemical coordinates” y
and takes place in the rather restricted spatial regions of the ATP binding pockets. One there-
fore expects that transitions between di5erent “chemical states” y are accomplished during rather
short time intervals in comparison with the typical time scales on which the global geometrical

100 “Mechanical” may refer here either to the fact that x represents the global geometrical shape of the molecule, or to
the fact that some mechanical “strains” in the molecule, which have been created by the chemical transitions, may be
released through a relaxational dynamics of x.

101 Note that the same applies for the (already eliminated) “irrelevant” degrees of freedom both of the environment
and of the molecular motor itself: The dissipation and =uctuation e5ects, to which they give rise, may be either due
to “mechanical” processes (vibrations, elastic and=or inelastic collisions, etc.) or due to chemical processes (making and
braking of chemical bonds, etc.).

102 It is indeed plausible that the set of possible geometrical shapes of the enzyme while a reactant molecule is bound
will be satisfactorily disjoint from the corresponding set in the absence of the reactant, and similarly for the products,
provided the coordinates (x; y) have been suitably chosen.
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conFguration x notably changes [519]. As a consequence, one can neglect the details of the transi-
tions between chemical states itself and focus on a discrete number of states, m= 1; 2; : : : ; Mtot, with
certain “instantaneous” transition rates km→m′(x) between them, which in general still depend on the
conFguration x. Similarly, the potential landscape, which x experiences, still depends on the “chemi-
cal state” m. Formally, the transition rates km→m′(x) are those between the local minima with respect
to the y-coordinates at Fxed x, which, however, need not necessarily be local minima in the full
x–y-space.

In doing so, it is taken for granted that a well-deFned, relatively small number Mtot of discrete
“chemical states” exists and that all transitions between them can be described in terms of rates
km→m′(x). Though such an approach is known to be problematic in other types of proteins due
to their general “glass-like” properties and especially for the binding and unbinding processes of
reactants and products in “pockets” of the proteins [590,591], in the context of motor enzymes like
kinesin it has to our knowledge not been theoretically or experimentally challenged so far and we
will therefore follow the general belief in its adequacy.

At this point it should be emphasized again that one motor enzyme incorporates two “heads”, each
endowed with an ATP-binding pocket and able to loop through its own chemical reaction cycle.
Thus the set of “chemical coordinates” (vectors) y is in fact composed of two subsets (scalars),
y = (y1; y2), one for each head, and similarly the discretized states are of the form

m = (m1; m2); m1;2 ∈{1; 2; : : : ; M} : (7.1)

For instance, for the standard model for the ATP reaction cycle consisting of M = 4 distinct states
(cf. Section 7.2.1), the compound set of states m will comprise Mtot = M 2 = 16 elements. Note
that exactly simultaneous reaction steps in both heads have negligible probability, i.e. only indices
m=(m1; m2) with m′ =(m′

1; m2) or m′ =(m1; m′
2) are possible in km→m′(x). In order to further reduce

the number of non-trivial transition rates km→m′(x), one common and suggestive assumption [519]
is that only transitions between “neighboring” states within either of the two chemical cycles occur
with non-negligible probability, i.e.

km→m′(x) = 0 if m′ 
∈ {(m1 ± 1; m2); (m1; m2 ± 1)} ; (7.2)

where states m1 which di5er by a multiple of M are identiFed, and similarly for m2. In other words,
each of the two chemical reaction cycles loops through a deFnite sequence of states, bifurcations
into di5erent chemical pathways are ruled out.

Note that the cooperativity between the two heads, mentioned at the end of Section 7.1, is mediated
by the geometrical conFguration x and will manifest itself in the x-dependence of the rates, possibly
reducing the number of non-trivial transition rates (7.2) once again.

7.3. Simpli8ed stochastic model

While the so far reasoning and approximations have been relatively systematic and microscopically
well founded, further possible simpliFcations are necessarily of a more drastic and phenomenological
nature.
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In concrete models, the geometrical conFguration of the motor is usually assumed to be charac-
terized by a single 103 relevant state variable x. One convenient choice for x turns out to be the
position of the molecular motor along the microtubulus. To be precise, x may for instance be chosen
to represent the position of the common center of mass of the two heads. Indeed, knowing that the
motor enzyme walks in a step-by-step fashion straight along the E-tubulin sites of one and the same
protoFlament, it is suggestive that the geometrical conFguration of each of the two heads can be
reconstructed quite faithfully from the knowledge of the position x (the rest of the motor molecule
(“tail” and “middle segment”, cf. Section 7.1) does not seem to play a signiFcant role for the actual
“motor function”).

Once the relevant collective chemical and mechanical state variables have been identiFed along
the above line of reasoning, their “thermal environment” consists of two parts (cf. Section 7.2.1):
Namely, on the one hand there are the huge number of “irrelevant” degrees of freedom of the liquid
which surrounds the protein, and on the other hand there are those of the protein itself and of the
microtubulus with which it interacts. Upon eliminating them along the lines of Section 3.4.1, their
e5ects on the discretized chemical state variables are captured by the phenomenological rates (7.2).
However, their e5ects on the mechanical state variable x are more involved due to the fact that
x does not simply represent the cartesian coordinate of a point particle but rather the complicated
geometrical conFgurations of the entire motor protein and in this sense is a generalized coordinate.
As a consequence, the so-called solvent friction, caused by the eliminated degrees of freedom of
the surrounding =uid, comprises not only a Stokes-type viscous friction against straight translational
motion but also a damping force against conFgurational changes of the geometrical enzyme structure.
Similarly, the so-called protein friction [9,519,592], caused by the eliminated degrees of freedom of
the enzyme and the microtubulus, is composed of two analogous partial e5ects: on the one hand,
a viscous drag against straight translational motion due to the continuous making and breaking of
bonds between the motor and the microtubulus; on the other hand an e5ective “internal” frictional
force against changes of the geometrical conFguration. All these friction mechanisms are in general
not invariant under arbitrary translations of x and are therefore explicitly x-dependent. 104 The same
carries over to the thermal =uctuations which they bring along (“solvent noise” and “protein noise”),
see also Section 3.4.1. Since quantitatively the e5ects of protein friction are typically comparable or
even more important than those of solvent friction [9,519], a quite signiFcant spatial inhomogeneity
of the friction and the thermal noise is expected [553]. We recall that the microscopic origin of
both solvent and protein friction is partly of a mechanical (geometrical) nature (mainly collisions
and vibrations, respectively) and partly due to the making and breaking of numerous weak chemical
bonds, as detailed in Section 7.2.1. On an even more basic level, all these distinctions become again
blurred since the ultimate origin of friction is always the “roughness” of some e5ective potential
energy landscape.

103 In other words, each “head” has its own (discrete) chemical state variable (cf. Eq. (7.1)), but the geometrical shape
of the entire motor (including the two “heads”) is described by a single (continuous) state variable x.

104 Regarding the Stokes-type viscous friction, we recall that x represents not only the position but also the changing
geometrical shape of the motor molecule. As mentioned in Section 6.4.2 we furthermore expect corrections of Stokes
friction due to the nearby microtubulus, which are again in general x-dependent.
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7.3.1. Stochastic ratchet dynamics
On the basis of the above considerations, the simplest working model for the stochastic dynamics

governing the mechanical coordinate (position) x(t) is of the form


ẋ(t) = −V ′
m(x(t)) + F + �(t) ; (7.3)

where m=m(t) is understood as a stochastic process, with states (7.1) and transition rates km→m′(x).
The assumption of a Frst order (overdamped) dynamics in time is justiFed as usual by the fact that
on these small scales inertia e5ects can be safely neglected [186]. The damping coeCcient 
 and the
random noise �(t) model the e5ects of the environment and of the eliminated fast degrees of freedom
of the molecular motor itself (possibly also of the microtubulus) and both these contributions are
treated as a single thermal bath. Under the assumption that the origin of �(t) is a very large number
of very fast processes (on the time scale of x) we can model those =uctuations as a Gaussian noise
of zero mean and negligible correlation time

〈�(t)�(s)〉 = 2
kBT�(t − s) : (7.4)

In fact, already the very form of the dissipation assumed on the left-hand side of (7.3) leaves no
other choice for the noise �(t) at equilibrium, see Section 3.4.1. A further assumption implicit in
(7.3) is the independence of the coupling to the heat bath 
 (see below (2.5)) from the chemical
state m and the geometrical conFguration x. The former simpliFcation is plausible in view of the
fact that the chemical processes only involve a very restricted region of the entire motor enzyme. On
the other hand, the x-independence of 
 is not obvious in view of our above considerations about
solvent and protein friction, but can be justiFed as follows: First, inhomogeneous friction, and in
particular protein friction, can be modeled quite well by means of potentials Vm(x) in (7.3) with a
suitably chosen “roughness” on a very “Fne” spatial scale. After a spatial coarse graining, only the
broader structures of the potential survive while the initially homogeneous “bare” friction is dressed
by an inhomogeneous renormalization contribution. A second possibility consists in a change of
variable 105 as detailed in Section 6.4.2.

Note that 
 accounts for the coupling of the thermal environment (fast degree of freedom) of
the molecular motor only. The additional slow variable representing the cargo of the motor can be
accounted for [582] via a contribution of the form −〈ẋ〉
cargo to the force F in (7.3) under the tacit
but apparently realistic assumption that its connection to the motor (via “tail” and middle segment”,
cf. Section 7.1) is suCciently elastic [505,506,565]. Although the cargo is typically much bigger
than the motor itself, this viscous drag force seems negligibly small [582] in comparison with the
intrinsic friction of the motor, modeled by 
ẋ(t) in (7.3).

The deterministic mechanical forces in (7.3) on the one hand, derive from an e5ective, free-energy
like potential Vm(x) and on the other hand, leave room for the possibility of an externally applied
extra force F . Originating from the potential energy landscape in which the nuclei of the motor and

105 In this case, the transformed potentials in (7.3) remain periodic but in general pick up an F-dependence, which we
neglect for the sake of simplicity (see below).
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its environment move, the e5ective (renormalized) potential Vm(x) in addition accounts for some of
the e5ects of the eliminated fast degrees of freedom. The approximate independence of this e5ective
potential Vm(x) from the external load F is assumed here for the sake of simplicity 106 [552,593–
595]. On the other hand, the dependence of the potential on the chemical state m is crucial. The
latter in conjunction with the x-dependence of the chemical reaction rates km→m′(x) is called the
mechanochemical coupling mechanism of the model motor enzyme, decisive for the chemical to
mechanical energy transduction. 107 The underlying picture is that certain chemical reaction steps
take place preferably or even exclusively while the molecular motor has a speciFc geometrical shape
x. In turn, certain mechanical relaxations of strains or thermally activated conFgurational transitions
may be triggered or made possible only after a certain chemical reaction step has been accomplished.

Clearly, the dynamical behavior of the motor enzyme is invariant after a step of one head has been
completed if at the same time the chemical states m1; m2 of the two heads are exchanged [143,596].
This invariance under a displacement x �→ x + L and simultaneously (m1; m2) �→ (m2; m1) has to be
respected by the potentials Vm(x) and the rates km→m′(x),

Vm(x + L) = V Wm(x) ; (7.5)

km→m′(x + L) = k( Wm→m′)(x) ; (7.6)

where the bar denotes the exchange of the vector components:

(m1; m2) := (m2; m1) ; (7.7)

and where the spatial period L is given by the length of one tubulin dimer (about 8 nm). Conse-
quently, the functions Vm(x) and km→m′(x) are invariant under x �→ x + 2L without any change of
the chemical states.

The polarity of the microtubulus, on which the motor walks, re=ects itself in a generic spatial
asymmetry of the potential Vm(x) as well as of the rates km→m′(x). Note that on top of that, there
is also an intrinsic asymmetry of the motor domains (but not of the entire enzyme, see Section 7.1):
If one detaches a motor domain from the microtubulus, turns it around by 180◦, and puts it back
on the microtubulus, no invariance arises [143,577,578], that is, re=ection symmetry is broken. In
other words, the asymmetry of the microtubulus is necessary to make manifest the asymmetry of the
motor, while the asymmetry of the compound system is caused and maybe even mutually enhanced
by both [17,597].

The stochastic dynamics (7.3) as it stands is a convenient starting point for numerical simu-
lations (cf. Section 2.2) but not for quantitative analytical calculations. Exactly like for the =uc-
tuating potential ratchet model in Eqs. (4.12), (4.13), one obtains the following master equation

106 As far as x describes the center of mass of the molecular motor, the simple F-dependence on the right-hand side of
(7.3) is fully justiFed. However, in so far as x at the same time accounts for the geometrical shape of the motor molecule,
the relation between position and shape and hence the e5ective potentials Vm(x) are expected to change upon application
of a force F .

107 The F-independence of the rates km→m′(x) (and a forteriori of the number Mtot of chemical states) is plausible on the
basis of the physical picture from Section 7.2.3 (the chemical processes are spatially localized and thus involve negligibly
small changes of the geometrical conFguration of the motor molecule).
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(reaction–di5usion equation) equivalent to (7.3):

9
9t Pm(x; t) =

9
9x

[V ′
m(x) − F]Pm(x; t)



+

kBT



92

9x2Pm(x; t)

−Pm(x; t)
∑
m′

km→m′(x) +
∑
m′

Pm′(x; t)km′ →m(x) ; (7.8)

where Pm(x; t) is the joint probability density that at time t the chemical state is m and the motor
enzyme is at the position x, with normalization

∑
m

∫
dx Pm(x; t)=1. In order to technically simplify

matters one deFnes similarly as in (2.22) reduced densities

P̂m(x; t) :=
1
2

∞∑
n=−∞

{Pm(x + 2nL; t) + P Wm(x + 2(n + 1)L; t)} : (7.9)

The reduced densities satisfy the same master equation (7.8) but are periodic in x with period 2L
and normalization∑

m

∫ 2L

0
dx P̂m(x; t) = 1 : (7.10)

Symmetries (7.5), (7.6) furthermore imply that

P̂m(x; t) = P Wm(x + L; t) = P̂m(x + 2L; t) : (7.11)

Once P̂m(x; t) is determined, the average speed of the motor enzyme follows along the same line
of reasoning as in Section 2.3 as 108

〈ẋ〉 =
1



[
F −

∑
m

∫ 2L

0
dx V ′

m(x)P̂m(x; t)

]
: (7.12)

A further interesting quantity is the rate rATP = rATP(t) of ATP-consumption per time unit, given by

rATP =
∑
m;m′

@ATP
m;m′

∫ 2L

0
dx {P̂m(x; t) km→m′(x) − P̂m′(x; t)km′ →m(x)} ; (7.13)

where @ATP
m;m′ is the indicator function for ATP-binding transitions m→m′. For example, using the

labeling of the chemical states from Section 7.2.1 for the standard ATP-hydrolysis cycle with M = 4
states, we have

@ATP
m;m′ =




1 if m = (1; m2) and m′ = (2; m2) ;

1 if m = (m1; 1) and m′ = (m1; 2) ;

0 otherwise :

(7.14)

A comparison of the above model setup with the working model from Section 3.1 very obviously
establishes a close connection between our present section about molecular motors and the general

108 We recall that the argument t in 〈ẋ〉 is omitted (cf. (3.4)) since in most cases one is interested in the steady state
behavior with P̂m(x; t) = P̂

st
m(x). The same applies for the rate rATP = rATP(t) in (7.13).
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framework for our studies of ratchet models, especially the class of pulsating ratchets 109 according
to the classiFcation scheme from 110 Section 3.3. However, there is also one important point in which
the present model goes beyond the latter general framework. Namely, there is a back-coupling of
the state-variable x(t) to the “potential =uctuations” m(t) through the x-dependence of the transition
rates km→m′(x). Especially, the statistical properties of the potential =uctuations m(t) can no longer
be assumed a priori as stationary. We will show later in Section 7.4.2 that far away from equilibrium
an e5ective x-independence of the potential =uctuations m(t) may arise nevertheless, entailing sta-
tionarity of their statistical properties in the long-time limit, i.e. a veritable pulsating ratchet scheme
is recovered.

7.3.2. Nonequilibrium chemical reaction
At thermal equilibrium, the concentrations of ATP, ADP, and Pi are not independent, their ratio

C0
ATP=C

0
ADPC

0
Pi

satisFes the so-called mass action law. Especially, the numerical value of this ratio
must be independent of whether any motor enzymes (acting as catalyst) are present or not. Since
this represents a single constraint for three variables, there still remains a freedom in the choice of
two out of the three equilibrium concentrations C0

ATP, C0
ADP, and C0

Pi
. We consider an arbitrary but

Fxed such choice from now on. Since the system is an equilibrium system, the stochastic dynamics
has furthermore to respect the so-called condition of detailed balance [98–101,148–152]. For our
speciFc model (7.3) this condition can be readily shown to imply the following relation between
the transition rates km→m′(x) and the corresponding potentials Vm(x) and Vm′(x) for any pair of
chemical states m and m′:

km→m′(x)
km′ →m(x)

= exp
{
Vm(x) − Vm′(x)

kBT

}
: (7.15)

Thus, one of the two rates in (7.15) can be considered as a free, phenomenological function of the
model, while the other rate is then Fxed. Note that the appearance of negligibly small rates in (7.2)
as well as the symmetry relations (7.5), (7.6) are still compatible with (7.15).

The salient point is now to clarify what is meant by saying that one goes “away from equilibrium”
in our present context. Meant is, that as far as the heat bath properties of the environment (random
=uctuations and energy dissipation mechanism) are concerned, nothing is changed as compared to the
thermal equilibrium case. The only things which change are the concentrations of reactants and=or
products [598].

For instance, if the ATP concentration CATP is changed away from its equilibrium value C0
ATP,

then all the rates km→m′(x) remain unchanged except those which describe the binding of ATP
to one of the two heads of the molecular motor. As discussed in Section 7.2.2 these rates simply

109 The driving f(t) of the pulsating potential V (x; f(t)) is denoted here by m(t) and the pulsating potential itself
by Vm(x) = Vm(t)(x) (cf. (3.1) and below (7.3), respectively). Moreover, m(t) is here a discrete and—in general—
two-dimensional state variable (cf. (7.1)), though in most concrete models (see Sections 7.4–7.6) again a simpliFed,
e5ectively one-dimensional description will be adopted.

110 It may be worth to recall that for traveling potential ratchets and their descendants (Sections 4.4 and 4.5) a broken
symmetry of the potential is not necessary for directed transport, though for real molecular motors this symmetry will be
typically broken.
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acquire an extra multiplicative factor of the form CATP=C0
ATP, i.e. (7.15) is generalized 111 to

km→m′(x)
km′ →m(x)

=
[
1 +

(
CATP

C0
ATP

− 1
)

@ATP
m;m′

]
exp

{
Vm(x) − Vm′(x)

kBT

}
; (7.16)

where @ATP
m;m′ is the ATP-binding indicator function from (7.14). Similar modiFcations arise if the

concentrations of ADP and Pi are changed. However, in order to describe the real situation one
may without loss of generality, assume that these concentrations have already their correct value
due to our choice of C0

ADP and C0
Pi

. In doing so, it follows from the quantitative biological Fndings
mentioned in Section 7.1 that CATP has to be chosen about six decades beyond its equilibrium value
C0

ATP:

CATP

C0
ATP

� 106 : (7.17)

From the conceptual viewpoint we are thus facing the following interesting setup of a far from
equilibrium system: On one hand, the system is in contact with a thermal equilibrium heat reservoir
as far as dissipation and =uctuations are concerned. On the other hand, it is in contact with several
reservoirs of reactant and products with concentrations which are externally kept far away from
equilibrium. All these various reservoirs are physically localized at the same place but the e5ects
due to their direct interaction with each other is practically negligible. Only the indirect interaction
by way of the motor molecules (catalysts) is relevant.

7.4. Collective one-head models

At this stage, the number of free, phenomenological functions in (7.8) is still very large. There
is little chance to make a convincing guess for each of them on the basis of our present knowledge
about the structure and functioning of the real motor enzyme, while for Ftting the dynamical behavior
of the model to experimental curves, the available variety and accuracy of measurements is not
suCcient. Our next goal must therefore be to reduce the e5ective number Mtot of relevant chemical
states.

7.4.1. A.F. Huxley’s model
The most prominent such simpliFcation goes back to Huxley’s 1957 paper [4] and consists in the

assumption of one instead of two heads per motor enzyme. In our model (7.3) this means that m
is no longer composed of two “substates”, see Eq. (7.1), but rather is a scalar state variable with
Mtot = M values

m∈{1; 2; : : : ; M} : (7.18)

111 Without discretizing the chemical state variable(s) (or equivalently, assuming that a separation of time-scales exists
such that a rate description is justiFed) the proper reformulation of a relation like in (7.16) does not seem possible, see
also Section 4.6 and [186].
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Likewise, x now represents the center of mass of a single head. As a consequence, symmetries (7:5),
(7:6) become

Vm(x + L) = Vm(x); km→m′(x + L) = km→m′(x) (7.19)

and Eqs. (7.9)–(7.11) are replaced by

P̂m(x; t) :=
∞∑

n=−∞
Pm(x + nL; t) ; (7.20)

P̂m(x + L; t) = P̂m(x; t) ; (7.21)

M∑
m=1

∫ L

0
dx P̂m(x; t) = 1 : (7.22)

Furthermore, Eqs. (7.12) and (7.13) assume the form

〈ẋ〉 =
1



[
F −

M∑
m=1

∫ L

0
dx V ′

m(x)P̂m(x; t)

]
; (7.23)

rATP =
∫ L

0
dx {P̂1(x; t)k1→ 2(x) − P̂2(x; t)k2→ 1(x)} : (7.24)

Finally, all rates km→m′(x) with m′ 
=m±1 are zero according to (7.2), and for m′=m±1 Eq. (7.16)
takes the form

km→m′(x)
km′ →m(x)

=
[
1 +

(
CATP

C0
ATP

− 1
)

�m;1�m′ ;2

]
exp

{
Vm(x) − Vm′(x)

kBT

}
; (7.25)

where the ATP binding transition is assumed to be m= 1→m′ = 2 and where states which di5er by
a multiple of M are identiFed.

A second ingredient of Huxley’s model is a “backbone” to which a number N of such single
headed motors is permanently attached. The emerging intuitive picture is a centipede, walking along
the polymer Flament. The interaction of the single-headed motors is mediated by the common back-
bone, assumed rigid and moving with constant speed 〈ẋ〉, but otherwise they are considered as
operating independently of each other. We may then concentrate on any of the single heads and
without loss of generality denote the site where this speciFc head is rooted in the backbone by 〈ẋ〉t.
In physical terms, we are dealing with a mean 8eld model (N →∞), described by an arbitrary but
Fxed reference head according to (7.3), where the potentials Vm(x) and the rates km→m′(x) may, in
general, acquire an additional dependence on the backbone site 〈ẋ〉t. The possible di5erence between
the center of mass of the head x and the point 〈ẋ〉t where it is attached to the backbone may, for
instance, re=ect a variable angle between the head’s length axis and the polymer Flament, similarly
to a human leg while walking. Thus, we may also look upon 〈ẋ〉t as an additional relevant (slow)
mechanical state variable of the motor. However, no extra equation of motion for this coordinate is
needed since it already follows in the spirit of a mean Feld approach from the behavior of the other
relevant mechanical state variable x. For instance, a term of the form A(x − 〈ẋ〉t)2 in the potentials
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Vm(x) models a harmonic coupling of the head to the uniformly advancing backbone, with spring
constant A. As in any mean Feld model, the characteristic feature is the appearance of an a priori
unknown “order parameter”, 〈ẋ〉 in our case, which has to be determined self-consistently in the
course of the solution of the model (7.3), (7.12) (for an explicit example see (7.28), (7.29) below).
We emphasize that for a rigid backbone, in the limit N →∞ Huxley’s mean Feld approach is not
an approximation but rather an exact description because the interaction between the single motors
is of inFnite range.

We remark that such a model of N single headed motors with a mean Feld coupling through a
rigid “backbone” may even be acceptable as a rough approximation in the case of a single kinesin
molecule. Admittedly, the number N = 2 of involved heads makes a mean Feld approximation
somewhat questionable. On the other hand, taking into account that a rather “heavy” load is attached
to the motor, may render the assumption of an uniformly moving backbone not so bad [582]. On
top of that, the cooperativity of the two heads in the real kinesin is at least roughly incorporated
into the model through their interaction via the backbone and through the implicit assumption that
the motor will not di5use away from the microtubulus even if both heads happen to take a step at
the same time.

More suggestive is the case when an appreciable number N of single motor molecules truly coop-
erate. This may be a couple of kinesins which drag a common “big” cargo. More importantly, there
exist motor enzymes di5erent from kinesin which indeed are interconnected by a backbone-like
structure by nature. Examples are the so-called myosin enzymes, walking on polymer Flament
tracks called actin, thereby not carrying loads but rather playing a central role in muscular con-
traction [343,563,571]. While the quantitative and structural details are di5erent from the kinesin–
microtubulus system, the main qualitative features of the myosin–actin system are suCciently similar
[577,599,600] such that the same general framework (7.2)–(7.12) is equally appropriate in both
cases. 112 Though a single myosin enzyme again consists of two individual motor domains, their co-
operativity seems not so highly developed as for kinesin [577,602] and therefore the above-mentioned
mean Feld approximation for a large number N of interacting single heads appears indeed quite
convincing.

In his landmark paper [4], Huxley proposed a model of this type without any knowledge about
the structural features of an individual motor enzyme. It is not diCcult to map the slightly di5erent
language used in his model to our present framework, but since the details of his setting cannot be
upheld in view of later experimental Fndings, we desist from explicitly carrying out this mapping
here. While the model is apparently in satisfactory agreement with the main experimental facts
available at that time, Huxley himself points out [4] that “there is little doubt that equally good
agreement could be reached on very di5erent sets of assumptions, all equally consistent with the
structural, physical and chemical data to which this set has been Ftted. The agreement does however
show that this type of mechanism deserves to be seriously considered and that it is worth looking
for direct evidence of the side pieces”.

112 Intriguingly enough, certain species of the myosin superfamily (e.g. the so-called myosin V subfamily) show again
a behavior similar to kinesin [563,601]. In the following we always have in mind collectively operating myosin species
(the myosin II subfamily).
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7.4.2. Free choice of chemical reaction rates
One speciFc point of Huxley’s model is worth a more detailed discussion since it illustrates a

much more general line of reasoning in the construction of such models. In doing so, we Frst recall
that we are dealing with a single head motor model described by M = 4 (scalar) chemical states
m: (1) the head without anything bound to it; (2) the head with an ATP bound; (3) the head with
an ADP and a Pi bound; and (4) the head with an ADP bound. The chemical state variable travels
back and forth between neighboring states of this cycle according to the transition rates km→m′(x),
respecting (7.25) if m′ =m±1 and being zero otherwise. For the case of kinesin, we have discussed
at the beginning of Section 7.1 in addition the “aCnity” between head and Flament in each state,
which essentially tells us whether the head is attached to the Flament or not in the respective state,
and which has to be taken into account in the concrete choice of the respective model potentials
Vm(x). We remark that this correspondence between states and aCnity is somewhat di5erent for
myosin [9] and again di5erent in Huxley’s model, but will not play any role in the following, since
it only regards quantitative, but not qualitative properties of the potential Vm(x).

As a Frst simpliFcation, Huxley postulates a 3-state model, in which m = 2 and 3 in our above
scheme are treated as a single state, and the question arises of whether and how this can be justiFed,
at least in principle. One possible line of reasoning goes as follows: Aiming at a uniFcation of m=2
and 3 means in particular that we should choose V2(x)=V3(x) and thus k2→ 3(x)=k3→ 2(x) according
to (7.25). Since there are no further a priori restrictions on the choice of these rates, we may take
them as independent of x and very large. 113 Thus, as soon as the system reaches either state 2
or 3 it will be practically instantaneously distributed among both states with equal probability. One
readily sees that the two states can now be treated as a single “superstate” if the two transition rates
out of this state are deFned as half the corresponding original values k2→ 1(x) and k3→ 4(x). At Frst
glance, it may seem that in this reduced 3-state model, condition (7.25), in the case that m represents
the new “superstate”, has to be modiFed by a factor 1

2 . However, since in the stochastic dynamics
(7.3) only the derivative of the potential Vm(x) appears, this factor 1

2 can be readily absorbed into
an additive constant of that potential.

Given the reduced model with M =3 states, Huxley furthermore assumes that the 3 “forward” rates
km→m+1(x) can be freely chosen, while the 3 “backward” rates km+1→m(x) are negligibly small. On
the other hand, Eq. (7.25) tells us that the 3 forward rates can indeed be chosen freely, but once
they are Fxed, the 3 backwards rates are also Fxed. At this point, one may exploit once again the
observation that only the derivatives V ′

m(x) enter the dynamics (7.3) and therefore we still can add
an arbitrary constant to any of the three model potentials Vm(x). Under the additional assumption that
exp{[Vm(x)−Vm+1(x)]=kBT} varies over one spatial period L at most by a factor signiFcantly smaller
than (CATP=C0

ATP)1=3 � 102 (see (7.17)), one readily sees that by adding appropriate constants to the
3 potentials Vm(x) one can make the ratios km→m+1(x)=km+1→m(x) rather small for all 3 values of
m according to (7.25). Pictorially speaking, by adding proper constants to the potentials Vm(x) one
can split and re-distribute the factor CATP=C0

ATP from (7.17) along the entire chemical reaction cycle.
In this way, all 3 backward rates km+1→m(x), though not exactly zero, can indeed be practically
neglected. Generalizations to more than 3 states and to the neglection of only some, but not all,
backward rates are obvious.

113 Such a choice is obviously admissible within our general modeling framework; how to justify it against experimental
Fndings is a di5erent matter [574,603–605].
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A Fnal important observation concerns the case M = 3 with all the forward rates still at our
disposition and all the backward rates approximately neglected. SpeciFcally, one may assume that
V ′

2(x) = V ′
3(x) and that the corresponding forward rate k2→ 3 is x-independent and very large. The

two states m=2 and 3 can then again be lumped into a single superstate. The result is [16] a model
(7.3) with M = 2 e5ective chemical states but with both, the forward and backward rates between
these two states, still free to choose.

We have thus achieved by way of various simplifying assumptions our goal to substantially reduce
the number of free, phenomenological functions in the model (7.3). Still, even for the minimal
number M = 2 of chemical states the shape of the two potentials and especially the choice of
the two rates [9,514,582,596] are very diCcult to satisfactorily justify on the basis of experimental
Fndings. Accordingly, the existing literature does not seem to indicate that a common denominator
of how these functions should be realistically chosen is within hands reach.

7.4.3. Generalizations
Huxley’s choice of model parameters and functions (7.18), (7.19) in the general setup (7.3) has

been subsequently modiFed and extended in various ways in order to maintain agreement with new
experimental Fndings. Most of the following works include veriFcations of the theoretical models
against measurements, though we will not repeat this fact each time. Moreover, a detailed discussion
of the speciFc choices and justiFcations of the free, phenomenological parameters and functions in
the general model (7.3) in those various studies goes beyond the scope of our review. Our main
focus in this section will be on the character of the mechanochemical coupling (cf. Section 2.7) and
the relevance of the thermal noise for the dynamics of the mechanical state variable in (7.3), see
also Section 7.7 for a more systematic discussion of these points.

With more structural data of the actin–myosin system on the molecular level becoming available,
Huxley and Simmons [606] already in 1971 came up with a more realistic modiFcation of the original
model, featuring a “fast” (chemical) variable with a small number of discrete states, tightly coupled
to a “slow” (mechanical) continuous coordinate. For more recent studies along these lines see also
[607–613] and references therein. A very recent, analytically solvable model, closely resembling
Huxley’s original setup and in quantitative agreement with a large body of experimental data, is due
to [519].

The issue of the chemical to mechanical coupling has been for the Frst time addressed in detail by
Mitsui and Oshima [144], pointing out that deviations from a simple and rigid one-to-one coupling
may play an important role.

A connection between a model of the Huxley type with Feynman’s ratchet-and-pawl gadget has
apparently been realized and worked out for the Frst time by Braxton and Yount [5,6], though
their model was later proven unrealistic by more detailed quantitative considerations [142,143].
A similar Feynman-type approach has been independently elaborated by Vale and Oosawa [7].
More importantly, they seem to have been the Frst to bring into play the crucial question of the
relative importance of the thermal =uctuations appearing in the dynamics of the mechanical coordinate
(7.3) as compared to conformational (relaxational) changes powered by the chemical cycle (that is,
ultimately by the power stroke).

One extreme possibility is characterized by barriers of the potentials Vm(x) which can be crossed
only with the help of the thermal noise �(t) in (7.3), independently of how the chemical state
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m evolves in the course of time. An example is the =uctuating potential ratchet (4.11) with f(t)
restricted to a discrete number (M) of possible values, all smaller than unity in modulus. In such
a case, the role of the chemical cycle is merely the breaking of the detailed balance, necessary for
a manifestation of the ratchet e5ect in the x-dynamics. Moreover, the mechanochemical coupling
is typically (i.e. unless the rates km→m′(x) exhibit a very special, strong x-dependence, see below)
loose, the number of chemical cycles per mechanical cycle randomly varies over a wide range.

The opposite possibility is represented by the traveling potential ratchet mechanism, see Sec-
tion 4.4. Each chemical transition m→m′ = m + 1 induces a strain in the mechanical coordinate via
V ′

m′(x) in (7.3) which then is released while x relaxes towards the closest local minimum of V ′
m′(x).

As m proceed through the chemical loop, also the local minima of Vm(x) are shifting forward in
suCciently small steps such that x typically advances by one period L after one chemical cycle. In
this case, the thermal noise has only an indirect e5ect through the chemical rates km→m′(x), but
as far as the mechanical dynamics (7.3) is concerned, almost nothing changes in comparison with
a purely deterministic (�(t) ≡ 0) behavior. In other words, the mechanochemical coupling is very
rigid, the mechanical coordinate x is almost exclusively powered by the chemical reaction and its
behavior is basically “slaved” by the chemical transitions. The mechanical coordinate x may at most
play a role in that the practically deterministic relaxation of x after a chemical transition m→m′ may
delay the occurrence of the next transition m′→m′′ until the new local minimum of Vm′(x) has been
reached. Essentially, the system can thus be described by the chemical reaction cycle alone, possibly
augmented by appropriate deterministic refractory periods (waiting times) after each reaction step
[515,516,518]. It then does not seem any more appropriate to speak of a noise-induced transport
in the closer sense and the ratchet e5ect only enters the picture via the somewhat trivial traveling
potential ratchet mechanism from Section 4.4, see also Section 2.7.

A situation intermediate between these two extreme cases arises if the potential Vm(x) exhibits
(approximately) =at segments, requiring di5usion but no activated barrier crossing for being trans-
versed. An example is the on–o5 ratchet scheme from Section 4.2.

Another compromise between the two extremes consists in the following scenario: thermally acti-
vated barrier crossing is unavoidable for the advancement of x. Yet, due to the choice of the rates
km→m′(x), the next chemical step becomes only possible after the respective barrier crossing has
been accomplished. In other words, though thermal noise e5ects are an indispensable ingredient for
the working of the motor enzyme model, the stepping of x and m is tightly coupled. Since the
thermal activation processes can be considered as rate processes, such a model can be mapped in
very good approximation to an augmented reaction cycle, with some mechanical states added to the
chemical ones. The proper notion for such a situation seem to be “mechanochemical reaction cycle”.
For a more systematic treatment of such issues see Section 7.7.

The conclusion of Vale and Oosawa [7] is that, within their Huxley-type model (7.3), thermal
noise in the mechanical coordinate x plays an important role; speciFcally, a mechanism similar to
a =uctuating potential ratchet (Section 4.3), a temperature ratchet model (Sections 2.6 and 6.3), or
a combination of both is postulated (later criticized as being unrealistic in [9,142,143]).

While the latter conclusion is mainly of a qualitative nature, a more quantitative investigation
of the same question is due to Cordova et al. [10], with the result that for cooperating motor
enzymes like myosin, thermal activation processes are—within their choice of model parameters and
functions in (7.3)—crucial in the dynamics of the mechanical variable x, while for kinesin such
processes may be of somewhat less importance. In deriving the latter conclusion, these authors go
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one step beyond Huxley’s framework in that they also analyze the motion of a single head (no
backbone), and especially of two heads without invoking a mean Feld approximation for the motion
of the backbone, which, in this context should then rather be viewed as a “hinge” connecting the
two heads.

A further reFned variation of Huxley’s model has been worked out by Leibler and Huse [8,9],
together with a few-head model (beyond mean Feld) in a general spirit similar to that of Cordova
et al. [10]. In this model, however, a tight mechanochemical coupling is built-in from the begin-
ning, namely the choice of the parameters and functions in (7.3) is such that thermal noise e5ects
on the mechanical coordinate x play a minor role by construction. Furthermore, all the transition
rates km→m′ are assumed to be independent of x. Within such a model, it is shown that at least
M = 4 chemical states are required to avoid incompatibilities with known experimental Fndings.
The main achievement of these studies [8,9] is a uniFed description of “porter” motor proteins,
e.g. kinesin, operating individually and spending a relatively short time detached from the polymer
Flament (moderate-to-large duty ratio), and of “rowers”, e.g. myosin, which operate collectively and
are characterized by a small duty ratio. Thus, “porters” are essentially processive, and “rowers”
non-processive motor enzymes. A reFned model similar in spirit has been put forward in [514].

7.4.4. J�ulicher–Prost model
One of the most striking statistical mechanical features of interacting many body systems, both at

and far away from thermal equilibrium, is the possibility of spontaneous ergodicity-breaking, entailing
phase transitions, the coexistence of di5erent (meta-) stable phases, and a hysteretic behavior in
response to the variation of appropriate parameters. There is no reason why such genuine collective
e5ects should not be expected also in Huxley-type mean Feld models, but it was not before 1995 that
JMulicher and Prost [550] explicitly demonstrated the occurrence of those phenomena in such a model,
see also [14,596,614–616]. SpeciFcally, they focused on the dependence of the average velocity
〈ẋ〉 upon (parametric) variations of the external force F in (7.3), henceforth called 〈ẋ〉-versus-F
characteristics. As already mentioned, formally the crucial point in such a mean Feld approach is
the appearance of a self-consistency equation for the “order parameter” 〈ẋ〉. Typically, this equation
is non-linear 114 and the existence of multiple (stable) solutions signals the breaking of ergodicity.

After having observed such a situation in their model, JMulicher and Prost pointed out in a subse-
quent work [617] the following remarkable consequence of the hysteretic 〈ẋ〉-versus-F characteristics:
if the rigid backbone is coupled to a spring, then an e5ective external force F depending on the
position of the backbone arises. If the spring is suCciently soft, then the changes of F are suCciently
slow such that the parametric 〈ẋ〉-versus-F characteristics can be used. If this relation furthermore
exhibits a hysteresis loop with the two 〈ẋ〉-versus-F branches conFned to either side of 〈ẋ〉= 0, then
a permanent periodic back-and-forth motion of the backbone is the result. Remarkably, strong indi-
cations for both, spontaneous ergodicity breaking (dynamical phase transition in the velocity–force
relationship) as well as spontaneous oscillations can indeed be observed in motility assays [618] and
in muscle cells under suitable conditions [14,596,614–617,619–621], respectively.

We recall that spontaneous breaking of ergodicity with its above-mentioned consequences is a
common phenomenon already at equilibrium. In contrast, a Fnite current 〈ẋ〉 
= 0 at F = 0 as well

114 For an example, see Eqs. (7.28) and (7.29) below.
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as spontaneous oscillations [622–626] represent genuine collective non-equilibrium e5ects which are
excluded at thermal equilibrium by the second law of thermodynamics.

Both, from the conceptual viewpoint and with regard to the mechanochemical coupling issue,
the JMulicher–Prost model exhibits a couple of noteworthy features. A Frst crucial assumption of the
model is that not only the backbone itself but also the positions of the N individual motors with
respect to the backbone are perfectly rigid. Since the backbone moves with a speed 〈ẋ〉 it follows
that for any single motor

ẋ = 〈ẋ〉 : (7.26)

Much like any intensive state variable in equilibrium thermodynamics, the “order parameter” 〈ẋ〉
within such a mean Feld approach is a macroscopic state variable and is not any more subject to
any kind of random =uctuations in the thermodynamic limit N →∞. In other words, the stochastic
equation for the single (uncoupled) motors (7.3) simpliFes to an equivalent deterministic (noise-free)
dynamics (7.26) for every single motor in the presence of a mean Feld (perfectly rigid all-to-all)
coupling. Here 〈ẋ〉 plays the role of a formal (not yet explicitly known) deterministic force and—as
already pointed out in Section 7.4.1—our next goal must now be to derive a self consistency equation
for this order parameter 〈ẋ〉 if we wish to determine its explicit value. To this end we Frst notice
that working with (7.26) instead of (7.3) is tantamount to setting T = 0 and −V ′

m(x) + F = 
〈ẋ〉 in
(7.3). Accordingly, the Frst two terms on the right-hand side of the master equation (7.8) may be
replaced by the equivalent simpliFed expression −〈ẋ〉9Pm(x; t)=9x.

A second essential assumption is that the N individual motor enzymes are rooted in the back-
bone either at random positions or—biologically more realistic—with a constant spacing which is
incommensurate with the period L of the polymer Flament. As a consequence, the reduced spatial
distribution of particles

∑
m P̂m(x; t) approaches an x- and t-independent constant value for N →∞.

As a Fnal assumption, a one-head description of the individual motor enzymes with M=2 chemical
states is adopted. 115 Exploiting the above mentioned fact that P̂1(x; t) + P̂2(x; t) is a constant and
normalized on [0; L] according to (7.22), one can eliminate P̂2(x; t) from the master equation (7.8),
yielding in the steady state 116 (superscript st) the ordinary Frst order equation [550]

〈ẋ〉 d
dx

P̂
st
1 (x) = −P̂

st
1 (x)k1→ 2(x) + [1=L− P̂

st
1 (x)]k2→ 1(x) ; (7.27)

supplemented by the periodic boundary condition 117 P̂
st
1 (x + L) = P̂

st
1 (x). The unique solution is

P̂
st
1 (x) =

∫ x+L
x dy k2→ 1(y) exp{∫ y

x dz k1 → 2(z)+k2 → 1(z)
〈ẋ〉 }

L〈ẋ〉[exp{∫ L
0 dz k1 → 2(z)+k2 → 1(z)

〈ẋ〉 } − 1]
: (7.28)

115 According to Section 7.4.1, this model may equally well be viewed as a M = 2 state model of enzymes with two
highly coordinated heads. See also Section 7.4.2 for references and more details regarding such a model.

116 The convergence towards a steady state in the long time limit is tacitly taken for granted. A partial justiFcation of
this ansatz can be given a posteriori by showing that such a solution indeed exists and moreover satisFes certain stability
conditions against perturbations. Especially, the task to prove that no additional (non-stationary) long time solutions
co-exist is a delicate issue. In practice, the only viable way consists in a direct numerical simulation of a large number
N of coupled stochastic equations.

117 There is no normalization condition for P̂
st
1 (x) alone.
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Note that the non-negativity of P̂
st
1 (x) is guaranteed if k1→ 2(x)¿ 0 and k2→ 1(x)¿ 0 for all x.

Finally, by eliminating in the same way P̂2(x; t) in the self-consistency equation (7.23) for 〈ẋ〉 one
Fnds that

〈ẋ〉 =
1



[
F −

∫ L

0
dx (V ′

1(x) − V ′
2(x))P̂

st
1 (x)

]
: (7.29)

By introducing (7.28) into (7.29) a closed (transcendental) self-consistency equation for the order
parameter 〈ẋ〉 is obtained. Much like in the elementary mean Feld theory (Weiss theory) for a
ferromagnet, the occurrence of multiple solutions will signal the breaking of ergodicity and thus
a phase transition. Apart from the need of solving a transcendental equation at the very end, the
above model is one of the very rare special cases (cf. Section 4.3.1) of an analytically exactly
tractable =uctuating potential ratchet. We Fnally recall that by interpreting the M = 2 state model as
a reduced M = 4 state description, both rates k1→ 2(x) and k2→ 1(x) are still at our disposition (see
Section 7.4.2).

Besides the tremendous technical simpliFcation of the problem, the most remarkable feature of
the JMulicher–Prost model (7.28), (7.29) is that only the di5erence V1(x)−V2(x) of the two potentials
counts (one may thus choose one of them identically zero without loss of generality). It follows that
the emerging qualitative results for a generic (L-periodic and asymmetric) choice of V1(x) − V2(x)
will be valid independently of whether the mechanochemical coupling is loose (e.g. a dichotomously
=uctuating potential ratchet with V2(x) ˙ V1(x), see Section 4.3) or tight (e.g. a traveling two-state
ratchet with V2(x) = V1(x + L=2), see Section 4.4.2). Whether this feature should be considered as
a virtue (robustness) or shortcoming (oversimpliFcation) of the model is not clear.

ModiFed Huxley–JMulicher–Prost type models have been explored by Vilfan et al. [627,628]. Their
basis is a M =2 state description of the single motors with a built-in tight mechanochemical coupling
through the choice of the rates and potentials, but, at variance with JMulicher and Prost, without a
completely rigid shape of the motors with respect to the backbone: unlike in (7.26), the center of
mass of an individual motor may di5er from the position where it is rooted in the backbone, say 〈ẋ〉t.
Similarly as in Huxley’s original work, the possibility of “strain”-dependent (i.e. x−〈ẋ〉t-dependent)
rates km→m′(x) plays an important role. With a rigid backbone, a mean Feld approach is still
exact for N →∞ but technically more involved than in the JMulicher–Prost model, while resulting in
qualitative similar collective phenomena [628]. In contrast, by admitting an elastic instead of a rigid
backbone, 118 the interaction between the motors is no longer of inFnite range and corrections to a
mean Feld approximation may become relevant under certain experimental conditions [627].

Another reFned version of the Huxley–JMulicher–Prost setup, taking into account an extended num-
ber of biological Fndings, is due to Derenyi and Vicsek [630]. While M = 4 chemical states are
included, only two di5erent potential shapes Vm(x) are proposed, one of them being identically zero,
and a tight mechanochemical coupling is built in through the choice of the rates km→m′(x). While a
very good agreement with di5erent experimentally measured curves is obtained, the issue of genuine
collective phenomena is not speciFcally addressed.

Further studies of collective e5ects in coupled Brownian motors will be discussed in Section 9.

118 A computer animation (Java applet) which graphically visualizes the e5ect is available on the internet under [629].
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7.5. Coordinated two-head model

In this subsection we return to the description of a single motor enzyme with two heads within
the general modeling framework (7.1)–(7.17). Especially, we recall that this model respects an
invariance under a spatial displacement by one period if simultaneously the chemical states of the
two heads are exchanged, see (7.5), (7.6). We furthermore recall that for a processive motor enzyme,
i.e., one which can operate individually (for instance kinesin), the two heads need to coordinate their
actions in order that at least one of them is always attached to the polymer Flament.

Our goal is to approximately boil down the two-dimensional chemical state vector m = (m1; m2)
into an e5ective one-dimensional (scalar) description. To this end, we make the assumption that
the two heads are so strongly coordinated that between subsequent steps there exists a time instant
at which not only both heads are attached to the Flament, but on top of that, the heads are in
the same chemical state, m1 = m2. Taking such a conFguration as reference state, one of the two
heads will be the Frst to make a chemical transition into another state. This may be, with certain,
generically unequal probabilities, either the front or the rear head, and the chemical state may, again
with typically unequal probabilities (cf. (7.16), (7.17)), either go one step forward or backward in
its reaction cycle as time goes on. 119 Our central assumption is now, that once one of the heads
has left the reference state m1 = m2, the other head will not change its chemical state until the Frst
one has returned into the reference state.

We are not aware of experimental observations which indicate that such a property is strictly
fulFlled, but it appears to be an acceptable approximation, especially in view of the great simpli-
Fcation of the model it entails. Moreover, if one starts with a reduced description of the chemical
cycle in each head in terms of only two e5ective states, based on a similar line of reasoning as in
the preceding Section 7.4.2, then necessarily one of these two states must correspond to the head
being attached to the polymer Flament and the other to the detached situation. Since both heads
cannot be detached simultaneously, our assumption is thus automatically fulFlled in such a two-state
description for each head.

If one makes the additional simplifying assumption that, starting from the reference state with both
heads attached, only the rear head is allowed to detach, then an e5ective one-dimensional description
of the chemical states of the two heads is straightforward: after the rear head has returned into the
reference state, it either will have attached at the same binding site (E-tubulin) from which it started
out or it will have advanced to the next free binding site at a distance 2L. In the former case, it is
again the same head which will make the next chemical reaction out of the reference state, while
the other head continues to be stuck. In the latter case, the rear head has completed a step, 120

x �→ x + L, and is now the new front head. If we additionally exchange the chemical labels m1 and
m2 of the two heads then we are back in the original situation due to the symmetry of system (7.5),
(7.6). In other words, we have obtained an e5ective description in which only one of the chemical
state variables, say m1, can change, while m2 is stuck all the time. Dropping the index of m1, one
readily sees that the e5ective potentials Vm(x) and rates km→m′(x) in this new description are now
indeed L-periodic in x and satisfy (7.25).

119 There seems to be no general agreement upon whether such inverse processes are possible with Fnite (however small)
probability [18] or not [143].

120 We recall that the stepping head itself advances by 2L, but the center of mass x of the two heads only by L.
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The more general case that out of the reference state m1=m2 both, the front and the rear head may
detach from the Flament with certain probabilities, can only be captured approximately by means
of an e5ective one-dimensional chemical state variable: 121 Namely, one has to assume that if the
rear head detaches, then x can only take values larger than the initial reference position xref (but
smaller than xref + L). Likewise, if the front head detaches, x is restricted to [xref − L; xref ]. These
two possibilities can be imitated by “splitting probabilities” with which x(t) in (7.3) will evolve
into the positive or negative direction after detachment by way of an appropriate choice of the
potentials Vm(x). Especially, these potentials have to be chosen such that a recrossing of xref after
detachment is practically impossible. 122 For the rest, the mapping to an e5ective one-dimensional
chemical state variable m with L-periodic potentials Vm(x) and rates km→m′(x) satisfying (7.25) can
be accomplished exactly like before.

Two noteworthy features which can be described within such a general modeling framework are
thus (i) the possibility not only of “forward” but also of “backward” steps and (ii) the possibility
that a head re-attaches to the same binding site from where it started out. Both these possibilities
may be realized only with a small probability 123 under “normal” conditions [582,603,631] but could
become increasingly important [18,504,582,632,633] as the load force F in (7.3) approaches the
“stopping force” or “stall load”, characterized by zero net motion 〈ẋ〉 = 0 (cf. Section 2.6.2).

7.6. Further models for a single motor enzyme

The above interpretation of (7.8), (7.18)–(7.25) as a model for a single motor enzyme with two
highly cooperative heads has, to our knowledge, not been pointed out and derived in detail before. 124

However, practically the same model dynamics (7.3) has been used to describe the somewhat artiFcial
scenario 125 of a single head moving along a polymer Flament [9,10]. By changing the interpretation,
such results can immediately be translated into our two-head setting.

As mentioned in Section 7.4.3, models with two completely independently operating heads, except
that they are connected by a “hinge”, have been brie=y addressed numerically in [10]. A reFned
model of this type has later been put forward and analyzed by Vilfan et al. [628] exhibiting good
agreement with a variety of experimental curves and structural results.

121 The problem is that now the information about which of the two heads is chemically active (detached) must be
uniquely encapsulated in x in addition to the position of the center of mass.

122 To be speciFc, we may model the chemical reference vector-state mref with both heads attached by a potential Vmref (x)
with a very deep and narrow minimum at xref . If mref goes over into one of the “neighboring” states, say m′, then Vm′(x)
should have pronounced maxima on either side of xref such that x(t) will proceed rather quickly and irrevocably away
from xref , either to the right or left. The actual direction into which x(t) disappears decides a posteriori whether it was
the front or the rear head which has detached.

123 We remark that there are also models which rule out such backward steps a priori [143].
124 Somewhat similar ideas can be found in [18,544,552,596].
125 Whether or not manipulated, single-headed kinesin can travel over appreciable distances on a microtubulus seems to

be still controversial [18,143,564,633–637]. Remarkably, the experimental data from [637] could be Ftted very well by
an on–o5 ratchet model (A video illustrating motility data can be viewed on the internet under [638].). There seems to
be evidence [572] that single-headed motion is fundamentally di5erent from two-headed motion.
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Valuable contribution to the general conceptual framework [11] of single motor modeling and
especially of the mechanochemical coupling [12] are due to Magnasco, see also [186]. At variance
with our present setup, the chemical processes within the entire motor enzyme are described from
the beginning by a single, continuous chemical state variable [12] (see also Sections 4.6 and 7.3.2).
Published practically at the same time, models similar in spirit, but with only two discrete chemical
states have been proposed by Astumian and Bier [15], by Prost et al. [13], and by Peskin et al. [17].
The underlying picture is that, essentially, the motor enzyme as a whole is either “attached” to or
“detached” from the protein Flament. The emphasis in all these works [11–13,15,17] (see also [639])
is put on the fundamental aspects and generic properties of motion generation in such systems; apart
from the general features of spatial periodicity and broken symmetry, no contact with any further
biological “details” is established. Yet, by using reasonable parameter values in a =uctuating potential
saw-tooth ratchet model, measured data for the average speed 〈ẋ〉 and the rate of ATP-consumption
(cf. (7.23) and (7.24)) could be reproduced within an order of magnitude [15,16]. On the other
hand, it was demonstrated in [515,516] that even within the simplest two-state models for a single
motor (M = 2 in (7.18)), a large variety of even qualitatively contrasting results can be produced
upon varying the model parameters. Not only a realistic choice of the model parameters but also of
the details of the model itself is therefore indispensable.

A biologically well founded description of a motor enzyme with two cooperating heads, similar
to our present setup with M = 2 chemical states, has been introduced by Peskin and Oster [18].
A central point in this study is once more the relative roles of the thermal =uctuations and the
relaxational processes due to release of chemically generated strain in the dynamics of the spatial
coordinate x in (7.3). Another important feature of the model is that, besides regular forward steps
of the heads, also backward steps after detachment of the front head are admitted with a certain
probability. The result, after Ftting the model parameters to the experiment, is that—within this
speciFc model—thermal =uctuations play a minor role. Furthermore, it is found that backward steps
are about 20 times less probable than forward steps. 126

The model by Derenyi and Vicsek [504] is to some extent similar in spirit to the one by Peskin
and Oster. Especially, backward steps are admitted and the two heads act highly cooperatively. The
built-in mechanochemical coupling is a compromise in that thermal activation is indispensable but
the rates km→m′(x) are tailored such that the next chemical step can only occur after x has crossed
the respective barrier and is basically undergoing a purely mechanical relaxation. The model can be
mapped almost exactly to a M = 2 state model from Section 7.2.3, though the original formulation
[504] in terms of two rigid heads, coupled by a hinge and an “active” spring with variable rest
length is admittedly more natural in this speciFc instance. In either case, the model can be described
in very good approximation by an augmented reaction cycle with mechanical states properly added
to the chemical states. The distinguishing feature of the model, the experimental justiFcation of
which remains unclear [563,564,640,641] is that the two heads cannot pass each other: The distance
between the front and the rear head (in other words, of the spring) can change but never become
zero so that the heads never exchange their roles. The virtue of the model is its ability to Ft very
well various measured curves. The limiting case of a very strong “active” spring, such that thermal
activation is no longer important, has been explored in [642]. A somewhat related model with two
e5ectively asymmetric heads is due to [445], see also Section 6.5.

126 See also the discussion at the end of the previous subsection.



202 P. Reimann / Physics Reports 361 (2002) 57–265

The conceptual framework [15] of Astumian and Bier for modeling single molecular motors has
been further developed and reFned in a remarkable series of works [16,54,55,187,349,553,643,644].
Various aspects and results of their central study [16] have been repeatedly referred to already in the
outline of our general modeling framework. The chief points in [16] are a comprehensive discussion
of the mechanochemical coupling problem and the conclusion that many experimental indications
and theoretical arguments seem to be compatible with a rather loose coupling, especially when a
suitably augmented cooperative two-head model is invoked [643,644]. A complementary discussion
along a closely related spirit is given in [639]. Especially worth mentioning is that the =uctuational
analysis of measured single motor protein trajectories in [604] is incompatible with a certain class
of very simple (=uctuating potential) ratchet models but have been demonstrated in [643,644] to be
perfectly reproducible by means of a more elaborated and reFned description.

Non-cooperative discrete-state models with a built-in tight mechanochemical coupling in the spirit
of [8,9,164,514] (see at the end of Section 7.4.3) have been addressed in [186,515–520], especially
with respect to their behavior under the in=uence of an external load F . Notwithstanding the con-
clusion in [8,9] that at least four states are necessary for a realistic model, the agreement of the
two- and three-state models proposed in [515,516,520] and [519], respectively, with experimental ob-
servations is quite good. Various generalizations of these “mechanochemical reaction cycle models”
(cf. Sections 7.4.3 and 7.7) are due to [517], while the extension to general waiting time distributions
has been addressed in [515,516,518], admitting in addition to thermally activated mechanochemical
rate processes e.g. also the description of mechanical relaxation of strain. Their drawback is a large
number of additional phenomenological model parameters.

The viewpoint [13] of Prost and collaborators with respect to modeling single motor enzymes has
been further elaborated in [14,614] and especially in [544,594–596]. While the general framework
has much in common with that of Astumian and Bier, these workers put special emphasis on the
possible relevance of “active sites”, i.e. a pronounced dependence of the transition rates km→m′(x)
on the mechanical state x, such that transitions are practically excluded outside of certain small
x-regions. They furthermore leave room to the possibility that a traveling potential ratchet mechanism
may dominate over a possibly coexisting =uctuating potential ratchet mechanism, in which case the
mechanochemical coupling might be rather tight. An explicit modeling of cooperative two-headed
motor enzymes along somewhat similar lines as in Section 7.5 is brie=y mentioned in [544,596]. The
resulting description with M =2 e5ective chemical states associates each state with one of the heads
being bound to the Flament and the other detached. One thus recovers the traveling potential ratchet
model from [40], advancing in discrete steps of L=2 as detailed in Section 4.4.2. The in=uence of
an external load F on velocity and processivity (detachment rate of the molecular motor from the
microtubulus) has been addressed in [594], see also [517]. A related study due to [595] suggests a
loose mechanochemical coupling at least under heavy load. The case that the load is not an externally
imposed constant force but rather is due to the “cargo”, modeled as additional relevant dynamical
variable that interacts with the motor via an elastic coupling, has been addressed in [505,506], see
also below Eq. (7.4).

A detailed analysis of a somewhat extended model class with pronounced “active sites” and
a strong traveling potential component has been carried out in [552,593,645]. In agreement with
experiments, these models reproduce a “saturation” of the current 〈ẋ〉 as a function of the ATP
concentration [13,14,614], captured by a Michaelis–Menten relation for a large class of moderately
and strongly cooperative models under zero lead F [552,593,645], while for Fnite load a somewhat
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modiFed quantitative behavior is expected [552,593,595,641]. We remark that while for cooperative
two-head models with only M = 2 chemical (or “internal”) states per head, the assumption of
“active sites” is indeed indispensable for such a saturation of the current, the same is no longer true
as soon as M¿2.

7.7. Summary and discussion

We close with some general remarks regarding the modeling of molecular motors as reviewed
in this chapter. Previously introduced notions and facts are freely used without explaining them or
citing the original literature again. To some extent, this discussion continues and makes more precise
those from Sections 4.6 and 7.4.3.

The general importance of asymmetry induced rectiFcation, thermal =uctuations, and the coupling
of non-equilibrium enzymatic reactions to mechanical currents according to Curie’s principle for
intracellular transport processes is long known [23,24]. The present framework has the virtue that
it is based on a quantitative microscopic modeling and as such is not restricted to the linear re-
sponse regime close to thermal equilibrium. Within this general framework, roughly speaking two
approaches of modeling molecular motors may be distinguished: The Frst, “traditional” one is a
bottom-up-type strategy, starting with a certain set of biological facts (measurements and more or
less “basic” conclusions therefrom) and then constructing an “ad hoc” model on this basis. The
second is the top-down-type approach, followed to some extent in more recent works based on the
“ratchet paradigm” and elaborated in full detail in our present chapter.

Our Frst main conclusion is that all models known to this author are compatible (possibly after
some mapping or transformation of state variables) with the basic framework from Section 7.2,
and most of them also with the simpliFed description in terms of a single mechanical state vari-
able x and the corresponding model dynamics (7.3), identiFed below (7.14) as a (generalized)
pulsating ratchet scheme. In other words, such an approach is not in contradiction with “tradi-
tional” biological models, but may well o5er a fresh and more systematic (top-down) view of
things [12,186,571,643,644,646].

Within this still very general class of models (7.3) the most realistic choice of model parame-
ters and model functions is still under debate and certainly also depends on the speciFc type of
molecular motor under consideration (especially whether it is of processive (individually acting)
or non-processive (collectively acting) nature or even consists of a single motor domain (head)
only). Conversely, it is remarkable that all these di5erent species can be treated within one general
framework.

Three basic questions in this respect, which are not always suCciently clearly separated from each
other, regard: (i) The possibility of an (approximate) description in terms of a single (e1ective)
chemical state variable. (ii) The relative importance of the thermal 9uctuations appearing in the
dynamics of the mechanical coordinate (7.3) as compared to conformational changes powered by
the chemical cycle. (iii) The character (loose or tight) of the mechanochemical coupling.

The answer to these questions may not only depend on the type of molecular motor under con-
sideration (see above) but also on whether an external load F is acting and possibly on still other
external conditions. For example, it may well be that, as the load F increases, the relative importance
in (7.3) of thermal activated barrier crossing and deterministic relaxation processes (i.e. the answer
to question (ii) above) considerably changes. The reason is that, as the force F increases, existing
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e5ective potential barriers in the stochastic dynamics (7.3) may disappear and new ones appear. 127

Similarly, the external load F may also signiFcantly change the character of the mechanochemical
coupling 128 [16,504,519,552,582,593–595,632,647,648] (i.e. the answer to question (iii) above).

The answer to the Frst of the above questions depends on the cooperativity of the two heads: If
they act completely independently of each other, they can obviously be described individually, and
a single (scalar) chemical state variable m for each head is then suCcient. That the same may be
possible for a very strong coordination of the heads has been demonstrated in Section 7.5. On the
other hand, if the cooperativity is loose but non-negligible, then a reduction of the two-dimensional
chemical state space (cf. (7.1)) is impossible.

The second question is sometimes also discussed under the label of power-stroke versus motor-
di5usion modeling strategy [143,519,648]. In the Frst case, the chemical cycle “slaves” the mechan-
ical cycle by creating a sequence of strong mechanical strains (power strokes) that are released by
concomitant, basically deterministic changes of the mechanical state (geometrical shape). Typically,
there is little back reaction of the mechanical to the chemical coordinate, and we are thus essentially
dealing with a genuine traveling potential ratchet scheme. In the second case, thermal =uctuations
play a major role in the dynamics of the mechanical state variable (7.3). The Frst model of this
type goes once again back to Huxley [4] and the apparent lack of strong experimental support for
the power stroke concept [648] has served as a motivation for various other such models ever since.
Especially, this controversy has a long history already within the realm of “traditional” biologi-
cal modeling and the gain of new insight in this respect from an approach based on the “ratchet
paradigm” may be limited. Also, we may emphasize once more that in either case thermal noise plays
a crucial role with respect to the chemical reaction cycle—in this sense any model of a molecular
motor (not only those of the motor-di5usion type) “rectiFes” thermal =uctuations. We further remark
that also within a motor-di5usion modeling, the mechanochemical coupling may still be either tight
(e.g. Huxley’s model) or loose (e.g. the on–o5 ratchet). On the other hand, a power-stroke model
always implies a tight mechanochemical coupling.

Another related question within a motor-di5usion modeling is whether the thermal =uctuations
acting on the mechanical state variable can be treated within the activated barrier crossing limit
(see Section 3.8) or whether free di5usion-like behavior plays a signiFcant role. Only in the former
case, a description of the mechanical state variable in terms of discrete states and transition rates
between them is admissible, see Section 6.7 and [515,516,518,520]. Note that both options are
still compatible with either a tight or a loose mechanochemical coupling. In the case of a tight
coupling in combination with an activated barrier crossing description, a so-called “mechanochemical
reaction cycle” arises (cf. Section 7.4.3). Since from a fundamental viewpoint, the distinction between
chemical and mechanical state variables is somewhat arbitrary anyway (see Section 7.2.2), we are
then basically recovering an e5ective power-stroke model.

We Fnally come to the question (iii) of the mechanochemical coupling (see also Section 2.7).
We Frst remark that a tight coupling not necessarily means that the chemical state variable always
“slaves” the mechanical one (genuine power-stroke model) but that one variable “slaves” the other
at each stage of the mechanochemical reaction cycle (the chemical reaction may be blocked—due
to active sites, i.e. strongly x-dependent rates km→m′(x)—until some mechanical transition between

127 The “total” or “e5ective” potential in (7.3) is given by Vm(x) − xF .
128 Especially, F may change the shape of the potentials Vm(x), as discussed below Eq. (7.4).
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di5erent geometrical shapes of the motor has been accomplished, e.g. in the above e5ective power-
stoke model). Restricting ourselves to the simplest case of a one-dimensional chemical state variable,
a tight mechanochemical coupling means that a description in terms of a single e1ective state
variable is possible, and a loose coupling means that such a description is impossible. In other
words, the state space is either essentially one- or two-dimensional. In the Frst case, there is a
unique “pathway” in the x–m-space, in the second case bifurcations exist. Examples are genuine
traveling potential ratchets and =uctuating potential ratchets, respectively. We, however, emphasize
that the conclusion suggested by the latter example, namely that a loose mechanochemical coupling
implies that thermal =uctuations play an essential role in the dynamics of the mechanical coordinate
(7.3), can be easily demonstrated as incorrect by counterexamples. In other words, the thermally
induced randomness of the chemical reactions suCces to produce bifurcations in the “pathway”
through the full x–m-space.

The possibility of a loose mechanochemical coupling is widely considered as one of the main con-
ceptually new aspect of the “ratchet paradigm” as compared to “traditional” biological models. 129

However, in its simplest and most pronounced form, namely the =uctuating potential ratchet scheme
from Section 4.3 (i.e. with x-independent rates km→m′) it is apparently incompatible with the =uc-
tuational analysis of single (two-headed) motor protein trajectories [604]. On the other hand, the
experimental data for single-headed kinesin from [637] could be Ftted very well to an on–o5 ratchet
model. The currently prevailing opinion seems to be that a loose coupling is unlikely for processive
motors like two-headed kinesin but a realistic option in the case of non-processive (cooperative or
single-headed) motors [519,563,564,600,601,603,604,613,631,637,641,648–651]. However, room for
the possibility of a loose coupling even in the case of kinesin is still left e.g. in [16,582,632,652]. If
one considers the concept of a loose mechanochemical coupling as the only substantial new contri-
bution of the “ratchet paradigm” to the modeling of molecular motors, then—in the so far absence
of striking experimental indications of such a coupling—the merits of this paradigm may still be
considered as questionable. However, such a viewpoint may not do due justice to other noteworthy
achievements like the prediction of new collective e5ects from Section 7.4.4 or the uniFed new view
and working model.

8. Quantum ratchets

For many of the so far discussed ratchet systems, especially those for which thermal =uctuations
play any signiFcant role, the characteristic length-, energy-, etc., scales are very small and it is thus
just one more natural step forward to also take into account quantum mechanical e5ects.

Before we enter the actual discussion of such e5ects, two remarks are in place: Frst, we have
encountered in Sections 5.7.3 and 5.10 theoretical models and experimental realizations of Josephson
and SQUID ratchet systems. Since the basic state variables in such devices are phases of macroscopic
quantum mechanical wave functions, it is tempting to classify them as quantum ratchet systems.
Our present viewpoint, however, is that the decisive criterion should be the classical or quantum
mechanical character of the e5ective dynamics governing the relevant state variables of a system,
independently of whether the microscopic basis of this e5ective dynamics is of classical or quantum

129 Sometimes, also the possibility of a motor-di5usion modeling approach is considered as such.
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mechanical nature, see also [94]. For instance, the existence of stable atoms, molecules, and solids is
clearly a genuine quantum mechanical phenomenon, yet a classical theory of gases, liquids, and solids
can be established. From this viewpoint, the Josephson and SQUID ratchet systems as discussed
in Sections 5.7.3 and 5.10 are thus classical ratchets. The realization of a full-=edged quantum
mechanical ratchet according to our present understanding in SQUID systems will be discussed later
in Section 8.4. As a second remark we mention that the proper quantum mechanical treatment,
e.g. of the Seebeck e5ect (Section 6.1) or the photovoltaic e5ects (Section 5.6), may arguably be
considered as very early quantum ratchet studies of considerable practical relevance. However, in
the present section we put our main emphasis not on a faithful quantum mechanical modeling of
such speciFc systems but rather on the exploration of the basic features of much simpler models.
Namely, our main focus will be on the interplay between tunneling and the e1ects induced by the
thermal environment (i.e. dissipation and thermal noise) in the quantum mechanical counterparts
of the classical tilting ratchet dynamics (5.1).

8.1. Model

In the case of classical Brownian motion, we have introduced in Section 2.1.2 a model which
takes into account the in=uence of the thermal environment along a rather heuristic line of reason-
ing, see also Sections 2.9 and 3.4.1. In contrast, on a quantum mechanical level, such a heuristic
modeling of dissipation and thermal noise, e.g. on the level of the SchrModinger equation, is much
more problematic and liable to subtle inconsistencies for instance with the second law of ther-
modynamics or some basic principles of quantum mechanics, see [100,243,653–658] and further
references therein. To avoid such problems, we follow here the common route [66,84,94–96,189,
659–662] to describe both the system and its thermal environment within a common Hamiltonian
framework, with the heat bath being modeled by an inFnite set of harmonic oscillators. Especially,
within a quantum mechanical approach, keeping a Fnite mass of the system is unavoidable, i.e. a
quantum ratchet is by nature endowed with 8nite inertia. If one insists in considering the over-
damped limit m→ 0 then this limit usually has to be postponed to the very end of the calculations.

Similarly as in Section 3.4.1, our starting point is a one-dimensional quantum particle with mass
m in an asymmetric, periodic ratchet potential V (x) of period L in the presence of a tilting force
Feld y(t) that is unbiased on average. This bare system is furthermore coupled via coupling strengths
cj to a model heat bath of in8nitely many harmonic oscillators with masses mj and frequencies
!j (!j¿0 without loss of generality) yielding the compound (system-plus-environment) Hamiltonian

H(t) =
p2

2m
+ V (x) − xy(t) + HB ; (8.1)

HB :=
∞∑
j=1

p2
j

2mj
+

1
2
mj!2

j

(
xj − cjx

mj!2
j

)2

: (8.2)

Here, x and p are the one-dimensional coordinate and momentum operators of the quantum Brownian
particle of interest, while xj and pj are those of the bath oscillators. As initial condition at time t=0
we assume that the bath is at thermal equilibrium and is decoupled from the system. The inFnite
number of oscillators guarantees an inFnite heat capacity and thus a reasonable model of a heat bath
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that keeps its initial temperatures for all later times 130 t¿0. For the rest, it turns out [66,95,96,
659–662] that the e5ect of the environment on the system is completely Fxed by the frequencies
!j and the ratios c2

j =mj, or equivalently, by the so-called spectral density

J (!) :=
�
2

∞∑
j=1

c2
j

mj!j
�(!− !j) : (8.3)

By way of integrating out the bath degrees of freedom in (8.1) one obtains [66,95,96,659–662]
the following one-dimensional Heisenberg equation for the position operator x(t):

m Mx(t) + V ′(x(t)) − y(t) = −
∫ t

0

̂(t − t′)ẋ(t′) dt′ + �(t) : (8.4)

Like in (2.1), the left-hand side can be associated to the bare system dynamics, while the right-hand
side accounts for the in=uence of the environment through the damping kernel


̂(t) :=
2
�

∫ ∞

0
d!!−1J (!) cos(!t) (8.5)

and the operator valued quantum noise

�(t) =
∞∑
j=1

cj

(
pj(0)
mj!j

sin(!jt) +

(
xj(0) − cjx(0)

mj!2
j

)
cos(!jt)

)
; (8.6)

containing the initial conditions of the bath and of the particle’s position. Exploiting the assumed
thermal distribution of the bath HB at t = 0 one Fnds [66,95,96,659–662] that �(t) becomes a
stationary Gaussian noise with mean value zero. Moreover, one recovers the usual connection (via
J (!)) between the random and the friction e5ects of the bath on the right-hand side of (8.4) in the
form of the =uctuation–dissipation relation

〈�(t + &)�(t)〉 =
˝
�

∫ ∞

0
d!J (!)

[
coth

(
˝!

2kBT

)
cos(!&) − i sin(!&)

]
; (8.7)

where 〈·〉 indicates the thermal average (quantum statistical mechanical expectation value), i :=
√−1,

and &¿ 0.
In the following, we will focus on a so-called ohmic bath, characterized by a linear initial growth

of the spectral sensity J (!), a “cuto5” frequency !c, and a “coupling parameter” 
:

J (!) = 
! exp{−!=!c} : (8.8)

The cuto5 !c is introduced in order to avoid unphysical ultraviolet divergences but will always
be chosen much larger than any other relevant characteristic frequency of the model. The special
role of such an Ohmic heat bath becomes apparent by observing that the corresponding damping

130 Further shortcomings of a heat bath with a Fnite number of oscillators are: (i) Both the memory kernel (8.5) and the
noise-correlation (8.7) do not decay to zero for large times, rather they are quasi-periodic. (ii) The future behavior of the
“noise” (8.6) becomes predictable from its past, at least in the classical limit, see Section 11-5 in [663].
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kernel (8.5) approaches


̂(t) = 2
�(t) ; (8.9)

when the cuto5 !c goes to inFnity. The integral in (8.4) thus boils down to the memory-less viscous
friction −
 ẋ(t). In other words, 
 in (8.8) has the meaning of a damping coeCcient due to viscous
friction.

In the classical limit, i.e. for ˝=kBT much smaller than any other characteristic time scale of the
noiseless system (8.4), the correlation (8.7) with (8.5) correctly approaches the classical =uctuation–
dissipation relation from (6.23). Furthermore, in this limit all quantum =uctuations vanish, so that
q-numbers go over into c-numbers and (8.4) reproduces (for y(t) ≡ 0) the classical model (6.22) of
a real valued stochastic process x(t) in the presence of Gaussian noise �(t) and (2.1) in the special
case of a memoryless damping (8.9), see also Section 3.4.1.

For later purposes, it is useful to distinguish between two di5erent variants of the classical limit:
The Frst one, which we call formal classical limit, consists in letting ˝→ 0, i.e. quantum e1ects are
simply ignored within such a description, independent of how relevant they are in the true system
under study. This limit is formal in so far as in reality ˝ is a natural constant. A second possibility,
which we call physical classical limit, consists in focusing on large temperatures T such that ˝=kBT
is suCciently small and thus quantum e1ects become indeed negligible in the real system.

As suggested by the above mentioned Fndings in the classical limit, the harmonic oscillator model
for the thermal environment (8.2), (8.3), (8.8), provides a rather satisfactory description in a large
variety of real situations [66,94–96,660,661,664,665], even though for many complex systems, one
does not have a very clear understanding of the actual microscopic origin of the damping and
=uctuation e5ects. In fact, it seems to be widely believed that once the dissipation mechanism is
known to be of the general form appearing on the right-hand side of Eq. (8.4), i.e. to be a linear
functional of the system velocity, then for a heat bath at thermal equilibrium all the statistical
properties of the quantum noise �(t) in (8.4) are uniquely Fxed, i.e. independent of any further
microscopic details of the thermal heat bath. Arguments in favor of this conjecture have been
given, e.g. in [81,94,95,189,666], but a veritable proof does not seem to exist yet, see also Sections
2.1.2, 3.4.1 and [80,92,93,97] for the classical limit. Under the assumption that the conjecture holds,
it can be inferred [95] that any dissipative dynamics of the form (8.4) which is in contact to an
equilibrium heat bath can be represented by a harmonic oscillator model (8.1), (8.2). This does not
mean that in every such physical system the actual bath is a harmonic oscillator bath, but only that
one cannot tell the di5erence as far as the behavior of the system x(t) is concerned [95]. We Fnally
remark that the damping kernel (8.5) does not change in the classical limit, it is the same for both
a quantum mechanical or classical treatment of the system dynamics. In other words, the knowledge
of the dissipation term in the classical limit appears to be suCcient to completely Fx the quantum
mechanical stochastic dynamics.

Historically, the harmonic oscillator model has apparently been invoked for the Frst time by
Einstein and Hopf [78] for the description of an oscillating electrical dipole under blackbody irradi-
ation and subjected to radiation damping. 131 A classical model with a harmonic oscillator potential

131 A preliminary toy-model, somewhat related to the problem considered by Einstein and Hopf is due to Lamb [667].
It can be mapped onto a harmonic oscillator model [95] but does not involve =uctuations of any kind. The same proviso
applies for further related early works, like e.g. [668,669].
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to the spatially inverted potential from (2.3), see also Fig. 2.2. Dashed and dotted: “tilted washboard potentials” U±(x)
in (8.10) with Fl = 0:1V0; l = L=2�.

V (x), but otherwise exactly like in (8.1)–(8.3) has been put forward by Bogolyubov [670], how-
ever, without explicitly working out the statistical properties of the =uctuations �(t), especially their
Gaussian character and the classical counterpart (6.22) of the =uctuation–dissipation relation (8.5),
(8.7). The latter issues, together with a quantum mechanical transcription of the model, has been
accomplished by Magalinskii [84]. Subsequent re-inventions, reFnements, and generalizations of the
model have been worked out, e.g. in [85,88,89,94,95,189,659].

8.2. Adiabatically tilting quantum ratchet

For general driving y(t), Eq. (8.4) gives rise to a very complicated non-equilibrium quantum dy-
namics. To simplify matters [161,671,672], we restrict ourselves to very slowly varying tilting forces
y(t) such that the system can always adiabatically adjust to the instantaneous thermal equilibrium
state (accompanying equilibrium). We furthermore assume that y(t) is basically restricted to the val-
ues ±F , i.e. the transitions between ±F occur on a time scale of negligible duration in comparison
with the time the particle in (8.4) is exposed to either of the “tilted washboard” potentials

U±(x) :=V (x) ∓ Fx ; (8.10)

cf. Fig. 8.1. As a Fnal assumption we require a positive but not too large F , such that U±(x) still
display a local maximum and minimum within each period L. Apart from this, the tilting force y(t)
may still be either of stochastic or of deterministic nature.

Within the so deFned model, we are essentially left with six model parameters, 132 namely the
particle mass m, the “potential parameters” V0, L, and F (see Fig. 8.1), and the “thermal environment

132 Throughout this section the cuto5 !c in (8.8) is chosen much larger than any other characteristic frequency of the
system and therefore does not appear any more in the following.
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parameters” 
 and T . We now make the assumption that these parameters are chosen such that a
classical particle which starts at rest close to any local maximum of U±(x) will deterministically slide
down the corresponding slope but will not be able to subsequently surmount any further potential
barrier and so is bound to end in the next local minimum. Di5erently speaking, a moderate-to-strong
friction dynamics is considered and deterministically “running solutions” are excluded.

We further assume weak thermal noise, that is, any potential barrier appearing in (8.10) is much
larger than the thermal energy, i.e.

UUmin�kBT ; (8.11)

where UUmin denotes the smallest of those potential barriers. As a consequence, we are dealing
with a barrier crossing problem (see Section 3.8) and thus the average particle current in either of
the two potentials U±(x) can be expressed in terms of two rates according to (3.55), see also (5.6).
Moreover, the assumption of rare jumps of y(t) between the two values ±F makes it possible to
express the net current by way of an adiabatic limit argument analogous to (5.2), (5.9) in terms
of these two partial currents. In this way, one Fnally arrives at the following expression for the
averaged net particle current in terms of two rates:

〈ẋ〉 =
L
2

(1 − e−FL=kBT ) (k+
r − k−l ) : (8.12)

Here, k+
r indicates the escape rate from one local minimum of U+(x) to its neighboring local

minimum to the right, and similarly k−l denotes the rate to the left in the potential U−(x). We
also recall that the average on the left-hand side of (8.12) indicates a thermal averaging (quantum
statistical mechanical expectation value) together with an averaging over the driving y(t).

Within a purely classical treatment of the problem, i.e. within the formal classical limit ˝→ 0,
any of the two rates k in (8.12) describe thermally activated transitions “over” a certain potential
barrier UU between neighboring local minima of the corresponding potential. Due to the weak noise
condition (8.11), such a rate k is given in very good approximation by the well-known Kramers-rate
expression [66]

k =
�
√

U ′′(x0)

2�
√|U ′′(xb)|

e−UU=kBT ; (8.13)

� :=

√

2 + 4m|U ′′(xb)| − 


2m
; (8.14)

where xb and x0 denote the above mentioned local potential-maximum and -minimum, respectively,
and where indices r, l, and ± have been dropped. Note that in the overdamped limit m→ 0, the
Kramers–Smoluchowski rate-expression from (2.45) is recovered.

Turning to a quantum mechanical treatment of the problem, the rates in (8.12) in addition have
to account for quantum tunneling “through” the potential barriers. Especially, due to our assump-
tion that moderate-to-strong friction is acting, the tunneling dynamics is incoherent and a quantum
rate description of the current (8.12) is valid. To evaluate these rates, a sophisticated line of rea-
soning has been elaborated [66,96,660]. Starting with the Hamiltonian system-plus-reservoir model
(8.1) and adopting the so-called “imaginary free energy method” [66,673] or, equivalently, the
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“multidimensional quantum transition state theory” [66,674,675], it is possible to express the escape
rate k in terms of functional path integrals. After integration over the bath modes and a steepest
descent approximation, one obtains the semiclassical form

k = Ae−S=˝ : (8.15)

Here, the exponentially dominating contribution S is deFned via the non-local action

Sb[q] :=
∫ ˝=kBT

0
d&

[
mq̇2(&)

2
+ U (q(&)) +



4�

∫ ∞

−∞
d&′
(
q(&) − q(&′)

&− &′

)2
]

: (8.16)

This action has to be extremized for paths q(&) under the constraints that q(& + ˝=kBT ) = q(&) for
all &, and that there exists a &-value such that q(&) = xb. A trivial such extremizing q(&) is always
q(&) ≡ xb. Among this and the possibly existing further extrema one selects the one that minimizes
Sb[q], say qb(&), to obtain

S := Sb[qb] − ˝EU (x0) : (8.17)

The pre-exponential factor A in (8.15) accounts for =uctuations about the semiclassically dominating
path qb(&).

For a numerical exempliFcation [161,671,672] we use T as control parameter and Fx the Fve
remaining model parameters m, 
, V0, F , and l :=L=2�. Without specifying a particular unit system
this can be achieved by prescribing the following Fve dimensionless numbers: First we Fx V0, F , l
and thus U±(x) through Fl=V0 = 0:2, UUmin=V0 = 1:423, and |U+′′(xb)| l2=V0 = 1:330 corresponding
to the situation depicted in Fig. 8.1. Next we choose 
=mJ0 = 1 with J0 := [V0=l2m]1=2, meaning a
moderate damping as compared to inertia e5ects. To see this we notice that J0 approximates rather
well the true ground state frequency !+

0 := [U+′′(x0)=m]1=2 in the potential U+(x), !+
0 = 1:153J0,

and similarly for U−(x). In particular, 
=mJ0 =1 strongly forbids deterministically running solutions.
In order to specify our last dimensionless number we remark that within the weak noise assumption
(8.11) it can be shown [66] that in the potential U+(x) genuine quantum tunneling events “through”
the potential barrier are rare above a so-called crossover temperature

T+
c =

˝�+

2�kB
; (8.18)

while for T¡T+
c tunneling yields the dominant contribution to the transition rates. An analogous

crossover temperature T−
c arises for the potential U−(x) which is typically not identical but rather

close to T+
c . With the deFnitions

Tmax
c = max{T+

c ; T−
c }; Tmin

c = min{T+
c ; T−

c } ; (8.19)

we now Fx our last dimensionless quantity through UUmin=kBTmax
c =10. In this way, the weak noise

condition (8.11) is safely fulFlled for T6 2Tmax
c , i.e. up to temperatures well above both T+

c and
T−

c . At the same time, the so-called semiclassical condition [66]

UUmin�kBTmax
c ; (8.20)
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Fig. 8.2. The classical steady state current 〈ẋ〉cl and its quantum mechanical counterpart 〈ẋ〉qm for the ratchet potential
from Fig. 8.1 in dimensionless units 〈ẋ〉=LJ0. Note that in the present Arrhenius plot (logarithmic ordinate) the observed
behavior of the quantum current near Tmax

c =T = 3:5 is not the signature of a singularity but rather of a current inversion.
Further worth mentioning features are the non-monotonicity of 〈ẋ〉qm and that 〈ẋ〉qm tends towards a Fnite limit when
T → 0.

can be taken for granted when evaluating the quantum mechanical transition rates (8.15) for all
T6 2Tmax

c . SpeciFcally, the prefactor A appearing in (8.15) can be evaluated within a saddle point
approximation scheme [66] if the semiclassical condition (8.20) holds. Moreover, the implicit as-
sumption in (8.12) that not only thermally activated barrier crossings are rare (see (8.11)) but
also tunneling probabilities are small, is self-consistently fulFlled if (8.20) holds. For more details
regarding the actual numerical calculation of those rates we refer to [161].

Representative results [671,672] for the above speciFed quantum ratchet model are depicted in
Fig. 8.2. Shown are the current 〈ẋ〉qm following from (8.12) within the above sketched quantum
mechanical treatment of the rates according to (8.15) together with the result 〈ẋ〉cl that one would
obtain by means of a purely classical calculation (formal classical limit ˝→ 0) according to (8.13).
The small dashed part in 〈ẋ〉qm in a close vicinity of the crossover temperatures Tmax

c and Tmin
c from

(8.19) signiFes an increased uncertainty of the semiclassical rate theory in this temperature domain.
Our Frst observation is that even above Tmax

c , quantum e5ects may enhance the classical transport
by more than a decade. They become negligible, that is, the physical classical limit is approached,
only beyond several Tmax

c . In other words, signiFcant quantum corrections of the classically predicted
particle current set in already well above the crossover temperature Tmax

c , where tunneling processes
are still rare. (They can be associated to quantum e5ects other than genuine tunneling “through” a
potential barrier.) With decreasing temperature, T¡Tmin

c , quantum transport is even much more en-
hanced in comparison with the classical results. The most remarkable feature caused by the intriguing
interplay between thermal noise and quantum tunneling is the inversion of the quantum current direc-
tion at very low temperatures [161,414,415,671,672,676–678]. Working within a formal a classical
limit (˝→ 0), such a reversal for adiabatically slow driving is ruled out. Finally, 〈ẋ〉qm approaches
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a Fnite (negative) limit when T → 0, implying a Fnite (positive) stopping force 133 also at T = 0. In
contrast, the classical prediction 〈ẋ〉cl remains positive but becomes arbitrarily small with decreasing
T . A curious detail in Fig. 8.2 is the non-monotonicity of 〈ẋ〉qm around Tmax

c =T � 2:5, caused via
(8.12) by a similar resonance-like T -dependence in the prefactor A of one of the underlying quantum
mechanical transition rates (8.15).

8.2.1. Tunneling-induced current inversion
The most remarkable result of the preceding subsection (see also Fig. 8.2) is the inversion of

the current upon decreasing the temperature. On the other hand, within the formal classical limit
(˝→ 0) the current never changes its direction. Since at high temperatures the physical classical limit
is approached, i.e. the formal classical limit provides a more and more accurate approximation for
the true physical system, the temperature controlled current inversion represents a new signature
of genuine quantum mechanical e1ects. In the following we provide a simple heuristic explanation
of this Fnding [161,415,671].

As a Frst simpliFcation, we exclusively focus in the exponentially leading contribution in the
semiclassical rate expression (8.15), i.e. the sign of the current in (8.12) is given by that of S−

l −S+
r .

For suCciently large temperatures, quantum mechanical e5ects become negligible and the expo-
nentially leading part in (8.15) goes over into that of (8.13). Indeed, one can show [66,96] that for
T¿Tmax

c only the trivial extremizing paths q(&) ≡ xb in (8.16) exist for both potentials U±(x), and
thus we recover with (8.17) that S+

r =˝=UU+
r =kBT and S−

l =˝=UU−
l =kBT . In other words, the lower

of the two barriers UU+
r and UU−

l determines the direction of the current.
A second case for which the extremization of the action (8.16) can be readily carried out is the

combined limit T → 0 and 
→ 0 (no heat bath), resulting in the familiar Gamow formula for the
exponentially leading tunneling contribution in (8.17), namely

S = 2
√

2m
∣∣∣∣
∫ x1

x0

dq [U (q) − U (x0)]1=2

∣∣∣∣ : (8.21)

As before, x0 denotes a local minimum of U (x) and x1 is the Frst point beyond the considered
potential barrier with the property that U (x1) = U (x0). The absolute value in (8.21) is needed since
x1¡x0 for the escapes to the left, i.e. across UU−

l . Thus, the smaller of the two Gamow-factors
S+

r and S−
l determines the direction of the current. Strictly speaking, by letting 
→ 0 we of course

violate our previously made assumption that deterministically running solutions should be ruled out.
However, it is plausible that small but Fnite 
 will exist for which our qualitative arguments can be
adapted self-consistently.

From Fig. 8.1 one can see by naked eye that the activation energy barrier UU+
r to proceed in the

potential U+(x) from one local minimum to the neighboring local minimum to the right is smaller
than the corresponding barrier UU−

l . Hence the current is positive for suCciently large temperatures.
In contrast, the fact that S+

r is larger than S−
l cannot deFnitely be read o5 by eye directly from

Fig. 8.1 since the two quantities are rather similar, but it can be readily veriFed numerically. In other
words, for very small T indeed a negative current is predicted. A change of sign of the current at
some intermediate temperature is thus a necessary consequence.

133 Recalling the deFnition from Section 2.6.2, the stopping force is that external force F in (3.1) which leads to a
cancellation of the ratchet e5ect, i.e. 〈ẋ〉 = 0.
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Things become even more obvious by considering instead of the smooth potential from Fig. 8.1
a stilized saw-tooth proFle 134 as sketched in Fig. 8.3. Focusing on the local minimum x0 = 0,
the fact that UU+

r ¡UU−
l is read o5 immediately from Fig. 8.3. Denoting by 3 := |x1 − x0| the

134 For such a singular potential shape the �-factor in the crossover temperature (8.18) is no longer given by (8.14).
Instead of changing the deFnition of �, one may also slightly smoothen out the singularities of the potential.
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“tunneling-length”, the Gamow-factor (8.21) takes the simple form

S = 4
3

√
2mUU3 ; (8.22)

where indices r, l, and ± have been omitted as usual. From Fig. 8.3 one reads o5 that 3+ = L,
3− = L=(1 + LF=V0), UU−

l = V0, and UU+
r = V0(1 − LF=V0), where we have assumed without

loss of generality, that 06F6V0=L. It readily follows that for small-to-moderate tilting forces
F ∈ [0; 0:618V0=L] we have that S+

r ¿S−
l and the current is therefore negative.

In conclusion, the basic physical mechanism behind the opposite sign of the current at high and
low temperatures is apparently rather simple and robust, suggesting that this feature should be very
common in tilting quantum ratchet systems. Since the decrease of temperature is accompanied by a
transition from thermally activated to tunneling dominated transport, the concomitant change of the
transport direction may be considered as tunneling induced current inversion, see Section 8.4.

8.3. Beyond the adiabatic limit

For an non-adiabatic tilting force y(t) in (8.1) the determination of the average particle current is
in general very diCcult. An approximative analytical approach becomes possible within a so-called
tight-binding model description. The starting point consists in the observation that the Frst two
terms on the right-hand side of (8.1) deFne a time-independent particle dynamics in a periodic
potential and can thus be treated within the standard Bloch-theory for independent (quasi-)particles
in a one-dimensional lattice [462]. Under the assumptions that both the external tilting force y(t)
and the thermal =uctuations of the environment, entering through the last two terms in (8.1), are
suCciently weak, one can focus on a single-band truncation of the problem, i.e. the Hilbert-space
accessible to the particle is spanned solely by the Bloch-states of the lowest energy-band. Especially,
both the thermal energy kBT and the energy ˝!c associated to the cuto5 in (8.8) have to be
restricted to values much smaller than the excitation energy into the second band (or the continuum).
Upon going over from these Bloch-states of the lowest band to a new basis {|n〉}∞n=−∞ of the
so-called localized-or Wannier-states [462], the truncated model Hamiltonian (8.1) takes the standard
single-band tight-binding form [679]

H(t) = −˝�
2

∞∑
n=−∞

(|n〉〈n + 1| + |n + 1〉〈n|) − xy(t) + HB ; (8.23)

where both in (8.23) and (8.2) the operator x is deFned as

x :=L
∞∑

n=−∞
n|n〉〈n| : (8.24)

The quantity ˝� in (8.23) is the so-called tunneling coupling energy between neighboring potential
minima. In principle, its explicit value can be determined from the Bloch-states and the potential
V (x) [462]. Alternatively, the tunneling coupling energy may be considered as an adjustable model
parameter. An additional approximation implicit in (8.23) is the assumption that only tunneling
between neighboring potential minima of V (x) plays an appreciable role. In other words, the so-called
coherent tunneling (co-tunneling) is neglected.
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By construction, the single-band tight-binding model (8.23) cannot capture thermally activated
transport across the energy barriers between neighboring minima of V (x); its validity is restricted to
quantum mechanical tunneling processes at low energies and temperatures. Furthermore, the model
does not exhibit any traces of a possible asymmetry in the periodic potential V (x). One is therefore
restricted to e5ectively symmetric potentials V (x) and a ratchet e5ect may only be studied within an
asymmetrically tilting ratchet scheme (see Section 5.12). Besides these restrictions, the tight-binding
model also goes beyond the approach from Section 8.2 in that the semiclassical condition (8.18) is
not required and the tilting force y(t) need not be adiabatically slow (see below). In this sense, the
approaches from Section 8.2 and of the present section are complementary.

A non-adiabatically tilting quantum ratchet within the above single-band tight-binding approxima-
tion has been considered in [680] for a rather general class of unbiased, asymmetric random drivings
y(t), including asymmetric dichotomous noise as a special case. In the absence of the heat bath HB

in (8.23), the average particle current is found to vanish in all cases (for the same model, but with
a periodic driving y(t), see also [166,167]). In the presence of the heat bath, the occurrence of a
Fnite current is generically observed. Current inversions upon variation of di5erent model parameters
are also reported. Especially, such an inversion may occur when the temperature is changed, which,
for reasons detailed above, cannot be explained by the heuristic argument from Section 8.3 and thus
represent a genuine feature of the non-adiabatic driving. Regarding a more detailed discussion of the
e5ective di5usion coeCcient (3.6) within this model we refer to the original paper [680].

The same model, but with an asymmetric periodic driving y(t) of the harmonic mixing form (5.58)
has been addressed in [681]. The emerging quantum current exhibits multiple reversals, characteristic
for the non-adiabatic nature of the driving, and a stochastic resonance-like, bell-shaped behavior
upon variation of the temperature. Via control of the phase and the amplitudes of the driving signal
(5.58) it is furthermore possible to selectively control the magnitude of both the quantum current
and di5usion, as well as the current direction. For further theoretical and experimental works along
related lines see [166,167,381–383,780,781] and references therein. 135

While the rich behavior of the single-band tight-binding ratchet model can be obtained by means
of sophisticated analytical approximations [680,681] which go beyond our present scope, simple
intuitive explanations can usually not be given.

Generalizations of the single-band tight-binding model (8.23) have been addressed in [683–685].
The main new ingredient is an extra “potential”-term HV of the form

HV =
∞∑

n=−∞
|n〉〈n|Vn mod N [1 + f(t)] (8.25)

on the right-hand side of (8.23), reminiscent of a spatially discretized, asymmetric ratchet potential
with period N¿ 3. The case with y(t) ≡ 0 in (8.23), corresponding to a =uctuating potential ratchet,
has been treated in [683,685]. The opposite case with f(t) ≡ 0 but again with an adiabatically slow,
symmetric rocking force y(t) has been addressed in [684]. At Frst glance, such an extra term (8.25)
in order to upgrade the single-band tight-binding model (8.23) into a veritable ratchet system with a
broken spatial symmetry is indeed suggestive. However, the present author was only able to Fgure out
very arti8cial actual physical situations which may be captured by such a model with a non-trivial

135 Closer inspection indicates [166,682] that the conclusions from [383] in the case of a dissipationless (collisionless)
single-band model are at most valid for very special (non-generic) initial conditions.
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term (8.25). In particular, due to the nearest-neighbor hopping term in (8.23), such a description
clearly cannot properly account for more than one single band.

Further quantum ratchet works, some of which go beyond the adiabatic limit, and which are
not based on the single-band tight-binding approximation (8.23) of the original dynamics (8.1),
are [490,541,685,686]. However, the present author Fnds these studies questionable with respect to
the conceptual basis and=or the technical methodology. A quantum Smoluchowski–Feynman-type
model (equilibrium system) has been investigated on the basis of a widely used standard approxi-
mation in [658] and further references therein. The observed appearance of a ratchet e5ect in such
an equilibrium model underlines once more the warning at the beginning of Section 8.1 that even
well-established ad hoc approximations for a quantum thermal environment may easily lead to in-
consistencies with fundamental principles of statistical mechanics.

For a periodic driving y(t) and in the absence of the heat bath HB in (8.1) the quantum me-
chanical counterpart of the Hamiltonian rocking ratchet model from equation (5.34) in Section 5.8
is recovered. Within a single-band tight-binding approximation (8.23) this type of model has been
solved in closed analytical form in [166,167,680]. Though the chaotic features of the classical coun-
terpart cannot be captured in this way, a dependence of the current on the initial conditions is found
[166,167] which is quite similar to the classical results from [165], while strongly non-classical fea-
tures [680] arise in the presence of a Fnite static tilt F (i.e. y(t) in (8.23) is replaced by y(t) +F).
A Frst step into the direction of a chaotic (Hamiltonian) quantum ratchet system has been taken in
[408,409] and [687] with the main focus on the semiclassical regime and on mesoscopic electron
billiard devices, respectively, see also Section 5.8 for the classical limit.

8.4. Experimental quantum ratchet systems

As a Frst candidate for an experimental realization of a quantum ratchet we consider the SQUID
rocking ratchet model [354] from equation (5.38). As argued at the beginning of this chapter, this
stochastic dynamics (5.38) as it stands represents a classical ratchet system [94]. The question of
how to properly “quantize” such a “classical” dynamics, which itself arises as an e5ective description
of characteristic quantum e5ects, has been discussed extensively in the literature, see [94,664] and
references therein. Leaving aside devices which contain ultra small tunnel junctions, ample theoretical
[664,688–690] as well as experimental (see references in [66]) justiFcation has been given that,
after proper renaming of symbols, Eqs. (8.1) and (8.8) provide the basis for an adequate quantum
mechanical extension of the classical model (5.38) when the temperature is decreased below a few
times Tmax

c from (8.19). Conceptionally, it is interesting to note [94] that we are dealing here with
quantum e5ects which manifest themselves via the macroscopic phase-variable ’. In other words, the
observation of transport properties characteristic for a quantum ratchet is not necessarily restricted
to the realm of microscopic systems. So far, an actual experimental realization of a SQUID ratchet
system [25,26,182,183] is only available for the two-dimensional modiFcation (5.52), (5.53) of the
archetypal rocking ratchet setup (5.38). While the experiment from [182,183] works with high-Tc

SQUIDS at temperatures too large to see any traces of quantum mechanical tunneling of the phase
’, an analogous experiment with conventional superconductors is presently under construction, with
the intention to reveal such quantum mechanical e5ects.

A second potential realization of a tilting quantum ratchet system is based on the motion of ultra-
cold atoms in the presence of standing electromagnetic waves, creating a ratchet potential through
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the radiation-pressure forces of the counterpropagating light beams [691–695]. For suCciently weak
potentials and low temperatures, quantum e5ects will clearly play a dominant role in the atomic
motion and may be roughly captured by a model like in (8.1). Especially, the tilting force may be
created by exploiting the mapping of the model onto an improper traveling potential ratchet from
Section 4.4.2. The corresponding accelerating optical potentials have been experimentally realized,
e.g. in [695]. As detailed in Section 4.5.2, a somewhat related system has indeed been experimen-
tally studied in [336]. Due to the remaining considerable di5erences between this system and the
theoretical model (8.1), a direct comparison is, however, not possible.

A third promising class of experimental tilting quantum ratchet devices are semiconductor
heterostructures. The lacking periodicity of a single diode (n-p junction) can be readily remedied,
in the simplest case by connecting identical diodes by normal conducting wires. Similarly as in the
above discussed case of SQUID ratchets, such a simple array of diodes realizes a classical ratchet
system in so far as (at the usual working temperatures) the essential transport processes across
the junctions are governed by classical thermal di5usion rather than quantum mechanical tunneling
(see also Sections 2.9, 5.6 and 6.1). Closely related devices are spatially periodic semiconductor
superlattices. Examples with broken spatial symmetry (so-called sawtooth superlattices) have been
experimentally realized since long [783,784] but have never been studied so far from the viewpoint
of the ratchet e5ect. Heterostructures consisting of alternating layers of GaAs and AlGaAs in quan-
tum mechanically dominated temperature regimes have been experimentally explored e.g. in [696
–698]. The motion of a (quasi-) particle (dressed electron) in such a superlattice may be roughly
described by an e5ective, one-dimensional model of the form (8.1), where the heat bath takes into
account the e5ects of the crystal phonons [680,681,697,698]. In the simplest case of a semicon-
ductor superlattice with only two di5erent alternating layers, a symmetric periodic potential V (x)
in (8.1) arises, thus the asymmetrically tilting quantum ratchet scheme from Section 8.3 has to be
employed. The quantitative estimates from [681] furthermore show that the one-band tight-binding
model (8.23) may be a valid approximation for a typical experimental setting [696–698]. Moreover,
if the driving y(t) is provided by the usual electromagnetic waves in the THz-regime, one is indeed
dealing with the non-adiabatic regime from Section 8.3. On the other hand, the semiclassical theory
from Section 8.2 cannot be applied to such an experimental situation not only because the driving
is not adiabatically slow, but also since the semiclassical condition (8.18) is typically not satisFed.

Important progress towards an adiabatically rocking quantum ratchet in one-dimensional Josephson
junction arrays, consisting of three “cells” (e5ective periods) with broken spatial symmetry, has been
achieved very recently in [699]: somewhat similar as in the systems from Section 5.7.3, but operating
in the quantum mechanical regime, the voltage due to the dynamical response of the vortices (directed
transport of quasi particles) against an applied bias current exhibits an asymmetry when the sign
of this bias is inverted, cf. Fig. 2.4. In particular, the theoretically expected asymptotic temperature
independence of the e5ect in the deep quantum cold is experimentally recovered.

A molecular rectiFer for electrons, combining the quantum ratchet with the Coulomb blockade
e1ect, has been proposed in [422]. For additional experiments which may be considered to some
extent as quantum ratchet systems we also refer to the applications (especially single electron pumps)
of the genuine traveling potential ratchet scheme discussed in Section 4.4.1.

We close this section with the experimental realization of an adiabatically rocking quantum ratchet
by Linke and colleagues on the basis of a quantum dot array with broken spatial symmetry. We
skip the preliminary experiment on AC-driven electron transport through a single triangular shaped
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Fig. 8.4. Scanning electron micrograph of an array of triangular shaped quantum dots, etched from a GaAs=AlGaAs
semiconductor heterostructure. The depicted top view deFnes the x–y-plane accessible to the two-dimensional conducting
electron gas. The etched areas (dark regions) are insulating domains for the electrons. Shown are 4 out of the 10 triangles
used in the actual experiment [705]. The period L of the triangles is about 1:2�m.

Fig. 8.5. Electrical current I = −e 〈ẋ〉 along the quantum dot array from Fig. 8.4 versus temperature for an unbiased
rocking voltage y(t) which periodically jumps between ±1 mV at a frequency of 191 Hz [705].

quantum dot [414,700–704] (see also [423]) and immediately turn to the exploration of an entire
array of such triangular dots [415,677,678,705–707].

The basic setup [705] is depicted in Fig. 8.4: A two-dimensional conducting electron gas is con-
stricted by two insulating boundary-regions (dark areas in Fig. 8.4). In other words, the “conducting
channel” along the x-axis is laterally conFned to a width of about 1�m. Roughly speaking, the corre-
sponding lateral conFnement energy creates an e5ective ratchet-shaped potential V (x) for the particle
dynamics along the x-axis of a qualitatively similar character as in Fig. 8.1. The two “side gates” in
Fig. 8.4 allow one to externally modify this e5ective potential by putting them on di5erent electrical
potentials. The actual rocking force y(t) is created by applying an AC-voltage along the x-axis,
periodically switching between the two values ±F , with a typical voltage F of about 1 mV. The
driving frequency of 191 Hz used in the experiment is deFnitely deep within the adiabatic regime.
The “bottlenecks” which connect neighboring triangles in Fig. 8.4 are chosen such that quantum
tunneling dominates at low temperatures, while for higher temperatures the conduction electrons can
also substantially proceed by way of thermal activation across the corresponding e5ective potential
barriers.

The measured [705] current through the quantum dot array as a function of temperature is exem-
pliFed in Fig. 8.5. The two main features theoretically predicted in Section 8.2 are clearly repro-
duced, namely a current inversion upon decreasing the temperature and a saturation of the current as
temperature approaches absolute zero. 136 Though a model along the lines of (8.1) is obviously

136 Note that Fig. 8.2 is an Arrhenius plot (log〈ẋ〉 versus 1=T ), while Fig. 8.5 depicts the bare quantities “electrical
current” versus “temperature”.
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a very crude description of the experimental situation, the basic features and thus the heuristic ex-
planation of the current inversion from Section 8.2.1, are apparently still qualitatively correct. Note
that also the direction of the current is in agreement with Fig. 8.2 by taking into account that the
relevant e5ective potential for the experiment is of the same qualitative shape as in Fig. 8.1 and
that the electrical current is opposite to the particle current for the negatively charged electrons. For
a somewhat more realistic theoretical model, which also reproduces the main qualitative features of
the experiment, we refer to [705,706].

Based on the observation from Section 8.2.1, namely that “cold” and “hot” particles move in
opposite directions (as long as their individual “temperatures” (kinetic energy) change suCciently
little), an interesting idea is [559,708] to apply the above quantum rocking ratchet setup in the
absence of a net particle transport, i.e. operating at the current inversion point, for “cooling”
purposes. 137 However, the quantitative analysis of the experiment in [705] shows that the heat-
ing due to the external rocking force exceeds the cooling e5ect due to the above separation of
particles with di5erent temperatures [708]. On the other hand, assuming the existence of “ideal Fl-
ters”, which let pass in both directions only particles with one speciFc energy, it is possible to modify
the original setup such that it can act either as refrigerator or as heat engine arbitrarily close to the
maximal Carnot eCciency [559]. In contrast to the standard framework for considerations on the
eCciency of particle transport from Section 6.9, here a zero particle current situation is addressed,
and the relevant mechanical work is now associated with the external driving force. In other words,
the particle motion is now considered as an internal part of the engine under consideration, and no
longer as the resulting e5ect of the engine.

9. Collective e9ects

At the focus of this chapter are collective e5ects that arise when several copies of “single”
classical ratchet systems, as considered in extenso in the previous sections 2–6, start to interact with
each other.

Accordingly, the general working model (3.1) goes over into N coupled stochastic di5erential
equations of the form


ẋi(t) = −V ′(xi(t); fi(t)) + yi(t) + F + �i(t) − 9 (x1(t); : : : ; xN (t))
9xi

(9.1)

with i= 1; : : : ; N . The last term accounts for the interaction through an interaction potential  which
is assumed to be spatially homogeneous and inversion symmetric, i.e. no preferential direction is
introduced through the interaction. The assumption of a thermal equilibrium environment implies
that the thermal noises �i(t) are mutually independent Gaussian white noises with correlation

〈�i(t)�j(s)〉 = 2
kBT�ij�(t − s) : (9.2)

137 Of foremost interest in this context are “single-period setups” (e.g. a single triangular quantum dot) in contact with
two electron-reservoirs at either the same or di5erent temperatures.
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The drivings fi(t) and=or yi(t) are usually assumed to be either mutually independent random
processes or equal to the same periodic function for all i. In any case, these drivings as well as
the interaction  in (9.1) have to respect the equivalence of all the “single particles” i. Therefore,
the average particle current 〈ẋ〉 from (3.5) will be the same for each particle i and consequently
independent of whether or not an additional average over i is performed. The case of foremost
interest is usually the zero load (F = 0) situation, but also the response when a Fnite F is acting
will lead to quite remarkable observations in Section 9.2.

We recall that various examples with N = 2 interacting systems (9.1) have been discussed already
in Sections 5:9; 6:5 and 7:6. In the present chapter, our main interest will concern collective e5ects
in the case of a large number N →∞ of interacting systems 138 (thermodynamic limit). In doing so,
two basic types of questions can be addressed. First, one may consider cases for which already in
the absence of the interaction in (9.1) each single system exhibits a ratchet e5ect, i.e. both, thermal
equilibrium and spatial symmetry are broken. In such a case, one may study the modiFcation of the
current 〈ẋ〉 in magnitude and possibly even in sign when the interaction is included. A survey of
such explorations will be presented in Section 9.1.

A second type of questions regards genuine collective e1ects, namely spontaneous ergodicity
breaking, entailing phase transitions, the coexistence of di5erent (meta-) stable phases, and hysteretic
behavior in response to the variation of certain parameters. While all these collective phenomena
are well known also in equilibrium systems, the second law of thermodynamics precludes a Fnite
particle current in such systems even if their spatial symmetry is broken. We thus focus on interacting
systems (9.1) out of equilibrium, which for the usual interactions is the case if and only if already
the uncoupled systems (9.1) are out of equilibrium. Such genuine non-equilibrium collective e5ects
have already been encountered in the context of the Huxley–J�ulicher–Prost model for cooperating
molecular motors in Section 7.4.4. There, the main emphasis was put on systems with a built-in
spatial asymmetry already of the single (uncoupled) systems in (9.1), which is then inherited by
the coupled model. In contrast, in Section 9.2 we will address coupled non-equilibrium systems
(9.1) which are fully symmetric under spatial inversion. The essential idea is then that instead of
a built-in asymmetry, a perfectly symmetric system may create the asymmetry, which is necessary
for the manifestation of a ratchet e5ect, by itself, namely through spontaneous symmetry breaking.
While the occurrence of such a “spontaneous current” has been pointed out already for a spatially
symmetric special case of the JMulicher–Prost model in [550], we will focus in Section 9.2 on a
simpler model which admits a partial analytical treatment and exhibits additional, quite remarkable
collective non-equilibrium features.

We close with two remarks: Frst, the subject under study in this chapter is intimately related with
many other topics, like for instance non-equilibrium phase transitions, reaction–di5usion systems,
pattern formation, driven di5usive systems, Frenkel–Kontorova models, Josephson junction arrays,
sine-Gordon equations, and coupled phase oscillators. A detailed discussion of any of these adjacent
topics goes, however, beyond the scope of our present review. Second, while we feel that very

138 A deterministic collective model which does not Ft into this general framework is due to [709,710]: It works for
N¿ 3 particles with Fnite mass m in a static, not necessarily asymmetric potential V (x). A worm-like deterministic
motion is generated by active changes of the interaction in a wave-like manner along the chain of particles xi(t).
A similar model with non-Newtonian interaction forces (action 
= reaction) is due to [711]. Moreover, reaction-di5usion
model for interacting Brownian motors has been discussed in Section 6.5.
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interesting and unexpected theoretical discoveries are still to come, on the experimental side the
Feld is even more so at a very underdeveloped stage.

9.1. Coupled ratchets

In this section we review investigations of N →∞ coupled ratchet systems in the case that each
single particle i exhibits a ratchet e5ects already in the absence of the interaction in (9.1). For related
discussions of models for cooperative molecular motors we also refer to Section 7.4. Throughout
this section, we restrict ourselves to the case F = 0 in (9.1) and to potentials V (x) with a broken
symmetry, i.e. ratchet potentials, as exempliFed by Figs. 2.2 and 4.1.

The case of interacting rocking ratchets


 ẋi(t) = −V ′(xi(t)) + y(t) + �i(t) + Ib(xi+1(t); xi(t); xi−1(t)) (9.3)

with a hard core repulsive interaction Ib such as to guarantee xi+1(t)¿xi(t)+b for all i and t has been
explored in [712]. Pictorially speaking, all particles are thus moving in the same one-dimensional,
periodically rocked ratchet potential V (x) − xy(t) and they have a Fnite extension b which sets a
lower limit for their mutual distance. The central (numerical) Fnding in [712] is a current inversion
upon variation of the average density of particles along the x-axis. This inversion is robust against
various modiFcations, especially of the driving y(t) in (9.3) [e.g. stochastic instead of periodic, or
with small, i-dependent variations of the driving-period T] and implies according to Section 3.6
analogous inversions upon variation of practically any other parameter of the model (9.3). For
adiabatically slow driving y(t) and simultaneously almost densely packed particles, an analytical
treatment is possible, revealing an extremely complex dependence of the current upon the particle
extension b. Somewhat similarly as in the JMulcher–Prost model [550], also in the present case the
magnitude of the current 〈ẋ〉 depends sensitively on whether the spatial period L is commensurate
or not with the average interparticle distance 〈xi+1(t) − xi(t)〉. Such e5ects may become practically
relevant for separating particles at high densities e.g. according to the drift ratchet scheme from
Section 6.6. A related, spatially discrete model with an adiabatically slow driving has been considered
in [513], thus establishing contact with the methods and concepts of the so-called driven di5usive
systems [602].

A second basic model consists of a chain of linearly coupled 9uctuating force ratchets


 ẋi(t) = −V ′(xi(t)) + yi(t) + �i(t) + A[xi+1(t) − 2xi(t) + xi−1(t)] ; (9.4)

where A is the spring constant (interaction strength) and yi(t) are independent Ornstein–Uhlenbeck
noise sources (cf. Eqs. (3.13) and (3.15)). In the continuum limit, one obtains a sine-Gordon-type
model, which has been analyzed by means of the sophisticated analytical machinery in this Feld
in [713]. The main result is the appearance of a ratchet e5ect in the form of a stationary directed
transport of kinks and antikinks in opposite directions. As a rule, the kink and hence the entire
particle chain move into the same direction as in the uncoupled, Ornstein–Uhlenbeck noise driven
=uctuating force ratchet (cf. Section 5.5), however with a highly non-trivial modiFcation of the
quantitative behavior of the current. Similar results for models of the type (9.4) have been reached
also in [714–717] and for an analogous coupled temperature ratchet model in [476]. Possible ap-
plications include the dynamics of dislocations in solids, solitonic =uxes in long Josephson junction
arrays and magnetically ordered crystals, and models for friction and stick–slip motion such as the
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Frenkel–Kontorova model. For related studies in the context of coupled Josephson junction arrays
see also Section 5.7.3.

Next, we turn to the interacting on–o1 ratchet counterpart of (9.3), i.e.


 ẋi(t) = −V ′(xi(t))[1 + fi(t)] + �i(t) + Ib(xi+1(t); xi(t); xi−1(t)) (9.5)

with fi(t)∈{±1}. In this case [225], the direction of the particle current 〈ẋ〉 may even change
many times as the density of particles is varied. For high particle densities and slow on–o5 cycles,
an extremely complex dependence of 〈ẋ〉 on the particle size b similarly as for the model (9.3)
is recovered. Such e5ects clearly become relevant for the various experiments from Section 4.2.1
at high particle densities. An experiment which may be considered to some extent as related to
the theoretical model (9.5) has been realized in [718,719]. In this work, the horizontal transport of
granular particles in a vertically vibrated system, whose base has a ratchet-shaped proFle, has been
measured. 139 The resulting material =ow exhibits current inversions and other complex collective
behavior as a function of the particle density and the driving frequency, displaying a rough qualitative
similarity with the theoretical model (9.5).

A coupled rocking ratchet model, but in contrast to (9.3) with a global, Kuramoto-type interaction
[624,721,722] with the same period L as the ratchet potential V (x), i.e.


 ẋi(t) = −V ′(xi(t)) + y(t) + �i(t) +
K
N

N∑
j=1

sin
(

2�
L

[xj(t) − xi(t)]
)

(9.6)

has been addressed in [723]. Upon increasing the coupling strength K , the current may change
direction and moreover the e5ect of the noise becomes weaker and weaker: For K →∞ all particles
in (9.6) are lumped (modulo L) into one single e5ective “superparticle” subjected to an e5ectively
deterministic single-particle rocking ratchet dynamics like in Section 5.7. The existence of current
inversions upon variation of other model parameters than the coupling strength immediately follows
from Section 3.6. Considering that a single particle (N =1) rocking ratchet can be realized by means
of three Josephson junctions (see Eq. (5.38)), the coupled model (9.6) may well be of relevance
for Josephson junction arrays 140 [724].

Universal properties of particle density =uctuations at long wavelengths and times for a large
class of short-range interaction ratchet models like for instance in (9.3), (9.5) have been revealed
in [725]. More precisely, the steady state density–density correlation function exhibits dynamical
scaling according to the Kadar–Parisi–Zhang universality class [725].

9.2. Genuine collective e1ects

For non-interacting periodic systems, the basic result of the previous sections 2–6 is that necessary,
and generically also suCcient conditions for the occurrence of directed transport are that the system
is out of thermal equilibrium and that its spatial symmetry is broken. The essential idea of this

139 A computer animation (Java applet) which graphically visualizes a somewhat related e5ect is available on the internet
under [720].

140 A nearest neighbor instead of the global coupling in (9.6) may then be a more realistic choice. Such a modiFcation
is, however, not expected to change the basic qualitative features of the model (at least in d¿ 2 dimensions), see also
Figs. 9.2 and 9.3 below.
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section is to abandon the latter condition of a built-in asymmetry. Instead, the system may create
an asymmetry by itself as a collective e1ect, namely by way of spontaneous symmetry breaking. As
a consequence, according to Curie’s principle, a collective ratchet e5ect in the form of a “spontaneous
current” is then expected. 141 It turns out that this idea can indeed be realized, and in fact even in
several di5erent ways [14,524,550,551,617,726–730]. Here, we will focus on a particularly simple
example of globally coupled =uctuating potential ratchets [524,726,729]. We Fnally remark that the
appearance of a “spontaneous current” has also been predicted in a rather di5erent theoretical mean
Feld model for driven semiconductor superlattices in [731,732].

9.2.1. Model
As a combination of the =uctuating potential ratchet scheme from (4.11) and of our general

working model for interacting systems (9.1) we take as starting point the following set of i=1; : : : ; N
coupled stochastic equations

ẋi(t) = −V ′(xi(t))[1 + fi(t)] + �i(t) +
K
N

N∑
j=1

sin(xj(t) − xi(t)) : (9.7)

For the sake of simplicity only, we consider a Kuramoto-type, sinusoidal global coupling
[624,721,722], and we will restrict ourselves to attractive interactions K¿0. Furthermore, we have
adopted dimensionless units (see Section A.4 in Appendix A) with


 = kB = 1; L = 2� : (9.8)

[For esthetical reasons we will often continue to use the symbol L.] In particular, the potential V (x)
and the interaction respect the same periodicity 142 L = 2�. However, in contrast to “conventional”
=uctuating potential ratchets without interaction (see Section 4.3), we exclude any built-in spatial
asymmetry of the system (9.7), which can be achieved if the potential V (x) respects the symmetry
condition

V (−x) = V (x) ; (9.9)

independently of any further properties of fi(t), see the discussion below (3.23). Finally, in view
of the analytic tractability in the absence of interaction (see Section 4.3.2) we specialize to potential
=uctuations fi(t) which are given by independent Ornstein–Uhlenbeck processes (3.13), (3.15) of
strength∫ ∞

−∞
dt 〈fi(t)fj(s)〉 = 2Q�ij (9.10)

(cf. Eq. (4.14)) and a negligibly small correlation time & in comparison to all the other relevant
time scales of the system.

141 In contrast to “permanent currents”, appearing for instance in mesoscopic rings at thermal equilibrium, the “spon-
taneous currents” which we have here in mind can be exploited to do useful work and are moreover a purely classical
phenomenon.

142 Mathematically, we avoid in this way additional complications due to incommensurability e5ects. Physically, this
assumption is especially natural if the state variables xi are originally of a phase-like nature, see Section 3.4.2. Some
generalizations will be addressed in Section 9.2.5 below.
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9.2.2. Spontaneous symmetry breaking
In this section, we Frst present a somewhat formal analytical demonstration of the existence of

spontaneous symmetry breaking for the system (9.7) in the thermodynamic limit N →∞, followed
quantitative numerical illustrations and an intuitive explanation of the basic physical mechanism
at work.

The main collective features of (9.7) are captured by the particle density

P(x; t) :=
1
N

N∑
i=1

�(x − xi(t)) : (9.11)

In contrast to the deFnition for non-interacting systems in (2.9), the average over the noise is
omitted in (9.11) and instead an average over the particles i is included. Being an intensive quantity,
P(x; t) becomes independent of the speciFc realization of the noises 143 �i(t) and fi(t) when N →∞
(self-averaging), as demonstrated in detail in [733–736]. In other words, it does actually not matter
whether we consider an average over the noise as included or not in the deFnition of P(x; t) in
(9.11). Finally, we go over to the reduced density P̂(x; t) as usual, cf. Section 2.4.

By rewriting the interaction term in (9.7) as K[S cos(xi(t)) − C sin(xi(t))], where 144

S :=
∫ L=2

−L=2
dx P̂(x; t) sin x; C :=

∫ L=2

−L=2
dx P̂(x; t) cos x ; (9.12)

the dynamics of each particle (9.7) is exactly of the type which we have considered in Section 4.3.2.
By summing the corresponding single-particle Fokker–Planck equations (2.17), (4.25) according to
(9.11) one recovers

9
9t P̂(x; t) =

9
9x

{
V̂

′
(x) + g(x)

9
9xg(x)

}
P̂(x; t) ; (9.13)

V̂ (x) :=V (x) + K(S sin x + C cos x) ; (9.14)

g(x) := [T + QV ′(x)2]1=2 : (9.15)

Note that (9.13) represents a non-linear Fokker–Planck equation due to the implicit P̂(x; t)-
dependence of V̂ (x) via (9.12) and (9.14). Especially, the linear superposition principle is not
respected. This feature re=ects the fact that while P(x; t) in (9.11) is self-averaging with respect
to the noises fi(t) and yi(t), it describes the particle density for a system with an arbitrary but
8xed initial distribution of particles P(x; t0). A statistical ensemble average over di5erent initial
particle distributions is no longer captured by (9.13), in clear contrast to single-particle systems
described, e.g. by a linear master equation of the form (2.17), or more general, Fnite-N particle
systems. As usual in the context of phase transitions, the basic reason for this structural di5erence
is the thermodynamic limit N →∞ in concert with the mean Feld coupling in (9.7), entailing the
exact self-averaging property of the particle distribution (9.11) in this limit N →∞. The non-linear
character of the Fokker–Planck equation opens the possibility that di5erent initial conditions P(x; t0)

143 To be precise, this means that a convolution (average)
∫
P(x; t) h(x) dx of the particle density with an arbitrary

but Fxed, smooth test function h(x) that vanishes as x→ ± ∞, gives the same result with probability 1 for N →∞,
independent of the realization of the noises �i(t) and fi(t).

144 For later convenience, the argument t is suppressed in S and C.
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display a di5erent long-time behavior, again in contrast to the typical asymptotic uniqueness
(ergodicity) of linear Fokker–Planck equations [82,83,100,108,109]. The reason for this possibility
of ergodicity breaking with all its consequences (spontaneous symmetry breaking, phase transitions,
etc.) is that the thermodynamic limit N →∞ does not commute with the “ergodicity limit” t→∞.
In conclusion, Eqs. (9.11)–(9.15) display the typical structure of a mean 8eld theory, with S and
C in (9.12) playing the role of order parameters which have to be determined self-consistently with
the mean Feld equation (9.13) for the particle density.

Next, we discuss the behavior of P̂(x; t) in (9.13) for asymptotically large coupling strengths K in
(9.7). To keep things simple, we further assume that multiples of L are the only minima of V (x). As
a consequence, all particles in (9.7) are forced to occupy practically the same position �(t) modulo
L and hence P̂(x; t) takes the form

P̂(x; t) =
∞∑

n=−∞
�(x − �(t) + nL) : (9.16)

Introducing (9.16) into (9.13) and operating on both sides with
∫ �(t)+L=2
�(t)−L=2 dx x : : : the equation of

motion for �(t) takes the form of a simple relaxation dynamics

�̇(t) = − WU ′(�(t)) ; (9.17)

WU (x) :=V (x) − QV ′(x)2=2 : (9.18)

For small Q, the extrema of WU (x) in (9.18) are identical to those of V (x). So, for any initial con-
dition �(t0)∈ (−L=2; L=2), the center of mass �(t) in (9.17) moves for t→∞ towards the minimum
x = 0 of V (x), and P̂(x; t) approaches a stationary, symmetric limit P̂

st
(x) =Pst(−x). However, this

stationary solution �(t) ≡ 0 of (9.17) looses stability and two new stable Fxed points appear when
Q in (9.18) exceeds the critical value

Qc := 1=V ′′(0) : (9.19)

One thus recovers a so-called noise induced nonequilibrium phase transition [64,65,737–745] with
a concomitant spontaneous symmetry breaking of Pst(x).

If the coupling strength K is no longer assumed to be very large, one has to solve the non-linear
Fokker–Planck equation (9.18) numerically until transients have died out and for a representative
sample of di5erent initial conditions. In this way, a stationary and—apart from the obvious de-
generacy when the symmetry is spontaneously broken—unique long time limit P̂

st
(x) is obtained.

In the symmetric phase (Pst(−x) = Pst(x)), the order parameter S from (9.11) vanishes, while a
spontaneously broken symmetry is generically monitored by a non-zero S-value, see Fig. 9.1. More-
over, for large K , the above analytical prediction is conFrmed by the numerics, for moderate K , one
recovers a re-entrant behavior as a function of the potential =uctuation strength Q, and for small
K , a phase with broken symmetry ceases to exist [64,738].

For an intuitive understanding of why the system-intrinsic symmetry can be spontaneously broken,
we return to a one-particle dynamics of the form (4.17). By averaging over the noise, this equation
takes the form 〈ẋ〉=−〈V ′(x(t))=
〉+ 〈g(x(t))�(t)〉. On the other hand, evaluating the particle current
by means of the probability current (4.25) according to (2.19), one obtains 〈ẋ〉 = −〈V ′(x(t))=
〉+
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Fig. 9.1. Phase diagram for model (9.7)–(9.10) with V (x)=−cos x−0:15 cos(2x) (cf. Eq. (9.23) below) and T =2 in the
thermodynamic limit N →∞ by numerically evolving the non-linear Fokker–Planck equation (9.13) until a steady state
was reached. 〈ẋ〉 is the particle current, S the order parameter from (9.12), and the arrow indicates the asymptotic phase
boundary (9.19) for K →∞.

〈g′(x(t))g(x(t))〉=2. Upon comparison of these two expressions one recovers that

〈g(x(t))�(t)〉 =
〈

1
4

d
dx

[g(x(t))]2

〉
: (9.20)

In other words, the white noise �(t) induces a systematic drift into the direction of increasing e5ective
local temperature Te5 (x) := g2(x) (see (9.15)). To get a rough heuristic picture of how this so-called
Stratonovich drift term [99] comes about, we imagine a force-free, overdamped Brownian particle
starting at x(0) = 0 in the presence of a high temperature in the region x¿0 and a low temperature
for x¡0. Though the particle spends on the average the same amount of time on either side of x=0,
the thermal random motion within x¿0 is enhanced, leading to a net bias of the average particle
position 〈x(t)〉 towards the right. 145

One can readily see by comparison with (9.15) that this noise-induced drift term (9.20) is indeed
the origin of the second term on the right-hand side of the e5ective potential (9.18), which governs
the relaxation dynamics of the particle peak �(t) in (9.17). Since the intensity of the multiplicative
noise fi(t) in (9.7) has a minimum at the origin (modulo L), the noise-induced drift pushes the
particles away from this point x = 0 and may lead, if the noise is strong enough and the particles
cluster together suCciently strongly, to a spontaneous dislocation of the peak of particles �(t) towards
one or the other side of the origin. If, on the other hand, the interaction is too weak in comparison
to either the thermal or the potential =uctuations, then the random motions of the single particles
are not suCciently coordinated and a collective spontaneous symmetry breaking is therefore not
expected. These heuristic arguments are conFrmed by, and essentially explain the numerical phase
diagram in Fig. 9.1.

145 Strictly speaking, the issue is rather subtle with respect to the correct order of the overdamped limit m→ 0 in (2.1),
the white noise limit &→ 0 in (4.15), and the limit of a discontinuous temperature at x = 0. Only if the limits are taken
in the latter order (m→ 0 Frst, discontinuous temperature last), this explanation of the Stratonovich drift can be applied,
see also (A.3) in Appendix A and the corresponding discussion in Section 4.3.2.
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9.2.3. Spontaneous ratchet e1ect
We start by rewriting (9.7) in the form

ẋ(t) = −V ′
e5 (x(t); f(t)) + �(t) ; (9.21)

where we dropped the subscript i and where

Ve5 (x; f(t)) :=V (x)[1 + f(t)] + K(C cos x + S sin x) : (9.22)

If there is no spontaneous symmetry breaking (P̂
st
(−x)=P̂

st
(x)), then (9.12) implies S=0 and hence

the pulsating potential (9.22) respects the symmetry condition (3.16) with Ux=0 due to (9.9). If, on
the other hand, the symmetry of the system is spontaneously broken, then—in the generic case—we
have that S 
= 0. Hence the symmetry condition (3.16) is generically violated and the occurrence
of a ratchet e5ect with 〈ẋ〉 
= 0 is expected according to Curie’s principle. There is, however, one
prominent exception, namely a supersymmetric potential (9.22) excludes a current even if the
symmetry of the system is spontaneously broken. For our present purposes it is suCcient to focus
on the supersymmetry condition (3.41). Since the white noise f(t) is time-inversion invariant, we
see that for instance a pure cosine-potential V (x) indeed leads to a supersymmetric e5ective potential
in (9.22), whatever the values of S and C are. In order to break this supersymmetry, we can either
modify the interaction in (9.7), or consider a colored noise fi(t), or, as we will do in the following,
choose an augmented cosine potential of the form

V (x) = −cos x − A cos(2x) (9.23)

with A 
= 0.
Given that potential (9.22) respects neither symmetry nor supersymmetry, each particle (9.21)

is expected to exhibit a ratchet e5ect 〈ẋ〉 
= 0 in the generic case [524,726,729], as conFrmed by
the numerical result in 146 Fig. 9.1. The underlying mechanism is clearly of the general pulsating
ratchet type, and according to (9.22) similar but not exactly identical to a 9uctuating potential
ratchet scheme from Section 4.3.

With the notation from (9.14), (9.15) we can rewrite (9.21) in yet another from, namely

ẋ(t) = −V̂
′
(x(t)) + �̂(t) ; (9.24)

〈�̂(t)�̂(s)〉 = 2g(x(t))�(t − s) : (9.25)

While g(x) from (9.15) has its minima at the integer multiples of L=2, the potential V̂ (x) from (9.14)
exhibits for S 
= 0 not only an asymmetric, ratchet-shaped proFle, but also its extrema are generically
shifted with respect to those of g(x). From this viewpoint, the ratchet mechanism to which every
single particle is subjected in the symmetry broken phase is thus of the Seebeck ratchet type from
Section 6.1.

146 A computer animation of this collective phenomenon is available on the internet under [746]. It is based on simulations
of (9.7)–(9.10), (9.23) with N =1000; T =2; Q=4; K =10; A=0:15. Out of the 1000 particles, 100 are shown as green
dots and one “tracer-particle” as a red dot. The position x = −� is identiFed with x = � (periodic boundary conditions).
The initial particle distribution is symmetric about x = 0. After a spontaneous breaking of the symmetry “to the right”
(S¿0) an average particle current “to the left” (〈ẋ〉¡0) can be observed.
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Quantitatively, once the values of the order parameters S and C in the long time limit are known,
the current follows readily along the lines of Section 4.3.2 with the result

P̂
st
(x) = N

e−)(x)

g(x)

∫ x+L

x
dy

e)(y)

g(y)
; (9.26)

〈ẋ〉 = LN[1 − e)(L)] ; (9.27)

)(x) :=
∫ x

0
d Wx V̂

′
( Wx)=g2( Wx) ; (9.28)

where the normalization N is Fxed through (2.25). Thus, the current is Fnite unless )(L) = 0, and
its sign is given by that of −)(L).

Specializing once again to large coupling strengths, we can exploit (9.16) to recast (9.28) into
the simpliFed form

)(L) = −K̂1 sin � ; (9.29)

K̂n :=
∫ L=2

−L=2
dx[K cos x]n=g(x)2 ; (9.30)

where � := �(t→∞) follows from (9.17). Here, a remarkable feature arises, entailing even more
striking consequences later on. Namely, if Q¿Qc, and K̂1¡0, which is the case whenever A¿0 in
(9.23), then the sign of �(t) from (9.17) will, in the long time limit, be opposite to that of 〈ẋ〉. In
other words, for a symmetry broken P(x) with a peak to one side of x = 0, the =ux of particles will
move just in the opposite direction. On average the particles surprisingly prefer to travel from their
typical position, say �(t→∞)¡0 down to the potential minimum of V (x) at x = 0 and then over
the full barrier to their right rather than to directly surmount the partial remaining barrier that they
typically see to their left.

9.2.4. Negative mobility and anomalous hysteresis
We now come to the response of the steady state current 〈ẋ〉 when an additional external force

F is added on the right-hand side of (9.7). After making the replacement

V (x) �→ V (x) − xF ; (9.31)

the entire analysis from Sections 9.2.1–9.2.3 can be repeated basically unchanged. For small F in
combination with Q¡Qc and large K we can then infer from (9.17), (9.19), (9.27), (9.29) after
some calculations that

〈ẋ〉 = FLN

(
K̂0 +

K̂1

[V ′′(0)]2[Qc − Q]

)
+ O(F3) : (9.32)

Thus, for suCciently large, negative K̂1, a negative zero-bias mobility (also called absolute negative
mobility) is predicted 147 [524,726]. A numerical example for this remarkable behavior is shown in

147 Note that such a current 〈ẋ〉 opposite to the applied force F is not in contradiction with any kind of “stability criteria”,
cf. the discussion below (2.39).
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Fig. 9.2 (solid line). Apparently, the e5ect of pulling the particles to one side is analogous to that
of a spontaneous symmetry breaking: it generates an e5ective, coupling-induced ratchet dynamics
(9.21) in which the non-equilibrium =uctuations promote a current opposite to F . Upon approaching
the phase boundary, the linear response of P(x) to variations of F diverges, hence the denominator
Qc − Q in (9.32) and the very steep response curve in Fig. 9.2.

We remark that for networks with dead-ends (see [416] and further references therein) and in the
ratchet works [116,417,422,423], a negative di1erential mobility (far away from F = 0) has been
reported, but not a current opposite to the applied force as in Fig. 9.2. Further, as illustrated by
Fig. 2.5, in the current versus force characteristics for “standard”, non-interacting ratchet models, a
current opposite to the applied force is possible as well. However, as discussed in Section 2.6.2,
the ratchet e5ect is characterized by a current 〈ẋ〉 which is non-zero for F = 0 and does not change
its direction within an entire neighborhood of F = 0. Accordingly, it inevitably involves some kind
of symmetry breaking (for F = 0), cf. Section 3.2. In contrast, according to the characteristics of
negative zero-bias mobility exempliFed in Fig. 9.2 the current 〈ẋ〉 is always opposite to the (not
too large) force F , independently of whether F is positive or negative. Furthermore, the symme-
try of the system (for F = 0) is neither externally, nor intrinsically, nor spontaneously broken. In
other words, the negative zero-bias mobility and the ratchet e5ect exhibit some striking similarities
but also some fundamental di5erences. We also mention that so-called absolute negative conduc-
tance has been theoretically and experimentally studied in detail in the context of semiconductor
devices [698,732,747–755], photovoltaic e5ects in ruby crystals [29,756–758], tunnel junctions be-
tween superconductors with unequal energy gaps [759–761], and has been theoretically predicted for
certain ionized gas mixtures [762–764]. While these e5ects are in fact basically identical to negative
zero-bias mobility, their origin is of a genuine quantum mechanical character which does not leave
room for any kind of classical counterpart. 148

For more general F- and Q-values but still large K , the qualitative dependence of 〈ẋ〉 on F follows
from (9.29) by observing how � moves in the adiabatically changing potential WU (x) from (9.18),
(9.17). In this way, not only the continuation of the zero-bias negative conductance beyond F � 0
in Fig. 9.2 can be readily understood, but also its even more spectacular counterpart when Q¿Qc,
namely an anomalous hysteresis-loop [524,726], see Fig. 9.3. Its striking di5erence in comparison
with a “normal” hysteresis-cycle, as observed, e.g. in a ferromagnet or in the JMulicher–Prost model
[550], is as follows: Given a spontaneous current in one or the other direction, we can apply a small
additional force F in the same direction, with the expected result of an increased current in that
direction. But upon further increasing F , the current will, all of a sudden, switch its direction and
run opposite to the applied force.

In short, the anomalous response curves in Figs. 9.2 and 9.3 are basically the result of a com-
petition between the e5ect of the bias F , favoring a current in that direction, and the ratchet-e5ect,
which arises as a collective property and pumps particles in the opposite direction for K̂1¡0. The
coexistence of two solutions P̂

st
(x) over a certain F-interval when Q¿Qc gives rise to the hysteresis,

and the destabilization of one of them to the jumps of 〈ẋ〉 in Fig. 9.3.

148 Moreover, in the last three examples spatial periodicity is either not crucial or absent and in the case of tunnel
junctions the spatial symmetry is intrinsically broken.
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Fig. 9.2. Solid line: Steady state current 〈ẋ〉 versus force F for the model (9.7)–(9.10), (9.23), (9.31) with
T = 2; Q = 2; K = 8; A = 0:15 in the thermodynamic limit N →∞ by solving the non-linear Fokker–Planck equa-
tion (9.13). Interconnected dots: Simulations of (9.7) with nearest neighbor instead of global coupling (9.33) for a 64∗64
square lattice with periodic boundary conditions and modiFed parameters Q = 6; K = 15, averaged over 10 realizations.

Fig. 9.3. Same as in Fig. 9.2 but for Q = 4; K = 10 (global coupling) and Q = 10; K = 20 (nearest-neighbor coupling).

9.2.5. Perspectives
In this section we brie=y discuss some generalizations and potential applications of our above

considerations.
A Frst natural modiFcation of the model (9.7) consist in replacing the global coupling in by a

nearest-neighbor coupling in d dimensions, i.e.

K
N

N∑
j=1

sin(xj(t) − xi(t)) �→ K
2d

∑
〈ij〉

sin(xj(t) − xi(t)) ; (9.33)

by associating the indices i with the vertices of some d-dimensional lattice with periodic boundary
conditions. As Figs. 9.2 and 9.3 demonstrate, e.g. for a square lattice (d = 2), the same qualita-
tive phenomena as for global coupling are recovered, though the quantitative details are of course
di5erent.

Further generalizations [726] are: (i) The bare potential, represented by the “1” in the Frst term
on the right-hand side of (9.7) plays a very minor role; even without this term all results remain
qualitatively unchanged. Similarly, the thermal noise strength T is arbitrary, except that it must not
vanish in the present model, but may even vanish in a somewhat modiFed setup [727]. (ii) A strictly
periodic interaction K(x) is not necessary. For instance, one may add on top of the periodic an
(not too strong) attractive interaction such as to keep the “cloud” of particles xi in (9.7) always well
clustered.
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Closely related studies on nonequilibrium phase transitions [765,766] suggest that also periodic
instead of stochastic drivings fi(t) in (9.7) will lead to qualitatively similar results, see also [767].
Furthermore, a =uctuating force or rocking ratchet scheme instead of a =uctuating potential model,
amounting in (9.7) to a substitution

− V ′(xi(t)) [1 + fi(t)] �→ −V ′(xi(t)) + yi(t) ; (9.34)

can apparently be employed as well [551]. Especially, the characteristic time scale of the driving
fi(t) in (9.7) [728] and of yi(t) in (9.34) [551] may become asymptotically large.

It might appear [64,738,768] that taking the overdamped limit m→ 0 in (2.1) before the white
noise limit &→ 0 of the Ornstein–Uhlenbeck noise fi(t) in (9.7), (9.10) (see also (4.15) and (4.16))
is an indispensable prerequisite for spontaneous symmetry breaking and spontaneous current, since
only in this way [99,291] a white noise fi(t) in the sense of Stratonovich and a concomitant
noise induced drift term can arise. Our detailed analysis, however, reveals that the same phenom-
ena can in fact still be encountered even if the white noise limit &→ 0 is performed prior to
m→ 0, see also [769]. In other words, 8nite inertia terms are also admissible on the left hand side
of (9.7).

While a spontaneous ergodicity-breaking with all its above-discussed consequences is clearly pos-
sible only in the thermodynamic limit N →∞, the same a priori restriction does not hold for the
phenomenon of negative zero-bias mobility. Indeed, a stylized, spatially discretized descendant of
the above-discussed working model (9.7) with negative mobility for N¿ 4 has been presented in
[730]. A di5erent, experimentally realistic single particle system (N = 1) in two dimensions with
negative mobility has been introduced in [770], while a game theoretic counterpart of the e5ect
(cf. Section 6.7) is due to [771].

In conclusion, the above-revealed main phenomena seem to be rather robust against modiFcations
and extensions of the considered model (9.7). Much like in equilibrium phase transitions, such
an extremely simple model is thus expected to be of interest for a variety of di5erent systems,
corresponding to a “normal form” description that subsists after the irrelevant terms have been
eliminated. Models of this type may be of relevance not only in the context of molecular motors
(see Section 7.4), but also for coupled phase oscillators [624,721,722], active rotator systems [772],
charge density waves [773], and many other physical, chemical, and biological systems [622,774–
776]. For instance, one may also look at (9.7) as a planar XY-spin-model [777] exposed to a strong
(but incoherent) electromagnetic irradiation [13,28,33,284–286,340,779], with the various e5ects of
the photon-impacts (scattering, excitations of the host-crystal ions, etc.) roughly described by the
non-equilibrium =uctuations fi(t). An experimental realization in a granular gas system is presently
under construction.

10. Conclusions

The central theme of our review are transport phenomena in spatially periodic “Brownian motors”
or “ratchet systems” induced by unbiased perturbations of the thermal equilibrium. Letting aside
variations and extensions like di5usive transport, quenched spatial disorder, or questions of eCciency,
our extensive discussions may be summarized under three main categories: (i) Understanding and
predicting the “ratchet e5ect” per se, i.e. the occurrence (or not) of a directed average long-time
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current 〈ẋ〉. (ii) Exploring qualitative features of the current as a function of various parameters,
for example the sign of the current and the possible appearance of current inversions, monotonic
versus non-monotonic “resonance-like” behavior with some type of “optimum”, or the asymptotic
behavior for fast, slow, and weak perturbations, etc. (iii) On the one hand, identifying particularly
simple or counterintuitive “minimal models” and very general “normal forms” exhibiting a ratchet
e5ect and=or current inversions. On the other hand, elaborating realistic models and their quantitative
features with some speciFc experimental situation in mind.

For several of these questions, symmetry considerations play an important role. This is so basi-
cally due to Curie’s principle, stating that in the absence of prohibiting “systematic” symmetries,
the appearance of a certain phenomenon (here: the ratchet e5ect) will be the rule, while its absence
will be the exception. In our case, there are three such “systematic” symmetry conditions, each of
which is suCcient to rule out the appearance of a ratchet e5ect: (1) Detailed balance symmetry, im-
plying that we are dealing with an equilibrium system and that a thermal equilibrium state will
thus be approached in the long time limit. (2) (Spatial) symmetry as detailed in Section 3.2.
(3) Supersymmetry as detailed in Section 3.5 in the overdamped limit and its counterpart (5.35)
in the underdamped (deterministic Hamiltonian) limit. Closely related to these symmetry conditions,
there are in addition a couple of “systematic” no go theorems for certain classes of ratchet systems,
see at the beginning of Section 4.3, at the end of Section 4.4.2, and in Section 6.4.1.

If all three above systematic symmetry conditions are violated, then a vanishing current is the
exception, which may be termed an “accidental symmetry”, and which is usually connected with a
current inversion. A very general method of tailoring such current inversions has been elaborated in
Section 3.6 together with a very simple and in fact obvious necessary and suCcient condition for
their existence. Our ratchet classiFcation scheme from Section 3.3 is mainly based on the speciFc
manner in which the second of the above systematic symmetries is broken. Depending on whether
current inversions exist or not, we may speak of a “non-trivial” and an “obvious” ratchet e5ect,
exempliFed by =uctuating potential and tilting ratchets and by (proper) traveling potential ratchets,
respectively. In the Frst case, the direction of the current is obvious in some simple cases, but not
at all in general, while in the second it is always rather clear.

We remark that for both, “systematic” and “accidental” symmetries, the result 〈ẋ〉= 0 is unstable
against completely general, generic variations of the model, while the property 〈ẋ〉 
= 0 is robust
against such variations, i.e. “a Fnite current is the rule”. The only di5erence is that for “systematic”
symmetries, the hyperspace of parameters with 〈ẋ〉=0 (and thus the deFnition of the symmetry itself)
can be easily expressed in terms of “natural” model parameters, while for “accidental” symmetries
such a hyperspace exists as well but is very diCcult to characterize. In this sense, there are actually
no “accidental” symmetries, they are only very diCcult to deFne and therefore “overlooked” within
any “natural” invariance-considerations of the problem.

We note that the above symmetries (1)–(3) refer strictly speaking to the (asymptotic) state and
not to the system itself. Since the thermodynamic limit of inFnitely many interacting subsystems
may not commute with the long-time limit, and so an asymmetry of the initial condition may
never disappear, some symmetry property of the system dynamics alone does not yet imply the
corresponding asymptotic symmetry of the state (solution) in the case of extended systems. While
this implication is still correct (leaving aside glass-like systems) for the Frst of the above-mentioned
symmetries (an equilibrium system implies an asymptotic equilibrium state), it may be incorrect
in the second case of (spatial) symmetry: Even in a perfectly symmetric system, a spontaneous
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symmetry breaking of the asymptotic state may occur, leading to a spontaneous ratchet e5ect, see
Section 9.

Regarding future perspectives of the Feld, the fact that many of the above symmetry considerations
became clear only very recently suggest that further new theoretical results on a very basic conceptual
level may still be discovered. If a speciFc direction has to be named then the still rather fresh topic
of coupled Brownian motors appears to be a particularly promising candidate, both theoretically
(Section 9) and with respect to biological applications (Section 7.4). Further, there is a remarkably
large and rapidly increasing number of exciting experimental studies, some of them with promising
perspectives regarding technological applications. Whether Brownian motors o5er just a new view
or an entirely new paradigm with respect to the modeling of molecular motors (Section 7) remains
to be seen as well.
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Appendix A. Supplementary material regarding Section 2.1.1

We have modeled the two e5ects of the environment on the right-hand side of Eq. (2.1) phe-
nomenologically, and we will discuss in the next three subsections the rather far reaching implications
of this speciFc phenomenological ansatz. Especially, we will argue that the assumptions of the envi-
ronment being at thermal equilibrium and of a dissipation mechanism of the form −
ẋ(t) completely
Fx the statistical properties of the additive =uctuations �(t) in (2.1). While our line of reasoning
will be conducted on a heuristic physical level, it still captures the essential ideas of mathematically
more sophisticated and rigorous approaches [66,77–97], see also Sections 3:4:1, 6:4:3, and 8:1.

A.1. Gaussian white noise

The fact that the friction force on the right-hand side of (2.1) is linear in ẋ(t), i.e. no spatial
direction is preferred, suggests that—due to their common origin—also the thermal =uctuations are
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unbiased, that is (cf. (2.4))

〈�(t)〉 = 0 (A.1)

for all times t, where 〈·〉 indicates the average over independent realizations of the random process
�(t). Similarly, the fact that the friction force only depends on the present state of the system and
not on what happened in the past has its counterpart in the assumption that the random =uctuations
are uncorrelated in time, i.e.

〈�(t)�(s)〉 = 0 if t 
= s : (A.2)

Furthermore, the fact that the friction involves no explicit time dependence has its correspondence in
the time-translation invariance of all statistical properties of the =uctuations, i.e. the noise �(t) is a
stationary random process. Finally, the fact that the friction force acts permanently in time indicates
that the same will be the case for the =uctuations. In other words, a noise �(t) exhibiting rare but
relatively strong “kicks”, caused e.g. by impacts of single molecules in a diluted gas, is excluded.
Technically speaking, one says that �(t) cannot contain a shot noise component [178,323–326].
During a small time interval, the e5ect of the environment thus consists of a large number of small
and, according to (A.2) practically independent, contributions. Due to the central limit theorem 149

the net e5ect of all these contributions on the particle x(t) will thus be Gaussian distributed. Such a
Gaussian random process which is unbiased (A.1) and uncorrelated in time (A.2) is called Gaussian
white noise.

A.2. Fluctuation–dissipation relation

A crucial implicit assumption in (2.1) is the independence of the friction force, and hence also
of the =uctuation force, from the system x(t), i.e. 150

〈�(t)x(s)〉 = 0 (A.3)

for all times 151 t¿ s. It re=ects the assumption that the environment is given by a “huge” heat
bath so that its properties are practically not in=uenced by the behavior of the “small” system x(t).
Especially, the statistical properties of the =uctuations will not depend on the choice of the potential
V (x) and we may set V ′(x) ≡ 0 in the following. One readily veriFes that in this case the equation
of motion (2.1) is solved by

ẋ(t) = ẋ(t0)e−(
=m)(t−t0) +
1
m

∫ t

t0

dt′e−(
=m)(t−t′)�(t′) : (A.4)

149 In its simplest version—suCcient for our present purposes—the central limit theorem [100] states that if r1; : : : ; rN are
independent, identically distributed random variables with zero mean and unit variance then the sum N−1=2[r1 + · · ·+ rN ]
converges for N →∞ towards a Gaussian random variable of zero mean and unit variance.

150 We remark that m¿0 (cf. (2.1)) is understood in (A.3). Properties (A.2) and (A.3) lead for m→ 0 to a Gaussian
white noise �(t) in the so-called Ito-sense [99,101].

151 The case t¡s is somewhat subtle and not needed in the following.
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Choosing as initial time t0 = −∞ it follows that

〈ẋ2(t)〉 =
1
m2

∫ t

−∞
dt′
∫ t

−∞
dt′′e−(
=m)(2t−t′−t′′)〈�(t′)�(t′′)〉 : (A.5)

In view of (A.2), the integrand only contributes if t′ = t′′ and the upper limit t in the second integral
can be furthermore extended to +∞, i.e.

〈ẋ2(t)〉 =
1
m2

∫ t

−∞
dt′e−(2
=m)(t−t′)

∫ ∞

−∞
dt′′〈�(t′)�(t′′)〉 : (A.6)

Since the statistical properties of the =uctuations �(t) are time-translation invariant, the second inte-
gral has the same value for all times t′ and we can conclude that∫ ∞

−∞
ds〈�(t)�(s)〉 = 2
m〈ẋ2(t)〉 (A.7)

for all times t. The left hand side of this equation is called the intensity of the noise �(t) or the
noise strength.

At this point, we make use of the fact that the environment is a heat bath at thermal equilibrium
with temperature T . Since we have chosen as initial time t0 = −∞, all transients have died out
and the particle is in thermal equilibrium with the bath, satisfying the equipartition principle (for a
one-dimensional dynamics)

m
2
〈ẋ2(t)〉 =

1
2
kBT ; (A.8)

where kB is Boltzmann’s constant. Collecting (A.2), (A.7), (A.8) we obtain the so-called 9uctuation–
dissipation relation [79–81] (cf. (2.5))

〈�(t)�(s)〉 = 2
kBT�(t − s) ; (A.9)

where �(t) is Dirac’s delta function. In other words, �(t) is a Gaussian white noise of intensity
2
kBT . Note that since �(t) is a Gaussian random process, all its statistical properties are completely
determined [99–101] already by the mean value (A.1) and the correlation (A.9).

A.3. Einstein relation

In the absence of the potential V (x) in (2.1), we know that the particle exhibits a free thermal
di1usion in one dimension with a di5usion constant D, i.e. for asymptotically large times t we have
that 152

〈x2(t)〉 = 2Dt : (A.10)

152 Corrections of order o(t) are omitted in (A.10) and we will tacitly assume that their time derivative approaches zero
for t→∞ [67]. Furthermore, we note that this asymptotic result (A.10) is independent of the initial condition x(0).
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On the other hand, upon multiplying Eq. (2.1) by x(t), averaging, and exploiting (A.3), we obtain

m〈 Mx(t)x(t)〉 = −
〈ẋ(t)x(t)〉 : (A.11)

The left-hand side of this equation can be rewritten as

m〈 Mx(t)x(t)〉 = m
d
dt
〈ẋ(t)x(t)〉 − m〈ẋ2(t)〉 : (A.12)

By di5erentiating (A.10) we have (for large t) that 〈ẋ(t)x(t)〉 = D and hence d〈ẋ(t)x(t)〉=dt =
0. Observing (A.8) we Fnally obtain from (A.11), (A.12) the so-called Einstein relation [77]
(cf. (2.10))

D = kBT=
 : (A.13)

Its most remarkable feature is that the di5usion in (A.10) does not depend on the mass m of the
particle x(t) for asymptotically large times t.

A.4. Dimensionless units and overdamped dynamics

The objective of this section is to recast the stochastic dynamics (2.1), (A.9) into a dimensionless
form, useful for qualitative theoretical considerations and indispensable for a numerical implemen-
tation.

We start with deFning the barrier height

UV := max
x

{V (x)} − min
x
{V (x)} ; (A.14)

between adjacent local minima of the periodic potential V (x). Next, we introduce for the three-
dimensionful quantities 
, L, and UV dimensionless counterparts 
̂, L̂, and UV̂ , which for the
moment can still be freely chosen. With the deFnitions of the dimensionless quantities

t̂ := 0t; 0 :=
UV

L2


̂L̂
2

UV̂
; (A.15)

x̂(t̂) :=
L̂
L
x(t̂=0) ; (A.16)

V̂ (x̂) :=
UV̂
UV

V (x̂L=L̂) ; (A.17)

we can rewrite (2.1) in the dimensionless form

m̂
d2x̂(t̂)

dt̂2
+ 
̂

dx̂(t̂)
dt̂

= −dV̂ (x̂(t̂))
dx̂

+ �̂(t̂) ; (A.18)

where �̂(t̂) is a dimensionless Gaussian white noise with correlation

〈�̂(t̂)�̂(ŝ)〉 = 2
̂k̂BT̂ �(t̂ − ŝ) : (A.19)
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Furthermore, the dimensionless mass in (A.18) is deFned as

m̂ :=m
UV

2L2

L̂
2

̂2

UV̂
(A.20)

and the dimensionless temperature in (A.19) as

T̂ :=
kBT
UV

UV̂

k̂B
; (A.21)

where k̂B may be chosen arbitrarily, e.g. k̂B = 1.
Next, we choose 
̂, L̂, UV̂ , and k̂B all equal to unity. For the typically very small systems one

has in mind, and for which thermal =uctuations play any notable role at all, the rescaled mass
(A.20) then often turns out to be smaller than unity by many orders of magnitude, see e.g. in [288],
while the dimensionless temperature (A.21) is of order unity or smaller. 153 On the other hand, the
period L̂ and the barrier height UV̂ of the potential V̂ (x̂) are both unity, so the derivative of this
potential is typically of order unity as well. It is therefore quite plausible that in (A.18) the inertia
term m̂ d2x̂(t̂)=dt̂2 can be dropped in very good approximation. Admittedly, from a mathematical
viewpoint, dropping the highest order derivative in a di5erential equation, especially in the presence
of such an elusive object as the Gaussian white noise �̂(t̂), may rise some concerns. A more careful
treatment of this problem has been worked out e.g. in [291,463,465,466,469,482,483] with the same
conclusion as along our simple heuristic argument. We Fnally note that letting m→ 0 a5ects neither
the =uctuation–dissipation relation (A.9) nor Einstein’s relation (A.13).

Finally, we turn to the typical case that m̂ is known to be a small quantity and we thus can set
formally m=0 in (2.1). We thus recover the “minimal” Smoluchowski–Feynman ratchet model from
(2.6). Introducing dimensionless units like before, one arrives again at (A.18) but now with m̂ = 0
right from the beginning. In principle, 
̂, L̂, and UV̂ may still be chosen arbitrarily. However, in
most concrete cases it is convenient to assume that L̂ and UV̂ are of order unity, but not necessary
equal to 1 (e.g. L̂ = 2� or V̂ 0 = 1 in (2.3) may sometimes be a more convenient choice), while 
̂
may still be a variable “control parameter” of the model. The implication of a dimensionless solution
x̂(t̂) for the original, dimensionful system x(t) is obvious. Especially, varying one parameter
(e.g. 
̂ or T̂ ) and keeping the others Fxed, corresponds to exactly the same parameter-variation
in the dimensionful system.

We Fnally remark that in the end one usually drops again the “hat” symbols of the dimensionless
quantities. Depending on the context, equation (2.6) may thus represent either the dimensionful or
the dimensionless version of the model.

153 In the opposite case, i.e. if UV=kBT is a small quantity (especially if V (x) = const:) one has to replace UV by kBT
in the deFnition (A.15) of 0, and similarly in (A.17), (A.20). On condition that mkBT=
2L2 is small, one can then drop
the inertia term. The condition for arbitrary UV=kBT is thus that the dimensionless quantity m
−2L−2 max{UV; kBT} has
to be a small quantity.
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Appendix B. Alternative derivation of the Fokker–Planck equation

In this appendix we give a derivation of the Fokker–Planck equation (2.14) by considering the
corresponding overdamped stochastic dynamics (2.6) as limiting case of the discretized dynamics
(2.7) when Ut→ 0.

To simplify notation, we use dimensionless units (see below Eq. (2.6)) with kB = 
 = 1. Next
we recall that �n in (2.7) are independent, Gaussian distributed random variables with 〈�n〉 = 0 and
〈�2

n〉 = 2T=Ut (see (2.8)). It follows that for a particle (2.7), the conditional probability P(x|y) to
start out at time t = tn = nUt from the point xn =y and to arrive one time step Ut later at the point
xn+1 = x is Gaussian distributed about x = y − UtV ′(y) with variance 〈(Ut�n)2〉 = 2TUt, i.e.

P(x|y) = (4�TUt)−1=2 exp
{
− [x − y + UtV ′(y)]2

4TUt

}
: (B.1)

Furthermore, the probability distribution P(x; t + Ut) at time t + Ut is obviously related to that at
time t through the so-called Chapman–Kolmogorov equation [100]

P(x; t + Ut) =
∫ ∞

−∞
dy P(x|y)P(y; t) : (B.2)

After a change of the integration variable according to z = (x − y)=
√

Ut we obtain

P(x; t + Ut) =
∫ ∞

−∞
dz

(4�T )1=2 exp

{
− [z +

√
Ut V ′(x −√

Ut z)]2

4T

}
P(x −

√
Ut z; t) : (B.3)

Under the assumption that P(x; t) behaves suCciently well as Ut→ 0, we can expand the right-hand
side of (B.3) in powers of

√
Ut and perform the remaining Gaussian integrals, with the result

P(x; t + Ut) = P(x; t) + Ut
9
9x{V

′(x)P(x; t)} + UtT
92

9x2P(x; t) + o(Ut) : (B.4)

In particular, there is no contribution proportional to
√

Ut. In the limit Ut→ 0, the Fokker–Planck
equation (2.14) now readily follows.

Appendix C. Perturbation analysis

In this appendix we solve the Fokker–Planck equation (2.52) perturbatively for small time-periods
T in (2.48) and zero load F = 0. We recall that for evaluating the particle current (2.53) we can
focus on probability densities P̂(x; t) which are L-periodic in space and T-periodic in time and that
the function T̂ (h) from (2.56) is assumed to be T-independent. The latter assumption suggests to
introduce

WT(x; h) := P̂(x; hT) ; (C.1)
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so that the Fokker–Planck equation (2.52) takes the form

9
9hWT(x; h) = T

{
9
9x

[
V ′(x)



WT(x; h)

]
+

kBT̂ (h)



92

9x2WT(x; h)

}
: (C.2)

The small quantity T on the right-hand side of this equation furthermore suggest a power series
ansatz

WT(x; h) =
∞∑
n=0

TnWn(x; h) (C.3)

with T-independent functions Wn(x; h). From the periodicity and normalization of P̂(x; t) one readily
Fnds that

Wn(x + L; h) = Wn(x; h + 1) = Wn(x; h) ; (C.4)

∫ L

0
dxWn(x; h) = �n;0 (C.5)

for n¿ 0, where �i; j is the Kronecker delta.
Next the usual perturbation analysis argument is invoked: Introducing the ansatz (C.3) into the

Fokker–Planck equation (C.2) and observing that this equation is supposed to hold for arbitrary T
it follows that the coeCcients of each power of T must be equal to zero separately. In the lowest
order T0 it follows that

9
9hW0(x; h) = 0 ; (C.6)

i.e. W0(x; h) is equal to a h-independent but otherwise still unknown function W0(x). By introducing
this function into (C.3), equating order T1-terms, and averaging over one time period T one obtains

0 =
9
9x

[
V ′(x)



W0(x)

]
+

kB WT



92

9x2W0(x) ; (C.7)

where the time-averaged temperature WT is deFned in (2.57). This ordinary second order equation for
W0(x) can now be readily solved, with the two emerging integration constants being determined by
the periodicity and normalization conditions (C.4), (C.5). The result is

W0(x) = Z−1e−V (x)=kB WT ; (C.8)

Z :=
∫ L

0
dx e−V (x)=kB WT (C.9)

and the corresponding contribution of order T0 to the particle current (2.53) is found to vanish. In
other words, we have recovered in the limit T→ 0 the same results as for a constant, time-averaged
temperature WT in Section 2.4, in accordance with what one may have expected.

Proceeding in exactly the same way up to the next order T1 still gives a zero contribution to
the particle current. It is only in the second order T2 that the Frst non-trivial contribution (2.58) is
encountered.



P. Reimann / Physics Reports 361 (2002) 57–265 241

References

[1] M.v. Smoluchowski, Experimentell nachweisbare, der Mublichen Thermodynamik widersprechende
MolekularphManomene, Physik. Zeitschr. 13 (1912) 1069.

[2] R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Vol. 1, Addison-Wesley, Reading,
MA, 1963 (Chapter 46).

[3] L. Brillouin, Can the rectiFer become a thermodynamical demon? Phys. Rev. 78 (1950) 627.
[4] A.F. Huxley, Muscle structure and theories of contraction, Prog. Biophys. 7 (1957) 255.
[5] S.M. Braxton, Synthesis and use of a novel class of ATP carbamates and a ratchet di5usion model for directed

motion in muscle, Ph.D. Thesis, Washington State University, Pullman, WA, 1988.
[6] S. Braxton, R.G. Yount, A ratchet di5usion model for directed motion in muscle, Biophys. J. 55 (1989) 12a

(abstract).
[7] R.D. Vale, F. Oosawa, Protein motors and Maxwell’s demons: Does mechanochemical transduction involve a

thermal ratchet? Adv. Biophys. 26 (1990) 97.
[8] S. Leibler, D.A. Huse, A physical model for motor proteins, C. R. Acad. Sci. Paris Ser. III 313 (1991) 27.
[9] S. Leibler, D.A. Huse, Porters versus rowers: A uniFed stochastic model of motor proteins, J. Cell Biol. 121 (1993)

1357.
[10] N.J. Cordova, B. Ermentrout, G.F. Oster, Dynamics of single-motor molecules: The thermal ratchet model, Proc.

Natl. Acad. Sci. USA 89 (1992) 339.
[11] M.O. Magnasco, Forced thermal ratchets, Phys. Rev. Lett. 71 (1993) 1477.
[12] M.O. Magnasco, Molecular combustion motors, Phys. Rev. Lett. 72 (1994) 2656.
[13] J. Prost, J.-F. Chauwin, L. Peliti, A. Ajdari, Asymmetric pumping of particles, Phys. Rev. Lett. 72 (1994) 2652.
[14] F. JMulicher, A. Ajdari, J. Prost, Modeling molecular motors, Rev. Mod. Phys. 69 (1997) 1269.
[15] R.D. Astumian, M. Bier, Fluctuation driven ratchets: molecular motors, Phys. Rev. Lett. 72 (1994) 1766.
[16] R.D. Astumian, M. Bier, Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis, Biophys.

J. 70 (1996) 637.
[17] C.S. Peskin, G.B. Ermentrout, G.F. Oster, The correlation ratchet: a novel mechanism for generating directed motion

by ATP hydrolysis, in: V.C. Mov, F. Guilak, R. Tran-Son-Tay, R.M. Hochmuth (Eds.), Cell Mechanics and Cellular
Engineering, Springer, New York, 1994.

[18] C.S. Peskin, G. Oster, Coordinated hydrolysis explains the mechanical behavior of kinesin, Biophys. J. 68 (1995)
202s.

[19] E.H. Serpersu, T.Y. Tsong, Stimulation a Oubain-sensitive Rb+ uptake in human erythrocytes with an external
electric Feld, J. Membr. Biol. 74 (1983) 191.

[20] E.H. Serpersu, T.Y. Tsong, Activation of electrogenic Rb+ transport of (Na,K)-ATPase by an electric Feld, J. Biol.
Chem. 259 (1984) 7155.

[21] T.Y. Tsong, R.D. Astumian, Absorption and conversion of electric Feld energy by membrane bound ATPase,
Bioelectrochem. Bioenerg. 15 (1986) 457.

[22] H.V. Westerho5, T.Y. Tsong, P.B. Chock, Y. Chen, R.D. Astumian, How enzymes can capture and transmit free
energy from an oscillating electric Feld, Proc. Natl. Acad. Sci. USA 83 (1986) 4734.

[23] W. Hoppe, W. Lohmann, H. Markl, H. Ziegler (Eds.), Biophysics, Springer, Berlin, 1983.
[24] M.H. Friedman, Principles and Models of Biological Transport, Springer, Berlin, 1986.
[25] A. de Waele, W.H. Kraan, R. de Bruin Ouboter, K.W. Taconis, On the dc voltage across a double point contact

between two superconductors at zero applied dc current in situations in which the junction is in the resistive region
due to the circulating current of =ux quantization, Physica (Utrecht) 37 (1967) 114.

[26] A. de Waele, R. de Bruin Ouboter, Quantum-interference phenomena in point contacts between two superconductors,
Physica (Utrecht) 41 (1969) 225.

[27] A.M. Glas, D. van der Linde, T.J. Negran, High-voltage bulk photovoltaic e5ect and the photorefractive process in
LiNbO3, Appl. Phys. Lett. 25 (1974) 233.

[28] V.I. Belinicher, B.I. Sturman, The photogalvanic e5ect in media lacking a center of symmetry, Sov. Phys. Usp. 23
(1980) 199 [Usp. Fiz. Nauk. 130 (1980) 415].

[29] B.I. Sturman, V.M. Fridkin, The Photovoltaic and Photorefractive E5ects in Noncentrosymmetric Materials, Gordon
and Breach, Philadelphia, 1992.



242 P. Reimann / Physics Reports 361 (2002) 57–265

[30] K. Seeger, W. Maurer, Nonlinear electronic transport in TTF-TCNQ observed by microwave harmonic mixing,
Solid State Commun. 27 (1978) 603.

[31] W. Wonneberger, Stochastic theory of harmonic microwave mixing in periodic potentials, Solid State Commun. 30
(1979) 511.

[32] A.L.R. Bug, B.J. Berne, Shaking-induced transition to a nonequilibrium state, Phys. Rev. Lett. 59 (1987) 948.
[33] M. BMuttiker, Transport as a consequence of state-dependent di5usion, Z. Phys. B 68 (1987) 161.
[34] A. Ajdari, J. Prost, Mouvement induit par un potentiel periodique de basse symmetrie: dielectrophorese pulsee,

C. R. Acad. Sci. Paris S]er. II 315 (1992) 1635.
[35] C.R. Doering, W. Horsthemke, J. Riordan, Nonequilibrium =uctuation-induced transport, Phys. Rev. Lett. 72 (1994)

2984.
[36] T. Hondou, Symmetry breaking by correlated noise in a multistable system, J. Phys. Soc. Jpn. 63 (1994) 2014.
[37] M.M. Millonas, M.I. Dykman, Transport and current reversal in stochastically driven ratchets, Phys. Lett. A 185

(1994) 65.
[38] J. Rousselet, L. Salome, A. Ajdari, J. Prost, Directional motion of Brownian particles induced by a periodic

asymmetric potential, Nature 370 (1994) 446.
[39] A. Ajdari, D. Mukamel, L. Peliti, J. Prost, RectiFed motion induced by ac forces in periodic structures, J. Phys. I

France 4 (1994) 1551.
[40] J.-F. Chauwin, A. Ajdari, J. Prost, Force-free motion in asymmetric structures: a mechanism without di5usive steps,

Europhys. Lett. 27 (1994) 421.
[41] A. Ajdari, Force-free motion in an asymmetric environment: a simple model for structured objects, J. Phys. I

(France) 4 (1994) 1577.
[42] R. Bartussek, P. HManggi, J.G. Kissner, Periodically rocked thermal ratchets, Europhys. Lett. 28 (1994) 459.
[43] J. Maddox, Making models of muscle contraction, Nature 365 (1993) 203.
[44] J. Maddox, More models of muscle contraction, Nature 368 (1994) 287.
[45] J. Maddox, Directed motion from random noise, Nature 369 (1994) 181.
[46] S. Leibler, Moving forward noisily, Nature 370 (1994) 412.
[47] C. PMoppe, Die ordnende Kraft der Asymmetrie, Spektrum der Wissenschaft, November issue (1994) 38.
[48] R. Bartussek, P. HManggi, Brownsche Motoren, Phys. Bl. 51 (1995) 506.
[49] C.R. Doering, Randomly rattled ratchets, Il Nuovo Cimento D 17 (1995) 685.
[50] C. Ettl, Perpetuum mobile zweiter Art, Frankfurter Allgemeine Zeitung, 5 April, 1995, p. 3.
[51] P. HManggi, R. Bartussek, Brownian rectiFers: how to convert Brownian motion into directed transport, in: J. Parisi,

S.C. MMuller, W. Zimmermann (Eds.), Lecture Notes in Physics, Vol. 476: Nonlinear Physics of Complex Systems,
Springer, Berlin, 1996.

[52] K. Kostur, J. Luczka, Transport in ratchet-type systems, Acta Phys. Polon. B 27 (1996) 663.
[53] J. Luczka, Ratchets, molecular motors, and noise-induced transport, Cell. Mol. Biol. Lett. 1 (1996) 311.
[54] R.D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science 276 (1997) 917.
[55] M. Bier, Brownian ratchets in physics and biology, Contemp. Phys. 38 (1997) 371.
[56] M. Bier, A motor protein model and how it relates to stochastic resonance, Feynman’s ratchet, and Maxwell’s

demon, in: L. Schimansky-Geier, T. PMoschel (Eds.), Lecture Notes in Physics, Vol. 484, Springer, Berlin, 1997.
[57] R.D. Astumian, F. Moss (Eds.), Focus issue: The constructive role of noise in =uctuation driven transport and

stochastic resonance, Chaos 8 (1998) 533–664.
[58] J. Luczka, Application of statistical mechanics to stochastic transport, Physica A 274 (1999) 200.
[59] R.D. Astumian, Ratchets, rectiFers, and demons: the constructive role of noise in free energy and signal transduction,

in: J. Walleczek (Ed.), Self-organized Biological Dynamics and Nonlinear Control, Cambridge University Press,
Cambridge, 2000.

[60] C. Speicher, Die Kanalisierung des Zufalls, Neue ZMurcher Zeitung, 9 Mai 2001, p. 49.
[61] R.D. Astumian, Making molecules into motors, ScientiFc American 285 (2001) 56 (July issue).
[62] L. Gammaitoni, P. HManggi, P. Jung, F. Marchesoni, Stochastic resonance, Rev. Mod. Phys. 70 (1998) 223.
[63] W. Horsthemke, R. Lefever, Noise-induced Transitions, Springer, Berlin, 1984.
[64] C. Van den Broeck, J.M.R. Parrondo, R. Toral, R. Kawai, Nonequilibrium phase transitions induced by multiplicative

noise, Phys. Rev. E 55 (1997) 4084.
[65] J. Garcia-Ojalvo, J.M. Sancho, Noise in Spatially Extended Systems, Springer, New York, 1999.



P. Reimann / Physics Reports 361 (2002) 57–265 243

[66] P. HManggi, P. Talkner, M. Borkovec, Reaction rate theory: Ffty years after Kramers, Rev. Mod. Phys. 62 (1990)
251.

[67] P. HManggi, P. Jung, Colored noise in dynamical systems, Adv. Chem. Phys. 89 (1995) 239.
[68] P. Reimann, P. HManggi, Surmounting =uctuating barriers: basic concepts and results, in: L. Schimansky-Geier,

T. PMoschel (Eds.), Lecture Notes in Physics, Vol. 484, Springer, Berlin, 1997.
[69] B. Schmittmann, R.K.P. Zia, Statistical mechanics of driven di5usive systems, in: C. Domb, J.L. Lebowitz (Eds.),

Phase Transitions and Critical Phenomena, Vol. 17, Academic Press, London, 1995.
[70] G.M. SchMutz, Exactly solvable models for many-body systems far from equilibrium, in: C. Domb, J.L. Lebowitz

(Eds.), Phase Transitions and Critical Phenomena, Vol. 19, Academic Press, London, 2000.
[71] J.C. Maxwell, Theory of Heat, Longmans, Green and Co., London, 1872.
[72] H.S. Le5, A.F. Rex, Maxwell’s Demon, Entropy, Information, Computing, Adam Hilger, Bristol, 1990.
[73] T.R. Kelly, I. Tellitu, J.P. Sestelo, In search of molecular ratchets, Angew. Chem. Int. Ed. Engl. 36 (1997) 1866.
[74] T.R. Kelly, J.P. Sestelo, I. Tellitu, New molecular devices: in search of a molecular ratchet, J. Org. Chem. 63

(1998) 3655.
[75] A.P. Davis, Tilting at windmills? The second law survives, Angew. Chem. Int. Ed. Engl. 37 (1998) 909.
[76] K.L. Sebastian, Molecular ratchets: veriFcation of the principle of detailed balance and the second law of dynamics,

Phys. Rev. E 61 (2000) 937.
[77] A. Einstein, MUber die von der molekularkinetischen Theorie der WMarme geforderte Bewegung von in ruhenden

FMussigkeiten suspendierten Teilchen, Ann. Phys. (Leipzig) 17 (1905) 549.
[78] A. Einstein, L. Hopf, Statistische Untersuchung der Bewegung eines Resonators in einem Strahlungsfeld, Ann.

Phys. (Leipzig) 33 (1910) 1105.
[79] J.B. Johnson, Thermal agitation of electricity in conductors, Phys. Rev. 32 (1928) 97.
[80] H. Nyquist, Thermal agitation of electric charge in conductors, Phys. Rev. 32 (1928) 110.
[81] H.B. Callen, T.A. Welton, Irreversibility and generalized noise, Phys. Rev. 83 (1951) 34.
[82] P.G. Bergmann, J.L. Lebowitz, New approach to nonequilibrium processes, Phys. Rev. 99 (1955) 578.
[83] J.L. Lebowitz, P.G. Bergmann, Irreversible Gibbsian ensembles, Ann. Phys. (New York) 1 (1957) 1.
[84] V.B. Magalinskii, Dynamical model in the theory of the Brownian motion, Sov. Phys. JETP 9 (1959) 1381 [JETP

36 (1959) 1942].
[85] R.J. Rubin, Statistical dynamics of simple cubic lattices. Model for the study of Brownian motion, J. Math. Phys.

1 (1960) 309.
[86] J.L. Lebowitz, E. Rubin, Dynamical study of Brownian motion, Phys. Rev. 131 (1963) 2381.
[87] P. Resibois, H.T. Davis, Transport equation of a Brownian particle in an external Feld, Physica (Utrecht) 30 (1964)

1077.
[88] P. Ullersma, An exactly solvable model for Brownian motion, Physica (Utrecht) 32 (1966) 27, 56, 74, and 90.
[89] R. Zwanzig, Nonlinear generalized Langevin equations, J. Stat. Phys. 9 (1973) 215.
[90] J.T. Hynes, J.M. Deutch, Nonequilibrium problems—projection operator techniques, in: D. Henerson (Ed.), Physical

Chemistry, an Advanced Treatise, Academic Press, New York, 1975.
[91] H. Spohn, J.L. Lebowitz, Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs,

Adv. Chem. Phys. 38 (1978) 109.
[92] H. Grabert, P. HManggi, P. Talkner, Microdynamics and nonlinear stochastic processes of gross variables, J. Stat.

Phys. 22 (1980) 537.
[93] H. Grabert, Projection Operator Techniques in Nonequilibrium Statistical Mechanics, Springer, Berlin, 1982.
[94] A.O. Caldeira, A.J. Leggett, Quantum tunneling in dissipative systems, Ann. Phys. (New York) 149 (1983) 374,

erratum: Ann. Phys. (New York) 153 (1984) 445.
[95] G.W. Ford, J.T. Lewis, R.F. O’Connell, Quantum Langevin equation, Phys. Rev. A 37 (1988) 4419.
[96] U. Weiss, Quantum Dissipative Systems, 2nd Enlarged Edition, World ScientiFc, Singapore, 1999.
[97] P. Reimann, A uniqueness-theorem for “linear” thermal baths, Chem. Phys. 268 (2001) 337.
[98] C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences, Springer, Berlin,

1983.
[99] H. Risken, The Fokker–Planck Equation, Springer, Berlin, 1984.

[100] N.G. van Kampen, Stochastic Processes in Physics and Chemistry, Revised and Enlarged Edition, North-Holland,
Amsterdam, 1992.



244 P. Reimann / Physics Reports 361 (2002) 57–265

[101] P. HManggi, H. Thomas, Stochastic processes: time evolution, symmetries, and linear response, Phys. Rep. 88 (1982)
207.

[102] H.A. Kramers, Brownian motion in a Feld of force and the di5usion model of chemical reactions, Physica (Utrecht)
8 (1940) 284.

[103] P. HManggi, H. Grabert, P. Talkner, H. Thomas, Bistable systems: master equation versus Fokker–Planck modeling,
Phys. Rev. A 29 (1984) 371.

[104] R. Zwanzig, Rate processes with dynamical disorder, Acc. Chem. Res. 23 (1990) 148.
[105] G. Ryskin, Simple procedure for correcting equations of evolution: application to Markov processes, Phys. Rev.

E 56 (1997) 5123.
[106] N.G. van Kampen, Die Fokker–Planck–Gleichung, Phys. Bl. 53 (1997) 1012.
[107] S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15 (1943) 1.
[108] P.T. Landsberg, Method of transition probabilities in quantum mechanics and quantum statistics, Phys. Rev. 96

(1954) 1420.
[109] F. SchlMogl, Stochastic measures in nonequilibrium thermodynamics, Phys. Rep. 62 (1980) 267.
[110] J.M.R. Parrondo, P. Espanol, Criticism of Feynman’s analysis of the ratchet as an engine, Am. J. Phys. 64 (1996)

1125.
[111] M.O. Magnasco, G. Stolovitzky, Feynman’s ratchet and pawl, J. Stat. Phys. 93 (1998) 615.
[112] R.L. Stratonovich, Oscillator synchronization in the presence of noise, Radiotekhnika i elektronika 3 (1958) 497

(English translation in P.I. Kuznetsov, R.L. Stratonovich, V.I. Tikhonov (Eds.), Non-linear Transformations of
Stochastic Processes, Pergamon Press, Oxford, 1965).

[113] Y.M. Ivanchenko, L.A. Zil’berman, The Josephson e5ect for small tunnel contacts, Sov. Phys. JETP 28 (1969)
1272 [Zh. Eksp. Teor. Fiz 55 (1968) 2395].

[114] V. Ambegaokar, B.I. Halperin, Voltage due to thermal noise in the dc Josephson e5ect, Phys. Rev. Lett. 22 (1969)
1364.

[115] R.L. Stratonovich, Theory of Random Noise, Gordon and Breach, London, 1969.
[116] G. Cecchi, M.O. Magnasco, Negative resistance and rectiFcation in Brownian transport, Phys. Rev. Lett. 76 (1996)

1968.
[117] P. Reimann, C. Van den Broeck, H. Linke, P. HManggi, J.M. Rubi, A. P]erez-Madrid, Giant acceleration of free

di5usion by use of tilted periodic potentials, Phys. Rev. Lett. 87 (2001) 010602.
[118] P. Reimann, R. Bartussek, R. HMaussler, P. HManggi, Brownian motors driven by temperature oscillations, Phys. Lett.

A 215 (1996) 26.
[119] L. Ibarra-Bracamontes, V. Romero-Rochin, Stochastic ratchets with colored noise, Phys. Rev. E 56 (1997) 4048.
[120] C.R. Doering, Stochastic ratchets, Physica A 254 (1998) 1.
[121] S.M. Simon, C.S. Peskin, G.F. Oster, What drives the translocation of proteins, Proc. Natl. Acad. Sci. USA 89

(1992) 3770.
[122] C.S. Peskin, G.M. Odell, G.F. Oster, Cellular motions and thermal =uctuations: the Brownian ratchet, Biophys.

J. 65 (1993) 316.
[123] S.C. Kuo, J.L. McGrath, Steps and =uctuations of Listeria monocytogenes during actin-based motility, Nature 407

(2000) 1026.
[124] T.C. Elston, Models of post-translational protein translocation, Biophys. J. 79 (2000) 2235.
[125] W. Liebermeister, T.A. Rapoport, R. Heinrich, Ratcheting in post-translational protein translocation: a mathematical

model, J. Mol. Biol. 305 (2001) 643.
[126] J. Luczka, T. Czernik, P. HManggi, Symmetric white noise can induce directed current in ratchets, Phys. Rev. E 56

(1997) 3968.
[127] Y.-X. Li, Transport generated by =uctuating temperature, Physica A 238 (1997) 245.
[128] I.M. Sokolov, A. Blumen, Non-equilibrium directed di5usion and inherently irreversible heat engines, J. Phys.

A 30 (1997) 3021.
[129] I.M. Sokolov, A. Blumen, Thermodynamical and mechanical eCciency of a ratchet pump, Chem. Phys. 235 (1998)

39.
[130] J.-D. Bao, ECciency of energy transformation in an underdamped di5usion ratchet, Phys. Lett. A 267 (2000) 122.
[131] J.-D. Bao, S.J. Liu, Broad-band colored noise: digital simulation and dynamical e5ect, Phys. Rev. E 60 (1999)

7572.



P. Reimann / Physics Reports 361 (2002) 57–265 245

[132] K.S. Ralls, W.J. Skocpol, L.D. Jackel, R.E. Howard, L.A. Fetter, R.W. Epworth, D.M. Tennant, Discrete resistance
switching in submicrometer silicon inversion layers: individual interface traps and low-frequency (1=f) noise, Phys.
Rev. Lett. 52 (1984) 228.

[133] C.J. MMuller, J.M. van Ruitenbeek, L.J. de Jongh, Conductance and supercurrent discontinuities in atomic-scale
metallic constrictions of variable width, Phys. Rev. Lett. 69 (1992) 140.

[134] B. Golding, N.M. Zimmerman, S.N. Coppersmith, Dissipative quantum tunneling of a single microscopic defect in
a mesoscopic metal, Phys. Rev. Lett. 69 (1992) 998.

[135] D.C. Ralph, R.A. Buhrman, Observation of Kondo-scattering without magnetic impurities: a point contact study of
two-level tunneling systems in metals, Phys. Rev. Lett. 69 (1992) 2118.

[136] R.J. Keijsers, O.I. Shklyarevskii, H. van Kempen, Point contact study of fast and slow two-level =uctuators in
metallic glasses, Phys. Rev. Lett. 77 (1996) 3411.

[137] S. Kogan, Electronic Noise and Fluctuations in Solids, Cambridge University Press, Cambridge, 1996.
[138] J.C. Smith, C. Berven, S.M. Goodnick, M.N. Wybourne, Nonequilibrium random telegraph switching in quantum

point contacts, Physica B 227 (1996) 197.
[139] J. Brini, P. Chenevier, P. d’Onofrino, P. Hruska, Higher order statistics of the thermal noise of ultrasmall MOSFET’s,

in: C. Claeys, E. Simeon (Eds.), Noise in Physical Systems and 1=f =uctuations, World ScientiFc, Singapore, 1997.
[140] A.W. MMuller, Thermoelectric energy conversion could be an energy source of living organisms, Phys. Lett. A 96

(1983) 319.
[141] A.W. MMuller, Were the Frst organisms heat engines? A new model for biogenesis and the early evolution of

biological energy conversion, Prog. Biophys. Mol. Biol. 63 (1995) 193.
[142] A.J. Hunt, F. Gittes, J. Howard, The force exerted by a single kinesin molecule against a viscous load, Biophys.

J. 67 (1994) 766.
[143] J. Howard, The movement of kinesin along microtubules, Annu. Rev. Physiol. 58 (1996) 703.
[144] T. Mitsui, H. Oshima, A self-induced translational model of myosin head motion in contracting muscle. I.

Force-velocity relation and energy liberation, J. Musc. Res. Cell Motil. 9 (1988) 248.
[145] M. Bier, M. Kostur, Nonlinearly coupled chemical reactions, in: J.A. Freund, T. PMoschel (Eds.), Lecture Notes in

Physics, Vol. 557, Springer, Berlin, 2000.
[146] M. Bier, M. Kostur, I. Der]enyi, R.D. Astumian, Nonlinearly coupled =ows, Phys. Rev. E 61 (2000) 7184.
[147] P. Curie, Sur la sym]etrie dans les ph]enomenes physiques, sym]etrie d’un champ ]electrique et d’un champ magn]etique,

J. Phys. (Paris) S]er. 3 (th]eorique et appliqu]e) III (1894) 393.
[148] R. Graham, H. Haken, Generalized thermodynamic potential for Marko5 systems in detailed balance and far from

thermal equilibrium, Z. Phys. 243 (1971) 289.
[149] L. Onsager, Reciprocal relations in irreversible processes I, Phys. Rev. 37 (1931) 405.
[150] M.S. Green, Marko5 random processes and the statistical mechanics of time-dependent phenomena, J. Chem. Phys.

20 (1952) 1281.
[151] N.G. van Kampen, Derivation of the phenomenological equations from the master equation, Physica (Utrecht) 23

(1957) 707 and 816.
[152] R. Graham, H. Haken, Fluctuations and stability of stationary non-equilibrium systems in detailed balance, Z. Phys.

245 (1971) 141.
[153] N.G. van Kampen, Fluctuations in nonlinear systems, in: R.E. Burgess (Ed.), Fluctuation Phenomena in Solids,

Academic Press, New York, 1965.
[154] R. McFee, Self-rectiFcation in diodes and the second law of thermodynamics, Am. J. Phys. 39 (1971) 814.
[155] R.L. Stratonovich, Nonlinear Nonequilibrium Thermodynamics I, Springer, Berlin, 1992.
[156] P.S. Landa, Noise-induced transport of Brownian particles with consideration for their mass, Phys. Rev. E 58 (1998)

1325.
[157] I.M. Sokolov, On the energetics of a nonlinear system rectifying thermal =uctuations, Europhys. Lett. 44 (1998)

278.
[158] R.D. Astumian, P.B. Chock, T.Y. Tsong, Y. Chen, H.V. Westerho5, Can free energy be transduced from electric

noise? Proc. Natl. Acad. Sci. USA 84 (1987) 434.
[159] W.T.H. Koch, R. Munser, W. Ruppel, P. WMurfel, Bulk photovoltaic e5ect in BaTiO3, Solid State Commun. 17

(1975) 847.



246 P. Reimann / Physics Reports 361 (2002) 57–265

[160] V.M. Asnin, A.A. Bakun, A.M. Danishevskii, E.L. Ivchenko, G.E. Pikus, A.A. Rogachev, “Circular” photogalvanic
e5ect in optically active crystals, Solid State Commun. 30 (1979) 565.

[161] P. Reimann, P. HManggi, Quantum features of Brownian motors and stochastic resonance, Chaos 8 (1998) 629.
[162] C.M. Arizmendi, F. Family, Approach to steady state current in ratchets, Physica A 232 (1996) 119.
[163] K. Handrich, F.-P. Ludwig, Friction coeCcients and directed motion of asymmetric test particles, J. Stat. Phys. 86

(1997) 1067.
[164] A. Kolomeisky, B. Widom, A simpliFed “ratchet” model of molecular motors, J. Stat. Phys. 93 (1998) 633.
[165] O. Yevtushenkov, S. Flach, K. Richter, ac-driven phase-dependent directed current, Phys. Rev. E 61 (2000) 7215.
[166] I. Goychuk, P. HManggi, Directed current without dissipation: re-incarnation of a Maxwell–Loschmidt-demon,

in: J.A. Freund, T. PMoschel (Eds.), Lecture Notes in Physics, Vol. 557, Springer, Berlin, 2000.
[167] I. Goychuck, P. HManggi, Minimal quantum Brownian rectiFers, J. Phys. Chem. 105 (2001) 6642.
[168] R.D. Cox, Renewal Theory, Methuen, London, 1967.
[169] C. Van den Broeck, A glimpse into the world of random walks, in: J.L. Munoz-Cobo, F.C. DiFlippo (Eds.), Noise

and Nonlinear Phenomena in Nuclear Systems, Plenum Press, New York, 1989.
[170] P. Jung, J.G. Kissner, P. HManggi, Regular and chaotic transport in asymmetric periodic potentials: inertia ratchets,

Phys. Rev. Lett. 76 (1996) 3436.
[171] T. Harms, R. Lipowsky, Driven ratchets with disordered tracks, Phys. Rev. Lett. 79 (1997) 2895.
[172] J.A. Freund, L. Schimansky-Geier, Di5usion in discrete ratchets, Phys. Rev. E 60 (1999) 1304.
[173] G. Constantini, F. Marchesoni, Threshold di5usion in a tilted washboard potential, Europhys. Lett. 48 (1999) 491.
[174] B. Lindner, M. Kostur, L. Schimansky-Geier, Optimal di5usive transport in a tilted periodic potential, Fluct. Noise

Lett. 1 (2001) R25.
[175] C. Kettner, P. Reimann, P. HManggi, F. MMuller, Drift ratchet, Phys. Rev. E 61 (2000) 312.
[176] V.I. Klyatskin, Dynamic systems with parameter =uctuations of the telegraphic-process type, Radiophys. Quantum

Electron. 20 (1978) 382 [RadioFzika 20 (1977) 562].
[177] P. HManggi, P. Riseborough, Activation rates in bistable systems in the presence of correlated noise, Phys. Rev. A

27 (1983) 3379.
[178] C. Van den Broeck, P. HManggi, Activation rates for nonlinear stochastic =ows driven by non-Gaussian noise,

Phys. Rev. A 30 (1984) 2730.
[179] P. HManggi, R. Bartussek, P. Talkner, J. Luczka, Noise-induced transport in symmetric periodic potentials: white

shot noise versus deterministic noise, Europhys. Lett. 35 (1996) 315.
[180] D.R. Chialvo, M.I. Dykman, M.M. Millonas, Fluctuation-induced transport in a periodic potential: noise versus

chaos, Phys. Rev. Lett. 78 (1997) 1605.
[181] E. Neumann, A. Pikovsky, Quasiperiodically driven Josephson junctions: strange nonchaotic attractors, symmetries,

and transport, Submitted for publication.
[182] S. Weiss, D. Koelle, J. MMuller, K. Barthel, R. Gross, Ratchet e5ect in dc SQUIDs, Europhys. Lett. 51 (2000) 499.
[183] S. Weiss, Ratschene5ekt in supraleitenden Quanteninterferenzdetektoren, Ph.D. Thesis, Shaker Verlag, Aachen, 2000

(in German).
[184] S. Cilla, L.M. Floria, Mirror symmetry breaking through an internal degree of freedom leading to directional motion,

Phys. Rev. E 63 (2001) 031110.
[185] W.H. Miller, Reaction-path dynamics for polyatomic systems, J. Chem. Phys. 87 (1983) 3811.
[186] D. Keller, C. Bustamante, The mechanochemistry of molecular motors, Biophys. J. 78 (2000) 541.
[187] R.D. Astumian, Adiabatic theory for =uctuation-induced transport on a periodic potential, J. Phys. Chem. 100 (1996)

19075.
[188] D.S. Liu, R.D. Astumian, T.Y. Tsong, Activation of the Na+ and Rb+-pumping modes of (Na,K)-ATPase by an

oscillating electric Feld, J. Biol. Chem. 265 (1990) 7260.
[189] R.P. Feynman, F.L. Vernon, The theory of a general quantum systems interacting with a linear dissipative system,

Ann. Phys. (New York) 24 (1963) 118.
[190] M.M. Millonas, Self-consistent microscopic theory of =uctuation-induced transport, Phys. Rev. Lett. 74 (1995) 10,

erratum: Phys. Rev. Lett. 75 (1995) 3027.
[191] A.M. Jayannavar, Simple model for Maxwell’s-demon-type information engine, Phys. Rev. E 53 (1996) 2957.
[192] P. HManggi, Generalized Langevin equations: a useful tool for the perplexed modeler of nonequilibrium =uctuations?

in: L. Schimansky-Geier, T. PMoschel (Eds.), Lecture Notes in Physics, Vol. 484, Springer, Berlin, 1997.



P. Reimann / Physics Reports 361 (2002) 57–265 247

[193] I. Zapata, J. Luczka, F. Sols, P. HManggi, Tunneling center as a source of voltage rectiFcation in Josephson junctions,
Phys. Rev. Lett. 80 (1998) 829.

[194] D.E. Postnov, A.P. Nikitin, V.S. Anishchenko, Control of the probability =ux in a system of phase-controlled
frequency self-tuning, Tech. Phys. Lett. 22 (1996) 352.

[195] A.P. Nikitin, D.E. Postnov, E5ect of particle mass on the behavior of stochastic ratchets, Tech. Phys. Lett. 24
(1998) 61.

[196] M. Arrayas, R. Mannella, P.V.E. McClintock, A.J. McKane, N.D. Stein, Ratchet driven by quasimonochromatic
noise, Phys. Rev. E 61 (2000) 139.

[197] L. Schimansky-Geier, M. Kschischo, T. Fricke, Flux of particles in sawtooth media, Phys. Rev. Lett. 79 (1997)
3335.

[198] J.M.R. Parrondo, Reversible ratchets as Brownian particles in an adiabatically changing periodic potential, Phys.
Rev. E 57 (1998) 7297.

[199] J.M.R. Parrondo, J.M. Blanco, F.J. Cao, R. Brito, ECciency of Brownian motors, Europhys. Lett. 43 (1998) 248.
[200] E.M. HMohberger, Magnetotransport in lateralen HalbleiterMubergittern unter Ein=uss von Symmetriebrechung, Diploma

Thesis, Ludwig-Maximilian-UniversitMat MMunchen, Germany, unpublished, 1999 (in German).
[201] J.M.R. Parrondo, B. Jimenez de Cisneros, R. Brito, Thermodynamics of isothermal Brownian motors, in: J.A.

Freund, T. PMoschel (Eds.), Lecture Notes in Physics, Vol. 557, Springer, Berlin, 2000.
[202] E.M. HMohberger, A. Lorke, W. Wegscheider, M. Bichler, Adiabatic pumping of two-dimensional electrons in a

ratchet-type lateral superlattice, Appl. Phys. Lett. 78 (2001) 2905.
[203] E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513.
[204] R. Dutt, A. Khare, U.P. Sukhatme, Supersymmetry, shape invariance, and exactly solvable potentials, Am. J. Phys.

56 (1988) 163.
[205] C.M. Bender, F. Cooper, B. Freedman, A new strong-coupling expansion for quantum Feld theory based on the

Langevin equation, Nucl. Phys. B 219 (1983) 61.
[206] M. Bernstein, L.S. Brown, Supersymmetry and the bistable Fokker–Planck equation, Phys. Rev. Lett. 52 (1984)

1933.
[207] F. Marchesoni, P. Sodano, M. Zanetti, Supersymmetry and bistable soft potentials, Phys. Rev. Lett. 61 (1988) 1143.
[208] G. Junker, Supersymmetric Methods in Quantum and Statistical Physics, Springer, Berlin, 1996.
[209] L.F. Favella, Brownian motions and quantum mechanics, Ann. Inst. Henri Poincar]e 7 (1967) 77.
[210] H. Tomita, A. Ito, H. Kidachi, Eigenvalue problem of metastability in macrosystems, Prog. Theor. Phys. 56 (1976)

786.
[211] P. Jung, P. HManggi, AmpliFcation of small signals via stochastic resonance, Phys. Rev. A 44 (1991) 8032.
[212] T. Leibler, F. Marchesoni, H. Risken, Colored noise and bistable Fokker–Planck equations, Phys. Rev. Lett. 59

(1987) 1381, erratum: Phys. Rev. Lett. 60 (1988) 659.
[213] T. Leibler, F. Marchesoni, H. Risken, Numerical analysis of stochastic relaxation in bistable systems driven by

colored noise, Phys. Rev. A 38 (1988) 983.
[214] R. Kanada, K. Sasaki, Thermal ratchets with symmetric potentials, J. Phys. Soc. Jpn. 68 (1999) 3759.
[215] O. Yevtushenko, S. Flach, Y. Zolotaryuk, A.A. Ovchinikov, RectiFcation of current in ac-driven nonlinear systems

and symmetry properties of the Boltzmann equation, Europhys. Lett. 54 (2001) 141.
[216] B. Yan, R.M. Miura, Y.-D. Chen, Direction reversal of =uctuation-induced biased Brownian motion in distorted

ratchets, J. Theor. Biol. 210 (2001) 141.
[217] P. Reimann, Supersymmetric ratchets, Phys. Rev. Lett. 86 (2001) 4992.
[218] H.-J. Breymayer, H. Risken, H.D. Vollmer, W. Wonneberger, Harmonic mixing in a cosine potential for large

damping and arbitrary Feld strengths, Appl. Phys. B 28 (1982) 335.
[219] W. Wonneberger, H.-J. Breymayer, Broadband current noise and ac induced current steps by a moving charge

density wave domain, Z. Phys. B 56 (1984) 241.
[220] H.-J. Breymayer, Harmonic mixing in a cosine potential for arbitrary damping, Appl. Phys. A 33 (1984) 1.
[221] S. Flach, O. Yevtushenko, Y. Zolotaryuk, Directed current due to broken time-space symmetry, Phys. Rev. Lett.

84 (2000) 2358.
[222] B. Lindner, L. Schimansky-Geier, P. Reimann, P. HManggi, Mass separation by ratchets, in: J.B. Kadtke, A. Bulsara

(Eds.), Applied Nonlinear Dynamics and Stochastic Systems near the Millennium, AIP Proceedings, Vol. 411, AIP,
New York, 1997.



248 P. Reimann / Physics Reports 361 (2002) 57–265

[223] B. Lindner, L. Schimansky-Geier, P. Reimann, P. HManggi, M. Nagaoka, Inertia ratchets: a numerical study versus
theory, Phys. Rev. E 59 (1999) 1417.

[224] M. Bier, Reversal of noise induced =ow, Phys. Lett. A 211 (1996) 12.
[225] I. Der]enyi, A. Ajdari, Collective transport of particles in a “=ashing” periodic potential, Phys. Rev. E 54 (1996)

R5.
[226] C. Berghaus, U. Kahlert, J. Schnakenberg, Current reversal induced by a cyclic stochastic process, Phys. Lett.

A 224 (1997) 243.
[227] R. Bartussek, P. HManggi, B. Lindner, L. Schimansky-Geier, Ratchets driven by harmonic and white noise, Physica

D 109 (1997) 17.
[228] M. Schreier, P. Reimann, P. HManggi, E. Pollak, Giant enhancement of di5usion and particle separation in rocked

periodic potentials, Europhys. Lett. 44 (1998) 416.
[229] E. Abad, A. Mielke, Brownian motion in =uctuating periodic potentials, Ann. Phys. (Leipzig) 7 (1998) 9.
[230] J.L. Mateos, Chaotic transport and current reversal in deterministic ratchets, Phys. Rev. Lett. 84 (2000) 258.
[231] J.L. Mateos, Current reversals in chaotic ratchets, Acta Phys. Pol. B 32 (2001) 307.
[232] M. Kostur, J. Luczka, Multiple current reversals in Brownian ratchets, Phys. Rev. E 63 (2001) 021101.
[233] B. Derrida, Y. Pomeau, Classical di5usion on a random chain, Phys. Rev. Lett. 48 (1982) 627.
[234] B. Derrida, Velocity and di5usion constants of a periodic one-dimensional hopping model, J. Stat. Phys. 31 (1983)

433.
[235] Z. Koza, General technique of calculating the drift velocity and di5usion coeCcient in arbitrary periodic systems,

J. Phys. A 32 (1999) 7637.
[236] K.W. Kehr, K. Mussawisade, T. Wichmann, W. Dieterich, RectiFcation by hopping motion through nonsymmetric

potentials with strong bias, Phys. Rev. E 56 (1997) R2351.
[237] I. Der]enyi, C. Lee, A.-L. Barabasi, Ratchet e5ect in surface electromigration: smoothing surfaces by an ac Feld,

Phys. Rev. Lett. 80 (1998) 1473.
[238] C.R. Doering, J.C. Gadoua, Resonant activation over a =uctuating barrier, Phys. Rev. Lett. 69 (1992) 2318.
[239] P. HManggi, Dynamics of nonlinear oscillators with =uctuating parameters, Phys. Lett. A 78 (1980) 304.
[240] D.L. Stein, C.R. Doering, R.G. Palmer, J.L. van Hemmen, R.M. McLaughlin, Escape over =uctuating barrier: the

white noise limit, J. Phys. A 23 (1990) L203.
[241] U. ZMurcher, C.R. Doering, Thermally activated escape over =uctuating barriers, Phys. Rev. E 47 (1993) 3862.
[242] M. Bier, R.D. Astumian, Matching a di5usive and a kinetic approach for escape over a =uctuating barrier, Phys.

Rev. Lett. 71 (1993) 1649.
[243] P. Pechukas, P. HManggi, Rates of activated processes with =uctuating barriers, Phys. Rev. Lett. 73 (1994) 2772.
[244] P. HManggi, Escape over =uctuating barriers driven by colored noise, Chem. Phys. 180 (1994) 157.
[245] P. Reimann, Surmounting =uctuating barriers: A simple model in discrete time, Phys. Rev. E 49 (1994) 4938.
[246] P. Reimann, Thermally driven escape with =uctuating potentials: A new type of resonant activation, Phys. Rev.

Lett. 74 (1995) 4576.
[247] P. Reimann, Thermally activated escape with potential =uctuations driven by an Ornstein-Uhlenbeck process, Phys.

Rev. E 52 (1995) 1579.
[248] A.J.R. Madureira, P. HManggi, V. Buonamano, W.A. Rodriguez, Escape from a =uctuating double well, Phys. Rev.

E 51 (1995) 3849.
[249] R. Bartussek, A.J.R. Madureira, P. HManggi, Surmounting a =uctuating double well: a numerical study, Phys. Rev.

E 52 (1995) R2149.
[250] P. Reimann, T.C. Elston, Kramers rate for thermal plus dichotomous noise applied to ratchets, Phys. Rev. Lett. 77

(1996) 5328.
[251] J. Iwaniszewski, Escape over a =uctuating barrier: limits of small and large correlation times, Phys. Rev. E 54

(1996) 3173.
[252] P. Reimann, R. Bartussek, P. HManggi, Reaction rates when barriers =uctuate: a singular perturbation approach,

Chem. Phys. 235 (1998) 11.
[253] P. Reimann, G.J. Schmid, P. HManggi, Universal equivalence of mean-Frst passage time and Kramers rate, Phys.

Rev. E 60 (1999) R1.
[254] J. Ankerhold, P. Pechukas, Mathematical aspects of the =uctuating barrier problem. Explicit equilibrium and

relaxation solutions, Physica A 261 (1999) 458.



P. Reimann / Physics Reports 361 (2002) 57–265 249

[255] Y. Chen, Asymmetry and external noise-induced free energy transduction, Proc. Natl. Acad. Sci. USA 84 (1987)
729.

[256] T.D. Xie, P. Marszalek, Y. Chen, T.Y. Tsong, Recognition and processing of randomly =uctuating electric signals
by Na,K-ATPase, Biophys. J. 67 (1994) 1247.

[257] T.D. Xie, Y. Chen, P. Marszalek, T.Y. Tsong, Fluctuation-driven directional =ow in biochemical cycles: further
study of electric activation of Na,K pumps, Biophys. J. 72 (1997) 2496.

[258] P. Jung, Periodically driven stochastic systems, Phys. Rep. 234 (1993) 175.
[259] M.I. Dykman, H. Rabitz, V.N. Smelyanskiy, B.E. Vugmeister, Resonant directed di5usion in nonadiabatically driven

systems, Phys. Rev. Lett. 79 (1997) 1178.
[260] V.N. Smelyanskiy, M.I. Dykman, B. Golding, Time oscillations of escape rates in periodically driven systems,

Phys. Rev. Lett. 82 (1999) 3193.
[261] P. Talkner, Stochastic resonance in the semiadiabatic limit, New J. Phys. 1 (1999) 4.
[262] R. Graham, T. T]el, On the weak-noise limit of Fokker–Planck models, J. Stat. Phys. 35 (1984) 729.
[263] J. Lehmann, P. Reimann, P. HManggi, Surmounting oscillating barriers, Phys. Rev. Lett. 84 (2000) 1639.
[264] J. Lehmann, P. Reimann, P. HManggi, Surmounting oscillating barriers: Path-integral approach for weak noise, Phys.

Rev. E 62 (2000) 6282.
[265] R. Bartussek, P. Reimann, P. HManggi, Precise numerics versus theory for correlation ratchets, Phys. Rev. Lett. 76

(1996) 1166.
[266] A. Mielke, Transport in a =uctuating potential, Ann. Phys. (Leipzig) 4 (1995) 721.
[267] J.D. Bao, Y. Abe, Y.Z. Zhuo, Competition and cooperation between thermal noise and external driving force,

Physica A 277 (2000) 127.
[268] J. Plata, Rocked thermal ratchets: the high frequency limit, Phys. Rev. E 57 (1998) 5154.
[269] G.N. Milstein, M.V. Tretyakov, Mean velocity of noise-induced transport in the limit of weak periodic forcing,

J. Phys. A 32 (1999) 5795.
[270] URL: http://monet.physik.unibas.ch/∼elmer/bm.
[271] J.-F. Chauwin, A. Ajdari, J. Prost, Current reversal in asymmetric pumping, Europhys. Lett. 32 (1995) 373, erratum:

Europhys. Lett. 32 (1995) 699.
[272] Y. Chen, B. Yan, R. Miura, Asymmetry and direction reversal in =uctuation-induced biased Brownian motion,

Phys. Rev. E 60 (1999) 3771.
[273] L.P. Faucheux, A. Libchaber, Selection of Brownian particles, J. Chem. Soc. Faraday Trans. 91 (1995) 3163.
[274] L.P. Faucheux, L.S. Bourdieu, P.D. Kaplan, A. Libchaber, Optical thermal ratchet, Phys. Rev. Lett. 74 (1995) 1504.
[275] L. Gorre-Talini, S. Jeanjean, P. Silberzan, Sorting of Brownian particles by pulsed application of an asymmetric

potential, Phys. Rev. E 56 (1997) 2025.
[276] L. Gorre-Talini, J.P. Spatz, P. Silberzan, Dielectrophoretic ratchets, Chaos 8 (1998) 650.
[277] J.S. Bader, R.W. Hammond, S.A. Henck, M.W. Deem, G.A. McDermott, J.M. Bustillo, J.W. Simpson, G.T. Mulhern,

J.M. Rothberg, DNA transport by a micromachined Brownian ratchet device, Proc. Natl. Acad. Sci. USA 96 (1999)
13165.

[278] R.W. Hammond, J.S. Bader, S.A. Henck, M.W. Deem, G.A. McDermott, J.M. Bustillo, J.M. Rothberg, Di5erential
transport of DNA by a rectiFed Brownian motion device, Electrophoresis 21 (2000) 74.

[279] L. Rowen, G. Mahairas, L. Hood, Sequencing the human genome, Science 278 (1997) 605.
[280] E. Lai, B.W. Birren (Eds.), Electrophoresis of large DNA molecules, Cold Spring Harbor Laboratory Press,

Cold Spring Harbor, NY, 1990.
[281] G. FMuhr, U. Zimmermann, S. Shirley, Cell motion in time varying Felds: principles and potential, in:

U. Zimmermann, S. Neil (Eds.), Electromanipulation of Cells, CRC Press, Boca Raton, 1996, p. 259.
[282] D. Ertas, Lateral separation of macromolecules and polyelectrolytes in microlithographic arrays, Phys. Rev. Lett.

80 (1998) 1548.
[283] A. Ajdari, Pumping liquids using asymmetric electrode arrays, Phys. Rev. E 61 (2000) R45.
[284] I. Janossy, Molecular interpretation of the absorption-induced optical reorientation of nematic liquid crystals, Phys.

Rev. E 49 (1994) 2957.
[285] T. Kosa, E. Weinan, P. Pal5y-Muhoray, Brownian motors in the photoalignment of liquid crystals, Int. J. Eng. Sci.

38 (2000) 1077.

http://monet.physik.unibas.ch/~elmer/bm


250 P. Reimann / Physics Reports 361 (2002) 57–265

[286] M. Kreuzer, L. Marrucci, D. Paparo, Light-induced modiFcation of kinetic molecular properties: enhancement of
optical Kerr e5ect in absorbing liquids, photoinduced torque and molecular motors in dye-doped nematics, J. Nonlin.
Opt. Phys. Mater. 9 (2000) 157.

[287] E. Goldobin, A. Sterck, D. Koelle, Josephson vortex in a ratchet potential: theory, Phys. Rev. E 63 (2001) 031111.
[288] J. Kula, M. Kostur, J. Luczka, Brownian motion controlled by dichotomic and thermal =uctuations, Chem. Phys.

235 (1998) 27.
[289] M. Bier, R.D. Astumian, Biasing Brownian motion in di5erent directions in a 3-state =uctuating potential and an

application for the separation of small particles, Phys. Rev. Lett. 76 (1996) 4277.
[290] P. Reimann, Current reversal in a white noise driven =ashing ratchet, Phys. Rep. 290 (1997) 149.
[291] R. Graham, A. Schenzle, Stabilization by multiplicative noise, Phys. Rev. A 26 (1982) 1676.
[292] J.-D. Bao, Y.-Z. Zhuo, X.-Z. Wu, Di5usion current for a system in a periodic potential driven by additive colored

noise, Phys. Lett. A 215 (1996) 154.
[293] J.-D. Bao, Y.-Z. Zhuo, X.-Z. Wu, E5ect of multiplicative noise on =uctuation-induced transport, Phys. Lett. A 217

(1996) 241.
[294] K. Lee, W. Sung, E5ects of nonequilibrium =uctuations on ionic transport through biomembranes, Phys. Rev.

E 60 (1999) 4681.
[295] Archimedes of Syracuse, ca. 250 b.c., unpublished.
[296] M. Borromeo, F. Marchesoni, Brownian surfers, Phys. Lett. A 249 (1998) 8457.
[297] K.M. Jansons, G.D. Lythe, Stochastic Stokes drift, Phys. Rev. Lett. 81 (1998) 3136.
[298] C. Van den Broeck, Stokes’ drift: an exact result, Europhys. Lett. 46 (1999) 1.
[299] M. Borromeo, F. Marchesoni, Thermal conveyers, Appl. Phys. Lett. 75 (1999) 1024.
[300] Y.-X. Li, X.-Z. Wu, Y.-Z. Zhuo, Brownian motors: solitary waves and eCciency, Physica A 286 (2000) 147.
[301] I. Bena, M. Copelli, C. Van den Broeck, Stokes’ drift: a rocking ratchet, J. Stat. Phys. 101 (2000) 415.
[302] G.G. Stokes, On the theory of oscillatory waves, Trans. Camb. Phil. Soc. 8 (1847) 441.
[303] O.N. Mesquita, S. Kane, J.P. Gollub, Transport by capillary waves: =uctuating Stokes drift, Phys. Rev. A 45 (1992)

3700.
[304] D.J. Thouless, Quantization of transport, Phys. Rev. B 27 (1983) 6083.
[305] M. Switkes, C.M. Marcus, K. Campman, A.C. Gossard, An adiabatic electron pump, Science 283 (1999) 1905.
[306] M. Wagner, F. Sols, Subsea electron transport: pumping deep within the Fermi sea, Phys. Rev. Lett. 83 (1999)

4377.
[307] F. Sols, M. Wagner, Pipeline model of a Fermi-sea electron pump, Ann. Phys. (Leipzig) 9 (2000) 776.
[308] R.D. Astumian, I. Der]enyi, Towards a chemically driven molecular electron pump, Phys. Rev. Lett. 86 (2001)

3859.
[309] L.P. Kouwenhoven, A.T. Johnson, N.C. van der Vaart, C.P.M. Harmans, Quantized current in a quantum-dot

turnstile using oscillating tunnel barriers, Phys. Rev. Lett. 67 (1991) 1626.
[310] L.P. Kouwenhoven, A.T. Johnson, N.C. van der Vaart, A. van der Enden, C.P.M. Harmans, C.T. Foxton, Quantized

current in a quantum dot turnstile, Z. Phys. B 85 (1991) 381.
[311] H. Pothier, P. Lafarge, C. Urbina, D. Esteve, M.H. Devoret, Single-electron pump based on charging e5ects,

Europhys. Lett. 17 (1992) 249.
[312] M.W. Keller, J.M. Martinis, N.M. Zimmerman, A.H. Steinbach, Accuracy of electron counting using a 7-junction

electron pump, Appl. Phys. Lett. 69 (1996) 1804.
[313] J. Weis, R.J. Haug, K. von Klitzing, K. Poog, Single-electron tunneling transistor as a current rectiFer with

potential-controlled current polarity, Semicond. Sci. Technol. 10 (1995) 877.
[314] X. Wang, T. Junno, S.-B. Carlsson, C. Thelander, L. Samuelson, Coulomb blockade ratchet, cond-mat=9910444.
[315] R. Landauer, M. BMuttiker, Drift and di5usion in reversible computation, Physica Scripta T9 (1985) 155.
[316] L.P. Faucheux, G. Stolovitzky, A. Libchaber, Periodic forcing of a Brownian particle, Phys. Rev. E 51 (1995)

5239.
[317] V.I. Talyanskii, J.M. Shilton, M. Pepper, C.G. Smith, C.J.B. Ford, E.H. LinFeld, D.A. Ritchie, G.A.C. Jones, Single

electron transport in a one-dimensional channel by high frequency surface acoustic waves, Phys. Rev. B 56 (1997)
15180.

[318] C. Rocke, S. Zimmermann, A. Wixforth, J.P. Kotthaus, G. BMohm, G. Weinmann, Acoustically driven storage of
light in a quantum well, Phys. Rev. Lett. 78 (1997) 4099.



P. Reimann / Physics Reports 361 (2002) 57–265 251

[319] D.E. Postnov, A.P. Nikitin, V.S. Anishchenko, Synchronization of the mean velocity of a particle in stochastic
ratchets with a running wave, Phys. Rev. E 58 (1998) 1662.

[320] A.N. Malakhov, A new model of Brownian transport, Izv. VUZ “AND” 6 (1998) 105.
[321] S. Sasa, T. Shibata, Brownian motors driven by particle exchange, J. Phys. Soc. Jpn. 67 (1998) 1918.
[322] K. Fukui, J.H. Frederick, J.I. Cline, Chiral dissociation dynamics of molecular ratchets: Preferential sense of rotatory

motion in microscopic systems, Phys. Rev. E 58 (1998) 929.
[323] S.O. Rice, in: N. Wax (Ed.), Selected Papers on Noise and Stochastic Processes, Dover, New York, 1954.
[324] P. HManggi, Correlation functions and master equations of generalized (non-Markovian) Langevin equations, Z. Phys.

B 31 (1978) 407.
[325] P. HManggi, Langevin description of Markovian integro-di5erential master equations, Z. Phys. B 36 (1980) 271.
[326] C. Van den Broeck, On the relation between white shot noise, Gaussian white noise and the dichotomic Markov

process, J. Stat. Phys. 31 (1983) 467.
[327] J. Luczka, R. Bartussek, P. HManggi, White-noise-induced transport in periodic structures, Europhys. Lett. 31 (1995)

431.
[328] T. Czernik, J. Kula, J. Luczka, P. HManggi, Thermal ratchets driven by Poissonian white shot noise, Phys. Rev.

E 55 (1997) 4057.
[329] T. Czernik, J. Luczka, RectiFed steady =ow induced by white shot noise: di5usive and non-di5usive regimes,

Ann. Phys. (Leipzig) 9 (2000) 721.
[330] T. Czernik, M. Niemiec, J. Luczka, Brownian motors driven by Poissonian =uctuations, Acta Physica Polonica B

32 (2001) 321.
[331] Y.-X. Li, Y.-Z. Zhuo, Directed motion induced by shifting ratchet, Int. J. Mod. Phys. B 14 (2000) 2609.
[332] Y. Chen, Asymmetric cycling and biased movement of Brownian particles in =uctuating symmetric potentials, Phys.

Rev. Lett. 79 (1997) 3117.
[333] Y.-X. Li, Directed motion induced by a cyclic stochastic process, Mod. Phys. Lett. B 11 (1997) 713.
[334] L. Gorre-Talini, P. Silberzan, Force-free motion of a mercury drop alternatively submitted to shifted asymmetric

potentials, J. Phys. I (France) 7 (1997) 1475.
[335] M. Porto, M. Urbakh, J. Klafter, Molecular motor that never steps backwards, Phys. Rev. Lett. 85 (2000) 491.
[336] C. Mennerat-Robilliard, D. Lucas, S. Guibal, J. Tabosa, C. Jurczak, J.-Y. Courtois, G. Grynberg, Ratchet for cold

Rubidium atoms: the asymmetric optical lattice, Phys. Rev. Lett. 82 (1999) 851.
[337] T.R. Kelly, H. De Silva, R.A. Silva, Unidirectional rotary motion in a molecular system, Nature 401 (1999) 150.
[338] A.P. Davis, Synthetic molecular motors, Nature 401 (1999) 120.
[339] T.R. Kelly, Progress towards rationally designed molecular motors, Acc. Chem. Res. 34 (2001) 514.
[340] N. Koumura, R.W.J. Zijistra, R.A. van Delden, N. Harada, B.L. Feringa, Light-driven monodirectional molecular

motor, Nature 401 (1999) 152.
[341] J.K. Gimzewski, C. Joachim, R.R. Schlittler, V. Langlais, H. Tang, I. Johannsen, Rotation of a single molecule

within a supramolecular bearing, Science 281 (1998) 531.
[342] J.K. Gimzewski, C. Joachim, Nanoscale science of single molecules using local probes, Science 283 (1999) 1683.
[343] B. Alberts, D. Bray, J. Lewis, M. Ra5, K. Roberts, J.D. Watson, The Molecular Biology of the Cell, Garland,

New York, 1994.
[344] R.D. Astumian, P.B. Chock, T. Tsong, H.V. Westerho5, E5ects of oscillations and energy-driven =uctuations on

the dynamics of enzyme catalysis and free-energy transduction, Phys. Rev. A 39 (1989) 6416.
[345] R.D. Astumian, B. Robertson, Nonlinear e5ect of an oscillating electric Feld on membrane proteins, J. Chem. Phys.

91 (1989) 4891.
[346] A. Fulinski, Noise-stimulated active transport in biological cell membranes, Phys. Lett. A 193 (1994) 267.
[347] A. Fulinski, Active transport in biological membranes and stochastic resonance, Phys. Rev. Lett. 79 (1997) 4926.
[348] A. Fulinski, Barrier =uctuations and stochastic resonance in membrane transport, Chaos 8 (1998) 549.
[349] R.D. Astumian, I. Der]enyi, Fluctuation driven transport and models of molecular motors and pumps, Eur. Biophys.

J. 27 (1998) 474.
[350] T.Y. Tsong, Cellular transduction of periodic and stochastic signals by electroconformational coupling,

in: J. Walleczek (Ed.), Self-organized Biological Dynamics and Nonlinear Control, Cambridge University Press,
Cambridge, 2000.



252 P. Reimann / Physics Reports 361 (2002) 57–265

[351] B. Robertson, R.D. Astumian, Michaelis-Menten equation for an enzyme in an oscillating electric Feld, Biophys.
J. 58 (1990) 969.

[352] A. Mielke, Noise induced transport, Ann. Phys. (Leipzig) 4 (1995) 476.
[353] D.R. Chialvo, M.M. Millonas, Asymmetric unbiased =uctuations are suCcient for the operation of a correlation

ratchet, Phys. Lett. A 209 (1995) 26.
[354] I. Zapata, R. Bartussek, F. Sols, P. HManggi, Voltage rectiFcation by a SQUID ratchet, Phys. Rev. Lett. 77 (1996)

2292.
[355] M.M. Millonas, D.R. Chialvo, Nonequilibrium =uctuation-induced phase transport in Josephson junctions, Phys.

Rev. E 53 (1996) 2239.
[356] A. Sarmiento, H. Larralde, Deterministic transport in ratchets, Phys. Rev. E 59 (1999) 4878.
[357] P.S. Landa, P.V.E. McClintock, Changes in the dynamical behavior of nonlinear systems induced by noise,

Phys. Rep. 323 (1999) 1.
[358] T.C. Elston, C.R. Doering, Numerical and analytical studies of nonequilibrium =uctuation-induced transport

processes, J. Stat. Phys. 83 (1996) 359.
[359] W. Forst, Theory of Unimolecular Reactions, Academic Press, New York, 1973.
[360] C.R. Doering, L.A. Dontcheva, M.M. Klosek, Constructive role of noise: fast =uctuation asymptotics of transport

in stochastic ratchets, Chaos 8 (1998) 643.
[361] H. Kohler, A. Mielke, Noise-induced transport at zero temperature, J. Phys. A 31 (1998) 1929.
[362] R. Mankin, A. Ainsaar, Current reversals in ratchets driven by trichotomous noise, Phys. Rev. E 61 (2000) 6359.
[363] M.M. Klosek, R.W. Cox, Steady-state currents in sharp stochastic ratchets, Phys. Rev. E 60 (1999) 3727.
[364] J. Kula, T. Czernik, J. Luczka, Transport generated by dichotomic =uctuations, Phys. Lett. A 214 (1996) 14.
[365] J. Kula, T. Czernik, J. Luczka, Brownian ratchets: transport controlled by thermal noise, Phys. Rev. Lett. 80 (1998)

1377.
[366] C.M. Arizmendi, F. Family, Memory correlation e5ect on thermal ratchets, Physica A 251 (1998) 368.
[367] R. Bartussek, Stochastische Ratschen, Ph.D. Thesis, Logos Verlag, Berlin, 1998 (in German).
[368] T.E. Dialynas, K. Lindenberg, G.P. Tsironis, Ratchet motion induced by deterministic and correlated stochastic

forces, Phys. Rev. E 56 (2000) 3976.
[369] J.D. Bao, RectiFcation of di5erent colored noise, Phys. Lett. A 256 (1999) 356.
[370] E. Cortes, Ratchet motion induced by a correlated stochastic force, Physica A 275 (2000) 78.
[371] R. Bartussek, Ratchets driven by colored Gaussian noise, in: L. Schimansky-Geier, T. PMoschel (Eds.), Lecture Notes

in Physics, Vol. 484, Springer, Berlin, 1997.
[372] F. Marchesoni, Conceptional design of a molecular shuttle, Phys. Lett. A 237 (1998) 126.
[373] P. Lancon, G. Batrouni, L. Lobry, N. Ostrowsky, Drift without =ux: Brownian walker with a space-dependent

di5usion coeCcient, Europhys. Lett. 54 (2001) 28.
[374] R. von Baltz, W. Krauth, Theory of the bulk photovoltaic e5ect in pure crystals, Phys. Rev. B 23 (1981) 5590.
[375] L.I. Magarill, Photogalvanic e5ect in asymmetric lateral superlattice, Physica E 9 (2001) 625.
[376] V.I. Fal’ko, D.E. Khmel’nitskii, Mesoscopic photovoltaic e5ect in microjunctions, Sov. Phys. JETP 68 (1989) 186,

[Zh. Eksp. Teor. Fiz. 95 (1989) 328].
[377] J. Liu, M.A. Pennington, N. Giordano, Mesoscopic photovoltaic e5ect, Phys. Rev. B 45 (1992) 1267.
[378] G. Dalba, Y. Soldo, F. Rocca, V.M. Fridkin, P. Sainctavit, Giant bulk photovoltaic e5ect under linearly polarized

x-ray synchrotron radiation, Phys. Rev. Lett. 74 (1995) 988.
[379] V.E. Kravtsov, V.I. Yudson, Directed current in mesoscopic rings induced by high-frequency electromagnetic Feld,

Phys. Rev. Lett. 70 (1993) 210.
[380] A.G. Aronov, V.E. Kravtsov, Nonlinear properties of disordered normal-metal rings with magnetic =ux, Phys. Rev.

B 47 (1993) 13409.
[381] R. Atanasov, A. Hach]e, J.L.P. Hughes, H.M. van Driel, J.E. Sipe, Coherent control of photocurrent generation in

bulk semiconductors, Phys. Rev. Lett. 76 (1996) 1703.
[382] A. Hach]e, Y. Kostoulas, R. Atanasov, J.L.P. Hughes, J.E. Sipe, H.M. van Driel, Observation of controlled

photocurrent in unbiased bulk GaAs, Phys. Rev. Lett. 78 (1997) 306.
[383] K.N. Alekseev, M.V. Erementchouk, F.V. Kusmartsev, Direct-current generation due to wave mixing in

semiconductors, Europhys. Lett. 47 (1999) 595.



P. Reimann / Physics Reports 361 (2002) 57–265 253

[384] P. Reimann, Rocking ratchets at high frequencies, in: J.A. Freund, T. PMoschel (Eds.), Lecture Notes in Physics,
Vol. 557, Springer, Berlin, 2000.

[385] S. Shapiro, Josephson currents in superconducting tunneling: the e5ect of microwaves and other observations, Phys.
Rev. Lett. 11 (1963) 80.

[386] P. Jung, P. HManggi, E5ect of periodic driving on the escape in periodic potentials, Ber. Bunsenges. Phys. Chem.
95 (1991) 311.

[387] L. Gorre, E. Ioannidis, P. Silberzan, RectiFed motion of a mercury drop in an asymmetric structure, Europhys.
Lett. 33 (1996) 267.

[388] F. Falo, P.J. Martinez, J.J. Mazo, S. Cilla, Ratchet potential for =uxons in Josephson-junction arrays, Europhys.
Lett. 45 (1999) 700.

[389] E. Trias, J.J. Mazo, F. Falo, T.P. Orlando, Depinning of kinks in a Josephson-junction ratchet array, Phys. Rev.
E 61 (2000) 2257.

[390] G. Carapella, Relativistic =ux quantum in a Feld-induced deterministic ratchet, Phys. Rev. B 63 (2001) 054515.
[391] C.-S. Lee, B. Janko, I. Der]enyi, A.-L. Barabasi, Reducing vortex density in superconductors using the “ratchet

e5ect”, Nature 400 (1999) 337.
[392] J.F. Wambaugh, C. Reichhardt, C.J. Olson, F. Marchesoni, F. Nori, Superconducting =uxon pumps and lenses,

Phys. Rev. Lett. 83 (1999) 5106.
[393] P.J. de Pablo, J. Colchero, J. Gomez-Herrero, A. Asenjo, M. Luna, P.A. Serena, A.M. Baro, Ratchet e5ect in

surface electromigration detected with scanning force microscopy in gold micro-stripes, Surf. Sci. 464 (2000) 123.
[394] M. Barbi, M. Salerno, Phase locking e5ect and current reversals in deterministic underdamped ratchets, Phys. Rev.

E 62 (2000) 1988.
[395] M. Barbi, M. Salerno, Stabilization of ratchet dynamics by weak periodic signals, Phys. Rev. E 63 (2001) 066212.
[396] C.M. Arizmendi, F. Family, A.L. Salas-Brito, Quenched disorder e5ects on deterministic inertia ratchets, Phys. Rev.

E 63 (2001) 061104.
[397] H. Fujisaka, S. Grossmann, Chaos-induced di5usion in nonlinear discrete dynamics, Z. Phys. B 48 (1982) 261.
[398] T. Geisel, J. Nierwetberg, Onset of di5usion and universal scaling in chaotic systems, Phys. Rev. Lett. 48

(1982) 7.
[399] M. Schell, S. Fraser, R. Kapral, Di5usive dynamics in systems with translational symmetry: a one-dimensional-map

model, Phys. Rev. A 26 (1982) 504.
[400] T. Geisel, J. Nierwetberg, Statistical properties of intermittent di5usion in chaotic systems, Z. Phys. B 56 (1984)

59.
[401] P. Reimann, Suppression of deterministic di5usion by noise, Phys. Rev. E 50 (1994) 727.
[402] P. Reimann, C. Van den Broeck, Intermittent di5usion in the presence of noise, Physica D 75 (1994) 509.
[403] R. Klages, J.R. Dorfman, Simple maps with fractal di5usion coeCcient, Phys. Rev. Lett. 74 (1995) 387.
[404] O. Farago, Y. Kantor, Directed chaotic motion in a periodic potential, Physica A 249 (1998) 151.
[405] J.D. Meiss, Symplectic maps, variational principles, and transport, Rev. Mod. Phys. 64 (1992) 795.
[406] G.M. Zaslavsky, Chaotic dynamics and the origin of statistical laws, Phys. Today, August issue (1999) 39.
[407] S. Kovalyov, Phase space structure and anomalous di5usion in a rotational =uid experiment, Chaos 10 (2000) 153.
[408] T. Dittrich, R. Kretzmerick, M.-F. Otto, H. Schanz, Classical and quantum transport in deterministic Hamiltonian

ratchets, Ann. Phys. (Leipzig) 9 (2000) 755.
[409] H. Schanz, M.-F. Otto, R. Ketzmerick, T. Dittrich, Classical and quantum Hamiltonian ratchets, Phys. Rev. Lett.

87 (2001) 070601.
[410] J.-D. Bao, Y.-Z. Zhuo, Langevin simulation approach to a two-dimensional coupled =ashing ratchet, Phys. Lett. A

239 (1998) 228.
[411] A.W. Ghosh, S.V. Khare, Rotation in an asymmetric multidimensional periodic potential due to colored noise,

Phys. Rev. Lett. 84 (2000) 5243.
[412] H. Qian, Vector Feld formalism and analysis for a class of thermal ratchets, Phys. Rev. Lett. 81 (1998) 3063.
[413] M. Kostur, L. Schimansky-Geier, Numerical study of di5usion induced transport in 2d systems, Phys. Lett. A 265

(2000) 337.
[414] P. HManggi, P. Reimann, Quantum ratchet reroute electrons, Phys. World 12 (1999) 21.
[415] M. Brooks, Quantum clockwork, New Scientist 2222 (2000) 29.
[416] V. Balakrishnan, C. Van den Broeck, Transport properties on a random comb, Physica A 217 (1995) 1.



254 P. Reimann / Physics Reports 361 (2002) 57–265

[417] G.W. Slater, H.L. Guo, G.I. Nixon, Bidirectional transport of polyelectrolytes using self-modulating entropic ratchets,
Phys. Rev. Lett. 78 (1997) 1170.

[418] C. Turmel, E. Brassard, R. Forsyth, K. Hood, G.W. Slater, J. Noorlandi, High resolution zero intergated Feld
electrophoresis of DNA, in: E. Lai, B.W. Birren (Eds.), Electrophoresis of Large DNA Molecules, Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, NY, 1990.

[419] C. Desruisseaux, G.W. Slater, T.B. Kist, Trapping electrophoresis and ratchets: a theoretical study for DNA–protein
complexes, Biophys. J. 75 (1998) 1228.

[420] G.W. Slater, C. Desruisseaux, S.J. Hubert, J.F. Mercier, J. Labrie, J. Boileau, F. Tessier, M.P. Pepin, Theory of
DNA electrophoresis: a look at some current challenges, Electrophoresis 21 (2000) 3873.

[421] G.A. Griess, E. Rogers, P. Serwer, Application of the concept of an electrophoretic ratchet, Electrophoresis 22
(2001) 981.

[422] M. Stopa, Charging ratchets, Submitted for publication.
[423] M. Di Ventra, G. Papp, C. Coluzza, A. Baldereschi, P.A. Schulz, Indented barrier resonant tunneling rectiFers,

J. Appl. Phys. 80 (1996) 4174.
[424] T.A.J. Duke, R.H. Austin, Microfabricated sieve for the continuous sorting of macromolecules, Phys. Rev. Lett. 80

(1998) 1552.
[425] T. Duke, Separation techniques, Curr. Opin. Chem. Biol. 2 (1998) 592.
[426] I. Der]enyi, R.D. Astumian, ac-separation of particles by biased Brownian motion in a two-dimensional sieve,

Phys. Rev. E 58 (1998) 7781.
[427] W.D. Volkmuth, R.H. Austin, DNA electrophoresis in microlithographic arrays, Nature 358 (1992) 600.
[428] A. van Oudenaarden, S.G. Boxer, Brownian ratchet: molecular separation in lipid bilayers supported on patterned

arrays, Science 285 (1999) 1046.
[429] A. Lorke, S. Wimmer, B. Jager, J.P. Kotthaus, W. Wegschneider, M. Bichler, Far-infrared and transport properties

of antidot arrays with broken symmetry, Physica B 249 (1998) 312.
[430] E.A. Early, A.F. Clark, C.J. Lobb, Physical basis for half-integral Shapiro steps in a dc SQUID, Physica C 245

(1995) 308.
[431] S. Lifson, J.L. Jackson, On the self-di5usion of ions in polyelectrolytic solution, J. Chem. Phys. 36 (1962) 2410.
[432] A. Ajdari, J. Prost, Free-=ow electrophoresis with trapping by a transverse inhomogeneous Feld, Proc. Natl. Acad.

Sci. USA 88 (1991) 4468.
[433] A. Ghosh, Di5usion rate for a Brownian particle in a cosine potential in the presence of colored noise, Phys. Lett.

A 187 (1994) 54.
[434] A.N. Malakhov, Acceleration of Brownian particle di5usion parallel to a fast random Feld with a short spatial

period, Tech. Phys. Lett. 24 (1998) 833.
[435] I. Claes, C. Van den Broeck, Stochastic resonance for dispersion in oscillatory =ows, Phys. Rev. A 44 (1991)

4970.
[436] I. Claes, C. Van den Broeck, Dispersion of particles in periodic media, J. Stat. Phys. 70 (1993) 1215.
[437] Y.W. Kim, W. Sung, Does stochastic resonance occur in periodic potentials? Phys. Rev. E 57 (1998) R6237.
[438] H. Gang, A. Da5ertshofer, H. Haken, Di5usion of periodically forced Brownian particles moving in space-periodic

potentials, Phys. Rev. Lett. 76 (1996) 4874.
[439] M.C. Mahato, A.M. Jayannavar, Synchronized Frst-passages in a double-well system driven by an asymmetric

periodic Feld, Phys. Lett. A 209 (1995) 21.
[440] M.C. Mahato, A.M. Jayannavar, Asymmetric motion in a double well under the action of zero-mean Gaussian white

noise and periodic forcing, Phys. Rev. E 55 (1997) 3716.
[441] A.K. Vidybida, A.A. Serikov, Electrophoresis by alternating Felds in a non-Newtonian =uid, Phys. Lett. A 108

(1985) 170.
[442] P. Serwer, G.A. Griess, Adaptation of pulsed-Feld gel electrophoresis for the improved fractionation of spheres,

Anal. Chim. Acta 372 (1998) 299.
[443] P. Serwer, G.A. Griess, Advances in the separation of bacteriophages and related particles, J. Chromatogr. B 722

(1999) 179.
[444] M.J. Chacron, G.W. Slater, Particle trapping and self-focusing in temporally asymmetric ratchets with strong Feld

gradients, Phys. Rev. E 56 (1997) 3446.



P. Reimann / Physics Reports 361 (2002) 57–265 255

[445] A. Mogliner, M. Mangel, R.J. Baskin, Motion of molecular motor ratcheted by internal =uctuations and protein
friction, Phys. Lett. A 237 (1998) 297.

[446] A.V. Zolotaryuk, P.L. Christiansen, B. Norden, A.V. Savin, Y. Zolotaryuk, Pendulum as a model system for driven
rotation in moleculear nanoscale machines, Phys. Rev. E 61 (2000) 3256.

[447] D.G. Luchinsky, M.J. Greenall, P. McClintock, Resonant rectiFcation of =uctuations in a Brownian ratchet, Phys.
Lett. A 273 (2000) 316.

[448] T. Hondou, Y. Sawada, Comment on “White-noise-induced transport in periodic structures” by J. Luczka et al.,
Europhys. Lett. 35 (1996) 313.

[449] G.H. Weiss, M. Gitterman, Motion in a periodic potential driven by rectangular pulses, J. Stat. Phys. 70 (1993)
93.

[450] V. Berdichevsky, M. Gitterman, Josephson junction with noise, Phys. Rev. E 56 (1997) 6340.
[451] J. Li, Z. Huang, Transport of particles caused by correlation between additive and multiplicative noise, Phys. Rev.

E 57 (1998) 3917.
[452] J. Li, Z. Huang, Net voltage caused by correlated symmetric noises, Phys. Rev. E 58 (1998) 139.
[453] J. Li, Z. Huang, Flux in the case of Gaussian white noises, Commun. Theor. Phys. 30 (1998) 527.
[454] L. Cao, D. Wu, Fluctuation induced transport in a spatially symmetric periodic potential, Phys. Rev. E 62 (2000)

7478.
[455] Y.A. Jia, J.R. Li, E5ects of correlated noises on current, Int. J. Mod. Phys. B 14 (2000) 507.
[456] F. Argoul, A. Arneodo, P. Collet, A. Lesne, Transition to chaos in presence of an external periodic Feld: cross-over

e5ects in the measure of critical exponents, Europhys. Lett. 3 (1987) 643.
[457] P. Collet, A. Lesne, Renormalization group analysis of some dynamical systems with noise, J. Stat. Phys. 57 (1989)

967.
[458] C. Beck, Brownian motion from deterministic dynamics, Physica A 169 (1990) 324.
[459] T. Hondou, S. Sawada, Dynamical behavior of a dissipative particle in a periodic potential subjected to chaotic

noise: Retrieval of chaotic determinism with broken parity, Phys. Rev. Lett. 75 (1995) 3269.
[460] C. Grebogi, E. Ott, S. Pelikan, J. Yorke, Strange attractors that are not chaotic, Physica D 13 (1984) 261.
[461] D.D. Pollock, Thermoelectricity, in: R.A. Meyers (Ed.), Encyclopedia of Physical Science and Technology, Vol. 16,

Academic Press, San Diego, 1992.
[462] N.W. Ashcroft, N.D. Mermin, Solid State Physics, Saunders College, Philadelphia, 1976.
[463] N.G. van Kampen, Relative stability in nonuniform temperature, IBM J. Res. Develop. 32 (1988) 107.
[464] R. Landauer, Motion out of noisy states, J. Stat. Phys. 53 (1988) 233.
[465] A.M. Jayannavar, M.C. Mahato, Macroscopic equation of motion in inhomogeneous media: a microscopic treatment,

Pramana J. Phys. 45 (1996) 369.
[466] M.C. Mahato, T.P. Pareek, A.M. Jayannavar, Enslaving random =uctuations in nonequilibrium systems, Int. J. Mod.

Phys. B 10 (1996) 3857.
[467] J.D. Bao, Y. Abe, Y.Z. Zhuo, Inhomogeneous friction leading to current in periodic systems, Physica A 265 (1999)

111.
[468] R.H. Luchsinger, Transport in nonequilibrium systems with position-dependent mobility, Phys. Rev. E 62 (2000)

272.
[469] K. Sekimoto, Temporal coarse graining for systems of Brownian particles with non-constant temperature, J. Phys.

Soc. Jpn. 68 (1999) 1448.
[470] M. Matsuo, S. Sasa, Stochastic energetics of non-uniform temperature systems, Physica A 276 (2000) 188.
[471] N.G. van Kampen, Di5usion in inhomogeneous media, Z. Phys. B 68 (1987) 135.
[472] Y.M. Blanter, M. BMuttiker, RectiFcation of =uctuations in an underdamped ratchet, Phys. Rev. Lett. 81 (1998)

4040.
[473] H. Risken, Vollmer, Brownian motion in periodic potentials in the low-friction-limit; linear response to an external

force, Z. Phys. B 35 (1979) 177.
[474] K. Sekimoto, Kinetic characterization of heat bath and the energetics of thermal ratchet models, J. Phys. Soc. Jpn.

66 (1997) 1234.
[475] T. Hondou, F. Takaga, Irreversible operation in a stalled state of Feynman’s ratchet, J. Phys. Soc. Jpn. 67 (1998)

2974.
[476] H. Sakaguchi, Langevin simulation for the Feynman ratchet model, J. Phys. Soc. Jpn. 67 (1998) 709.



256 P. Reimann / Physics Reports 361 (2002) 57–265

[477] H. Sakaguchi, Fluctuation theorem for a Langevin model of the Feynman ratchet, J. Phys. Soc. Jpn. 69 (2000)
104.

[478] C. Jarzynski, O. Mazonka, Feynman’s ratchet and pawl: an exactly solvable case, Phys. Rev. E 59 (1999) 6448.
[479] Y.-D. Bao, Directed current of Brownian ratchet randomly circulating between two thermal sources, Physica A 273

(1999) 286.
[480] Y.-D. Bao, Transport induced by dichotomic temperature =uctuations, Commun. Theor. Phys. 34 (2000) 441.
[481] P. HManggi, Nonlinear e5ects of colored nonstationary noise: exact results, Phys. Lett. A 83 (1981) 196.
[482] D. Ryter, Brownian motion in inhomogeneous media and with interacting particles, Z. Phys. B 41 (1981) 39.
[483] J.M. Sancho, M. San Miguel, D. DMurr, Adiabatic elimination for systems of Brownian particles with nonconstant

damping coeCcients, J. Stat. Phys. 28 (1982) 291.
[484] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics, Martinuis Nijho5 Publishers, Dordrecht, 1986.
[485] L.P. Faucheux, A.J. Libchaber, ConFned Brownian motion, Phys. Rev. E 49 (1994) 5158.
[486] B. Lin, J. Yu, S.A. Rice, Di5usion of an isolated colloidal sphere conFned between =at plates, Colloids Surf.

A 174 (2000) 121.
[487] C.M. Falco, Phase-space of a driven, damped pendulum (Josephson weak link), Am. J. Phys. 44 (1976) 733.
[488] R. Krishnan, S. Singh, G.W. Robinson, Space-dependent friction in the theory of activated rate processes: the

Hamiltonian approach, J. Chem. Phys. 97 (1992) 5516.
[489] R. Krishnan, S. Singh, G.W. Robinson, Space-dependent friction in the theory of activated rate processes, Phys.

Rev. A 45 (1992) 5408.
[490] J.-D. Bao, Y. Abe, Y.Z. Zhuo, Rocked quantum periodic systems in the presence of coordinate-dependent friction,

Phys. Rev. E 58 (1998) 2931.
[491] D. Dan, A.M. Jayannavar, M.C. Mahato, ECciency and current reversals in spatially inhomogeneous ratchets, Int.

J. Mod. Phys. 14 (2000) 1585.
[492] D. Dan, M.C. Mahato, A.M. Jayannavar, Multiple current reversals in forced inhomogeneous ratchets, Phys. Rev.

E 63 (2001) 056307.
[493] D. Dan, M.C. Mahato, A.M. Jayannavar, Motion in a rocked ratchet with spatially periodic friction, Physica A 296

(2001) 375.
[494] O. Steuernagel, W. Ebeling, V. Calenbuhr, An elementary model for directed active motion, Chaos, Solitons Fractals

4 (1994) 1917.
[495] F. Schweitzer, Active Brownian particles: ArtiFcial agents in physics, in: L. Schimansky-Geier, T. PMoschel (Eds.),

Lecture Notes in Physics, Vol. 484, Springer, Berlin, 1997.
[496] B. Tilch, F. Schweitzer, W. Ebeling, Directed motion of Brownian particles with internal energy depot, Physica A

273 (1999) 294.
[497] F. Schweitzer, B. Tilch, W. Ebeling, Uphill motion of active Brownian particles in piecewise linear potentials,

Eur. Phys. B 14 (2000) 157.
[498] L. Schimansky-Geier, S. Seefeld, V. Buchholtz, Making spatial structures by ratchets, Ann. Phys. (Leipzig) 9

(2000) 705.
[499] S. Klump, A. Mielke, C. Wald, Noise-induced transport of two coupled particles, Phys. Rev. E 63 (2001) 031914.
[500] Y. Li, X. Wu, Y. Zhou, Directed motion of two-headed Brownian motors, Mod. Phys. Lett. B 14 (2000) 479.
[501] S. Cilla, L.M. Floria, Internal degrees of freedom in a thermodynamical model for intercellular transport,

Physica D 113 (1998) 157.
[502] S. Cilla, L.M. Floria, A two-dimensional model for kinesin and dynein stepping along microtubules, Il Nuovo

Cimento D 20 (1998) 1761.
[503] T.E. Dialynas, G. Tsironis, Vectorial stochastic motion driven by dichotomous noise, Phys. Lett. A 218 (1996)

292.
[504] I. Der]enyi, T. Vicsek, The kinesin walk: a dynamic model with elastically coupled heads, Proc. Natl. Acad. Sci.

USA 93 (1996) 6775.
[505] T.C. Elston, C.S. Peskin, The role of =exibility in molecular motor function: coupled di5usion in a tilted periodic

potential, SIAM J. Appl. Math. 60 (2000) 842.
[506] T.C. Elston, D. You, C.S. Peskin, Protein =exibility and the correlation ratchet, SIAM J. Appl. Math. 61 (2000)

776.
[507] Y. Osada, H. Okuzaki, H. Hori, A polymer gel with electrically driven motility, Nature 355 (1992) 242.



P. Reimann / Physics Reports 361 (2002) 57–265 257

[508] O. Sandre, L. Gorre-Talini, A. Ajdari, J. Prost, P. Silberzan, Moving droplets on asymmetrically structured surfaces,
Phys. Rev. E 60 (1999) 2964.

[509] Y.-X. Li, Brownian motors possessing internal degree of freedom, Physica A 251 (1998) 382.
[510] F. MMuller, A. Birner, J. Schilling, U. GMosele, C. Kettner, P. HManggi, Membranes for micropumps from macroporous

silicon, Phys. Stat. Sol. A 182 (2000) 585.
[511] H. Ambaye, K.W. Kehr, Toy model for molecular motors, Physica A 267 (1999) 111.
[512] I. Sokolov, A perturbation approach to transport in discrete ratchet systems, J. Phys. A 32 (1999) 2541.
[513] K.W. Kehr, Z. Koza, Hopping motion of lattice gases through nonsymmetric potentials under strong bias conditions,

Phys. Rev. E 61 (2000) 2319.
[514] T. Duke, S. Leibler, Motor protein mechanics: a stochastic model with minimal mechanochemical coupling, Biophys.

J. 71 (1996) 1235.
[515] M.E. Fisher, A.B. Kolomeisky, The force exerted by a molecular motor, Proc. Natl. Acad. Sci. USA 96 (1999)

6597.
[516] M.E. Fisher, A.B. Kolomeisky, Molecular motors and the forces they exert, Physica A 274 (1999) 241.
[517] A.B. Kolomeisky, M.E. Fisher, Periodic sequential kinetic models with jumping, branching and deaths, Physica A

279 (2000) 1.
[518] A.B. Kolomeisky, M.E. Fisher, Extended kinetic models with waiting-time distributions: exact results, J. Chem.

Phys. 113 (2000) 10867.
[519] J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Associates, Sunderland, 2001.
[520] M.E. Fisher, A.B. Kolomeisky, Simple mechanochemistry describes the dynamics of kinesin molecules, Proc. Natl.

Acad. Sci. USA 98 (2001) 7748.
[521] J.R. Sanchez, F. Family, C.M. Arizmendi, Algorithmic complexity of thermal ratchet motion, Phys. Lett. A 249

(1998) 281.
[522] C.M. Arizmendi, F. Family, Algorithmic complexity and eCciency of a ratchet, Physica A 269 (1999) 285.
[523] URL: http://seneca.Fs.ucm.es/parr/.
[524] C. Van den Broeck, P. Reimann, R. Kawai, P. HManggi, Coupled Brownian motors, in: D. Reguera, J.M. Rubi,

J.M.G. Vilar (Eds.), Lecture Notes in Physics, Vol. 527, Statistical Mechanics and Biocomplexity, Springer, Berlin,
1999.

[525] G.P. Harmer, D. Abbott, Losing strategies can win by Parrondo’s paradox, Nature 402 (1999) 864.
[526] G.P. Harmer, D. Abbott, Parrondo’s paradox, Stat. Sci. 14 (1999) 206.
[527] G.P. Harmer, D. Abbott, P.G. Taylor, J.M.R. Parrondo, Parrondo’s paradoxical games and the discrete Brownian

ratchet, in: D. Abbott, L. Kish (Eds.), Proceedings of the Second International Conference on Unsolved Problems
of Noise, AIP Proceedings, Vol. 511, AIP, New York, 2000.

[528] G.P. Harmer, D. Abbott, P.G. Taylor, C.E.M. Pearce, J.M.R. Parrondo, Information entropy and Parrondo’s
discrete-time ratchet, in: D.S. Broomhead, E.A. Luchinskaya, P.V.E. McClintock (Eds.), Proceedings on Stochaos,
AIP Proceedings on Vol. 502, AIP, New York, 2000.

[529] G.P. Harmer, D. Abbott, P.G. Taylor, The paradox of Parrondo’s games, Proc. R. Soc. London A 456 (2000) 1.
[530] J.M.R. Parrondo, G.P. Harmer, D. Abbott, New paradoxical games based on Brownian ratchets, Phys. Rev. Lett.

85 (2000) 5226.
[531] R. Toral, Cooperative Parrondo’s games, Fluct. Noise Lett. 1 (2001) L7.
[532] J.-P. Bouchaud, A. Georges, Anomalous di5usion in disordered media: statistical mechanisms, models and physical

applications, Phys. Rep. 195 (1990) 127.
[533] S.I. Denisov, W. Horsthemke, Mean Frst-passage time for an overdamped particle in a disordered force Feld, Phys.

Rev. E 62 (2000) 3311.
[534] F. Marchesoni, Transport properties in disordered ratchet potentials, Phys. Rev. E 56 (1997) 2492.
[535] R. Alicki, Disordered Markovian Brownian ratchets, Phys. Rev. E 60 (1999) 2559.
[536] M.N. Popescu, C.M. Arizmendi, A.L. Salas-Brito, F. Family, Disorder induced di5usive transport in ratchets, Phys.

Rev. Lett. 85 (2000) 3321.
[537] Y. Jia, S.N. Yu, J.R. Li, E5ects of random potential on transport, Phys. Rev. E 63 (2001) 052101.
[538] K. Sekimoto, S. Sasa, Complementary relations for irreversible process derived from stochastic energetics, J. Phys.

Soc. Jpn. 66 (1997) 3326.
[539] K. Sekimoto, Langevin equation and thermodynamics, Prog. Theor. Phys. Suppl. 130 (1998) 17.

http://seneca.fis.ucm.es/parr/


258 P. Reimann / Physics Reports 361 (2002) 57–265

[540] T. Hondou, K. Sekimoto, Unattainability of Carnot eCciency in the Brownian heat engine, Phys. Rev. E 62 (2000)
6021.

[541] J.-D. Bao, Variational path-integral approach to current and eCciency with quantum correction, Phys. Lett. A 247
(1998) 380.

[542] H. Kamegawa, T. Hondou, F. Takagi, Energetics of forced thermal ratchets, Phys. Rev. Lett. 80 (1998) 5251.
[543] I. Sokolov, Irreversible and reversible modes of operation of deterministic ratchets, Phys. Rev. E 63 (2001) 021107.
[544] A. Parmeggiani, F. JMulicher, A. Ajdari, J. Prost, Energy transduction of isothermal ratchets: generic aspects and

speciFc examples close to and far from equilibrium, Phys. Rev. E 60 (1999) 2127.
[545] I.M. Sokolov, Ideally eCcient irreversible molecular gears, cond-mat=0002251.
[546] I. Der]enyi, R.D. Astumian, ECciency of Brownian heat engines, Phys. Rev. E 59 (1999) R6219.
[547] K. Sekimoto, F. Takagi, T. Hondou, Carnot’s cycle for small systems: irreversibility and cost of operations, Phys.

Rev. E 62 (2000) 7759.
[548] I.M. Sokolov, Reversible =uctuation rectiFer, Phys. Rev. E 60 (1999) 4946.
[549] F. Takagi, T. Hondou, Thermal noise can facilitate energy conversion by a ratchet system, Phys. Rev. E 60 (1999)

4954.
[550] F. JMulicher, J. Prost, Cooperative molecular motors, Phys. Rev. Lett. 75 (1995) 2618.
[551] J. Buceta, J.M. Parrondo, C. Van den Broeck, F.J. de la Rubia, Negative resistance and anomalous hysteresis in

a collective molecular motor, Phys. Rev. E 61 (2000) 6287.
[552] R. Lipowsky, T. Harms, Molecular motors and nonuniform ratchets, Eur. Biophys. J. 29 (2000) 542.
[553] M. Bier, R.D. Astumian, Biased Brownian motors as the operating principle for microscopic engines,

Bioelectrochem. Bioenerg. 39 (1996) 67.
[554] M.B. Tarlie, R.D. Astumian, Optimal modulation of a Browinan ratchet and enhanced sensitivity to a weak external

force, Proc. Natl. Acad. Sci. USA 95 (1998) 2039.
[555] I. Der]enyi, M. Bier, R.D. Astumian, Generalized eCciency and its application to microscopic engines, Phys. Rev.

Lett. 83 (1999) 903.
[556] M. Bier, Motor proteins: mechanochemical energy transduction on the microscopic scale, Acta Phys. Pol. B 32

(2001) 287.
[557] A.C. Hernandez, A. Medina, J.M.M. Roco, J.A. White, S. Velasco, UniFed optimization criterion for energy

converters, Phys. Rev. E 63 (2001) 037102.
[558] S. Velasco, J.M.M. Roco, A. Medina, A.C. Hernandez, Feynman’s ratchet optimization: maximum power and

maximum eCciency regimes, J. Phys. D 34 (2001) 1000.
[559] T. Humphrey, R. Newbury, R. Taylor, H. Linke, Reversible quantum heat engines, Submitted for publication.
[560] F.L. Curzon, B. Ahlborn, ECciency of a Carnot engine at maximum power output, Am. J. Phys. 43 (1975) 22.
[561] B. Andresen, Finite-Time Thermodynamics, University of Copenhagen Press, Copenhagen, 1983.
[562] R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, A.M. Tsirlin, Thermodynamics Optimization of Finite-Time

Processes, Wiley, Chichester, 1999.
[563] J. Howard, Molecular motors: structural adaptation to cellular functions, Nature 389 (1997) 561.
[564] A.D. Mehta, M. Rief, J.A. Spudich, D.A. Smith, R.M. Simmons, Single-molecule biomechanics with optical

methods, Science 283 (1999) 1689.
[565] M. Meister, S.R. Caplan, H.C. Berg, Dynamics of a tightly coupled mechanism for =agellar rotation, Biophys. J.

55 (1989) 905.
[566] C. Doering, B. Ermentrout, G. Oster, Rotary DNA motors, Biophys. J. 69 (1995) 2256.
[567] T.C. Elston, G. Oster, Protein turbines. I: the bacterial =agellar motor, Biophys. J. 73 (1997) 703.
[568] T. Elston, H. Wang, G. Oster, Energy transduction in ATP synthase, Nature 391 (1998) 510.
[569] H.C. Berg, Keeping up with the F1-ATPase, Nature 394 (1998) 324.
[570] URL: http://www.borisylab.nwu.edu/pages/supplemental/mtfr.html.
[571] J. Howard, F. Gittes, Motor proteins, in: H. Flyvbjerg, J. Hertz, M.J. Jensen, O.G. Mouritsen, K. Sneppen (Eds.),

Physics of Biological Systems; from Molecules to Species, Lecture Notes in Physics, Vol. 366, Springer, Berlin,
1997, p. 155.

[572] S.M. Block, Leading the procession: new insights into kinesin motors, J. Cell. Biol. 140 (1998) 1281.
[573] K. Svoboda, C.F. Schmidt, B.J. Schnapp, S.M. Block, Direct observation of kinesin stepping by optical trapping

interferometry, Nature 365 (1993) 721.

http://www.borisylab.nwu.edu/pages/supplemental/mtfr.html


P. Reimann / Physics Reports 361 (2002) 57–265 259

[574] S.P. Gilbert, M.R. Webb, M. Brune, K.A. Johnson, Pathway of processive ATP hydrolysis by kinesin, Nature 373
(1995) 671.

[575] J. Gelles, B.J. Schnapp, M.P. Sheetz, Tracking kinesin-driven movements with nanometer-scale precision, Nature
331 (1988) 450.

[576] E.P. Sablin, F.J. Kull, R. Cooke, R.D. Vale, R.J. Fletterick, Crystal structure of the motor domain of the
kinesin-related motor ncd, Nature 380 (1996) 555.

[577] J.T. Finer, R.S. Simmons, J.A. Spudich, Single myosin molecule mechanics: piconewton forces and nanometer
steps, Nature 368 (1994) 113.

[578] R.A. Cross, Reversing the kinesin ratchet—a diverting tail, Nature 389 (1997) 15.
[579] U. Henningsen, M. Schliwa, Reversal in the direction of movement of a molecular motor, Nature 389 (1997) 93.
[580] J. Howard, A.J. Hudspeth, R.D. Vale, Movement of microtubules by single kinesin molecules, Nature 342 (1989)

154.
[581] E. Mandelkow, A. Hoenger, Structure of kinesin and kinesin-microtubule interactions, Current Opinion in Cell

Biology 11 (1999) 34.
[582] K. Svoboda, S.M. Block, Force and velocity measured for single kinesin molecules, Cell 77 (1994) 773.
[583] K. Fukui, The path of chemical reactions—the IRC approach, Acc. Chem. Res. 14 (1981) 363.
[584] H. KMoppel, W. Domcke, L.S. Cederbaum, Multimode molecular dynamics beyond the Born–Oppenheimer

approximation, Adv. Chem. Phys. 57 (1984) 59.
[585] P.W. Atkins, Physical Chemistry, 3rd Edition, Oxford University Press, Oxford, 1986.
[586] D.G. Truhlar, Potential energy surfaces, in: R.A. Meyers (Ed.), Encyclopedia of Physical Science and Technology,

Vol. 13, Academic Press, San Diego, 1992.
[587] R. Daudel, Quantum chemistry, in: R.A. Meyers (Ed.), Encyclopedia of Physical Science and Technology, Vol. 13,

Academic Press, San Diego, 1992.
[588] J. Michl, Organic chemical systems, theory, in: R.A. Meyers (Ed.), Encyclopedia of Physical Science and

Technology, Vol. 12, Academic Press, San Diego, 1992.
[589] C. SchMutte, Conformational dynamics: modeling, theory, algorithm, and applications to biomolecules, Habilitation

thesis, Konrad-Zuse-Zentrum fMur Informationstechnik Berlin, Germany, unpublished, 1999.
[590] H. Frauenfelder, P.G. Wolynes, Rate theories and puzzles of hemeprotein kinetics, Science 229 (1985) 337.
[591] H. Frauenfelder, S.G. Sligar, P.G. Wolynes, The energy landscapes and motions of proteins, Science 254 (1991)

1598.
[592] K. Tawada, K. Sekimoto, Protein friction exerted by motor enzymes through a weak-binding interaction, J. Theor.

Biol. 150 (1991) 193.
[593] R. Lipowsky, Molecular motors and stochastic models, in: J.A. Freund, T. PMoschel (Eds.), Lecture Notes in Physics,

Vol. 557, Springer, Berlin, 2000.
[594] A. Parmeggiani, F. JMulicher, L. Peliti, J. Prost, Detachment of molecular motors under tangential loading, Europhys.

Lett. 56 (2001) 603.
[595] G. Lattanzi, A. Maritan, Force dependence of the Michaelis constant in a two-state ratchet model for molecular

motors, Phys. Rev. Lett. 86 (2001) 1134.
[596] F. JMulicher, Force and motion generation of molecular motors: a generic description, in: S.C. MMuller, J. Parisi,

W. Zimmermann (Eds.), Lecture Notes in Physics: Transport and Structure: their Competitive Roles in Biophysics
and Chemistry, Springer, Berlin, 1999.

[597] M. Kikkawa, T. Ishikawa, T. Wakabayashi, N. Hirokawa, Three-dimensional structure of the kinesin
head-microtubule complex, Nature 376 (1995) 274.

[598] R.F. Fox, RectiFed Brownian movement in molecular and cell biology, Phys. Rev. E 57 (1998) 2177.
[599] J.A. Spudich, How molecular motors work, Nature 372 (1994) 515.
[600] K. Kitamura, M. Tokunaga, A.H. Iwane, T. Yanagida, A single myosin head moves along an actin Flament with

regular steps of 5.3 nanometers, Nature 397 (1999) 129.
[601] A.D. Mehta, R.S. Rock, M. Rief, J.A. Spudich, M.S. Mooseker, R.E. Cheney, Myosin-V is a processive actin-based

motor, Nature 400 (1999) 590.
[602] B.J. Schnapp, Two heads are better than one, Nature 373 (1995) 655.
[603] M.J. Schnitzer, S.M. Block, Kinesin hydrolyses one ATP per 8-nm step, Nature 388 (1997) 386.



260 P. Reimann / Physics Reports 361 (2002) 57–265

[604] K. Svoboda, P.P. Mitra, S.M. Block, Fluctuation analysis of motor protein movement and single enzyme kinetics,
Proc. Natl. Acad. Sci. USA 91 (1994) 11782.

[605] M.J. Schnitzer, S.M. Block, Statistical kinetics of processive enzymes, Cold Spring Harb. Symp. Quant. Biol. 60
(1995) 793.

[606] A.F. Huxley, R.M. Simmons, Proposed mechanism of force generation in striated muscle, Nature 233 (1971) 533.
[607] D.A. Smith, S. Sicilia, The theory of sliding Flament models for muscle contraction. I. The two-state model,

J. Theor. Biol. 127 (1987) 1.
[608] E. Pate, R. Cooke, A model of crossbridge action: the e5ects of ATP, ADP and Pi, J. Muscle Res. Cell Motil. 10

(1989) 181.
[609] E. Pate, R. Cooke, Simulation of stochastic processes in motile crossbridge systems, J. Muscle Res. Cell Motil. 12

(1991) 376.
[610] E. Pate, R. Cooke, H. White, Determination of the myosin step size from mechanical and kinetic data, Proc. Natl.

Acad. Sci. USA 90 (1993) 2451.
[611] K. Sekimoto, K. Tawada, Extended time correlation of in vitro motility by motor protein, Phys. Rev. Lett. 75

(1995) 180.
[612] N. Thomas, R.A. Thornhill, The physic of biological molecular motors, J. Phys. D 31 (1998) 253.
[613] C.J. Barclay, A weakly coupled version of the Huxley crossbridge model can simulate energetics of amphibian and

mammalian skeletal muscle, J. Muscle. Res. Cell Motil. 20 (1999) 163.
[614] F. JMulicher, J. Prost, Molecular motors: from individual to collective behavior, Prog. Theor. Phys. Suppl. 130

(1998) 9.
[615] J.L. Marin, M. Huerta, J. Muniz, X. Trujillo, Comment on “Cooperative molecular motors”, Phys. Rev. Lett. 83

(1999) 5403.
[616] F. JMulicher, J. Prost, JMulicher and Prost reply, Phys. Rev. Lett. 83 (1999) 5404.
[617] F. JMulicher, J. Prost, Spontaneous oscillations in collective molecular motors, Phys. Rev. Lett. 78 (1997) 4510.
[618] D. Riveline, A. Ott, F. JMulicher, D. Winkelmann, O. Cardoso, J. Lacapere, S. Magnusdottir, J. Viovy,

L. Gorre-Tallini, J. Prost, Acting on actin: the electric motility assay, Eur. Biophys. J. 27 (1998) 403.
[619] K. Yasuda, Y. Shindo, S. Ishiwata, Synchronous behavior of spontaneous oscillations of sacromeres in skeletal

myoFbrils under isotonic conditions, Biophys. J. 70 (1996) 1823.
[620] H. Fujita, S. Ishiwata, Spontaneous oscillatory contraction without regulatory proteins in actin Flament-reconstituted

Fbres, Biophys. J. 75 (1998) 1439.
[621] S. Camalet, F. JMulicher, J. Prost, Self-organized beating and swimming of internally driven Flaments, Phys. Rev.

Lett. 82 (1999) 1590.
[622] A.T. Winfree, The Geometry of Biological Time, Springer, Berlin, 1980.
[623] G. Nicolis, I. Prigogine, Self Organization in Nonequilibrium Systems, Springer, Berlin, 1981.
[624] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.
[625] C. Vidal, A. Pacault, Nonequilibrium Dynamics in Chemical Systems, Springer, Berlin, 1988.
[626] L. Glass, M.C. Mackey, From Clocks to Chaos, Princeton University Press, Princeton NJ, 1988.
[627] A. Vilfan, E. Frey, F. Schwabl, Elastically coupled molecular motors, Eur. Phys. J. B 3 (1998) 535.
[628] A. Vilfan, E. Frey, F. Schwabl, Force-velocity relation for a two-state crossbridge model for molecular motors,

Europhys. Lett. 45 (1999) 283.
[629] URL: http://www.physik.tu-muenchen.de/∼avilfan/ecmm/.
[630] I. Der]enyi, T. Vicsek, Realistic models of biological motion, Physica A 249 (1998) 397.
[631] W. Hua, E.C. Young, M.L. Fleming, J. Gelles, Coupling of kinesin steps to ATP hydrolysis, Nature 388 (1997)

390.
[632] C.M. Coppin, D.W. Pierce, L. Hsu, R.D. Vale, The load dependence of kinesin’s mechanical cycle, Proc. Natl.

Acad. Sci. USA 94 (1997) 8539.
[633] S. Rice, A.W. Lin, D. Safer, C.L. Hart, N. Naber, B.O. Carragher, S.M. Cain, E. Pechatnikova, E.M.

Wilson-Kubalek, M. Wittaker, E. Pate, R. Cooke, E.W. Taylor, R.A. Milligan, R.D. Vale, A structural change
in the kinesin motor protein that drives motility, Nature 402 (1999) 778.

[634] J. Gelles, E. Berliner, E.C. Young, H.K. Mahtani, B. Perez-Ramirez, K. Anderson, Structural and functional features
of one- and two-headed biotinated kinesin derivatives, Biophys. J. 68 (1995) 276s.

http://www.physik.tu-muenchen.de/~avilfan/ecmm/


P. Reimann / Physics Reports 361 (2002) 57–265 261

[635] E. Berliner, E.C. Young, K. Anderson, H.K. Mahtani, J. Gelles, Failure of a single-headed kinesin to track parallel
to microtubule protoFlaments, Nature 373 (1995) 718.

[636] R.D. Vale, T. Funatsu, D.W. Pierce, L. Romberg, Y. Harada, T. Yanagida, Direct observation of single kinesin
molecules moving along microtubules, Nature 380 (1996) 451.

[637] Y. Okada, N. Hirokawa, A processive single-headed motor: kinesin superfamily protein KIF1A, Science 283 (1999)
1152.

[638] URL: http://www.sciencemag.org/feature/data/985876.shl.
[639] H.-X. Zhou, Y. Chen, Chemically driven motility of Brownian particles, Phys. Rev. Lett. 77 (1996) 194.
[640] S.M. Block, K. Svoboda, Analysis of high resolution recordings of motor movement, Biophys. J. 68 (1995) 230s.
[641] K. Visscher, M.J. Schnitzer, S.M. Block, Single kinesin molecules studied with a molecular force clamp, Nature

400 (1999) 184.
[642] G.N. Stratopoulos, T.E. Dialynas, G. Tsironis, Directional Newtonian motion and reversal of molecular motors,

Phys. Lett. A 252 (1999) 151.
[643] R.D. Astumian, I. Der]enyi, A chemically reversible Brownian motor: application to kinesin and ncd, Biophys. J.

77 (1999) 993.
[644] R.D. Astumian, The role of thermal activation in motion and force generation by molecular motors, Phil. Trans.

R. Soc. London B 355 (2000) 511.
[645] R. Lipowsky, Universal aspects of the chemomechanical coupling for molecular motors, Phys. Rev. Lett. 85 (2000)

4401.
[646] A. Libchaber, Genome stability, cell motility, and force generation, Prog. Theor. Phys. Suppl. 130 (1998) 1.
[647] E. MeyerhMofer, J. Howard, The force generated by a single kinesin molecule against an elastic load, Proc. Natl.

Acad. Sci. USA 92 (1995) 574.
[648] A. Houdusse, H.L. Sweeney, Myosin motors: missing structures and hidden springs, Curr. Opin. Struct. Biol. 11

(2001) 182.
[649] F. Oosawa, Sliding and ATPase, J. Biochem. 118 (1995) 863.
[650] F. Oosawa, The loose coupling mechanism in molecular machines of living cells, Genes to Cells 5 (2000) 9.
[651] T. Yanagida, K. Kitamura, H. Tanaka, A.H. Iwane, S. Esaki, Single molecule analysis of the actomyosin motor,

Curr. Opin. Cell Biol. 12 (2000) 20.
[652] E.W. Taylor, Variations on the theme of movement, Nature 361 (1993) 115.
[653] R. DMumcke, H. Spohn, The proper form of the generator in the weak coupling limit, Z. Phys. B 34 (1979) 419.
[654] P. Talkner, The failure of the quantum regression hypothesis, Ann. Phys. (NY) 167 (1986) 390.
[655] V. Ambegaokar, Quantum Brownian motion and its classical limit, Ber. Bunsenges. Phys. Chem. 95 (1991) 400.
[656] G.W. Ford, R.F. O’Connell, There is no quantum regression theorem, Phys. Rev. Lett. 77 (1996) 798.
[657] S. Gnutzmann, F. Haake, Positivity violation and initial slips in open systems, Z. Phys. B 101 (1996) 263.
[658] V. Capek, T. Mancal, Isothermal Maxwell daemon as a molecular rectiFer, Europhys. Lett. 48 (1999) 365.
[659] H. Grabert, P. Schramm, G.-L. Ingold, Quantum Brownian motion: The functional integral approach, Phys. Rep.

168 (1988) 115.
[660] V.A. Benderskii, D.E. Makarov, C.A. Wight, Chemical dynamics at low temperatures, Adv. Chem. Phys. 88

(1994) 1.
[661] T. Dittrich, P. HManggi, G.-L. Ingold, B. Kramer, G. SchMon, W. Zwerger, Quantum Transport and Dissipation,

Wiley-VCH, Weinheim, 1998 (Chapter 4).
[662] M. Grifoni, P. HManggi, Driven quantum tunneling, Phys. Rep. 304 (1998) 229.
[663] A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, 1965.
[664] G. SchMon, A.D. Zaikin, Quantum coherent e5ects, phase transitions and the dissipative dynamics of ultra small

tunnel junctions, Phys. Rep. 198 (1990) 237.
[665] R.F. O’Connell, Dissipative and =uctuation phenomena in quantum mechanics with applications, Int. J. Quant.

Chem. 58 (1996) 569.
[666] I.R. Senitzky, Dissipation in quantum mechanics. The harmonic oscillator, Phys. Rev. 119 (1960) 670.
[667] H. Lamb, On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium,

Proc. London Math. Soc. 32 (1900) 208.
[668] N.G. van Kampen, Contribution to the quantum theory of light scattering, Dan. Mat. Fys. Medd. 26 (no. 15)

(1951) 1.

http://www.sciencemag.org/feature/data/985876.shl


262 P. Reimann / Physics Reports 361 (2002) 57–265

[669] F. Schwabl, W. Thirring, Quantum theory of laser radiation, Ergeb. Exakt. Naturwiss. 36 (1964) 219.
[670] N.N. Bogolyubov, Elementary Example for Establishing Statistical Equilibrium in a System Coupled to a Thermostat.

On Some Statistical Methods in Mathematical Physics, Publ. Acad. Sci. Ukr. SSR, Kiev, 1945, pp. 115–137
(in Russian).

[671] P. Reimann, M. Grifoni, P. HManggi, Quantum ratchets, Phys. Rev. Lett. 79 (1997) 10.
[672] P. Reimann, M. Grifoni, P. HManggi, Adiabatically rocked quantum ratchets, in: J.B. Kadtke, A. Bulsara (Eds.),

Applied Nonlinear Dynamics and Stochastic Systems near the Millennium, AIP Proceedings, Vol. 411, AIP,
New York, 1997.

[673] H. Grabert, P. Olschowski, U. Weiss, Quantum rates for dissipative systems at Fnite temperatures, Phys. Rev. B
36 (1987) 1931.

[674] E. Freidkin, P.S. Riseborough, P. HManggi, Quantum tunneling at low temperatures: results for weak damping,
Z. Phys. B 64 (1986) 237, erratum: Z. Phys. B 67 (1987) 271.

[675] P. HManggi, W. Hontscha, UniFed approach to the quantum-Kramers reaction rate, J. Chem. Phys. 88 (1988) 4094.
[676] S. Jorda, Quanten auf der Kippratsche, Phys. Bl. 53 (1997) 975.
[677] H. Linke, Von DMamonen und Elektronen, Phys. Bl. 56 (2000) 45.
[678] M. Brooks, A farewell to wire? Wire Industry, 67 (2000) 137–14 (March issue).
[679] M. Holthaus, D.W. Hone, Localization e5ects in ac-driven tight-binding lattices, Philos. Mag. B 74 (1996) 105.
[680] I. Goychuk, M. Grifoni, P. HManggi, Nonadiabatic quantum Brownian rectiFers, Phys. Rev. Lett. 81 (1998) 649,

erratum: Phys. Rev. Lett. 81 (1998) 2837.
[681] I. Goychuk, P. HManggi, Quantum rectiFers from harmonic mixing, Europhys. Lett. 43 (1998) 503.
[682] I. Goychuck, private communication.
[683] S. Yukawa, M. Kikuchi, G. Tatara, H. Matsukawa, Quantum ratchets, J. Phys. Soc. Jpn. 66 (1997) 2953.
[684] R. Roncaglia, G. Tsironis, Discrete quantum motors, Phys. Rev. Lett. 81 (1998) 10.
[685] S. Yukawa, G. Tatara, M. Kikuchi, H. Matsukawa, Quantum ratchet, Physica B 284–288 (2000) 1896.
[686] G. Tatara, M. Kikuchi, S. Yukawa, H. Matsukawa, Dissipation enhanced asymmetric transport in quantum ratchets,

J. Phys. Soc. Jpn. 67 (1998) 1090.
[687] H. Linke, T.E. Humphrey, R.P. Taylor, A.P. Micolich, R. Newbury, Chaos in quantum ratchets, Phys. Scripta T90

(2001) 54.
[688] V. Ambegaokar, U. Eckern, G. SchMon, Quantum dynamics of tunneling between superconductors, Phys. Rev. Lett.

48 (1982) 1745.
[689] A.I. Larkin, Y.N. Ovchinikov, Decay of supercurrent in tunnel junctions, Phys. Rev. B 28 (1983) 6281.
[690] U. Eckern, G. SchMon, V. Ambegaokar, Quantum dynamics of a superconducting tunnel junction, Phys. Rev. B 30

(1984) 6419.
[691] V.S. Letokhov, V.G. Minogin, B.D. Pavlik, Cooling and capture of atoms and molecules by a resonant light Feld,

Sov. Phys. JETP 45 (1977) 698.
[692] A. Hemmerich, T.W. HMansch, Two-dimensional atomic crystals bound by light, Phys. Rev. Lett. 70 (1993) 410.
[693] G. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, C. Salomon, Quantized motion of cold Cesium atoms in two-

and three-dimensional optical potentials, Phys. Rev. Lett. 70 (1993) 2249.
[694] M.G. Prentiss, Bound by light, Science 260 (1993) 1078.
[695] S.R. Wilkinson, C.F. Bharucha, K.W. Madison, Q. Niu, M.G. Raizen, Observation of atomic Wannier-Stark ladders

in an accelerating optical potential, Phys. Rev. Lett. 76 (1996) 4512.
[696] A.A. Ignatov, E. Schomburg, K.F. Renk, W. Schatz, J.F. Palmier, F. Mollot, Response of a Bloch oscillator to a

THz-Feld, Ann. Phys. (Leipzig) 3 (1994) 137.
[697] B.J. Keay, S.J. Allen Jr., J. Galan, J.P. Kaminski, K.L. Campman, A.C. Gossard, U. Bhattacharya, M.J.W. Rodwell,

Photon-assisted electric Feld domains and multiphoton-assisted tunneling in semiconductor superlattices, Phys. Rev.
Lett. 75 (1995) 4098.

[698] B.J. Keay, S. Zeuner, S.J. Allen Jr., K.D. Maranowski, A.C. Grossard, U. Bhattacharya, M.J.W. Rodwell, Dynamic
localization, absolute negative conductance and stimulated multiphoton emission in sequential resonant tunneling
semiconductor superlattices, Phys. Rev. Lett. 75 (1995) 4102.

[699] J.B. Majer, M. Grifoni, M. Tusveld, J.E. Mooij, Quantum ratchet e5ect for vortices, Submitted for publication.
[700] H. Linke, W. Sheng, A. LMofgren, H. Xu, P. Omling, P.E. Lindelof, A quantum dot ratchet: experiment and theory,

Europhys. Lett. 44 (1998) 341, erratum: Europhys. Lett. 45 (1999) 406.



P. Reimann / Physics Reports 361 (2002) 57–265 263

[701] H. Linke, Experimental quantum ratchets based on solid state nanostructures, Aust. J. Phys. 52 (1999) 895.
[702] H. Linke, H. Xu, A. LMofgren, W. Sheng, A. Svensson, P. Omling, P.E. Lindelof, R. Newbury, R.P. Taylor, Voltage

and temperature limits for the operation of a quantum dot ratchet, Physica B 272 (1999) 61.
[703] H. Linke, W. Sheng, A. LMofgren, A. Svensson, H. Xu, P. Omling, P.E. Lindelof, Electron quantum dot ratchets,

Microelectr. Eng. 47 (1999) 265.
[704] M. Rauner, Einbahnstrasse Quantenpunkt, Phys. Bl. 55 (1999) 16.
[705] H. Linke, T.E. Humphrey, A. LMofgren, A.O. Sushkov, R. Newbury, R.P. Taylor, P. Omling, Experimental tunneling

ratchets, Science 286 (1999) 2314.
[706] T. Humphrey, A numerical simulation of a quantum ratchet, Master’s Thesis, University of New South Wales,

Sydney, Australia, unpublished, 1999.
[707] H. Linke, P. Omling, From linear to non-linear transport in asymmetric mesoscopic devices, Acta Phys. Pol. B 32

(2001) 267.
[708] T. Humphrey, H. Linke, R. Newbury, Pumping heat with quantum ratchets, Submitted for publication.
[709] M. Porto, M. Urbakh, J. Klafter, Atomic scale engines: cars and wheels, Phys. Rev. Lett. 84 (2000) 6058.
[710] M. Porto, Atomic scale engines: taking a turn, Acta Phys. Pol. B 32 (2001) 295.
[711] Z. Zheng, G. Hu, B. Hu, Collective directional transport in coupled nonlinear oscillators without external bias,

Phys. Rev. Lett. 86 (2001) 2273.
[712] I. Der]enyi, T. Vicsek, Cooperative transport of Brownian particles, Phys. Rev. Lett. 75 (1995) 374.
[713] F. Marchesoni, Thermal ratchets in 1+1 dimensions, Phys. Rev. Lett. 77 (1996) 2364.
[714] Z. Csahok, F. Family, T. Vicsek, Transport of elastically coupled particles in an asymmetric periodic potential,

Phys. Rev. E 55 (1997) 5179.
[715] A.V. Savin, G. Tsironis, A. Zolotaryuk, Ratchet and switching e5ects in stochastic kink dynamics, Phys. Lett.

A 229 (1997) 279.
[716] A.V. Savin, G. Tsironis, A. Zolotaryuk, Reversal e5ects in stochastic kink dynamics, Phys. Rev. E 56 (1997) 2457.
[717] A.V. Zolotaryuk, P.L. Christiansen, B. Norden, A.V. Savin, Soliton and ratchet motions in helices, Cond. Mat.

Phys. 2 (1999) 293.
[718] I. Der]enyi, P. Tegzes, T. Vicsek, Collective transport in locally asymmetric periodic structures, Chaos 8 (1998)

657.
[719] Z. Farkas, P. Tegzes, A. Vukics, T. Vicsek, Transitions in the horizontal transport of vertically vibrated granular

layers, Phys. Rev. E 60 (1999) 7022.
[720] URL: http://www.ph.biu.ac.il/∼rapaport/java-apps/vibseg.html.
[721] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in: Lecture Notes in Physics,

Vol. 39, Springer, Berlin, 1975, p. 420.
[722] S.H. Strogatz, Norbert Wiener’s brain waves, in: S. Levine (Ed.), Frontiers in Mathematical Biology, Springer,

Berlin, 1994.
[723] R. HMaussler, R. Bartussek, P. HManggi, Coupled Brownian rectiFers, in: J.B. Kadtke, A. Bulsara (Eds.), Applied

Nonlinear Dynamics and Stochastic Systems near the Millennium, AIP Proceedings, Vol. 411, AIP, New York,
1997.

[724] P. Martinoli, P. Lerch, C. Leemann, H. Beck, Arrays of Josephson junctions: model systems for two-dimensional
physics, Jpn. J. Appl. Phys. Suppl. 26-3 (1987) 1999.

[725] Y. Aghababaie, G. Menon, M. Plischke, Universal properties of Brownian motors, Phys. Rev. E 59 (1999) 2578.
[726] P. Reimann, R. Kawai, C. Van den Broeck, P. HManggi, Coupled Brownian motors: Anomalous hysteresis and

zero-bias negative conductance, Europhys. Lett. 45 (1999) 545.
[727] P. Reimann, C. Van den Broeck, R. Kawai, Nonequilibrium noise in coupled phase oscillators, Phys. Rev. E 60

(1999) 6402.
[728] C. Van den Broeck, I. Bena, P. Reimann, J. Lehmann, Coupled Brownian motors on a tilted washboard, Ann.

Phys. (Leipzig) 9 (2000) 713.
[729] S.E. Mangioni, R.R. Deza, H.S. Wio, Transition from anomalous to normal hysteresis in a system of coupled

Brownian motors: a mean-Feld approach, Phys. Rev. E 63 (2001) 041115.
[730] B. Cleuren, C. Van den Broeck, Ising model for a Brownian donkey, Europhys. Lett. 54 (2001) 1.
[731] K. Alekseev, E. Cannon, J. McKinney, F. Kusmartsev, D. Campbell, Spontaneous dc current generation in a

resistively shunted semiconductor superlattice driven by a terahertz Feld, Phys. Rev. Lett. 80 (1998) 2669.

http://www.ph.biu.ac.il/~rapaport/java-apps/vibseg.html


264 P. Reimann / Physics Reports 361 (2002) 57–265

[732] E.H. Cannon, F.V. Kusmartsev, K.N. Alekseev, D.K. Cambell, Absolute negative conductivity and spontaneous
current generation in semiconductor superlattices with hot electrons, Phys. Rev. Lett. 85 (2000) 1302.

[733] R.C. Desai, R. Zwanzig, Statistical mechanics of a nonlinear stochastic model, J. Stat. Phys. 19 (1978) 1.
[734] D.A. Dawson, Critical dynamics and =uctuations for a mean-Feld model of cooperative behavior, J. Stat. Phys. 31

(1983) 29.
[735] L.L. Bonilla, Stable nonequilibrium probability densities and phase transitions for mean-Feld models in the

thermodynamic limit, J. Stat. Phys. 46 (1987) 659.
[736] S. Strogatz, R. Mirollo, Stability of incoherence in a population of coupled oscillators, J. Stat. Phys. 63 (1991)

613.
[737] J. Garcia-Ojalvo, J.M. Sancho, L. Ramirez-Piscina, A nonequilibrium phase transition with colored noise, Phys.

Lett. A 168 (1992) 35.
[738] C. Van den Broeck, J.M.R. Parrondo, R. Toral, Noise induced nonequilibrium phase transitions, Phys. Rev. Lett.

73 (1994) 3395.
[739] A. Becker, L. Kramer, Linear stability analysis for bifurcations in spatially extended systems with =uctuating control

parameter, Phys. Rev. Lett. 73 (1994) 955.
[740] S. Ramaswami, Comment on “Noise-induced nonequilibrium phase transitions”, Phys. Rev. Lett. 75 (1995) 4786.
[741] G. Grinstein, M.A. Munoz, Y. Tu, Phase structure of systems with multiplicative noise, Phys. Rev. Lett. 76 (1996)

4376.
[742] S. Kim, S.H. Park, C.S. Ryu, Noise-enhanced multistability in coupled oscillator systems, Phys. Rev. Lett. 78

(1997) 1616.
[743] R. MMuller, K. Lippert, A. KMuhnel, U. Behn, First-order nonequilibrium phase transition in a spatially extended

system, Phys. Rev. E 56 (1997) 2658.
[744] S. Mangioni, R. Deza, H.S. Wio, R. Toral, Disordering e5ects of colored noise in nonequilibrium phase transitions

induced by multiplicative noise, Phys. Rev. Lett. 79 (1997) 2389.
[745] A.A. Zaikin, L. Schimansky-Geier, Spatial patterns induced by additive noise, Phys. Rev. E 58 (1998) 4355.
[746] URL: http://www.kawai.phy.uab.edu/research/motor.
[747] T.J. Banys, I.V. Parshelyunas, Y.K. Pozhela, Absolute negative resistance of Gallium-Arsenide in a strong

microwave Feld, Sov. Phys. Semicond. 5 (1972) 1727 [Fiz. Tekh. Poluprovodn. 5 (1971) 1990].
[748] V.V. Pavlovich, E.M. Epstein, Conductivity of a superlattice semiconductor in strong electric Felds, Sov. Phys.

Semicond. 10 (1976) 1196.
[749] J. Pozhela, Plasma and Current Instabilities in Semiconductors, Pergamon Press, Oxford, 1981.
[750] T.C. Sollner, E.R. Brown, W.D. Goodhue, H.Q. Le, Microwave and millimeter-wave resonant-tunneling devices,

in: F. Carpasso (Ed.), Springer Series in Electronics and Photonics, Vol. 28: Physics of Quantum electron devices,
Springer, Berlin, 1990.

[751] A.A. Ignatov, E. Schomburg, J. Grenzer, K.F. Renk, E.P. Dodin, THz-Feld induced nonlinear transport and dc
voltage generation in a semiconductor superlattice due to Bloch oscillations, Z. Phys. B 98 (1995) 187.

[752] Y. Dakhnovskii, H. Metiu, Absolute negative resistance in double-barrier heterostructures in a strong laser Feld,
Phys. Rev. B 51 (1995) 4193.

[753] R. Aguado, G. Platero, Dynamical localization and absolute negative conductance in an ac-driven double quantum
well, Phys. Rev. B 55 (1997) 12860.

[754] L. Hartmann, M. Grifoni, P. HManggi, Dissipative transport in dc–ac-driven tight-binding lattices, Europhys. Lett. 38
(1997) 497.

[755] I. Goychuk, E. Petrov, V. May, Noise-induced current reversal in a stochastically driven dissipative tight-binding
model, Phys. Lett. A 238 (1998) 59.

[756] H. KrMomer, Proposed negative-mass microwave ampliFer, Phys. Rev. 109 (1959) 1856.
[757] D.C. Mattis, M.J. Stevenson, Theory of negative-mass cyclotron resonance, Phys. Rev. Lett. 3 (1959) 18.
[758] P.F. Liao, A.M. Glass, L.M. Humphrey, Optically generated pseudo-Stark e5ect in ruby, Phys. Rev. B 22 (1980)

2276.
[759] A.G. Aronov, B.Z. Spivak, Photoe5ect in a Josephson junction, JETP Lett. 22 (1975) 101.
[760] M.E. Gershenzon, M.I. Falei, Absolute negative resistance of a tunnel contact between superconductors with a

nonequilibrium quasiparticle distribution function, JETP Lett. 44 (1986) 682.

http://www.kawai.phy.uab.edu/research/motor


P. Reimann / Physics Reports 361 (2002) 57–265 265

[761] M.E. Gershenzon, M.I. Falei, Absolute negative resistance in tunnel junctions of nonequilibrium superconductors,
Sov. Phys. JETP 67 (1988) 389.

[762] N.A. Dyatko, I.V. Kochetov, A.P. Napartovich, Absolute negative conductivity of a low-temperature plasma,
Sov. Tech. Phys. Lett. 13 (1987) 610.

[763] Z. Rozenberg, M. Lando, M. Rokni, On the possibility of steady state negative mobility in externally ionized gas
mixtures, J. Phys. D 21 (1988) 1593.

[764] P.M. Golovinskii, A.I. Shchedrin, Weak-Feld absolute negative conductivity in the mixture Xe : F2 ionized by a
beam of fast electrons, Sov. Phys. Tech. Phys. 34 (1989) 159.

[765] C. Van den Broeck, R. Kawai, Absorption-desorption phase transition induced by parametric modulation, Phys.
Rev. E 57 (1998) 3866.

[766] I. Bena, C. Van den Broeck, Coupled parametric oscillators, Europhys. Lett. 48 (1999) 498.
[767] T. Alarcon, A. Perez-Madrid, J.M. Rubi, Energy transduction in periodically driven non-Hermitian systems, Phys.

Rev. Lett. 85 (2000) 3995.
[768] C.R. Doering, A stochastic partial di5erential equation with multiplicative noise, Phys. Lett. A 122 (1987) 133.
[769] M. Ibanes, J. Garcia-Ojalvo, R. Toral, J.M. Sancho, Noise-induced scenario for inverted phase diagrams, Phys. Rev.

Lett. 87 (2001) 020601.
[770] R. Eichhorn, P. Reimann, P. HManggi, Brownian motion exhibiting absolute negative mobility, Submitted for

publication.
[771] C. Van den Broeck, unpublished.
[772] S. Shinomoto, Y. Kuramoto, Phase transitions in active rotator systems, Prog. Theor. Phys. 75 (1986) 1105.
[773] S.H. Strogatz, C.M. Marcus, R.M. Westervelt, R.E. Mirollo, Collective dynamics of coupled oscillators with random

pinning, Physica D 36 (1989) 23.
[774] H. Sompolinsky, D. Golomb, D. Kleinfeld, Cooperative dynamics in visual processing, Phys. Rev. A 43 (1991)

6990.
[775] J.W. Swift, S. Strogatz, K. Wiesenfeld, Averaging of globally coupled oscillators, Physica D 55 (1992) 239.
[776] D.H.G. Mato, C. Meunier, Clustering and slow switching in globally coupled phase oscillators, Phys. Rev E 48

(1993) 3470.
[777] A. Arenas, C.J. P]erez-Vicente, Exact long-time behavior of a network of phase oscillators under random Felds,

Phys. Rev. E 50 (1994) 949.
[778] T. Schnelle, T. MMuller, G. Gradl, S.G. Shirley, G. Fuhr, Dielectrophoretic manipulation of suspended submicron

particles, Electrophoresis 21 (2000) 66.
[779] P. Pal5y-Muhoray, E. Weinan, Orientational ratchets and angular momentum balance in the Janossy e5ect,

Mol. Cryst. Liq. Cryst. 320 (1998) 193.
[780] G.M. Shmelev, N.H. Song, G.I. Tsurkan, Photostimulated even acoustoelectric e5ect, Sov. Phys. J. (USA) 28

(1985) 161.
[781] M.V. Entin, Theory of the coherent photogalvanic e5ect, Sov. Phys. Semicond. 23 (1989) 664.
[782] S. Denisov, S. Flach, Dynamical mechanism of dc current generation in driven Hamiltonian systems, Submitted for

publication.
[783] C.L. Allyn, A.C. Gossard, W. Wiegmann, A new rectifying semiconductor structure by molecular epitaxy,

Appl. Phys. Lett. 36 (1980) 373.
[784] F. Capasso, S. Luryi, W.T. Tsang, C.G. Bethea, B.F. Levine, New transient electrical polarization phenomenon in

sawtooth superlattices, Phys. Rev. Lett. 51 (1980) 2318.


	Brownian motors: noisy transport far from equilibrium
	Introduction
	Outline and scope
	Historical landmarks
	Organization of the paper

	Basic concepts and phenomena
	Smoluchowski--Feynman ratchet
	Ratchet and pawl
	Simplified stochastic model

	Fokker--Planck equation
	Particle current
	Solution and discussion
	Tilted Smoluchowski--Feynman ratchet
	Weak noise limit

	Temperature ratchet and ratchet effect
	Model
	Ratchet effect
	Discussion

	Mechanochemical coupling
	Curie's principle
	Brillouin's paradox
	Asymptotic analysis
	Current inversions

	General framework
	Working model
	Symmetry
	Definitions
	Conclusions

	Main ratchet types
	Physical basis
	Thermal environment
	Non-equilibrium perturbations

	Supersymmetry
	Definitions
	Main conclusion
	Examples
	Discussion
	Generalizations

	Tailoring current inversions
	Linear response and high-temperature limit
	Activated barrier crossing limit

	Pulsating ratchets
	Fast and slow pulsating limits
	On--off ratchets
	Experimental realizations

	Fluctuating potential ratchets
	Dichotomous potential fluctuations
	Gaussian potential fluctuations

	Traveling potential ratchets
	Genuine traveling potentials
	Improper traveling potentials

	Hybrids and further generalizations
	Superpositions of traveling potentials
	Generalized pulsating ratchets and experimental realizations

	Biological applications: molecular pumps and motors
	Externally driven molecular pumps


	Tilting ratchets
	Model
	Adiabatic approximation
	Fast tilting
	Comparison with pulsating ratchets
	Fluctuating force ratchets
	Fast fluctuating forces
	Specific types of fluctuating forces

	Photovoltaic effects
	Rocking ratchets
	Fast rocking limit
	General qualitative features
	Applications

	Influence of inertia and Hamiltonian ratchets
	Two-dimensional systems and entropic ratchets
	Rocking ratchets in SQUIDs
	Giant enhancement of diffusion
	Asymmetrically tilting ratchets
	Periodic driving
	Stochastic, chaotic, and quasiperiodic driving


	Sundry extensions
	Seebeck ratchets
	Feynman ratchets
	Temperature ratchets
	Inhomogeneous, pulsating, and memory friction
	A no-go theorem
	Inhomogeneous and pulsating friction
	Memory friction and correlated thermal noise

	Ratchet models with an internal degree of freedom
	Drift ratchet
	Spatially discrete models and Parrondo's game
	Influence of disorder
	Efficiency

	Molecular motors
	Biological setup
	Basic modeling-steps
	Biochemical framework
	Mechanical and chemical state variables
	Discrete chemical states

	Simplified stochastic model
	Stochastic ratchet dynamics
	Nonequilibrium chemical reaction

	Collective one-head models
	A.F. Huxley's model
	Free choice of chemical reaction rates
	Generalizations
	Jülicher--Prost model

	Coordinated two-head model
	Further models for a single motor enzyme
	Summary and discussion

	Quantum ratchets
	Model
	Adiabatically tilting quantum ratchet
	Tunneling-induced current inversion

	Beyond the adiabatic limit
	Experimental quantum ratchet systems

	Collective effects
	Coupled ratchets
	Genuine collective effects
	Model
	Spontaneous symmetry breaking
	Spontaneous ratchet effect
	Negative mobility and anomalous hysteresis
	Perspectives


	Conclusions
	Acknowledgements
	Appendix A.
	Gaussian white noise
	Fluctuation--dissipation relation
	Einstein relation
	Dimensionless units and overdamped dynamics

	Appendix B.
	Appendix C.
	References


