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Abstract

Phase-locking in aring of pulse-coupled integrate-and-fire oscillators with distributed delays is analysed using group theory.
The period of oscillation of a solution and those related by symmetry is determined self-consistently. Numerical continuation
of maximally symmetric solutions in characteristic system length and timescales yields bifurcation diagrams with spontaneous
symmetry breaking. The stability of phase-locked solutions is determined via a linearisation of the oscillator firing map. In the
weak-coupling regime, averaging leads to an effective phase-coupled model with distributed phase-shifts and the analysis of
the system is considerably simplified. In particular, the collective period of a solution is now slaved to the relative phases. For
odd numbered rings, spontaneous symmetry breaking can lead to a change of stability of a travelling wave state via a simple
Hopf bifurcation. The resulting non-phase-locked solutions are constructed via numerical continuation at these bifurcation
points. The corresponding behaviour in the integrate-and-fire system is explored with simulations showing bifurcations to
quasiperiodic firing pattern€)1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The dynamics of coupled nonlinear oscillators has application in many fields of natural science [1,2]. Recent
experimental and theoretical interest has focused upon Josephson junctions [3,4], lasers [5], oscillatory chemical
reactions [6], heart pacemaker cells [7], central pattern generators [8] and cortical neural oscillators [9]. Typically
either small amplitude oscillators near a Hopf bifurcation have been considered [2,10] or a weak coupling of limit
cycle oscillators has been utilised. In the latter case, invariant manifold theory [11] and averaging theory [12] can
be used to reduce the model to a system of phase equations (see, for example, [8,13—16]) in which the relative phase
between oscillators is the relevant dynamical variable. For certain physical models such as Josephson junction and
laser arrays, the dynamics may be expressed in terms of coupled phase variables from the outset. In these cases
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the method of averaging can be used for weak coupling provided that, in an appropriate coordinate frame, relative
phases evolve on a slow timescale compared to the natural frequency of oscillation in the uncoupled limit. This
technique has been applied to globally coupled oscillators [17] and has elucidated the integrable structure of the
dissipative, overdamped resistively loaded Josephson array [4,18]. In neural models the effective phase interaction
may be regarded as a convolution of the post-synaptic current and some neuronal response function over one period
of oscillation. This response function can be obtained from experimental data or constructed directly from the single
neuron dynamics. Indeed this has been performed for the Hodgkin—Huxley model [19] and discussed in general for
networks of neurons with the so-called type | or Il response [20].

In many applications the oscillators are identical, dissipative and the coupling is symmetric. Under such cir-
cumstances one can exploit the symmetry of the system to determine generic features of the dynamics such as the
emergence of certain classes of solutions due to symmetry breaking bifurcations. Moreover, symmetries have been
shown to underly pathological dynamics such as structurally stable heteroclinic connections [21]. Group theoretic
methods have been used to study both small amplitude oscillators on a ring near Hopf bifurcation [22], and weakly
coupled oscillators under phase-averaging [21,23]. Symmetry arguments have also been used to construct central
pattern generators for animal gaits [24] and to establish the existence of periodic orbits in Josephson junction series
arrays [25].

Most work to date on the dynamics of coupled oscillator arrays has assumed that the interaction between oscil-
lators depends continuously on their state variables. This smoothness of interaction is absent for oscillators that
communicate with sudden, pulse-like discharges. Such interactions are of special interest for neural systems where
post-synaptic potentials are induced by the spiking or firing of pre-synaptic neurons. The integrate-and-fire model
(see [26] for a review) may be regarded as a reduction of the Hodgkin—Huxley model capable of generating real-
istic spike trains [27]. This model is of particular interest not only because it is more amenable to analysis than
conductance based models but because it has connections with the physics of self-organised criticality [28—30] and
1/f noise [31]. Nevertheless, concrete results concerning the dynamics of integrate-and-fire oscillator networks are
still relatively rare and have mainly been restricted to the case of globally coupled arrays. For example, a rigorous
analysis of globally coupled integrate-and-fire oscilators using return maps demonstrates the existence of stable
phase-locked solutions for instantaneous excitatory coupling [32]. In addition, mean field theory has been applied
to large networks in order to study the effects of non-instantaneous coupling common to many neural systems with
axonal and synaptic delays [33—36].

In this paper, we present the first comprehensive application of group theoretic and averaging methods to the study
of the dynamics of pulse-coupled oscillator networks. For concreteness, we consider a ring of integrate-and-fire
oscillators with spatially structured patterns of delayed connections. The integrate-and-fire model evolves according
to a linear time-delayed ordinary differential equation until reaching some threshold, whereupon the state variable
is instantaneously reset to some pre-defined level. The discontinuous and time-delayed nature of this model allows
for extremely rich dynamical behaviour, but at the same time simplifies considerably when one considers the class
of frequency-locked solutions in which all the oscillators fire with a common period. This encompasses all phase-
locked solutions including, for example, synchronous and travelling wave states. Solutions are determined by a set
of algebraic equations involving the relative phases of the oscillators and the collective frequency of oscillation.
Importantly, these equations have the same formal structure as those obtained using phase-reduction techniques
(see later), but are valid for arbitrary values of the coupling. This suggests the use of various methods previously
applied to systems of weakly coupled limit cycle oscillators.

We begin by showing how group theory can be used to classify all possible phase-locked solutions with the
collective period determined self-consistently (Section 2). A methodology for constructing solutions from some
maximally symmetric set is presented based upon the principle of spontaneous symmetry breaking previously
applied to smoothly coupled systems [22]. The linear stability of phase-locked solutions is shown to be readily
handled in terms of perturbations of the firing times along analogous lines to van Vreeswijk [36] and Gerstner et
al [37]. In Section 3 we present a number of numerical examples for rings of integrate-and-fire oscillators with
delayed interactions pertaining to neural systems based upon simple models of axonal communication and synaptic
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processing. Numerical continuation in system parameters is shown to connect phase-locked solutions with differing
symmetry groups. However, bifurcations from phase-locked states to non-phase-locked states are, in general, not
amenable to such a combination of group theory and numerical continuation. We investigate more general dynamical
phenomena by direct numerical integration of the equations of motion. In particular, we establish the occurrence
of a discrete Hopf bifurcation in the firing times leading to quasiperiodic variations of the inter-spike intervals on
invariant circles. Moreover, in the case of a ring of three IF oscillators, we reveal the existence of a co-dimension
one global bifurcation from a travelling wave state to a synchronous state. This type of bifurcation is analogous to
the S transcritical/homaoclinic bifurcation previously studied by Ashwin and co-workers [23] for a system of three
weakly coupled Van der Pol oscillators.

In Sectim 4 a nonlinear transform is used to express the dynamics of the ring of integrate-and-fire oscillators
in terms of a set of time-dependent absolute phase variables. The method of averaging is then applied in the weak
coupling limit so that the dynamics may be expressed in terms of relative phases on a hypertorus. The effective
frequency of oscillation is now slaved to the relative phase of solutions and time delays in the interactions reduce
to phase-shifts. The weakly coupled phase model has the same underlying symmetry group as the system of
pulse-coupled integrate-and-fire oscillators and once again we exploit this to construct solutions. Moreover, the
differentiability of the interaction functions in the phase-coupled model allows one to determine local stability in
terms of the eigenvalues of some Jacobian. The Floquet exponents of a periodic orbit show that the condition for
linear stability is equivalent to that of the integrate-and-fire system in the weak-coupling regime. We show that for
finite size networks and sufficiently small coupling, if there exists a stable or unstable (hyperbolic) phase-locked
solution of the phase-coupled model then there exists a corresponding solution of the integrate-and-fire system of
the same stability type. In contrast to the integrate-and-fire system, continuation from phase-locked solutions to
limit cycles on a hypertorus can be performed at Hopf bifurcation points.

Finally in Section 5 we summarise our findings and discuss extensions to networks with a distribution of fre-
guencies and lacking periodic boundary conditions. (Note that a preliminary report of our work appeared elsewhere
[38].)

2. Integrate-and-fire model

Consider a circular array & identical pulse-coupled integrate-and-fire (IF) oscillators labelled 1, ... , N
(see Fig. 1). Let, (r) denote the state variable of thth oscillator at time. Suppose thal/,, (r) satisfies the set of
coupled equations:

U,
d

N o0
FU0) +€ /0 In (D Enim(t — Dt (1)

m=1

supplemented by the reset conditions
U,tT) =0 wheneverU,(t) = 1. )

Here E,, (r) represents the train of pulses transmitted from rtitle oscillator at timer and J,,(r) represents a
distribution of delayed connections from thth to the(n 4+ m)th oscillator of the array. (All subscripts m are
taken as modul@v.) The strength of the interactions is determined by the coupling parameter 0. We shall
assume thaf, (r) = Jy_,(r) andJ, (tr) > 0 for all n,  so that the network has symmetric excitatory connections.
It follows that the underlying symmetry of the ring of coupled oscillatof3js(cyclic permutations and reflections
of the ring). In the special case of global and homogeneous coupling the symmetry is given by the full permutation
groupsS,. for the moment, we shall takéto be a linear functiorf(U,)) = —U, + I for some constant bias7 > 1.

We restrict attention to periodic solutions of Egs. (1) and (2) in which every oscillator reseesaith the same
periodT. This period must be determined self-consistently. The state of each oscillator can then be characterised
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Fig. 1. Basic interaction schematic for a ring of pulse-coupled integrate-and-fire oscillators with distributed/gétagsd output spike trains
E, ().

by a constant phasg, € R\Z. We represent the set of phases by the vectab = (¢1, ... , ¢y) € TV, where
TV denotes theV-torus. Neglecting the shape of an individual pulse, the resulting spike train is

o0

E ()= ) 8(t—jT+¢:T) = EG+¢D, €)

j=—00

where the firing times of theth oscillator are(j — ¢,)T. Generalizing the analysis of two IF oscillators in [39],
we integrate Eq. (1) over the intervale (—T¢,, T — T¢,) and incorporate the reset conditon (2) by setting
U,(—¢,T) = 0andU, (T — ¢,7) = 1. This leads to th&¥ equations:

N
l=QA-eDI+e) Knlpuim—¢n D, n=1....N, 4
m=1
where
T ~
Kn($,T) = e*T/ €& It + ¢T) dt (5)
0
may be regarded as an effective interaction function, with coupling strengtid
o
In(@®) =) " Ju(t + jD) (6)
j=0

for 0 <t < T andJ, (¢) is extended outside this range by making it a periodic functian After choosing some
reference oscillator, Egs. (4) determifé — 1) relative phases and the periéd

2.1. A group theoretic approach
In many applications one comes across oscillators that are identical, dissipative (non-Hamiltonian) and have some

symmetry in their coupling. Three types of symmetry often occur; the cyclic gfqufthe symmetry of a directed
N-gon), the dihedral group y (the symmetry of a regulay-gon) and the symmetric grougy (all permutations of
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N objects). The seminal work of Turing [40] discusses rings of oscillators Bitrsymmetry and weakly coupled
rings of such oscillators near a Hopf bifurcation have been studied in detail by Ermentrout [41] using perturbation
and numerical methods. More recently, the technological importance of large arrays of fully connected coupled
Josephson junction oscillators has focused attention upon oscillator networkSwsghmmetry [3].

The system of equation (4) is invariant under the action of the gfospDy x St. That is, if® = (¢1, ... , )
is a solution of Eqs. (4), then sodb for all o € I". The dynamics of weakly phase-coupled oscillators with this
specific group symmetry has previously been discussed in [21]. In contrast we consider a time-independent system
of algebraic equations that determine the phase and period of a ring of IF oscillators with arbitrary coupling strength.
We take the generators Bfy to be{y, «} with [y®], = ¢,11 and k@], = ¢n_n42. The additionaS* symmetry
corresponds to constant phase shiffs— ¢, + § and is a consequence of the fact that Egs. (4) depend on phase
differences. Hence the original system of IF oscillators possess a symmetry combining geometric transformations
of oscillators in the ring with time-translations in the form of oscillator phase shifts. The symmetry of thelgroup
is expressed by the action

[(/va U)Q]n = l)QD;,L(n) (7)

for (u, v) € Dy x S, wherev® = (¢1+v, ... , ¢n + v). Any solution of Egs. (4) determings(up to an arbitrary
phase-shift) and the peridd = 7(®) such thatl(c®) = T(®) forallo € I".

The existence of an underlying symmetry group allows one to systematically explore the different classes of
solutions to Egs. (4) and their associated bifurcations. In order to investigate this issue further, it is useful to
introduce a few simple definitions from group theory. (For a general account of symmetries in bifurcation theory,
see Golubitsky et al. [22].) The symmetries of any particular soluiform a subgroup called theotropysubgroup
of @ defined by

Yo={oel:od=0ad) ®)

More generally, we say tha is an isotropy subgroup df if ¥ = X for some® € TV. We adopt the practice
that isotropy subgroups are defined up to some conjugacy. A gidsgonjugate to a group if there existsr € I”
such thats = o1 Xo. Thefixed-point subspacef an isotropy subgroug, denoted by FixE), is the set of points
@ e TV that are invariant under the action bt

Fix(X) = {® e TV : 6@ = ®Vo € X}. (9)
Finally, thegroup orbitthrough a pointd is
I'o ={c®:0€el} (10)

If @ is asolutionto Eqgs. (4) then so are all other points of the group orbit. One can now adopt a strategy that restricts
the search for solutions of Egs. (4) to those that are fixed points of a particular isotropy subgroup. In general,
if a dynamical system is invariant under some symmetry gr8ugnd has a solution that is a fixed point of the
full symmetry group then we expect a loss of stability to occur upon variation of one or more system parameters.
Typically such a loss of stability will be associated with the occurrence of new solution branches with isotropy
subgroupsY’ smaller thanz'. One says that the solution has spontaneously broken symmetn&fitonX’. Instead
of a unique solution with the full set of symmetriés a set of symmetrically related solution (orbits under
modulo X) each with symmetry group (conjugate tb)is observed. In many physical systems the subgradtips
aremaximalisotropy subgroupsY is maximal if dim FiXX) = 1. The equivariant branching lemma (see [22])
guarantees that, with certain condition &nif dim Fix(X) = 1, then a unique branch of solutions with isotropy
subgroupX does indeed exist. In the case of our particular system, there are no solutions that are fixed points of the
full symmetry grouDy x St. Therefore, we shall be interested in spontaneous symmetry breaking from maximally
symmetric solutions to solutions with smaller isotropy subgroups.

The isotropy subgroups aff = Dy x S! and their fixed-point spaces for the system of equations (4), are
shown in Table 1. The fixed-point spaces consistdflocks ofk adjacent oscillators, having the same period and
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Table 1

The isotropy subgroups;, of I' = Dy x St

X Fix(X) dim Fix(X)
k=1

Dy (@, 1
Dn(0,1/2) (p,0,,...,¢), N even 1

Zn(B) (. 0+B.0+2B,....0+(N—-Dp),npef{l,...,(N—1)} 1

k=2

Dyy2 (¢, 9,0, 0,....¢,6,¢,¢), N=0mod 4 1
Dny2(x) (¢1, P2, 1, @2, ... , P1, $2) 2
Znp2(B) (¢1.92. 01 +2B. 92+ 2B, ... .p1+ (N —2)B, 92+ (N = 2)B).np € {1,... ,[N/2]} 2

kodd k # 1

D ($1. $2. ¢3. 2. P1. ... P1. 2. $3. 2. P1) (k+1)/2
D (0,1/2) (P1, P2, P3, B2, P1. - .. , P1, b2, 3, P2, P1), m even k+1)/2
Zn (@1, P2, B3, a, P5, ... , 1, P2, P3, P4, ¢5,) k

Zn(B) (@1,...,¢5,01+58,... . ¢5+5B,... .01+ (N=5p,... .95+ (N =5p),n, € {1,... ,m} k
kevenk # 2

Dy (1) (P1, B2, B3, Pa, P3, P2, ... , P1, P2, P3, P4, P3, P2) k/2+1
D (ky) (P1. b2, #3, $3, P2, P1.. .. . D1, b2, $3. ¢3. P2, P1) k/2

D (1/2.1/2) (¢1, ¢2, ¢3, d3, P2, P1... . P1, P2, P3, ¢3, P2, 1) k/2

D (0,1/2) (¢1. 92, ¢3. #3, P2, D1 .. , P1, b2, P3, 3, P2, P1), m even k/2

Zn (B2, P2, 3, Pa, - .., P1, P2, P3, P4) k

Zu(B) (@1, ... P4 p1+4B, ... . Ppa+4B.... .01+ (N=DB, ..., s+ (N—=HP), npe{l,... ,m} k

There aren blocks ofk adjacent oscillators in the fixed-point spaces, whére mk, ¢ = ¢ + 1/2, andg = n,/N.

amplitude, wherenk = N runs through all binary factorisations af. The elements oDy may be regarded as
spatialsymmetries and elements$¥ as acting on solutions by phase shift. All proper isotropy subgroupsasé
twistedsubgroups so thd, v) € I" may be written agu, v(r)). Spatial symmetries arise fofu) = 0 and spatial
symmetries combined with phase-shiftsiign) # 0. A method for constructing the (twisted) isotropy subgroups of
Dy x St exists based upon knowledge of subgrou gf Without reproducing details (see [21]), we list the isotropy
subgroups of” as follows.D,, (k) andD,, (ky) denote the subgroups Bfy with generatorgy*, «} and{y*, ky},
respectively. The generators of the cyclic grayp c D,, are simplg{y*}. The group®D,, (0, 1/2), D,,(1/2, 1/2)
andz,, (B) are all twisted subgroups &fwith generator§(y*~1«, 0), (v, 1/2)} (m even, {(Y* 1k, 1/2), (ky, 1/2)}
(k even) andyX, kB} (8 = np/N,np € {1,... ,m}). The phasesy, ... , ¢; determine the state of the system, and
the dimension of the fixed point space is the number of independent phases within this block. If(dimEix,
then theN equations of [4] reduce 1@ independent equations, which leads to a considerable simplification when
d < N. In particular, ifd = 1, then a solution is guaranteed to exist by the underlying symmetry. This is nothing
more than a restatement of the equivariant branching lemma to the effect that solutions exist for isotropy with
one-dimensional fixed-point subspaces.

Examples of these maximally symmetric solutions with- 1 are thesynchronousr in-phase solutionp, = ¢
for all n, and travelling wavesolutions,¢, = ¢ + ng with 8 = n,/N,np, = 1,... , N — 1. For evenN one also
has alternating anti-phase solutions of the fagme, ¢, ¢, ...). Hereg is an arbitrary phase angl= ¢ + 1/2.
In these case&! = 1), Eqgs. (4) reduces to one equation that determines the p&riédr example, substituting
¢n = ng into Egs. (4) gives the following implicit equation far.

1=QA-eNI+ey Knmp.D. (11)

The corresponding travelling wave solution satistigér) = U(t/ T + nB) wherelU(r) = U(t + T) is some periodic
waveform. As mentioned above we have no general method for answering the question as to whether there exists
a branch of solution to algebraic systems of the type (4) for a given isotropy subgroup, except for the maximally
symmetric case witld = 1. However, we shall show through numerical examples in Section 3 that maximally
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symmetric solutions often bifurcate into solutions that have a smaller isotropy group when some system parameter
is varied. Such a parameter may be taken to be a characteristic length or timescale of the coupled oscillators, for
example, the range of interactions, a discrete communication delay time for pulses, or, for neural systems, a typical
distance of synapses from the soma in dendritic processing. All of these features may be modelled with appropriate
choices of the distributiod,, (r) (see Section 2.3).

2.2. Stability of phase-locked solutions

In general it is possible to construct an implicit map of the firing times for the system of integrate-and-fire
oscillators with dynamics given by Eqg. (1) from the reset conditions (2). Consider perturbations of the regular firing
patternTj'.' = (j — ¢)T such thatr” — TJ’? + 8;% [36,37]. The linear stability of the phase-locked solution, denoted
by @, can be determined from a finearised map taking the explicit form

N o0
An(@, DI — 81+ Bu @D = Y agm, j(@, DT, (12)

m=1j=Fyy1(m,n)
where
Fi(m,n) = -1 if T} + 8 > T} 4+ 87",
F(m,n) =0 i T} +8 < T/ + 8. (13)

The functionF (m, n) is necessary to ensure that the map (12) remrdeddifference equation. The coefficients
An(@,7), B, (P, T) anday, ;(®, T) may be determined by expandin@(T,fHJr S =1 with U, (T} +67) =0
to first order |n87 In this instance,

A @D =1—14€Y In((@uim — dn)D. (14)

B(@. D) = =) Kjy@utm — bn. D, (15)
T

anm,j((pv T) = ;/O etiTJ,/n(t + (] + ¢n+m - ¢n)T)@(t + (] + ¢n+m - ¢n)Ddts (16)

where’ indicates differentiation with respect #§ and®(x) = 1 if x > 0 and is zero otherwise. Substitution into
the linearised map (12) a solution of the foéfn= Aks,, for 8, € R andx e C, yields the eigenvalue equation:

N
()‘* - 1)An (d>7 T)Sn + Bn(és T)Sn = Zanm(kv d>7 T)Gnm (A)8n+mv (17)
m=1
where
e .
anm (A, @, T) = Zanm,j((py i, (18)
j=0

andG,,(A) = A if ¢, < dptm, andGy,, = 1if ¢y > ¢um 0N [0,1]. Note that one solution to (17) is given
by Ao = 1 with §,, = § all m. This reflects invariance of the dynamics with respect to uniform phase-shifts. The
condition for asymptotic stability of a solution|fis. |< 1 for all eigenvaluesi # io) satisfying Eq. (17).

In general, carrying out a linear stability analysis of phase-locked solutions is a non-trivial task due to the fact that
the dynamical system is infinite-dimensional. However, in the weak-coupling &mit,0, linear stability analysis
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becomes much more tractable since solutions to (17) in the compbéane will either be in the neighbourhood

of the real solution. = 1 or in the neighbourhood of one of the polesagf, (A, @, T). These poles all lie inside

the unit circle and hence are not important in terms of determining whether or not a phase-locked solution is stable.
Therefore, to first-order iawe sets = 1 andT — Tp = In(I/(I — 1)) on the right-hand side of (17) to yield

__ ¢ / _ _ 2
(A —=Dé, = - 1)T0;Km (Pntm — P, TO)[5n+m 811] + O(e9). (19)

Thus to Q) the spectrum close fo= 1 coalesces int®y distinct points given by the eigenvalues = 1+17,, p =
0,...,(N—=Dwith Iy = 0.Herel,, p =0, ..., (N—1) formthe set of eigenvalues of the matrix with components

Ienm (@) = ]Cnm((p) - 8ankKnk (D), where

’Cnm (®) = mlﬂ/n_n (¢m - ¢n9 Top). (20)
The fact thatly = 0, with a corresponding eigenvector in the direction of the fidwd, . .. , 1), again shows the
symmetry G1) of the system to constant translations of the phases. The condition for stability reduces to the set
of (N — 1) conditions Rél',) < O, p # 0. Take, for example, travelling wave states of the tgpe= mp, g =
np/N andn, = 1, ..., (N — 1). The eigenvectors of(®) are(1, eir/N ghip/N  — @2(N=D7ip/Ny with the
corresponding eigenvalues:

¢ .
r,= m;l(;n (mB, To)[eZmP/N — 1]. (21)

The above weak coupling stability condition will be rederived in Section 4 in terms of a corresponding phase model
obtained by the method of averaging.

Assume that a given phase-locked solutibis stable in the small coupling regime but becomes unstable when
€ is increased. If a single real eigenvalueZ ig crosses. = 1 at a critical value of the coupling;, then the
solution @ will destabilise via a static bifurcation of the firing times. The bifurcating solutions will correspond
to new phase-locked states and the oscillators will remain 1:1 frequency-locked. On the other hand, if a complex
conjugate pair of eigenvalués, 1*) crosses the unit circle, theb will destabilise via a discrete Hopf bifurcation
in the firing times leading to the breakdown of 1:1 frequency-locking. This form of destabilisation turns out to play
a major role in the formation of complex firing patterns in IF networks, as will be explored in more detail elsewhere
[42,43]. Here we shall only briefly touch on this important aspect of spike train dynamics, so that we can interpret
the numerical results presented in Section 3.

Suppose that at a critical value of the couplinghere exists a complex conjugate pair eigenvalues e*iec
signalling the onset of a (supercritical) Hopf bifurcation. &gt= 278 and assume that eithgris irrational (non-
resonant) o = p/q with p, ¢ co-prime integers and > 4 (weakly resonant). Then close to the bifurcation point the
perturbations; have the approximate for#j = r,coskw+6,) for some constant phagdg, amplitude-,, = O(/€)
and frequency ~ w¢ + O(e). The inter-spike intervab, (k) = T}, ; — T;' between two consecutive firings of the
nth cell will then satisfyD,, (k) = T + Sip1— 0 =T-— Fpsintke + 6,), wherer, = 2r, sin(w/2), 6, = 6, + w/2.

Hence, the paitD, (k — 1), D, (k)) lies on the invariant circle

M, 0= (T —F,sin(0@ —w), T — 7, Sin(H)) (22)

with 0 < 0 < 2. (More preciceslyM,, is a projection of an invariant circle existing in the full phase-space of the
dynamical system). IB is rational, then the resulting sequence of inter-spike intervalsgrwill be periodic in

k (p:q mode-locking). Associated with the weak resonances are Arnold tongues that spread out in parameter space
from the points at whicl8 = p/g. On the other hand, for irrationglthe sequence of inter-spike intervals will be
quasiperiodic on\,,.
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2.3. Forms of delay for neural systems

A systematic attack on understanding the dynamics of the brain may arise through a study of coupled neural
oscillators. Indeed, the nonlinear dynamics of coupled oscillators consisting of biologically plausible neuron models
has recently attracted much interest in neurobiology due to the discovery of synchronised oscillations in the cat
visual cortex [9]. Moreover, many biological rhythms, ranging from breathing to walking, are programmed in part
by central pattern generating (CPG) networks built from coupled neuronal oscillators. The generation and control
of rhythmic activity results from a combination of synaptic interactions, intrinsic membrane properties and network
connectivity. Guided by the study of small networks, say in the spinal cord of the Lamprey or Xenopus tadpole and
other experimentally accessible systems the fundamental properties of neurons that contribute to rhythm generation
are being uncovered [44]. Three such properties are axonal communication delays, synaptic processing and the
distribution of axo-dendritic synapses on the dendritic tree. Interestingly, the distributed and discrete delays arising
from these processes may also play a role in the formation of oscillatory waves observed in such structures as the
olfactory cortex [45,46].

If we think of the IF oscillator as a model neuron then forms of discrete and distributed neural delays can be
modelled as follows.

2.3.1. Space-dependent transmission delays
Space-dependent delays are a natural feature of networks of point processors communicating with finite signal
propagation velocities. For example a transmission dglayay increase with separation according;to= d,, /v,
whereuv is the signal propagation velocity adg is the distance between any two oscillators in the ring (measured
in units of the lattice spacing). That i, = m if m < [N/2] andd,, = N — m otherwise. In a neural contexj,
may represent the transmission time for propagation of an action potential along a single axon fethmthgon
to the(n 4+ m)th neuron. We represent space-dependent communication delays in the form

In (D) = Wi P(T — 1) O(T — 1) (23)

for someP(r) andt,,. Throughout we shall take weight distributions, with W,,, = Wy _,, and similarly forz,,.

2.3.2. Synaptic processing

The arrival of an action potential at a synapse triggers the release of chemical neurotransmitters that diffuse
across the synaptic cleft and bind to protein receptors in the cell membrane of the post-synaptic neuron. This leads
to the generation of a post synaptic potential associated with the opening and closing of various ionic channels. A
reasonable approximation to the shape of such a potential is the so«zdiladtion [47]:

g(7) = T exp(—a1), (24)

whereq is the inverse rise-time. Synaptic processing can be modelled by takiny = W,,g(7).

2.3.3. Dendritic processing

A post-synaptic potential is typically generated at a synapse located on the dendritic tree of a neuron and is
thus at some distance from the soma or cell body where action potential generation occurs. The passive membrane
properties of the dendrites result in diffusion of the post-synaptic potential along the tree. For simplicity, suppose
that the dendrites are represented by an infinite uniform cable with dendritic coordjnat® and the soma is
até = 0. LetV, (&, r) denote the dendritic potential at positigralong the cable of thath neuron. Suppose that
there is a distribution of axo-dendritic connections fromritieto the ¢ + m)th neuron as specified by the function

Win (§).
Using standard cable theory [48], Eq. (1) is replaced by the set of equations:

du,
T(t) = AU () + 1o (D). (25)
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Va0 _ D32Vn(§, n Vué o

N
e T . + D W& Engm(0) — L (), (26)

m=1

where D is the diffusion constant ang is the membrane leakage time constant of the cable. The gitn=

€[V, (0, 1) — U, (1)] is the current density flowing to the soma from the cablé at 0. In order to simplify our
analysis we assume that the curretdf, (r) in Eq. (26) is negligible compared to the synaptic current. The dendritic
potentials appear linearly in Eq. (26) so that they can be handled using a standard Green’s function method. The
result is the integral equation:

t o0 N
0= [ [ G- )Y W@ B s, (27)
o0/ =0 m=1
where
1 £2 t
56 = 7z (~amr) #2( ) o

is the fundamental solution of the cable equation on the real line. Substituting Eq. (27) into (26), and redefining the
function f(U,) to include the term-¢U,,, yields Eqg. (1) with an effective distribution of delays of the form

I (7) = / Wi (§)G (&, 1) d&. (29)

3. Numerical examples

In this section we provide some illustrative examples of spontaneous symmetry breaking. We concentrate on
bifurcations from maximally symmetric isotropy subgroubswith dim Fix(X) = 1 for the reasons given in
Section 2.1. Numerical continuation of solutions is performed with the aid of XPP [49] in parameters that describe
the distributions discussed in Section 2.3. Moreover, we present a direct integration of the equations of motion (1)
to illustrate the variation of the inter-spike interval in certain parameter regimes. For simplicity we only consider
axonal and synaptic delays.

Example 1. (N=2). Two coupled oscillators suffice to uncover the influence of distributed delays upon synchroni-
sation [39,50-52] and to exhibit the phenomenon of spontaneous symmetry breaking. The underlying symmetry is
Z, x St for a connection between the pair of oscillators of the foim = g(t — 19)©(t — 14), Whereg(7) is the
a-function of Eq. (24) andy is a simple transmission delay. F8¥r= 2, Egs. (4) become

1=QA-e I +eK(xp—19/T. T, (30)
whereg = ¢, — ¢1,

T
K(p, T) = e’T'/ e€J(t+¢T)dT (31)
0
and
. o0 . aZeat Te—aT
J(@) Z;)g(t‘i‘JT) = 1_egof |:t+ (1_e—aT):| (32)

for 0 < t+ < T.The pair of equations (30) reduce to one independent equation (for the @grindhe case of
the synchronous solutiopn = 0 (or equivalentlyp = 1) and the anti-phase solutigh= 1/2. Both of these are
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Fig. 2. Relative phas¢ = ¢, — ¢1 in the IF model forN = 2 as a function of the distributed delay parametés shown with solid lines for

€ = 0.01,0.05, 0.1, 0.25 withty = 0 and] = 2. In each case, a stable anti-phase state undergoes a bifurcation at a critical va{udich
increases witl), where it becomes unstable and two additional stable solufiohs- ¢ are created. The dashed curve shows the bifurcation
branches in the limiting case of the weakly coupled phase-interaction picture.

guaranteed to exist by the symmetry of the problem. In Fig. 2, we show how an additional pair of s¢hitibrsp}

with 0 < ¢ < 1/2 bifurcates from the anti-phase solution as the parametenvaried. (The fact that + ¢ is a
solution wheny is a solution is again a consequence of the underlying symmetry, that is, they lie on the same group
orbit). A special feature of two oscillators is that one can determine a simple necessary condition for stability of
the above periodic solutions [39]. First, following the same procedure as in the derivation of Egs. (30), it is simple
to establish that/>(T — ¢T) = 1 — K_(¢, T) whereK (¢, T) = K(¢, T) — K(—¢, T). Suppose thap is slightly

larger than a fixed point solutiapof Egs. (30). Then, oscillator 2 should fire later to restore the correct vakge of

if such a solution is to be locally stable. This requires g7 — ¢7) should be smaller than the threshold 1 or
equivalently thatk (¢, 7) should be an increasing functionghear the fixed point. Hence, a necessary condition

for stability of a fixed point solutiow is

dK (¢, T)

3o o=5>0- (33)

Itis simple to establish tha (¢, 7), and henc& _(¢, T), is C* in the following manner. Denotingas differentiation
with respect tap,

K'(¢.T) = —TK(¢, D) + T(1— e ") J (o). (34)
By constructionk (0, 7) = K(1, 7). Sinceg(0) = 0, we also have

JO) =Y g(iT) =Y g(iT) = J(T) (35)
j=0

J=1

Hencek’(0, ) = K'(1, T) andK (¢, T) is CL. However, higher-order derivatives Kfhave a discontinuity at = 0.
Unfortunately, it is difficult to extend the above stability argument to larger IF netw@vks 2), except in special
circumstances [32]. Therefore, one must either analyse the spectrum of the linear operator in Eq. (17) or resort to
numerical simulations.

Example 2. (N=4,6). As a slightly more complicated example, consider a ring of four oscillators with uniform
nearest neighbour couplingV,, = 8x.1 + ém.~y—1) and synaptic delays. The fixed-point spaces for a ring of
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Fig. 3. Relative phase of a ring of four IF oscillators with nearest neighbour coupling and synaptic delays showing bifurcations to isotropy
groups withd > 1 asa is variedrq = 0.14, I = 2 ande = 0.05). Oscillator 1 is taken as the reference oscillator and its phase fixed to zero. At
the poirt A a pair ofd = 2 states of the forni0, ¢, 1/2, ¢) bifurcates from the travelling wave statg = n/4. At the pointB’ a pair ofd = 2

states of the formi0, 0, ¢, ¢) bifurcates from the stat®, 0, 1/2, 1/2) and similarly at pointB a pair of the form(0, ¢, ¢, 0) bifurcated from
(0,1/2,1/2, 0). At the pointsC, there are bifurcations from = 2 stateq0, ¢, ¢, 0) to d = 4 states. The stability of the various branches can

be determined numerically. For example, the travelling wave solution is found to be unstable fox fmii$ stable beyond the bifurcation
point A.

four oscillators are (from Table 1) as followg, ¢, ¢, #), (¢, b, ¢, @), (¢, ¢, ¢, D), (P, ¢ + 1/4, ¢, ¢ + 1/4) for

d = 1,(¢1, 2, 91, $2), (@1, P2, D1, 92), (D1, P2, P2, P1), (D1, P2, P2, ¢1) for d = 2, (41, ¢2, ¢3, ¢2) ford = 3
and (¢1, ¢2, ¢3, ¢4) for d = 4. In Fig. 3 we illustrate how certain periodic solutions with> 1 bifurcate from
maximally symmetric solutions as the parameiés varied for some fixedy. To illustrate the effects of space-
dependent delays consider a ring of oscillators with communication delays mty, P(t) = g(r). Using the
distribution (23) in conjunction with Egs. (4) leads to tNeequations:

N
1=(1- e_T)I—|—eZWmK(¢n+m —¢p—mtg/T.T), n=1,..., N, (36)

m=1

where K (¢, T) is given by Eq. (31). An example of the so-called in-out phase solution (only possible in even
numbered rings) is shown in Fig. 4 for nearest and next-nearest neighbour interg@jpns 1 if d,, < 2 and

zero otherwise). We trace the bifurcation(6f 1/2,0,1/2,0,1/2) (d = 1) to (0, ¢, O, ¢, 0, ¢) (d = 2) governed
by Egs. (36) forN = 6.

Example 3. (N=3). In Fig. 5 we present a numerical construction of the map of inter-spike intervals in the form of
aplotof D(k) vs. D(k — 1) whereD(k) = Tk1+1 — Tk1 for aring of three coupled IF oscillators. (For three oscillators,

D3 = Sg.) Points on the graph are obtained from a direct integration of the IF dynamics (1) and establishing
the time of threshold crossings. The points lie on an invariant circle indicating quasiperiodicity (or possibly high
order periodicity) as predicted by the linearised theory presented in Section 2.2. It is useful to project the IF state
variables from [01]" to C so that trajectories in the space of state variablgss) may be visualised. With this

in mind we introducev,,, V() € C, wherev,, = exp(2zim/N) and V() = an\f:lUm(f)Um- In Fig 6 we plot

the projected dynamick(r) = V.(¢) + iV, (?) for a range ok values andV = 3. For three oscillators we have
Ve(®) = —(1/2)(Ur(®) + Ua(r) — 2U3(1)) and V(1) = V3/2(U1(t) — Ua(1)). The synchronous state is located at

the originV, = V, = 0, whereas the straight linég = 0, V, = £V,/+/3 correspond to the twim-phasestates

in which two oscillators fire together. The discontinuous nature of the oscillator state vatighi@precludes the
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Fig. 4. Effect of space-dependent axonal delays in a ring of six IF oscillators/with2 ande = 0.01 and nearest neighbour/next-nearest
neighbour coupling. We show solutions bifurcating freé1/2, 0, 1/2, 0, 1/2) to (0, ¢, 0, ¢, 0, ¢) for varying fundamental units of delay
T = m1tq. All solutions are unstable far> 0, whereas the solutiap = 1/2 becomes stable beyond the bifurcation painncreasing) when

e <0.
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Fig. 5. Inter-spike intervaD(k) plotted against the inter-spike intervAlk — 1) in a network of three IF oscillators with synaptic coupling.
19q=0,/=2a=17 ande = 0.2.

possiblility of closed continuous trajectories in the complex plane. One finds that the trajectories consist of three
disconnected parts each of which is bounded within a triangular cell as shown in Fig. 6. This reflects an underlying
Z3 symmetry. The system jumps discontinuously between these disconnected parts whenever one of the oscillators
fire. (Note that the twan-phasestates are invariant under the dynamics since Eg. (1) is first order in time. Thus a
trajectory cannot cross the two-phasestate manifolds smoothly.) For sufficiently smalltravelling waves are

stable and the corresponding trajectory within a single triangular cell forms a smooth curve in a neighbourhood
of the centre of the cell. This is shown in the inset of Fig. 6. The associated inter-spike interval is a constant. For
« increasing, a point is reached where the inter-spike interval bifurcates from a stable fixed point to dynamics on
an invariant circle (as in Fig. 5). In this case the variation in inter-spike intervals adds another level of structure to
the projected dynamicg(z) as illustrated in Fig 6 foe = 17 anda = 20. For sufficiently large values of, one

finds that the periodic trajectory fdf(r) has been destroyed in a global heteroclinic bifurcation (by collision with

the borders of the triangular regions). This global bifurcation is analogous to the so-called transcritical/homoclinic
bifurcation previously investigated for smoothly coupled oscillators ®iteymmetry (see [23] and Section 4). For
solutions bifurcating from the travelling wave with the opposite orientation, the dynamics is similar but occupies
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Vx

Fig. 6. Projected dynamics for a ring of three IF oscillators with synaptic delays,= 0,/ = 2 ande = 0.2. Here
V() = V() +iVy(0), V() = —(1/2)(U1(t) + U2(1) — 2U3(1)), Vy(1) = (v/3/2)(U1(r) — Ua(1)). A stable travelling wave (seen near the
centre of triangular cells) at = 14 undergoes a bifurcation to an attractor (shown at 17) with structure induced by variation of the
inter-spike interval. This attractor approaches the borders of a triangular region with increasnggen foor = 20. A global heteroclinic
bifurcation occurs when the attractor collides with the triangular border and the network jumps to a state of near synchrony.

the empty set of triangular regions shown in Fig. 6. It would seem that the above global bifurcation can prevent any
possible period-doubling routes to chaos.

4. Phase-coupled model
4.1. Method of averaging for the integrate-and-fire model

Suppose that in the absence of any coupling; 0, each oscillator fires with the same periigwhereTy =
fol dU/f(U) and we no longer restrigt to be linear. Following [39], we introduce the nonlinear transféfpi) —
Y, (¢) according to

t 1 6O du
d Dy, — =YU,(H) = — — 37
(mod D, (r)+T0 (Un(®) T /0 ) (37)

Under such a transformation Egs. (1) become

dyr, (¢ N oo
W — e+ O /0 In(@ it — D, (38)
where
1 1 . .
F(z) = Fz+ j)=F(2), jeZ. (39)

Tolf oV 1)

The function F may be interpreted as the instantaneous phase-coupling response function of the system. When
¢ = 0, the phase variablg, (r) = ¥, is constant in time and all oscillators fire with peridgl Hence, there is
an attractingV-torus foliated with periodic orbits of perioth. The assumption of strong contraction (compared
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to the strength of coupling) in the neighbourhood of the limit cycles enables one to use normal hyperbolicity
(see [16] for a discussion) to predict persistence oNatorus which is asymptotically attracting whetis small.

If in the presence of coupling the right-hand side of (38) is periodic one may invoke the averaging theorem [12]
to obtain a first order normal form for the asymptotic dynamics of equations (38). One might suppose, to a first
approximation, that for weak coupling $§mall) each oscillator still fires with peridth but now the phases,, (¢)

slowly drift according to Eq. (38). By assumption, the delay distributigtr) is normalisable{](;’ojm(r)dr < 00)

with J,,(t) — 0 ast — oo. Hence, we can neglect the contributionglp(r) from firing-events sufficiently far in

the past such that, to first-orderdnthe firing-times may be approximated By = (j — ¥, (1)) To. The right-hand

side of Eg. (38) then becomedg periodic function of, thus satisfying the conditions for the averaging theorem

to apply. Introducing the autonomous phase interaction function:

1 o0
Halh) = 7= /0 Jn(DFlt/To — ¥]dr (40)

allows us to state the averaging theorem in the following manner. There exists a change of vafiableg,+
ew(1, t, €) that maps solutions of (38) to those of

d‘ﬂn . Y 2
5 = €2 HnWnm — ¥) + O). (41)

m=1
It may be shown that the functian(y, ¢, €) is not small when — oco. However, fore <« 1, the dynamics of (38)
aree-close to those of (41) for times of(@1). For e small enough hyperbolic periodic orbits (including fixed
points) of (41) correspond to hyperbolic periodic orbits of (38). Periodic orbits of (41) which have two or more
zero Floquet exponents may or may not imply a periodic orbit with neutral stability in the unaveraged system (38).
Higher-order corrections to (41) can destroy such orbits. Since saddle connections may not exist on the limited
timescale in which averaging guarantees shadowing¢o¥, heteroclinic chaos in (38) may be suppressed by the
averaging process. However, saddle connections will persist if the stable and unstable manifolds are contained in
Fix(X), with X a subgroup of the full group of symmetries of equations(38).

Egs. (41) immediately show that the averaging process reduces the dynamics to one of phase-differences only.
To O(¢) the phase interaction function (40) is simply the average of the right-hand side of (38) over a single period.
Moreover, delays in the propagation of signals between pulse-coupled oscillators reduce to phase shifts in the
corresponding phase-coupled model. The phase interaction may be interpreted in a neural context as follows (after
a change of variables— 1/ T in Eq. (40)). The effective interaction between the pre-synaptic neuron labelled at
and the post-synaptic neuromat m is obtained by convolving over one period of oscillation the weighted synaptic
currentJ,, (7o) with the response functiof(t — (V,+» — ¥»)). For instantaneous coupling between neurons such
that post-synaptic currents are unit delta functions of the féftpd(7), thenH,, () — H°(Y) = W, F(—).

Hence, if the interaction function for an instantaneous synapse is known, the general phase interaction function can
be obtained as a convolution since

1 o0
Hall) = 7= /0 In(HETY — t/ To] d. (42)

The functionF(—v) is sometimes referred to as the phase resetting curve of a neurtr-4f) > 0, a small and
instantaneous depolarization at the neuronal pilasél advance the next firing event. The response of the neuron

to excitatory inputs is said to be of type I. The response is said to be of type Il if a stimulus can either advance or retard
the phase depending upon the time at which it is administered. Integrate-and-fire neuron&vith —U + I)

have a type | response whilst limit cycle oscillators based upon Hodgkin—Huxley like models of excitable cells are
of type Il. When describing a piece of cortex or a CPG circuit with a set of oscillators the biological realism of
the model typically resides in the phase interaction function. The distinction between type | and type Il response is
unambiguous for networks with either purely excitatory or purely inhibitory coupling as considered in this paper.
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However, patterns of excitation and inhibition in a network of type | oscillators can also lead to responses from
individual neurons that resemble those of a type Il neuron in isolation. This interesting possibility is explored in
[53].

4.2. Phase-locked solutions

Following our analysis of the pulse-coupled model, we first consider phase-locked solutions of Eg}, (13
on + 2t, whereg, is a constant phase awglis an Q) contribution to the effective frequency of the oscillators,
thatis, ¥ T = 1/Tp + £2. Substitution into Eq. (41) and working to(€) leads to the fixed point equations:

N
QZGZHn1(¢n+n1_¢:1)a n=1...,N. (43)
m=1

Egs. (43) directly correspond to the conditions (4) for phase-locked solutions of the integrate-and-fire model and
have the same underlying symmetry grddp x S'. Note, however, that phase-locked solutions of Eq. (43) are
now independent of; the strength of coupling only affects the frequergyln order to analyse the local stability

of a phase-locked solution satisfying Egs. (43), we linearise Eq. (41) by setting

Un(t) = ¢n + 2t + 0, (D), (44)

and expand to first-order #), to obtain

de,
dr

N
= ZHnm (‘p)[em - 9,1], (45)
m=1

whereH,,,, (®) = €H,,_, (¢m — ¢»). The Floquet exponents of a periodic orbit are simply given by the eigenvalues

of the Jacobian matrixflnm(cb) = Hum(P) — Snmz,’(vzl’i-tnk(@). One of these eigenvalues is always zero, and
the corresponding eigenvector points in the direction of the flow, thét,ig, ... , 1). The phase-locked solution
will be stable provided that all other eigenvalues have a negative real part. Phase-locked solutions of the phase-
coupled model can bifurcate whenever there exists more than one eigenvalue with zero real part (non-hyperbolic
solutions). If one or more real eigenvalues cross the imaginary axis, then the bifurcating branches correspond to
other phase-locked solutions.

Itis also possible for Hopf bifurcations to occur leading to non-phase-locked behaviour. As a simple illustration,
we follow Ref. [41] and consider travelling wave solutions of the fafpir) = ng + §2t, where, = 0 corresponds
to a synchronous solution apd= n,/N,n, = 1,... , N—1, corresponds to a travelling wave solution. Substitution
into Eq. (45) gives the disperison relation

N
Q=eY Huymp), n=1.. N (46)

m=1

The element${,,, (®) becomesH,, _, ((m — n)B). The fact that,,, ($) now depends om — n (mod N) means
that the eigenvectors of the Jacobian matrix are of the form

6,(1) = rt2mm/N 4, — 0.1 ... N—1, (47)

and the eigenvalug, satisfy [41]:

N
hp =€y H (mp)e*rm/N 1], (48)
m=1
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A travelling wave solution will be stable provided that ®g) < O for all p # 0. (As noted previously, the

eigenvalue fop = 0 is neutrally stable.) IV is odd, therkg is real and the rest of the eigenvalues occur in complex

conjugate pairs., andi_,. The structure of the eigenvalue [48] (with> 0) implies that typically the real part of

just one pair can be made to vanish for some natural choice of the distribitien This indicates that the generic

bifurcation of a travelling wave state, for an odd number of oscillators, is a simple Hopf bifurcation. An example of

a supercritical Hopf bifurcation is shown in Fig. 8 (as part of a more complicated bifurcation sequence, see below).
The relationship between phase-locked solutions of the phase-coupled model and the original pulse-coupled

model can be clarified in the limit of weak-couplitg— 0). If we setf(U) = —U + I, then

eTO 14
ITy

with To = In[1/(I — 1)]. Comparison of Egs. (40) and (49) with Egs (5) and (6) then shows that the phase-interaction
function is proportional to the interaction function of the pulse-coupled model,

F(y) =

(49)

€0 K, (¢, To)

(50)

Hence Eqgs. (4) reduce to Eqs. (43) to first-orderamd the phase-locked solutions of the IF model converge to those

of the phase-coupled model in the linait—> 0. This is illustrated for two oscillators in Fig. 2. The conditions for

the stability of phase-locked solutions also converge in the weak coupling limit. Eg. (50) implies that thefinatrix

of Eq. (45) is proportional to the matrig of Eq. (20) and henc# andK have the same eigenvalues. We have now
established the following important restftthere exists a stable or unstable (hyperbolic) phase-locked solution of
the phase-coupled model, for any finNethen there exists a corresponding solution of the pulse-coupled model of
the same stability type for sufficiently small' his extends to the case of the discontinuous IF model, the well-known
result that the existence of hyperbolic periodic solutions in a phase-reduced model implies their existence in the full
oscillator model for sufficiently smooth systems.

4.3. S3 global heteroclinic bifurcation

As shown in Section 3, numerical integration of a ring of three IF oscillators reveals the existence of a co-
dimension one global bifurcation from a travelling wave to a synchronous state (see Fig. 6.) This type of bifurcation
was previously studied by Ashwin and co-workers [23] for a system of three weakly coupled Van der Pol oscillators
with S3 symmetry. They showed both theoretically, using averaging theory, and experimentally that a transition
from a travelling wave to a synchronous state may occur via a homoclinic bifurcation as some system parameter is
varied. This typically happens in the following manner: (a) a travelling wave is the only stable solution, (b) there
is a supercritical Hopf bifurcation, (c) the only stable solution is a limit cycle, and (d) the cycle grows until it is
destroyed at afg transcritical/homoclinic bifurcation which stabilises the synchronous solution. (Extensions of this
form of global bifurcation to networks wit8y symmetry(N > 3) are discussed in [21].) We shall now investigate
more closely the global bifurcation of an IF network using the weakly coupled phase model given by Eq. (41). It
will turn out that it differs in structure to the homoclinic bifurcation observed by Ashwin et al. [23]. For the sake of
illustration, we consider phase-coupled oscillators satisfying Eq. (41)¢p\vdth H given by Eqgs. (40) and (49)
and K, (¢, To) satisfying Eq. (5). We also tak& = In2 and set/,,,(t) = g(z), m = 1, 2, 3, whereg(z) is thea
function (24). In Fig. 7 we follow the relative phase between oscillators as a function of the inverse rige Fione
smalla the travelling wave state is stable. However, with increasitiys solution loses stability via a supercritical
Hopf bifurcation ate = ay &~ 8 and a stable limit cycle is created. The relative pha?sgs) = Yo(t) — Y1(0)
andyra(r) = ¥3(f) — Y1(r) are related vial(r) = 1 — ¥3(r + T/3), where is the common period of the limit
cycle. The relative shift in time b§' /3 reflects an addition&@! symmetry associated with time-shifts of periodic
solutions around the limit cycle and is an example of a simple Hopf bifurcation with symmetry (see [22]). Until
a reaches some critical point, = «¢, the amplitude of oscillation continues to grow. Howeverg@tthe limit
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Fig. 7. An illustration of theSg heteroclinic bifurcation for 3 phase-coupled oscillators. The travelling wave 6fate- (0, fpz, 1}3) =
(0,1/3,2/3)) indicated by | is stable for low (solid lines) and loses stability (dashed lines) due to a supercritical Hopf bifurcation (H)
ate = apy ~ 8. Filled circles denote the amplitude of the stable limit cycle of the relative plﬁqe{e)sandf&g(t). The merger of the limit cycle

and the 2-in-phase invariant manifoldaat= «¢ ~ 12 destroys the limit cycle and leads to the creation of stable/unstable pairs of 2-in-phase

states via a saddle node bifurcation (s.n.). There exist additional unstable 2-in-phase solutions indicated by II.

A\ o /5

(a) a <oy b)oy<oa<oa, ©oa=o,

Fig. 8. An alternative illustration of thg; transcritical/homoclinic bifurcation in the projected cookdsr) = —(1/2)(¥1(2) + ¥2(1) — 2¢r3(2)),

Vy(t) = (+/3/2)(y1(t) — ¥2(1). The travelling wave state is represented by the point in the centre of the triangular cell. The (unstable)
synchronous state occupies the vertices of the triangle, whilst the 2-in-phase states arise on the borders of the traigieeases the
travelling wave loses stabilitfx = o) and a stable limit cycle emerges with amplitudes that increaseaithtil colliding with the border

of the triangle(e = «¢), where it is destroyed in a heteroclinic bifurcation. Coincident with this heteroclinic bifurcation is the creation of

stable/unstable pairs of 2-in-phase states. The limit cycle shown in (b) is obtained numericaly fd.

cycle is destroyed in a global heteroclinic bifurcation (due to collision with invariant manifolds associated with the
2-in-phase solutions). Simultaneous with the heteroclinic bifurcatian & a saddle-node bifurcation in which
stable/unstable pairs of 2-in-phase solutions are created. There are additional unstable 2-in-phase states that exist
for all «, together with an unstable synchronous solution. In Fig. 8 we illustrate the global bifurcation schematically
along similar lines to [23] by considering a projection of the absolute phase variables to the complex plane with
V(@) = Z;i:lwm (ne?™m/3  For clarity only one dynamically invariant triangle of the lattice is shown. Fixed points

of the dynamics are the travelling wave state (centre of the triangle), the synchronous state (triangle vertices) and
the two-in-phase states (located at a point on each edge of the triangle). The bifurcation sequence with increasing
a is shown in Figs. 8(a)—(c) with the limit cycle in (b) obtained numericallydfee 10.

4.4, Comparison with Kuramoto model

It is interesting to contrast the behaviour of the phase-coupled model [41] having a type | response func-
tion derived from the IF model of Section 2 (see Eq. (49)), with one having a type Il response function given
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by a sinusoid

F(y) = —sin(2ny). (51)
In the latter case, Eq. (41) reduces to the well-known Kuramoto model with distributed phase-shifts

dvr, 1 > :

ERE Y | @ sinerti s = ) — ot (52)

A similar equation arises in the analysis of the dissipative, overdamped resistively loaded Josephson array [4,18].
For concreteness, suppose that the distribufip¢r) has the product forrd,, () = W,, P(r) with the weightw,,
assumed to be (a) symmetri¥,, = Wx_,,, and (b) a monotonically decreasing function of the separation on the
ring d,, (see Section 2.3). As in our previous analysis, we can exploit the undebyingS' symmetry of Eq. (52)
to investigate phase-locked solutions. In particular, maximally symmetric solutions such as travelling waves are an
immediate consequence of this symmetry.

In order to indicate some of the special features of the Kuramoto model, we shall analyse the stability of travelling
wave solutions. First, it is useful to introduce the following Fourier transforms:

N
A(p) =Y W, cosrmp/N), (53)
m=1
Y .
Alw) = To/é P(7) expiwt) dr, (54)

and setA¢(w) = ReA(w), As(w) = ImA(w). Substituting Eq. (51) into (40) and exploiting the symmetry of the
interaction functioriv,,, one finds that the dispersion relation (46) becomes

208, 0) = —Ag(@) A(P). (55)

Similarly, linearising Eq. (52) about a travelling wave state leads to a Jacobian with eigenvalues given by Eq. (48),
which on using Eq. (51) and equating real and imaginary parts gives

Reip = tAc(0)[A(p + B) + A(p — B) — 2A(B)] (56)
Im A, = 7As@)[A(p — B) — A(p+ B 57)

Note that Egs. (55)—(57) exhibit a simple product form in relation to the dependence on (a) the spatial structure
of the connections specified B¥,,, and (b) the distribution of delayB(z). This special feature of the Kuramoto
model leads to non-generic behaviour as will be described below.

We first consider the stability of the synchronous sfate 0 for which, is real for all p. SinceW,, decreases
monotonically withd,, it follows that max, A(p) = A(0), and hence that the synchronous state is stable (unstable)
if Ac(w) > 0(Ac(w) < 0). The conditionAc(w) = 0 determines a degenerate bifurcation point whgre= 0 for
all p. We now calculaterc(w) for each of the three sources of delay listed in Section 2.3.

Uniform axonal delayAssume that each axonal connection has the same transmissiongstathatP(r) =
8(t — 19) and Aq(w) = 0‘1 cos(wtg). It follows that for excitatory coupling the synchronous state is stable for
sufficiently small delaysty < To/2. As 14 increases alternating bands of stability and instability are generated.
(The effects of space-dependent axonal delays are considered by Crook et al. [45]. They show that destabilisation
of the synchronous state due to an increase in delays can lead to travelling waves. They also suggest that this could
account for the fact that oscillatory behaviour in the visual cortex tends towards synchrony, whereas the olfactory
cortex tends to produce travelling oscillatory waves; the latter has long-range excitatory connections and hence
longer axonal delays. An alternative mechanism base on dendritic structure is presented in [46].)
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Synaptic processingakeP(t) to be thex-function (24). Substituting into Eq. (54) and performing the integration
overt gives

1 o?(a? — @? + 2iaw)

A(a)) = TO (0(2_|_w2)2

(58)

Hence, for excitatory coupling the synchronous state is stable-ifw (fast synapse) and unstablevif< o (slow
synapse). The desynchronising effects of synapses was previously highlighted by van Vreeswijk et al. [39] in their
slow study of two pulse-coupled oscillators, and this theme has been further developed elsewhere [20,51,52].

Dendritic processingSuppose that there exists a distribution of axo-dendritic connections with some spatially
periodic component of the form

Wi (8) = Wy cOS(p€ + £o), (59)

whereé&g represents an offset of the spatially periodic stimulation of frequendylaking use of the following
Fourier representation of the fundamental solutia, r):

GE 1) = f - expliké — v(k)r]g—:;, v(k) = Dk? + 171, (60)

and substituting Eqg. (59) into (29) shows that
P(z) = & """ cos(éo). (61)
Substituting Eqg. (61) into (54) and performing the integration avgives

1

Nw:‘%[

v(p) +iw

m} cos(&o). (62)

Sincev(p) > 0 for all p the synchronous state is stabdex{ 0) if 7/2 < §o — 2kn < 37/2 withk € Z.
In order to determine the stability of travelling wave solutiofs4 0), it is necessary to specify the form of the
interaction functior,,,. For the sake of illustration, we shall consider the particular example of a step-function

W = O —dy), L >][N/2]. (63)
The parametek determines the range of interactions. For this choid&efthe functionA(p) of Eq. (53) becomes

sin(2L + Vynp

A(p) = sinp (64)
We also set
A(p, B) = A(p+ B + A(p — B) — 2A(B). (65)

There are then two conditions under which a travelling wave can be stable: eitigp(Ip) < O for all p # 0 and

Ac(w) > 0or (I) A(p, B) > Oforall p £ 0 andAc(w) < 0. The stability results for the step interaction functions

are shown in Fig. 9 for a range of values of the interaction ledgth < L < N/4 andN = 101. For eaclL, the

wave numbes that satisfy stability condition (1) or (ll) are indicated. We see that there are two stability bands.

The first (labelled by>'s) consists of travelling wave states that are stable whgin) > 0. This band becomes

thinner asL increases from zero until only the synchronous state remains stable. Note that the so-called splay state
(B = 1), where the phases are uniformly spaced around the circle, maintains stability for the largest value of

The second band (labelled bys) represents travelling wave states that are stable whé&n) < 0, that is, when

the synchronous state is unstable. We conclude that there are two mechanisms whereby a synchronous state can be
destabilised: (a) ifA¢c(w) > 0, then a sufficiently large perturbation is needed to induce a transition into the basin of
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Fig. 9. W,, = ©(L — d,,), L < [N/4]. Stability of travelling wave solutions with wave numhgias a function of the interaction length
Diamonds ¢'s) indicate states that are stable whéf(w) > 0(Ac(w) < 0).

attraction of a stable travelling wave satisfying (), dj(w) becomes negative leading to the formation of a stable
travelling wave satisfying (I). The picture fdt < N/4 should be contrasted with the case of all-to-all coupling
(L = [N/2]), whereA(p) = N8, SO thatA(p, B) = N[8,5 + 8,1-4] for B # 0 andA(p, 0) = —2N for all
p # 0. One then finds that all travelling wave solutions are staldlgw) < 0) or unstable(Ac(w) > 0) in two
eigen directions and marginally stable in the remainihg 2 eigen directions. This basic result extends to more
general solutions as shown by Watanabe and Strogatz [4].

The above analysis highlights a number of important features of the Kuramoto model that are not typical of more
general choices of the phase interaction function such as Eq. (49).decstiplingof the dynamical system (52)
can occur if eitherA(8) = 0 or Ay(w) = 0. In this case, instead of travelling waves, there can exist invariant
N-tori in the phase space foliated with limit cycles of equal period. On these foliated tori the flow factorises into a
product of flows giving the appearancefuncoupled oscillators. For example, a nearest-neighbour interaction of
the formW,, = §,,.1 + 8., n—1 Ccauses decoupling of oscillators whgr= 1/4, 3/4. Decoupled solutions cannot
be continued in system parameters. A further discussion of decoupling can be found in [21]. Second, in the case of
an odd numbered ring antk.(w) = 0 we have Re., = 0 for all p, B so that(N — 1)/2 pairs of complex conjugate
roots ¢, andx_,) cross the imaginary axis simultaneously. Thus, in the special case of the Kuramoto model, the
underlying symmetry has forced multiple eigenvalues and the standard Hopf theorem is no longer applicable. The
eigenspaces associated with these eigenvalues are often tetied Modes that become unstable simultaneously
(as their corresponding eigenvalues cross the imaginary axis) may interact nonlinearly to create more complicated
behaviour than that which might be expected from them individually. The nature of these mode interactions will
not be pursued here.

An even more striking property of the Kuramoto model occurs in the case of global coupling 1/N
forallm = 1,..., N). As established by Watanabe and Strogatz [4], the system is completely integrable when
Ac(w) = 0. Their analysis is based on the observation that each trajectory of the system is actually confined to a
three-dimensional subspaa@(f), ¥(r), ¥(r)). This follows from the change of variables

1+ y(»
1—y(

where thep, are constants and® y(¢) < 1. It can further be shown th&i(¢) is passively driven by(z), W(¢) and
the dynamics of the latter two variables is characterised by the existence of a Lyapunov féreticimthat

de/dt = R?2(1) Ac(w), (67)

tan (v (1) — ©(1)] = tan [r(¢, — V(®)], (66)
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whereR(r) is an order parameter that measures the degree of coherence of the system,

- 1 .
R( expl2riyy (0] = = > expl2tiyy ()] (68)
n=1

(Note that Watanabe and Strogatz [4] only considered a single phase-fshifthich A¢(w) = cos(wt). However,

their analysis carries over to the case of distributed phase-shifts on using our more general expreasias) for

The following results thus hold for almost all initial conditions:

() If Ac(w) > 0, thenE(r) — oo, ¥(f), R(f) — 1, and the system converges to the synchronous state.

(i) If Ac(w) < 0, then&E(®), y(¢), R(r) — 0, and the system converges to @ — 3)-dimensional manifold of
incoherent states. Such a manifold consists of contant statesitisfying) ", exp[2riy,] = 0. There are
(N — 2) neutrally stable directions around each such incoherent state.

(iii) If Ac(w) = 0, then the system is completely integrable witha conserved quantity. Trajectories run along
the contours o€ and correspond to periodic motion (& y) space. In the full phase space, the motion is
quasiperiodic on 2-tori.

We conclude thatin contrast to the time-averaged IF model, travelling wave states in a globally coupled Kuramoto
network do not destabilise to form limit cycle oscillations via a Hopf bifurcation. This is due to the integrability of
the system whemi:(w) = 0. Finally, note that the high degree of marginal stability found in the Kuramoto model
is destroyed by including higher harmonics in the response funétign of Eq. (49). This is discussed in some
detail for globally coupled networks by Golomb et al. [54].

5. Conclusion

In this paper we have developed a systematic approach to analysing systems of pulse-coupled oscillators with
periodic boundary conditions and spatio-temporal symmetries. The identification of maximally symmetric states
combined with numerical continuation and bifurcation detection has shown that spontaneous symmetry breaking
can play a practical role in the construction of other symmetric solutions. Such a tactic may also prove successful in
analysing systems of phase-locked loops in which the frequency (rather than the phase) of an oscillator is updated
discontinuously [55]. Our attention has focused upon phase-locked solutions of the integrate-and-fire oscillator for
which it has been possible to construct a criterion for linear stability. A natural way to establish the stability of
solutions is also to examine a reduced model obtained via averaging. For the first time we have translated statements
regarding stability of the pulse-coupled system to those of a corresponding phase-coupled model. The analysis
of non-phase-locked states has also been explored by (i) direct numerical integration of the equations of motion
showing the variation of the inter-spike interval and (ii) by detecting Hopf bifurcation points in the phase-model
and numerically continuing to periodic limit cycles. Numerical results suggest that global bifurcations in the IF
system have counterparts in the corresponding phase-model. Moreover, we have constructed phase portraits of
the IF and phase-reduced system showing that symmetries of the underlying dynamics are inherited by attractors.
Interestingly, the symmetry of frced coupled oscillator system can also be inherited by an associated attractor
[56] (chaotic or otherwise). A harmonic forcing of the coupled IF oscillator system 1(1+ A coswr)) may be
used to demonstrate this, since for a single oscillator, the rotation number of the firing map is irrational for a Cantor
set of positive Lesbegue measure for parameter values in the regidy > A > 0 [57].

The counterpart of this paper is a study of non-identical pulse-coupled oscillators lacking periodic boundary
conditions. One may no longer be able to exploit the group structure of the system, but many of the ideas in this
paper can be built upon. For instance, numerical continuation from phase-locked solutions is still possible and so
is analysis via averaging. Indeed studies of chains of coupled oscillators have revealed the existegoerndy
plateausin which two or more pools of oscillators are phase-locked but oscillate at different frequencies [8] and
oscillator deathwhere the coupling can actually destroy the oscillations completely [58,59]. In a subsequent paper
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[53] we prove the existence of phase-locked solutions for a chain of pulse-coupled IF oscillators with nearest-
neighbour delayed coupling using a singularly perturbed continuum boundary value formulation. In th¥ large-
limit phase-transitions are shown to occur upon variation of system parameters including the (different) natural
frequencies of the oscillators.
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