
Physica D 126 (1999) 99–122

Symmetry and phase-locking in a ring of pulse-coupled oscillators with
distributed delays

P.C. Bressloff∗, S. Coombes
Nonlinear and Complex Systems Group, Department of Mathematical Sciences, Loughborough University, Loughborough,

Leicestershire LE11 3TU, UK

Received 8 April 1998; accepted 16 September 1998
Communicated by J.P. Keener

Abstract

Phase-locking in a ring of pulse-coupled integrate-and-fire oscillators with distributed delays is analysed using group theory.
The period of oscillation of a solution and those related by symmetry is determined self-consistently. Numerical continuation
of maximally symmetric solutions in characteristic system length and timescales yields bifurcation diagrams with spontaneous
symmetry breaking. The stability of phase-locked solutions is determined via a linearisation of the oscillator firing map. In the
weak-coupling regime, averaging leads to an effective phase-coupled model with distributed phase-shifts and the analysis of
the system is considerably simplified. In particular, the collective period of a solution is now slaved to the relative phases. For
odd numbered rings, spontaneous symmetry breaking can lead to a change of stability of a travelling wave state via a simple
Hopf bifurcation. The resulting non-phase-locked solutions are constructed via numerical continuation at these bifurcation
points. The corresponding behaviour in the integrate-and-fire system is explored with simulations showing bifurcations to
quasiperiodic firing patterns.c©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The dynamics of coupled nonlinear oscillators has application in many fields of natural science [1,2]. Recent
experimental and theoretical interest has focused upon Josephson junctions [3,4], lasers [5], oscillatory chemical
reactions [6], heart pacemaker cells [7], central pattern generators [8] and cortical neural oscillators [9]. Typically
either small amplitude oscillators near a Hopf bifurcation have been considered [2,10] or a weak coupling of limit
cycle oscillators has been utilised. In the latter case, invariant manifold theory [11] and averaging theory [12] can
be used to reduce the model to a system of phase equations (see, for example, [8,13–16]) in which the relative phase
between oscillators is the relevant dynamical variable. For certain physical models such as Josephson junction and
laser arrays, the dynamics may be expressed in terms of coupled phase variables from the outset. In these cases
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the method of averaging can be used for weak coupling provided that, in an appropriate coordinate frame, relative
phases evolve on a slow timescale compared to the natural frequency of oscillation in the uncoupled limit. This
technique has been applied to globally coupled oscillators [17] and has elucidated the integrable structure of the
dissipative, overdamped resistively loaded Josephson array [4,18]. In neural models the effective phase interaction
may be regarded as a convolution of the post-synaptic current and some neuronal response function over one period
of oscillation. This response function can be obtained from experimental data or constructed directly from the single
neuron dynamics. Indeed this has been performed for the Hodgkin–Huxley model [19] and discussed in general for
networks of neurons with the so-called type I or II response [20].

In many applications the oscillators are identical, dissipative and the coupling is symmetric. Under such cir-
cumstances one can exploit the symmetry of the system to determine generic features of the dynamics such as the
emergence of certain classes of solutions due to symmetry breaking bifurcations. Moreover, symmetries have been
shown to underly pathological dynamics such as structurally stable heteroclinic connections [21]. Group theoretic
methods have been used to study both small amplitude oscillators on a ring near Hopf bifurcation [22], and weakly
coupled oscillators under phase-averaging [21,23]. Symmetry arguments have also been used to construct central
pattern generators for animal gaits [24] and to establish the existence of periodic orbits in Josephson junction series
arrays [25].

Most work to date on the dynamics of coupled oscillator arrays has assumed that the interaction between oscil-
lators depends continuously on their state variables. This smoothness of interaction is absent for oscillators that
communicate with sudden, pulse-like discharges. Such interactions are of special interest for neural systems where
post-synaptic potentials are induced by the spiking or firing of pre-synaptic neurons. The integrate-and-fire model
(see [26] for a review) may be regarded as a reduction of the Hodgkin–Huxley model capable of generating real-
istic spike trains [27]. This model is of particular interest not only because it is more amenable to analysis than
conductance based models but because it has connections with the physics of self-organised criticality [28–30] and
1/f noise [31]. Nevertheless, concrete results concerning the dynamics of integrate-and-fire oscillator networks are
still relatively rare and have mainly been restricted to the case of globally coupled arrays. For example, a rigorous
analysis of globally coupled integrate-and-fire oscilators using return maps demonstrates the existence of stable
phase-locked solutions for instantaneous excitatory coupling [32]. In addition, mean field theory has been applied
to large networks in order to study the effects of non-instantaneous coupling common to many neural systems with
axonal and synaptic delays [33–36].

In this paper, we present the first comprehensive application of group theoretic and averaging methods to the study
of the dynamics of pulse-coupled oscillator networks. For concreteness, we consider a ring of integrate-and-fire
oscillators with spatially structured patterns of delayed connections. The integrate-and-fire model evolves according
to a linear time-delayed ordinary differential equation until reaching some threshold, whereupon the state variable
is instantaneously reset to some pre-defined level. The discontinuous and time-delayed nature of this model allows
for extremely rich dynamical behaviour, but at the same time simplifies considerably when one considers the class
of frequency-locked solutions in which all the oscillators fire with a common period. This encompasses all phase-
locked solutions including, for example, synchronous and travelling wave states. Solutions are determined by a set
of algebraic equations involving the relative phases of the oscillators and the collective frequency of oscillation.
Importantly, these equations have the same formal structure as those obtained using phase-reduction techniques
(see later), but are valid for arbitrary values of the coupling. This suggests the use of various methods previously
applied to systems of weakly coupled limit cycle oscillators.

We begin by showing how group theory can be used to classify all possible phase-locked solutions with the
collective period determined self-consistently (Section 2). A methodology for constructing solutions from some
maximally symmetric set is presented based upon the principle of spontaneous symmetry breaking previously
applied to smoothly coupled systems [22]. The linear stability of phase-locked solutions is shown to be readily
handled in terms of perturbations of the firing times along analogous lines to van Vreeswijk [36] and Gerstner et
al [37]. In Section 3 we present a number of numerical examples for rings of integrate-and-fire oscillators with
delayed interactions pertaining to neural systems based upon simple models of axonal communication and synaptic
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processing. Numerical continuation in system parameters is shown to connect phase-locked solutions with differing
symmetry groups. However, bifurcations from phase-locked states to non-phase-locked states are, in general, not
amenable to such a combination of group theory and numerical continuation. We investigate more general dynamical
phenomena by direct numerical integration of the equations of motion. In particular, we establish the occurrence
of a discrete Hopf bifurcation in the firing times leading to quasiperiodic variations of the inter-spike intervals on
invariant circles. Moreover, in the case of a ring of three IF oscillators, we reveal the existence of a co-dimension
one global bifurcation from a travelling wave state to a synchronous state. This type of bifurcation is analogous to
theS3 transcritical/homoclinic bifurcation previously studied by Ashwin and co-workers [23] for a system of three
weakly coupled Van der Pol oscillators.

In Section 4 a nonlinear transform is used to express the dynamics of the ring of integrate-and-fire oscillators
in terms of a set of time-dependent absolute phase variables. The method of averaging is then applied in the weak
coupling limit so that the dynamics may be expressed in terms of relative phases on a hypertorus. The effective
frequency of oscillation is now slaved to the relative phase of solutions and time delays in the interactions reduce
to phase-shifts. The weakly coupled phase model has the same underlying symmetry group as the system of
pulse-coupled integrate-and-fire oscillators and once again we exploit this to construct solutions. Moreover, the
differentiability of the interaction functions in the phase-coupled model allows one to determine local stability in
terms of the eigenvalues of some Jacobian. The Floquet exponents of a periodic orbit show that the condition for
linear stability is equivalent to that of the integrate-and-fire system in the weak-coupling regime. We show that for
finite size networks and sufficiently small coupling, if there exists a stable or unstable (hyperbolic) phase-locked
solution of the phase-coupled model then there exists a corresponding solution of the integrate-and-fire system of
the same stability type. In contrast to the integrate-and-fire system, continuation from phase-locked solutions to
limit cycles on a hypertorus can be performed at Hopf bifurcation points.

Finally in Section 5 we summarise our findings and discuss extensions to networks with a distribution of fre-
quencies and lacking periodic boundary conditions. (Note that a preliminary report of our work appeared elsewhere
[38].)

2. Integrate-and-fire model

Consider a circular array ofN identical pulse-coupled integrate-and-fire (IF) oscillators labelledn = 1, . . . , N
(see Fig. 1 ). LetUn(t) denote the state variable of thenth oscillator at timet. Suppose thatUn(t) satisfies the set of
coupled equations:

dUn(t)

dt
= f(Un(t))+ ε

N∑
m=1

∫ ∞

0
Jm(τ)En+m(t − τ)dτ (1)

supplemented by the reset conditions

Un(t
+) = 0 wheneverUn(t) = 1. (2)

HereEm(t) represents the train of pulses transmitted from themth oscillator at timet andJm(τ) represents a
distribution of delayed connections from thenth to the(n + m)th oscillator of the array. (All subscriptsn,m are
taken as moduloN.) The strength of the interactions is determined by the coupling parameterε, ε > 0. We shall
assume thatJn(τ) = JN−n(τ) andJn(τ) > 0 for all n, τ so that the network has symmetric excitatory connections.
It follows that the underlying symmetry of the ring of coupled oscillators isDN (cyclic permutations and reflections
of the ring). In the special case of global and homogeneous coupling the symmetry is given by the full permutation
groupSn. for the moment, we shall takef to be a linear functionf(Un) = −Un+ I for some constant biasI, I > 1.

We restrict attention to periodic solutions of Eqs. (1) and (2) in which every oscillator resets orfireswith the same
periodT . This period must be determined self-consistently. The state of each oscillator can then be characterised
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Fig. 1. Basic interaction schematic for a ring of pulse-coupled integrate-and-fire oscillators with distributed delaysJm(τ) and output spike trains
En(t).

by a constant phaseφn ∈ R\Z. We represent the set ofN phases by the vector8 = (φ1, . . . , φN) ∈ TN , where
T
N denotes theN-torus. Neglecting the shape of an individual pulse, the resulting spike train is

En(t) =
∞∑

j=−∞
δ(t − jT + φnT) ≡ E(t + φnT), (3)

where the firing times of thenth oscillator are(j − φn)T . Generalizing the analysis of two IF oscillators in [39],
we integrate Eq. (1) over the intervalt ∈ (−Tφn, T − Tφn) and incorporate the reset conditon (2) by setting
Un(−φnT) = 0 andUn(T − φnT) = 1. This leads to theN equations:

1 = (1 − e−T )I + ε

N∑
m=1

Km(φn+m − φn, T), n = 1, . . . , N, (4)

where

Km(φ, T) = e−T
∫ T

0
et Ĵm(t + φT)dt (5)

may be regarded as an effective interaction function, with coupling strengthε, and

Ĵm(t) =
∞∑
j=0

Jm(t + jT) (6)

for 0 ≤ t < T andĴm(t) is extended outside this range by making it a periodic function oft. After choosing some
reference oscillator, Eqs. (4) determine(N − 1) relative phases and the periodT .

2.1. A group theoretic approach

In many applications one comes across oscillators that are identical, dissipative (non-Hamiltonian) and have some
symmetry in their coupling. Three types of symmetry often occur; the cyclic groupZN (the symmetry of a directed
N-gon), the dihedral groupDN (the symmetry of a regularN-gon) and the symmetric groupSN (all permutations of
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N objects). The seminal work of Turing [40] discusses rings of oscillators withDN symmetry and weakly coupled
rings of such oscillators near a Hopf bifurcation have been studied in detail by Ermentrout [41] using perturbation
and numerical methods. More recently, the technological importance of large arrays of fully connected coupled
Josephson junction oscillators has focused attention upon oscillator networks withSN symmetry [3].

The system of equation (4) is invariant under the action of the groupΓ = DN ×S1. That is, ifΦ = (φ1, . . . , φN)

is a solution of Eqs. (4), then so isσΦ for all σ ∈ Γ . The dynamics of weakly phase-coupled oscillators with this
specific group symmetry has previously been discussed in [21]. In contrast we consider a time-independent system
of algebraic equations that determine the phase and period of a ring of IF oscillators with arbitrary coupling strength.
We take the generators ofDN to be{γ, κ} with [γΦ]n = φn+1 and [κΦ]n = φN−n+2. The additionalS1 symmetry
corresponds to constant phase shiftsφn → φn + δ and is a consequence of the fact that Eqs. (4) depend on phase
differences. Hence the original system of IF oscillators possess a symmetry combining geometric transformations
of oscillators in the ring with time-translations in the form of oscillator phase shifts. The symmetry of the groupΓ

is expressed by the action

[(µ, ν)Φ]n = νΦµ(n) (7)

for (µ, ν) ∈ DN × S1, whereνΦ = (φ1 + ν, . . . , φN + ν). Any solution of Eqs. (4) determinesφ (up to an arbitrary
phase-shift) and the periodT = T(Φ) such thatT(σΦ) = T(Φ) for all σ ∈ Γ .

The existence of an underlying symmetry group allows one to systematically explore the different classes of
solutions to Eqs. (4) and their associated bifurcations. In order to investigate this issue further, it is useful to
introduce a few simple definitions from group theory. (For a general account of symmetries in bifurcation theory,
see Golubitsky et al. [22].) The symmetries of any particular solutionΦ form a subgroup called theisotropysubgroup
of Φ defined by

ΣΦ = {σ ∈ Γ : σΦ = Φ}. (8)

More generally, we say thatΣ is an isotropy subgroup ofΓ if Σ = ΣΦ for someΦ ∈ TN . We adopt the practice
that isotropy subgroups are defined up to some conjugacy. A groupΣ is conjugate to a group̂Σ if there existsσ ∈ Γ
such thatΣ̂ = σ−1Σσ. Thefixed-point subspaceof an isotropy subgroupΣ, denoted by Fix(Σ), is the set of points
Φ ∈ TN that are invariant under the action ofΣ:

Fix(Σ) = {Φ ∈ TN : σΦ = Φ∀σ ∈ Σ}. (9)

Finally, thegroup orbitthrough a pointΦ is

ΓΦ = {σΦ : σ ∈ Γ }. (10)

If Φ is a solution to Eqs. (4) then so are all other points of the group orbit. One can now adopt a strategy that restricts
the search for solutions of Eqs. (4) to those that are fixed points of a particular isotropy subgroup. In general,
if a dynamical system is invariant under some symmetry groupΞ and has a solution that is a fixed point of the
full symmetry group then we expect a loss of stability to occur upon variation of one or more system parameters.
Typically such a loss of stability will be associated with the occurrence of new solution branches with isotropy
subgroupsΣ smaller thanΞ. One says that the solution has spontaneously broken symmetry fromΞ toΣ. Instead
of a unique solution with the full set of symmetriesΞ, a set of symmetrically related solution (orbits underΞ

moduloΣ) each with symmetry group (conjugate to)Σ is observed. In many physical systems the subgroupsΣ

aremaximalisotropy subgroups.Σ is maximal if dim Fix(Σ) = 1. The equivariant branching lemma (see [22])
guarantees that, with certain condition onΣ, if dim Fix(Σ) = 1, then a unique branch of solutions with isotropy
subgroupΣ does indeed exist. In the case of our particular system, there are no solutions that are fixed points of the
full symmetry groupDN×S1. Therefore, we shall be interested in spontaneous symmetry breaking from maximally
symmetric solutions to solutions with smaller isotropy subgroups.

The isotropy subgroups ofΓ = DN × S1 and their fixed-point spaces for the system of equations (4), are
shown in Table 1. The fixed-point spaces consist ofm blocks ofk adjacent oscillators, having the same period and
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Table 1
The isotropy subgroups,Σ, of Γ = DN × S1.

Σ Fix(Σ) dim Fix(Σ)

k = 1
DN (φ, . . . , φ) 1
DN(0,1/2) (φ, φ, φ, . . . , φ),N even 1
ZN(β) (φ, φ + β, φ + 2β, . . . , φ + (N − 1)β), nb ∈ {1, . . . , (N − 1)} 1
k = 2
DN/2 (φ, φ, φ, φ, . . . , φ, φ, φ, φ),N = 0 mod 4 1
DN/2(κ) (φ1, φ2, φ1, φ2, . . . , φ1, φ2) 2
ZN/2(β) (φ1, φ2, φ1 + 2β, φ2 + 2β, . . . , φ1 + (N − 2)β, φ2 + (N − 2)β), nb ∈ {1, . . . , [N/2]} 2
k odd, k 6= 1
Dm (φ1, φ2, φ3, φ2, φ1, . . . , φ1, φ2, φ3, φ2, φ1) (k + 1)/2
Dm(0,1/2) (φ1, φ2, φ3, φ2, φ1, . . . , φ1, φ2, φ3, φ2, φ1),m even (k + 1)/2
Zm (φ1, φ2, φ3, φ4, φ5, . . . , φ1, φ2, φ3, φ4, φ5, ) k

Zm(β) (φ1, . . . , φ5, φ1 + 5β, . . . , φ5 + 5β, . . . , φ1 + (N − 5)β, . . . , φ5 + (N − 5)β), nb ∈ {1, . . . , m} k

k even, k 6= 2
Dm(κ) (φ1, φ2, φ3, φ4, φ3, φ2, . . . , φ1, φ2, φ3, φ4, φ3, φ2) k/2 + 1
Dm(κγ) (φ1, φ2, φ3, φ3, φ2, φ1 . . . , φ1, φ2, φ3, φ3, φ2, φ1) k/2
Dm(1/2,1/2) (φ1, φ2, φ3, φ3, φ2, φ1 . . . , φ1, φ2, φ3, φ3, φ2, φ1) k/2
Dm(0,1/2) (φ1, φ2, φ3, φ3, φ2, φ1 . . . , φ1, φ2, φ3, φ3, φ2, φ1),meven k/2
Zm (φ1, φ2, φ3, φ4, . . . , φ1, φ2, φ3, φ4) k

Zm(β) (φ1, . . . , φ4, φ1 + 4β, . . . , φ4 + 4β, . . . , φ1 + (N − 4)β, . . . , φ4 + (N − 4)β), nb ∈ {1, . . . , m} k

There arem blocks ofk adjacent oscillators in the fixed-point spaces, whereN = mk, φ̄ = φ + 1/2, andβ = nb/N.

amplitude, wheremk = N runs through all binary factorisations ofN. The elements ofDN may be regarded as
spatialsymmetries and elements ofS1 as acting on solutions by phase shift. All proper isotropy subgroups ofΓ are
twistedsubgroups so that(µ, ν) ∈ Γ may be written as(µ, ν(µ)). Spatial symmetries arise forν(µ) = 0 and spatial
symmetries combined with phase-shifts forν(µ) 6= 0. A method for constructing the (twisted) isotropy subgroups of
DN×S1 exists based upon knowledge of subgroups ofDN . Without reproducing details (see [21]), we list the isotropy
subgroups ofΓ as follows.Dm(κ) andDm(κγ) denote the subgroups ofDN with generators{γk, κ} and{γk, κγ},
respectively. The generators of the cyclic groupZm ⊂ Dm are simple{γk}. The groupsDm(0,1/2),Dm(1/2,1/2)
andZm(β)are all twisted subgroups ofΓ with generators{(γk−1κ,0), (κγ,1/2)} (meven), {(γk−1κ,1/2), (κγ,1/2)}
(k even) and{γk, kβ} (β = nb/N, nb ∈ {1, . . . , m}). The phasesφ1, . . . , φk determine the state of the system, and
the dimension of the fixed point space is the number of independent phases within this block. If dimFix(Σ) = d,
then theN equations of [4] reduce tod independent equations, which leads to a considerable simplification when
d � N. In particular, ifd = 1, then a solution is guaranteed to exist by the underlying symmetry. This is nothing
more than a restatement of the equivariant branching lemma to the effect that solutions exist for isotropy with
one-dimensional fixed-point subspaces.

Examples of these maximally symmetric solutions withd = 1 are thesynchronousor in-phase solution,φn = φ

for all n, and travelling wavesolutions,φn = φ + nβ with β = nb/N, nb = 1, . . . , N − 1. For evenN one also
has alternating anti-phase solutions of the form(φ, φ, φ, φ, . . . ). Hereφ is an arbitrary phase andφ = φ + 1/2.
In these cases(d = 1), Eqs. (4) reduces to one equation that determines the periodT . For example, substituting
φn = nβ into Eqs. (4) gives the following implicit equation forT :

1 = (1 − e−T )I + ε
∑
m

Km(mβ, T). (11)

The corresponding travelling wave solution satisfiesUn(t) = U(t/T + nβ) whereU(t) = U(t+ T) is some periodic
waveform. As mentioned above we have no general method for answering the question as to whether there exists
a branch of solution to algebraic systems of the type (4) for a given isotropy subgroup, except for the maximally
symmetric case withd = 1. However, we shall show through numerical examples in Section 3 that maximally
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symmetric solutions often bifurcate into solutions that have a smaller isotropy group when some system parameter
is varied. Such a parameter may be taken to be a characteristic length or timescale of the coupled oscillators, for
example, the range of interactions, a discrete communication delay time for pulses, or, for neural systems, a typical
distance of synapses from the soma in dendritic processing. All of these features may be modelled with appropriate
choices of the distributionJm(τ) (see Section 2.3).

2.2. Stability of phase-locked solutions

In general it is possible to construct an implicit map of the firing times for the system of integrate-and-fire
oscillators with dynamics given by Eq. (1) from the reset conditions (2). Consider perturbations of the regular firing
patternT nj ≡ (j−φn)T such thatT nj → T nj + δnj [36,37]. The linear stability of the phase-locked solution, denoted
byΦ, can be determined from a linearised map taking the explicit form

An(Φ, T)[δ
n
k+1 − δnk ] + Bn(Φ, T)δ

n
k =

N∑
m=1

∞∑
j=Fk+1(m,n)

anm,j(Φ, T)δ
m+n
k−j , (12)

where

Fk(m, n) = −1 if T nk + δnk > Tn+mk + δn+mk ,

Fk(m, n) = 0 if T nk + δnk < Tn+mk + δn+mk . (13)

The functionFk(m, n) is necessary to ensure that the map (12) is aretardeddifference equation. The coefficients
An(Φ, T), Bn(Φ, T) andanm,j(Φ, T)may be determined by expandingUn(T nk+1 + δnk+1) = 1 withUn(T nk + δnk) = 0
to first order inδnj . In this instance,

An(Φ, T) = I − 1 + ε
∑
m

Ĵm((φn+m − φn)T), (14)

Bn(Φ, T) = ε

T

∑
m

K′
m(φn+m − φn, T), (15)

anm,j(Φ, T) = ε

T

∫ T

0
et−T J ′

m(t + (j + φn+m − φn)T)Θ(t + (j + φn+m − φn)T)dt, (16)

where′ indicates differentiation with respect toφ, andΘ(x) = 1 if x ≥ 0 and is zero otherwise. Substitution into
the linearised map (12) a solution of the formδnk = λkδn, for δn ∈ R andλ ∈ C , yields the eigenvalue equation:

(λ− 1)An(Φ, T)δn + Bn(Φ, T)δn =
N∑
m=1

ãnm(λ,Φ, T)Gnm(λ)δn+m, (17)

where

ãnm(λ,Φ, T) =
∞∑
j=0

anm,j(Φ, T)λ
−j, (18)

andGnm(λ) = λ if φn < φn+m, andGnm = 1 if φn > φn+m on [0,1]. Note that one solution to (17) is given
by λ0 = 1 with δm = δ all m. This reflects invariance of the dynamics with respect to uniform phase-shifts. The
condition for asymptotic stability of a solution is| λ |< 1 for all eigenvalues(λ 6= λ0) satisfying Eq. (17).

In general, carrying out a linear stability analysis of phase-locked solutions is a non-trivial task due to the fact that
the dynamical system is infinite-dimensional. However, in the weak-coupling limit,ε → 0, linear stability analysis
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becomes much more tractable since solutions to (17) in the complexλ-plane will either be in the neighbourhood
of the real solutionλ = 1 or in the neighbourhood of one of the poles ofãnm(λ,Φ, T). These poles all lie inside
the unit circle and hence are not important in terms of determining whether or not a phase-locked solution is stable.
Therefore, to first-order inε we setλ = 1 andT → T0 = ln(I/(I − 1)) on the right-hand side of (17) to yield

(λ− 1)δn = ε

(I − 1)T0

∑
m

K′
m(φn+m − φn, T0)[δn+m − δn] + O(ε2). (19)

Thus to O(ε) the spectrum close toλ = 1 coalesces intoN distinct points given by the eigenvaluesλp = 1+Γp, p =
0, . . . , (N−1)withΓ0 = 0. HereΓp, p = 0, . . . , (N−1) form the set of eigenvalues of the matrix with components
K̂nm(Φ) = Knm(Φ)− δnm

∑
kKnk(Φ), where

Knm(Φ) = ε

(I − 1)T0
K′
m−n(φm − φn, T0). (20)

The fact thatΓ0 = 0, with a corresponding eigenvector in the direction of the flow(1,1, . . . ,1), again shows the
symmetry (S1) of the system to constant translations of the phases. The condition for stability reduces to the set
of (N − 1) conditions Re(Γp) < 0, p 6= 0. Take, for example, travelling wave states of the typeφm = mβ, β =
nb/N andnb = 1, . . . , (N − 1). The eigenvectors of̂K(Φ) are(1,e2πip/N,e4πip/N, . . . ,e2(N−1)πip/N) with the
corresponding eigenvalues:

Γp = ε

(I − 1)T0

∑
m

K′
m(mβ, T0)[e

2πimp/N − 1]. (21)

The above weak coupling stability condition will be rederived in Section 4 in terms of a corresponding phase model
obtained by the method of averaging.

Assume that a given phase-locked solutionΦ is stable in the small coupling regime but becomes unstable when
ε is increased. If a single real eigenvalueλ 6= λ0 crossesλ = 1 at a critical value of the couplingεc, then the
solutionΦ will destabilise via a static bifurcation of the firing times. The bifurcating solutions will correspond
to new phase-locked states and the oscillators will remain 1:1 frequency-locked. On the other hand, if a complex
conjugate pair of eigenvalues(λ, λ∗) crosses the unit circle, thenΦ will destabilise via a discrete Hopf bifurcation
in the firing times leading to the breakdown of 1:1 frequency-locking. This form of destabilisation turns out to play
a major role in the formation of complex firing patterns in IF networks, as will be explored in more detail elsewhere
[42,43]. Here we shall only briefly touch on this important aspect of spike train dynamics, so that we can interpret
the numerical results presented in Section 3.

Suppose that at a critical value of the couplingεc there exists a complex conjugate pair eigenvaluesλ = e±iωc

signalling the onset of a (supercritical) Hopf bifurcation. Setωc ≡ 2πβ and assume that eitherβ is irrational (non-
resonant) orβ = p/qwithp, q co-prime integers andp > 4 (weakly resonant). Then close to the bifurcation point the
perturbationsδnk have the approximate formδnk = rncos(kω+θn) for some constant phaseθn, amplitudern = O(

√
ε)

and frequencyω ≈ ωc + O(ε). The inter-spike intervalDn(k) = T nk+1 − T nk between two consecutive firings of the

nth cell will then satisfyDn(k) ≡ T + δnk+1 − δnk = T − r̃nsin(kω+ θ̃n), wherer̃n = 2rn sin(ω/2), θ̃n = θn +ω/2.
Hence, the pair(Dn(k − 1),Dn(k)) lies on the invariant circle

Mn : θ 7→ (T − r̃n sin(θ − ω), T − r̃n sin(θ)) (22)

with 0 ≤ θ < 2π. (More precicesly,Mn is a projection of an invariant circle existing in the full phase-space of the
dynamical system). Ifβ is rational, then the resulting sequence of inter-spike intervals onMn will be periodic in
k (p:q mode-locking). Associated with the weak resonances are Arnold tongues that spread out in parameter space
from the points at whichβ = p/q. On the other hand, for irrationalβ the sequence of inter-spike intervals will be
quasiperiodic onMn.
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2.3. Forms of delay for neural systems

A systematic attack on understanding the dynamics of the brain may arise through a study of coupled neural
oscillators. Indeed, the nonlinear dynamics of coupled oscillators consisting of biologically plausible neuron models
has recently attracted much interest in neurobiology due to the discovery of synchronised oscillations in the cat
visual cortex [9]. Moreover, many biological rhythms, ranging from breathing to walking, are programmed in part
by central pattern generating (CPG) networks built from coupled neuronal oscillators. The generation and control
of rhythmic activity results from a combination of synaptic interactions, intrinsic membrane properties and network
connectivity. Guided by the study of small networks, say in the spinal cord of the Lamprey or Xenopus tadpole and
other experimentally accessible systems the fundamental properties of neurons that contribute to rhythm generation
are being uncovered [44]. Three such properties are axonal communication delays, synaptic processing and the
distribution of axo-dendritic synapses on the dendritic tree. Interestingly, the distributed and discrete delays arising
from these processes may also play a role in the formation of oscillatory waves observed in such structures as the
olfactory cortex [45,46].

If we think of the IF oscillator as a model neuron then forms of discrete and distributed neural delays can be
modelled as follows.

2.3.1. Space-dependent transmission delays
Space-dependent delays are a natural feature of networks of point processors communicating with finite signal

propagation velocities. For example a transmission delayτm may increase with separation according toτm = dm/v,
wherev is the signal propagation velocity anddm is the distance between any two oscillators in the ring (measured
in units of the lattice spacing). That is,dm = m if m ≤ [N/2] anddm = N −m otherwise. In a neural contextτm
may represent the transmission time for propagation of an action potential along a single axon from thenth neuron
to the(n+m)th neuron. We represent space-dependent communication delays in the form

Jm(τ) = WmP(τ − τm)Θ(τ − τm) (23)

for someP(τ) andτm. Throughout we shall take weight distributionsWm with Wm = WN−m and similarly forτm.

2.3.2. Synaptic processing
The arrival of an action potential at a synapse triggers the release of chemical neurotransmitters that diffuse

across the synaptic cleft and bind to protein receptors in the cell membrane of the post-synaptic neuron. This leads
to the generation of a post synaptic potential associated with the opening and closing of various ionic channels. A
reasonable approximation to the shape of such a potential is the so-calledα-function [47]:

g(τ) = τα2 exp(−ατ), (24)

whereα is the inverse rise-time. Synaptic processing can be modelled by takingJm(τ) = Wmg(τ).

2.3.3. Dendritic processing
A post-synaptic potential is typically generated at a synapse located on the dendritic tree of a neuron and is

thus at some distance from the soma or cell body where action potential generation occurs. The passive membrane
properties of the dendrites result in diffusion of the post-synaptic potential along the tree. For simplicity, suppose
that the dendrites are represented by an infinite uniform cable with dendritic coordinatesξ ∈ R and the soma is
at ξ = 0. LetVn(ξ, t) denote the dendritic potential at positionξ along the cable of thenth neuron. Suppose that
there is a distribution of axo-dendritic connections from thenth to the (n+m)th neuron as specified by the function
Wm(ξ).

Using standard cable theory [48], Eq. (1) is replaced by the set of equations:

dUn(t)

dt
= f(Un(t))+ In(t), (25)
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∂Vn(ξ, t)

∂t
= D

∂2Vn(ξ, t)

∂ξ2
− Vn(ξ, t)

τs
+

N∑
m=1

Wm(ξ)En+m(t)− In(t), (26)

whereD is the diffusion constant andτs is the membrane leakage time constant of the cable. The termIn(t) =
ε[Vn(0, t) − Un(t)] is the current density flowing to the soma from the cable atξ = 0. In order to simplify our
analysis we assume that the current−In(t) in Eq. (26) is negligible compared to the synaptic current. The dendritic
potentials appear linearly in Eq. (26) so that they can be handled using a standard Green’s function method. The
result is the integral equation:

Vn(0, t) =
∫ t

−∞

∫ ∞

−∞
G(ξ, t − t′)

N∑
m=1

Wm(ξ)En+m(t′)dξ dt′, (27)

where

G(ξ, t) = 1√
4πDt

exp

(
− ξ2

4Dt

)
exp

(
− t

τs

)
(28)

is the fundamental solution of the cable equation on the real line. Substituting Eq. (27) into (26), and redefining the
functionf(Un) to include the term−εUn, yields Eq. (1) with an effective distribution of delays of the form

Jm(τ) =
∫ ∞

−∞
Wm(ξ)G(ξ, τ) dξ. (29)

3. Numerical examples

In this section we provide some illustrative examples of spontaneous symmetry breaking. We concentrate on
bifurcations from maximally symmetric isotropy subgroupsΣ with dim Fix(Σ) = 1 for the reasons given in
Section 2.1. Numerical continuation of solutions is performed with the aid of XPP [49] in parameters that describe
the distributions discussed in Section 2.3. Moreover, we present a direct integration of the equations of motion (1)
to illustrate the variation of the inter-spike interval in certain parameter regimes. For simplicity we only consider
axonal and synaptic delays.

Example 1. (N=2). Two coupled oscillators suffice to uncover the influence of distributed delays upon synchroni-
sation [39,50–52] and to exhibit the phenomenon of spontaneous symmetry breaking. The underlying symmetry is
Z2 × S1 for a connection between the pair of oscillators of the formJ(τ) = g(τ − τd)Θ(τ − τd), whereg(τ) is the
α-function of Eq. (24) andτd is a simple transmission delay. ForN = 2, Eqs. (4) become

1 = (1 − e−T )I + εK(±φ − τd/T, T), (30)

whereφ = φ2 − φ1,

K(φ, T) = e−T
∫ T

0
et Ĵ (t + φT)dT (31)

and

Ĵ (t) =
∞∑
j=0

g(t + jT) = α2eαt

1 − e−αT

[
t + Te−αT

(1 − e−αT )

]
(32)

for 0 ≤ t < T .The pair of equations (30) reduce to one independent equation (for the periodT ) in the case of
the synchronous solutionφ = 0 (or equivalentlyφ = 1) and the anti-phase solutionφ = 1/2. Both of these are
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Fig. 2. Relative phaseφ = φ2 − φ1 in the IF model forN = 2 as a function of the distributed delay parameterα is shown with solid lines for
ε = 0.01,0.05,0.1,0.25 with td = 0 andI = 2. In each case, a stable anti-phase state undergoes a bifurcation at a critical value ofα (which
increases withε), where it becomes unstable and two additional stable solutionsφ,1 − φ are created. The dashed curve shows the bifurcation
branches in the limiting case of the weakly coupled phase-interaction picture.

guaranteed to exist by the symmetry of the problem. In Fig. 2, we show how an additional pair of solutions{φ,1−φ}
with 0 < φ < 1/2 bifurcates from the anti-phase solution as the parameterα is varied. (The fact that 1− φ is a
solution whenφ is a solution is again a consequence of the underlying symmetry, that is, they lie on the same group
orbit). A special feature of two oscillators is that one can determine a simple necessary condition for stability of
the above periodic solutions [39]. First, following the same procedure as in the derivation of Eqs. (30), it is simple
to establish thatU2(T − φT) = 1 − K (φ, T) whereK (φ, T) = K(φ, T) − K(−φ, T). Suppose thatφ is slightly
larger than a fixed point solutionφ of Eqs. (30). Then, oscillator 2 should fire later to restore the correct value ofφ

if such a solution is to be locally stable. This requires thatU2(T − φT) should be smaller than the threshold 1 or
equivalently thatK (φ, T) should be an increasing function ofφ near the fixed point. Hence, a necessary condition
for stability of a fixed point solutionφ is

∂K (φ, T)

∂φ

∣∣∣φ=φ > 0 . (33)

It is simple to establish thatK(φ, T), and henceK (φ, T), isC1 in the following manner. Denoting′ as differentiation
with respect toφ,

K′(φ, T) = −TK(φ, T)+ T(1 − e−T )Ĵ(φT). (34)

By constructionK(0, T) = K(1, T). Sinceg(0) = 0, we also have

Ĵ (0) =
∞∑
j=0

g(jT) =
∞∑
j=1

g(jT) = Ĵ (T) (35)

HenceK′(0, T) = K′(1, T) andK(φ, T) isC1. However, higher-order derivatives ofK have a discontinuity atφ = 0.
Unfortunately, it is difficult to extend the above stability argument to larger IF networks(N > 2), except in special
circumstances [32]. Therefore, one must either analyse the spectrum of the linear operator in Eq. (17) or resort to
numerical simulations.

Example 2. (N=4,6). As a slightly more complicated example, consider a ring of four oscillators with uniform
nearest neighbour coupling(Wm = δm,1 + δm,N−1) and synaptic delays. The fixed-point spaces for a ring of
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Fig. 3. Relative phase of a ring of four IF oscillators with nearest neighbour coupling and synaptic delays showing bifurcations to isotropy
groups withd > 1 asα is variedtd = 0.14, I = 2 andε = 0.05). Oscillator 1 is taken as the reference oscillator and its phase fixed to zero. At
the point A a pair ofd = 2 states of the form(0, φ,1/2, φ) bifurcates from the travelling wave stateφn = n/4. At the pointB′ a pair ofd = 2
states of the form(0,0, φ, φ) bifurcates from the state(0,0,1/2,1/2) and similarly at pointB a pair of the form(0, φ, φ,0) bifurcated from
(0,1/2,1/2,0). At the pointsC, there are bifurcations fromd = 2 states(0, φ, φ,0) to d = 4 states. The stability of the various branches can
be determined numerically. For example, the travelling wave solution is found to be unstable for smallα but is stable beyond the bifurcation
pointA.

four oscillators are (from Table 1) as follows:(φ, φ, φ, φ), (φ, φ, φ, φ), (φ, φ, φ, φ), (φ, φ + 1/4, φ, φ + 1/4) for
d = 1, (φ1, φ2, φ1, φ2), (φ1, φ2, φ1, φ2), (φ1, φ2, φ2, φ1), (φ1, φ2, φ2, φ1) for d = 2, (φ1, φ2, φ3, φ2) for d = 3
and(φ1, φ2, φ3, φ4) for d = 4. In Fig. 3 we illustrate how certain periodic solutions withd > 1 bifurcate from
maximally symmetric solutions as the parameterα is varied for some fixedτd. To illustrate the effects of space-
dependent delays consider a ring of oscillators with communication delaysτm = mτd, P(τ) = g(τ). Using the
distribution (23) in conjunction with Eqs. (4) leads to theN equations:

1 = (1 − e−T )I + ε

N∑
m=1

WmK(φn+m − φn −mτd/T, T), n = 1, . . . , N, (36)

whereK(φ, T) is given by Eq. (31). An example of the so-called in-out phase solution (only possible in even
numbered rings) is shown in Fig. 4 for nearest and next-nearest neighbour interactions(Wm = 1 if dm ≤ 2 and
zero otherwise). We trace the bifurcation of(0,1/2,0,1/2,0,1/2) (d = 1) to (0, φ,0, φ,0, φ) (d = 2) governed
by Eqs. (36) forN = 6.

Example 3. (N=3). In Fig. 5 we present a numerical construction of the map of inter-spike intervals in the form of
a plot ofD(k) vs.D(k−1)whereD(k) = T 1

k+1−T 1
k for a ring of three coupled IF oscillators. (For three oscillators,

D3 ∼= S3.) Points on the graph are obtained from a direct integration of the IF dynamics (1) and establishing
the time of threshold crossings. The points lie on an invariant circle indicating quasiperiodicity (or possibly high
order periodicity) as predicted by the linearised theory presented in Section 2.2. It is useful to project the IF state
variables from [0,1]N to C so that trajectories in the space of state variablesUm(t) may be visualised. With this
in mind we introducevm, V(t) ∈ C , wherevm = exp(2πim/N) andV(t) = ∑N

m=1Um(t)vm. In Fig 6 we plot
the projected dynamicsV(t) = Vx(t) + iVy(t) for a range ofα values andN = 3. For three oscillators we have
Vx(t) = −(1/2)(U1(t) + U2(t) − 2U3(t)) andVy(t) = √

3/2(U1(t) − U2(t)). The synchronous state is located at
the originVx = Vy = 0, whereas the straight linesVy = 0, Vy = ±Vx/

√
3 correspond to the two-in-phasestates

in which two oscillators fire together. The discontinuous nature of the oscillator state variablesUm(t) precludes the
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Fig. 4. Effect of space-dependent axonal delays in a ring of six IF oscillators withI = 2 andε = 0.01 and nearest neighbour/next-nearest
neighbour coupling. We show solutions bifurcating from(0,1/2,0,1/2,0,1/2) to (0, φ,0, φ,0, φ) for varying fundamental units of delay
τm = mτd. All solutions are unstable forε > 0, whereas the solutionφ = 1/2 becomes stable beyond the bifurcation point (α increasing) when
ε < 0.

Fig. 5. Inter-spike intervalD(k) plotted against the inter-spike intervalD(k − 1) in a network of three IF oscillators with synaptic coupling.
τd = 0, I = 2, α = 17 andε = 0.2.

possiblility of closed continuous trajectories in the complex plane. One finds that the trajectories consist of three
disconnected parts each of which is bounded within a triangular cell as shown in Fig. 6. This reflects an underlying
Z3 symmetry. The system jumps discontinuously between these disconnected parts whenever one of the oscillators
fire. (Note that the two-in-phasestates are invariant under the dynamics since Eq. (1) is first order in time. Thus a
trajectory cannot cross the two-in-phasestate manifolds smoothly.) For sufficiently smallα, travelling waves are
stable and the corresponding trajectory within a single triangular cell forms a smooth curve in a neighbourhood
of the centre of the cell. This is shown in the inset of Fig. 6. The associated inter-spike interval is a constant. For
α increasing, a point is reached where the inter-spike interval bifurcates from a stable fixed point to dynamics on
an invariant circle (as in Fig. 5). In this case the variation in inter-spike intervals adds another level of structure to
the projected dynamicsV(t) as illustrated in Fig 6 forα = 17 andα = 20. For sufficiently large values ofα, one
finds that the periodic trajectory forV(t) has been destroyed in a global heteroclinic bifurcation (by collision with
the borders of the triangular regions). This global bifurcation is analogous to the so-called transcritical/homoclinic
bifurcation previously investigated for smoothly coupled oscillators withS3 symmetry (see [23] and Section 4). For
solutions bifurcating from the travelling wave with the opposite orientation, the dynamics is similar but occupies
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Fig. 6. Projected dynamics for a ring of three IF oscillators with synaptic delays,τd = 0, I = 2 and ε = 0.2. Here
V(t) = Vx(t) + iVy(t), Vx(t) = −(1/2)(U1(t) + U2(t) − 2U3(t)), Vy(t) = (

√
3/2)(U1(t) − U2(t)). A stable travelling wave (seen near the

centre of triangular cells) atα = 14 undergoes a bifurcation to an attractor (shown atα = 17) with structure induced by variation of the
inter-spike interval. This attractor approaches the borders of a triangular region with increasingα as seen forα = 20. A global heteroclinic
bifurcation occurs when the attractor collides with the triangular border and the network jumps to a state of near synchrony.

the empty set of triangular regions shown in Fig. 6. It would seem that the above global bifurcation can prevent any
possible period-doubling routes to chaos.

4. Phase-coupled model

4.1. Method of averaging for the integrate-and-fire model

Suppose that in the absence of any coupling,ε = 0, each oscillator fires with the same periodT0 whereT0 =∫ 1
0 dU/f(U) and we no longer restrictf to be linear. Following [39], we introduce the nonlinear transformUn(t) →
ψn(t) according to

(mod 1)ψn(t)+ t

T0
≡ Ψ(Un(t)) = 1

T0

∫ Un(t)

0

dU

f(U)
. (37)

Under such a transformation Eqs. (1) become

dψn(t)

dt
= εF(ψn + t/T0)

N∑
m=1

∫ ∞

0
Jm(τ)En+m(t − τ)dτ, (38)

where

F(z) = 1

T0

1

[f ◦9−1(z)]
, F(z+ j) = F(z), j ∈ Z. (39)

The functionF may be interpreted as the instantaneous phase-coupling response function of the system. When
ε = 0, the phase variableψn(t) = ψn is constant in time and all oscillators fire with periodT0. Hence, there is
an attractingN-torus foliated with periodic orbits of periodT0. The assumption of strong contraction (compared



P.C. Bressloff, S. Coombes / Physica D 126 (1999) 99–122 113

to the strength of couplingε) in the neighbourhood of the limit cycles enables one to use normal hyperbolicity
(see [16] for a discussion) to predict persistence of anN-torus which is asymptotically attracting whenε is small.
If in the presence of coupling the right-hand side of (38) is periodic one may invoke the averaging theorem [12]
to obtain a first order normal form for the asymptotic dynamics of equations (38). One might suppose, to a first
approximation, that for weak coupling (ε small) each oscillator still fires with periodT0 but now the phasesψn(t)
slowly drift according to Eq. (38). By assumption, the delay distributionJm(τ) is normalisable(

∫ ∞
0 Jm(τ)dτ < ∞)

with Jm(τ) → 0 asτ → ∞. Hence, we can neglect the contributions toEm(t) from firing-events sufficiently far in
the past such that, to first-order inε, the firing-times may be approximated byT nj = (j −ψn(t))T0. The right-hand
side of Eq. (38) then becomes aT0 periodic function oft, thus satisfying the conditions for the averaging theorem
to apply. Introducing the autonomous phase interaction function:

Hm(ψ) = 1

T0

∫ ∞

0
Jm(τ)F [τ/T0 − ψ] dτ (40)

allows us to state the averaging theorem in the following manner. There exists a change of variables,ψ → ψ +
εw(ψ, t, ε) that maps solutions of (38) to those of

dψn
dt

= ε

N∑
m=1

Hm(ψn+m − ψn)+ O(ε2). (41)

It may be shown that the functionw(ψ, t, ε) is not small whent → ∞. However, forε � 1, the dynamics of (38)
areε-close to those of (41) for times of O(ε−1). For ε small enough hyperbolic periodic orbits (including fixed
points) of (41) correspond to hyperbolic periodic orbits of (38). Periodic orbits of (41) which have two or more
zero Floquet exponents may or may not imply a periodic orbit with neutral stability in the unaveraged system (38).
Higher-order corrections to (41) can destroy such orbits. Since saddle connections may not exist on the limited
timescale in which averaging guarantees shadowing to O(ε−1), heteroclinic chaos in (38) may be suppressed by the
averaging process. However, saddle connections will persist if the stable and unstable manifolds are contained in
Fix(Σ), withΣ a subgroup of the full group of symmetries of equations(38).

Eqs. (41) immediately show that the averaging process reduces the dynamics to one of phase-differences only.
To O(ε) the phase interaction function (40) is simply the average of the right-hand side of (38) over a single period.
Moreover, delays in the propagation of signals between pulse-coupled oscillators reduce to phase shifts in the
corresponding phase-coupled model. The phase interaction may be interpreted in a neural context as follows (after
a change of variablesτ → τ/T0 in Eq. (40)). The effective interaction between the pre-synaptic neuron labelled atn

and the post-synaptic neuron atn+m is obtained by convolving over one period of oscillation the weighted synaptic
currentJm(τT0)with the response functionF(τ− (ψn+m−ψn)). For instantaneous coupling between neurons such
that post-synaptic currents are unit delta functions of the formWmδ(τ), thenHm(ψ) → H∞

m (ψ) = WmF(−ψ).
Hence, if the interaction function for an instantaneous synapse is known, the general phase interaction function can
be obtained as a convolution since

Hm(ψ) = 1

T0

∫ ∞

0
Jm(τ)H

∞
m [ψ − τ/T0] dτ. (42)

The functionF(−ψ) is sometimes referred to as the phase resetting curve of a neuron. IfF(−ψ) > 0, a small and
instantaneous depolarization at the neuronal phaseψ will advance the next firing event. The response of the neuron
to excitatory inputs is said to be of type I. The response is said to be of type II if a stimulus can either advance or retard
the phase depending upon the time at which it is administered. Integrate-and-fire neurons (withf(U) = −U + I)
have a type I response whilst limit cycle oscillators based upon Hodgkin–Huxley like models of excitable cells are
of type II. When describing a piece of cortex or a CPG circuit with a set of oscillators the biological realism of
the model typically resides in the phase interaction function. The distinction between type I and type II response is
unambiguous for networks with either purely excitatory or purely inhibitory coupling as considered in this paper.



114 P.C. Bressloff, S. Coombes / Physica D 126 (1999) 99–122

However, patterns of excitation and inhibition in a network of type I oscillators can also lead to responses from
individual neurons that resemble those of a type II neuron in isolation. This interesting possibility is explored in
[53].

4.2. Phase-locked solutions

Following our analysis of the pulse-coupled model, we first consider phase-locked solutions of Eq. (41),ψn(t) =
φn +Ωt, whereφn is a constant phase andΩ is an O(ε) contribution to the effective frequency of the oscillators,
that is, 1/T = 1/T0 +Ω. Substitution into Eq. (41) and working to O(ε) leads to the fixed point equations:

Ω = ε

N∑
m=1

Hm(φn+m − φn), n = 1, . . . , N. (43)

Eqs. (43) directly correspond to the conditions (4) for phase-locked solutions of the integrate-and-fire model and
have the same underlying symmetry groupDN × S1. Note, however, that phase-locked solutions of Eq. (43) are
now independent ofε; the strength of coupling only affects the frequencyΩ. In order to analyse the local stability
of a phase-locked solution satisfying Eqs. (43), we linearise Eq. (41) by setting

ψn(t) = φn +Ωt + θn(t), (44)

and expand to first-order inθn to obtain

dθn
dt

=
N∑
m=1

Hnm(Φ)[θm − θn], (45)

whereHnm(Φ) = εH ′
m−n(φm−φn). The Floquet exponents of a periodic orbit are simply given by the eigenvalues

of the Jacobian matrixĤnm(Φ) = Hnm(Φ) − δnm
∑N
k=1Hnk(Φ). One of these eigenvalues is always zero, and

the corresponding eigenvector points in the direction of the flow, that is,(1,1, . . . ,1). The phase-locked solution
will be stable provided that all other eigenvalues have a negative real part. Phase-locked solutions of the phase-
coupled model can bifurcate whenever there exists more than one eigenvalue with zero real part (non-hyperbolic
solutions). If one or more real eigenvalues cross the imaginary axis, then the bifurcating branches correspond to
other phase-locked solutions.

It is also possible for Hopf bifurcations to occur leading to non-phase-locked behaviour. As a simple illustration,
we follow Ref. [41] and consider travelling wave solutions of the formψn(t) = nβ+Ωt, where,β = 0 corresponds
to a synchronous solution andβ = nb/N, nb = 1, . . . , N−1, corresponds to a travelling wave solution. Substitution
into Eq. (45) gives the disperison relation

Ω = ε

N∑
m=1

Hm(mβ), n = 1, . . . , N. (46)

The elementsHnm(Φ) becomeεH ′
m−n((m− n)β). The fact thatHnm(Φ) now depends onm− n (modN) means

that the eigenvectors of the Jacobian matrix are of the form

θn(t) = eλpt+2πinp/N, p = 0,1, . . . , N − 1, (47)

and the eigenvalueλp satisfy [41]:

λp = ε

N∑
m=1

H ′
m(mβ)[e

2πipm/N − 1]. (48)
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A travelling wave solution will be stable provided that Re(λp) < 0 for all p 6= 0. (As noted previously, the
eigenvalue forp = 0 is neutrally stable.) IfN is odd, thenλ0 is real and the rest of the eigenvalues occur in complex
conjugate pairsλp andλ−p. The structure of the eigenvalue [48] (withp > 0) implies that typically the real part of
just one pair can be made to vanish for some natural choice of the distributionJm(τ). This indicates that the generic
bifurcation of a travelling wave state, for an odd number of oscillators, is a simple Hopf bifurcation. An example of
a supercritical Hopf bifurcation is shown in Fig. 8 (as part of a more complicated bifurcation sequence, see below).

The relationship between phase-locked solutions of the phase-coupled model and the original pulse-coupled
model can be clarified in the limit of weak-coupling(ε → 0). If we setf(U) = −U + I, then

F(ψ) = eT0ψ

IT0
(49)

with T0 = ln [I/(I−1)]. Comparison of Eqs. (40) and (49) with Eqs (5) and (6) then shows that the phase-interaction
function is proportional to the interaction function of the pulse-coupled model,

Hm(φ) = eT0Km(φ, T0)

IT 2
0

. (50)

Hence Eqs. (4) reduce to Eqs. (43) to first-order inε and the phase-locked solutions of the IF model converge to those
of the phase-coupled model in the limitε → 0. This is illustrated for two oscillators in Fig. 2. The conditions for
the stability of phase-locked solutions also converge in the weak coupling limit. Eq. (50) implies that the matrixH
of Eq. (45) is proportional to the matrixK of Eq. (20) and hencêH andK̂ have the same eigenvalues. We have now
established the following important result:if there exists a stable or unstable (hyperbolic) phase-locked solution of
the phase-coupled model, for any finiteN, then there exists a corresponding solution of the pulse-coupled model of
the same stability type for sufficiently smallε. This extends to the case of the discontinuous IF model, the well-known
result that the existence of hyperbolic periodic solutions in a phase-reduced model implies their existence in the full
oscillator model for sufficiently smooth systems.

4.3. S3 global heteroclinic bifurcation

As shown in Section 3, numerical integration of a ring of three IF oscillators reveals the existence of a co-
dimension one global bifurcation from a travelling wave to a synchronous state (see Fig. 6.) This type of bifurcation
was previously studied by Ashwin and co-workers [23] for a system of three weakly coupled Van der Pol oscillators
with S3 symmetry. They showed both theoretically, using averaging theory, and experimentally that a transition
from a travelling wave to a synchronous state may occur via a homoclinic bifurcation as some system parameter is
varied. This typically happens in the following manner: (a) a travelling wave is the only stable solution, (b) there
is a supercritical Hopf bifurcation, (c) the only stable solution is a limit cycle, and (d) the cycle grows until it is
destroyed at anS3 transcritical/homoclinic bifurcation which stabilises the synchronous solution. (Extensions of this
form of global bifurcation to networks withSN symmetry(N > 3) are discussed in [21].) We shall now investigate
more closely the global bifurcation of an IF network using the weakly coupled phase model given by Eq. (41). It
will turn out that it differs in structure to the homoclinic bifurcation observed by Ashwin et al. [23]. For the sake of
illustration, we consider phase-coupled oscillators satisfying Eq. (41) to O(ε) with H given by Eqs. (40) and (49)
andKm(φ, T0) satisfying Eq. (5). We also takeT0 = ln 2 and setJm(τ) = g(τ),m = 1,2,3, whereg(τ) is theα
function (24). In Fig. 7 we follow the relative phase between oscillators as a function of the inverse rise timeα. For
smallα the travelling wave state is stable. However, with increasingα this solution loses stability via a supercritical
Hopf bifurcation atα = αH ≈ 8 and a stable limit cycle is created. The relative phasesψ̂2(t) = ψ2(t) − ψ1(t)

andψ̂3(t) = ψ3(t) − ψ1(t) are related viâψ(t) = 1 − ψ̂3(t + T̂ /3), whereT̂ is the common period of the limit
cycle. The relative shift in time bŷT/3 reflects an additionalS1 symmetry associated with time-shifts of periodic
solutions around the limit cycle and is an example of a simple Hopf bifurcation with symmetry (see [22]). Until
α reaches some critical point,α = αc, the amplitude of oscillation continues to grow. However, atαc, the limit
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Fig. 7. An illustration of theS3 heteroclinic bifurcation for 3 phase-coupled oscillators. The travelling wave state(Φ = (0, ψ̂2, ψ̂3) =
(0,1/3,2/3)) indicated by I is stable for lowα (solid lines) and loses stability (dashed lines) due to a supercritical Hopf bifurcation (H)
atα = αH ≈ 8. Filled circles denote the amplitude of the stable limit cycle of the relative phasesψ̂2(t) andψ̂3(t). The merger of the limit cycle
and the 2-in-phase invariant manifold atα = αc ≈ 12 destroys the limit cycle and leads to the creation of stable/unstable pairs of 2-in-phase
states via a saddle node bifurcation (s.n.). There exist additional unstable 2-in-phase solutions indicated by II.

Fig. 8. An alternative illustration of theS3 transcritical/homoclinic bifurcation in the projected coordsVx(t) = −(1/2)(ψ1(t)+ψ2(t)−2ψ3(t)),
Vy(t) = (

√
3/2)(ψ1(t) − ψ2(t)). The travelling wave state is represented by the point in the centre of the triangular cell. The (unstable)

synchronous state occupies the vertices of the triangle, whilst the 2-in-phase states arise on the borders of the triangle. Asα increases the
travelling wave loses stability(α = αH) and a stable limit cycle emerges with amplitudes that increase withα until colliding with the border
of the triangle(α = αc), where it is destroyed in a heteroclinic bifurcation. Coincident with this heteroclinic bifurcation is the creation of
stable/unstable pairs of 2-in-phase states. The limit cycle shown in (b) is obtained numerically forα = 10.

cycle is destroyed in a global heteroclinic bifurcation (due to collision with invariant manifolds associated with the
2-in-phase solutions). Simultaneous with the heteroclinic bifurcation atαc is a saddle-node bifurcation in which
stable/unstable pairs of 2-in-phase solutions are created. There are additional unstable 2-in-phase states that exist
for all α, together with an unstable synchronous solution. In Fig. 8 we illustrate the global bifurcation schematically
along similar lines to [23] by considering a projection of the absolute phase variables to the complex plane with
V(t) = ∑3

m=1ψm(t)e
2πim/3. For clarity only one dynamically invariant triangle of the lattice is shown. Fixed points

of the dynamics are the travelling wave state (centre of the triangle), the synchronous state (triangle vertices) and
the two-in-phase states (located at a point on each edge of the triangle). The bifurcation sequence with increasing
α is shown in Figs. 8(a)–(c) with the limit cycle in (b) obtained numerically forα = 10.

4.4. Comparison with Kuramoto model

It is interesting to contrast the behaviour of the phase-coupled model [41] having a type I response func-
tion derived from the IF model of Section 2 (see Eq. (49)), with one having a type II response function given
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by a sinusoid

F(ψ) = − sin(2πψ). (51)

In the latter case, Eq. (41) reduces to the well-known Kuramoto model with distributed phase-shifts

dψn
dt

= 1

T0

∑
m

∫ ∞

0
Jm(τ) sin [2π(ψn+m − ψn)− ωτ] dτ. (52)

A similar equation arises in the analysis of the dissipative, overdamped resistively loaded Josephson array [4,18].
For concreteness, suppose that the distributionJm(τ) has the product formJm(τ) = WmP(τ) with the weightWm

assumed to be (a) symmetric,Wm = WN−m, and (b) a monotonically decreasing function of the separation on the
ring dm (see Section 2.3). As in our previous analysis, we can exploit the underlyingDN ×S1 symmetry of Eq. (52)
to investigate phase-locked solutions. In particular, maximally symmetric solutions such as travelling waves are an
immediate consequence of this symmetry.

In order to indicate some of the special features of the Kuramoto model, we shall analyse the stability of travelling
wave solutions. First, it is useful to introduce the following Fourier transforms:

Λ(p) =
N∑
m=1

Wm cos(2πmp/N), (53)

∆(ω) = 1

T0

∫ ∞

0
P(τ)exp(iωτ)dτ, (54)

and set∆c(ω) = Re∆(ω),∆s(ω) = Im∆(ω). Substituting Eq. (51) into (40) and exploiting the symmetry of the
interaction functionWm, one finds that the dispersion relation (46) becomes

Ω(β,ω) = −∆s(ω)Λ(β). (55)

Similarly, linearising Eq. (52) about a travelling wave state leads to a Jacobian with eigenvalues given by Eq. (48),
which on using Eq. (51) and equating real and imaginary parts gives

Reλp = π∆c(ω)[Λ(p+ β)+Λ(p− β)− 2Λ(β)], (56)

Im λp = π∆s(ω)[Λ(p− β)−Λ(p+ β)]. (57)

Note that Eqs. (55)–(57) exhibit a simple product form in relation to the dependence on (a) the spatial structure
of the connections specified byWm, and (b) the distribution of delaysP(τ). This special feature of the Kuramoto
model leads to non-generic behaviour as will be described below.

We first consider the stability of the synchronous stateβ = 0 for whichλp is real for allp. SinceWm decreases
monotonically withdm it follows that maxpΛ(p) = Λ(0), and hence that the synchronous state is stable (unstable)
if ∆c(ω) > 0(∆c(ω) < 0). The condition∆c(ω) = 0 determines a degenerate bifurcation point whereλp = 0 for
all p. We now calculate∆c(ω) for each of the three sources of delay listed in Section 2.3.

Uniform axonal delay. Assume that each axonal connection has the same transmission delayτd so thatP(τ) =
δ(τ − τd) and∆c(ω) = T−1

0 cos(ωτd). It follows that for excitatory coupling the synchronous state is stable for
sufficiently small delays,τd < T0/2. As τd increases alternating bands of stability and instability are generated.
(The effects of space-dependent axonal delays are considered by Crook et al. [45]. They show that destabilisation
of the synchronous state due to an increase in delays can lead to travelling waves. They also suggest that this could
account for the fact that oscillatory behaviour in the visual cortex tends towards synchrony, whereas the olfactory
cortex tends to produce travelling oscillatory waves; the latter has long-range excitatory connections and hence
longer axonal delays. An alternative mechanism base on dendritic structure is presented in [46].)



118 P.C. Bressloff, S. Coombes / Physica D 126 (1999) 99–122

Synaptic processing. TakeP(τ) to be theα-function (24). Substituting into Eq. (54) and performing the integration
overτ gives

∆(ω) = 1

T0

α2(α2 − ω2 + 2iαω)

(α2 + ω2)2
. (58)

Hence, for excitatory coupling the synchronous state is stable ifα > ω (fast synapse) and unstable ifα < ω (slow
synapse). The desynchronising effects of synapses was previously highlighted by van Vreeswijk et al. [39] in their
slow study of two pulse-coupled oscillators, and this theme has been further developed elsewhere [20,51,52].

Dendritic processing. Suppose that there exists a distribution of axo-dendritic connections with some spatially
periodic component of the form

Wm(ξ) = Wm cos(pξ + ξ0), (59)

whereξ0 represents an offset of the spatially periodic stimulation of frequencyp. Making use of the following
Fourier representation of the fundamental solutionG(ξ, t):

G(ξ, τ) =
∫ ∞

−∞
exp[ikξ − ν(k)τ]

dk

2π
, ν(k) = Dk2 + τ−1

s , (60)

and substituting Eq. (59) into (29) shows that

P(τ) = e−ν(p)τ cos(ξ0). (61)

Substituting Eq. (61) into (54) and performing the integration overτ gives

∆(ω) = − 1

T0

[
ν(p)+ iω

ν(p)2 + ω2

]
cos(ξ0). (62)

Sinceν(p) > 0 for all p the synchronous state is stable (ε > 0) if π/2< ξ0 − 2kπ < 3π/2 with k ∈ Z.
In order to determine the stability of travelling wave solutions (β 6= 0), it is necessary to specify the form of the

interaction functionWm. For the sake of illustration, we shall consider the particular example of a step-function

Wm = Θ(L− dm), L > [N/2]. (63)

The parameterL determines the range of interactions. For this choice ofWm, the functionΛ(p) of Eq. (53) becomes

Λ(p) = sin(2L+ 1)πp

sinπp
. (64)

We also set

Λ̂(p, β) = Λ(p+ β)+Λ(p− β)− 2Λ(β). (65)

There are then two conditions under which a travelling wave can be stable: either (I)Λ̂(p, β) < 0 for allp 6= 0 and
∆c(ω) > 0 or (II) Λ̂(p, β) > 0 for allp 6= 0 and∆c(ω) < 0. The stability results for the step interaction functions
are shown in Fig. 9 for a range of values of the interaction lengthL, 0 ≤ L ≤ N/4 andN = 101. For eachL, the
wave numberβ that satisfy stability condition (I) or (II) are indicated. We see that there are two stability bands.
The first (labelled by♦’s) consists of travelling wave states that are stable when∆c(ω) > 0. This band becomes
thinner asL increases from zero until only the synchronous state remains stable. Note that the so-called splay state
(β = 1), where the phases are uniformly spaced around the circle, maintains stability for the largest value ofL.
The second band (labelled by+’s) represents travelling wave states that are stable when∆c(ω) < 0, that is, when
the synchronous state is unstable. We conclude that there are two mechanisms whereby a synchronous state can be
destabilised: (a) if∆c(ω) > 0, then a sufficiently large perturbation is needed to induce a transition into the basin of
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Fig. 9.Wm = Θ(L − dm), L < [N/4]. Stability of travelling wave solutions with wave numberβ as a function of the interaction lengthL.
Diamonds (+’s) indicate states that are stable when∆c(ω) > 0(∆c(ω) < 0).

attraction of a stable travelling wave satisfying (I), (b)∆c(ω) becomes negative leading to the formation of a stable
travelling wave satisfying (II). The picture forL ≤ N/4 should be contrasted with the case of all-to-all coupling
(L = [N/2]), whereΛ(p) = Nδp,0 so thatΛ̂(p, β) = N[δp,β + δp,1−β] for β 6= 0 andΛ̂(p,0) = −2N for all
p 6= 0. One then finds that all travelling wave solutions are stable(∆c(ω) < 0) or unstable(∆c(ω) > 0) in two
eigen directions and marginally stable in the remainingN − 2 eigen directions. This basic result extends to more
general solutions as shown by Watanabe and Strogatz [4].

The above analysis highlights a number of important features of the Kuramoto model that are not typical of more
general choices of the phase interaction function such as Eq. (49). First,decouplingof the dynamical system (52)
can occur if eitherΛ(β) = 0 or∆s(ω) = 0. In this case, instead of travelling waves, there can exist invariant
N-tori in the phase space foliated with limit cycles of equal period. On these foliated tori the flow factorises into a
product of flows giving the appearance ofN uncoupled oscillators. For example, a nearest-neighbour interaction of
the formWm = δm,1 + δm,N−1 causes decoupling of oscillators whenβ = 1/4,3/4. Decoupled solutions cannot
be continued in system parameters. A further discussion of decoupling can be found in [21]. Second, in the case of
an odd numbered ring and∆c(ω) = 0 we have Reλp = 0 for allp, β so that(N− 1)/2 pairs of complex conjugate
roots (λp andλ−p) cross the imaginary axis simultaneously. Thus, in the special case of the Kuramoto model, the
underlying symmetry has forced multiple eigenvalues and the standard Hopf theorem is no longer applicable. The
eigenspaces associated with these eigenvalues are often termedmodes. Modes that become unstable simultaneously
(as their corresponding eigenvalues cross the imaginary axis) may interact nonlinearly to create more complicated
behaviour than that which might be expected from them individually. The nature of these mode interactions will
not be pursued here.

An even more striking property of the Kuramoto model occurs in the case of global coupling (Wm = 1/N
for all m = 1, . . . , N). As established by Watanabe and Strogatz [4], the system is completely integrable when
∆c(ω) = 0. Their analysis is based on the observation that each trajectory of the system is actually confined to a
three-dimensional subspace (Θ(t),9(t), γ(t)). This follows from the change of variables

tan [π(ψn(t)−Θ(t))] =
√

1 + γ(t)

1 − γ(t)
tan [π(φn −9(t))], (66)

where theφn are constants and 0≤ γ(t) < 1. It can further be shown thatΘ(t) is passively driven byγ(t),9(t) and
the dynamics of the latter two variables is characterised by the existence of a Lyapunov functionE such that

dE/dt = R2(t)∆c(ω), (67)
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whereR(t) is an order parameter that measures the degree of coherence of the system,

R(t)exp[2πiψ(t)] = 1

N

N∑
n=1

exp[2πiψn(t)]. (68)

(Note that Watanabe and Strogatz [4] only considered a single phase-shiftτ for which∆c(ω) = cos(ωτ). However,
their analysis carries over to the case of distributed phase-shifts on using our more general expression for∆c(ω).)
The following results thus hold for almost all initial conditions:

(i) If ∆c(ω) > 0, thenE(t) → ∞, γ(t), R(t) → 1, and the system converges to the synchronous state.
(ii) If ∆c(ω) < 0, thenE(t), γ(t), R(t) → 0, and the system converges to an(N − 3)-dimensional manifold of

incoherent states. Such a manifold consists of contant statesψn satisfying
∑
n exp[2πiψn] = 0. There are

(N − 2) neutrally stable directions around each such incoherent state.
(iii) If ∆c(ω) = 0, then the system is completely integrable withE , a conserved quantity. Trajectories run along

the contours ofE and correspond to periodic motion in(Ψ, γ) space. In the full phase space, the motion is
quasiperiodic on 2-tori.

We conclude that in contrast to the time-averaged IF model, travelling wave states in a globally coupled Kuramoto
network do not destabilise to form limit cycle oscillations via a Hopf bifurcation. This is due to the integrability of
the system when∆c(ω) = 0. Finally, note that the high degree of marginal stability found in the Kuramoto model
is destroyed by including higher harmonics in the response functionF(ψ) of Eq. (49). This is discussed in some
detail for globally coupled networks by Golomb et al. [54].

5. Conclusion

In this paper we have developed a systematic approach to analysing systems of pulse-coupled oscillators with
periodic boundary conditions and spatio-temporal symmetries. The identification of maximally symmetric states
combined with numerical continuation and bifurcation detection has shown that spontaneous symmetry breaking
can play a practical role in the construction of other symmetric solutions. Such a tactic may also prove successful in
analysing systems of phase-locked loops in which the frequency (rather than the phase) of an oscillator is updated
discontinuously [55]. Our attention has focused upon phase-locked solutions of the integrate-and-fire oscillator for
which it has been possible to construct a criterion for linear stability. A natural way to establish the stability of
solutions is also to examine a reduced model obtained via averaging. For the first time we have translated statements
regarding stability of the pulse-coupled system to those of a corresponding phase-coupled model. The analysis
of non-phase-locked states has also been explored by (i) direct numerical integration of the equations of motion
showing the variation of the inter-spike interval and (ii) by detecting Hopf bifurcation points in the phase-model
and numerically continuing to periodic limit cycles. Numerical results suggest that global bifurcations in the IF
system have counterparts in the corresponding phase-model. Moreover, we have constructed phase portraits of
the IF and phase-reduced system showing that symmetries of the underlying dynamics are inherited by attractors.
Interestingly, the symmetry of aforcedcoupled oscillator system can also be inherited by an associated attractor
[56] (chaotic or otherwise). A harmonic forcing of the coupled IF oscillator system(1 → I(1+A cosωt))may be
used to demonstrate this, since for a single oscillator, the rotation number of the firing map is irrational for a Cantor
set of positive Lesbegue measure for parameter values in the region 1− 1/I > A ≥ 0 [57].

The counterpart of this paper is a study of non-identical pulse-coupled oscillators lacking periodic boundary
conditions. One may no longer be able to exploit the group structure of the system, but many of the ideas in this
paper can be built upon. For instance, numerical continuation from phase-locked solutions is still possible and so
is analysis via averaging. Indeed studies of chains of coupled oscillators have revealed the existence offrequency
plateausin which two or more pools of oscillators are phase-locked but oscillate at different frequencies [8] and
oscillator deathwhere the coupling can actually destroy the oscillations completely [58,59]. In a subsequent paper
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[53] we prove the existence of phase-locked solutions for a chain of pulse-coupled IF oscillators with nearest-
neighbour delayed coupling using a singularly perturbed continuum boundary value formulation. In the large-N

limit phase-transitions are shown to occur upon variation of system parameters including the (different) natural
frequencies of the oscillators.
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