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Abstract

We analyse travelling waves in a chain of pulse-coupled integrate-and-fire oscillators with nearest-neighbour coupling and
delayed interactions. This is achieved by approximating the equations for phase-locking in terms of a singularly perturbed two-
point (continuum) boundary value problem. The latter has a solution provided that a self-consistent value for the collective
frequency of oscillations can be found. We investigate how the qualitative behaviour of travelling waves depends on the
distribution of natural frequencies across the chain and the form of delayed interactions. A linear stability analysis of phase-
locked solutions is carried out in terms of perturbations of the firing times of the oscillators. It is shown how travelling waves
destabilize when the detuning between oscillators or the strength of the coupling becomes too large. ©1999 Elsevier Science
B.V. All rights reserved.

1. Introduction

One of the oldest problems in dynamics is the behaviour of coupled nonlinear oscillators, dating back to Huygen’s
observations of mutual synchronization of pendulum clocks in the seventeenth century. In more recent times there
has been a renewed interest in coupled oscillators stimulated by a diverse range of applications including biological
rhythms [1,2], chemical oscillators [3], Josephson junction arrays [4,5] and laser arrays [6,7]. An important theoreti-
cal technique for analysing such systems is to work in the weak coupling regime where invariant manifold theory [8]
and averaging theory [9] can be used to reduce the dynamics to a set of phase equations in which the relative phase
between oscillators is the relevant dynamical variable (see for example, [10–12]). This phase reduction method has
been applied to a number of important physical and biological systems. For example, an averaged phase equation
has been used to describe a linear series array of overdamped, resistively loaded Josephson junctions [13], and
this has elucidated the integrable structure of the system [14]. In the biological context, phase equations have been
used to study travelling waves in chains of weakly coupled oscillators that model processes such as the generation
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and control of rhythmic activity in central pattern generators (CPGs) underlying locomotion [15,16] and peristalsis
in vascular and intestinal smooth muscle [11]. Related phase models (see e.g. [17]) have been motivated by the
observation that synchronization and waves of excitation can occur during sensory processing in the cortex [18,19].

One of the characteristic features of a variety of biological oscillators is that they communicate with each
other by firing sudden pulse-like discharges. Modelling the detailed shape of these pulses requires a system of
smooth differential equations with several degrees of freedom for each oscillator. One well known example is
the Hodgkin–Huxley model of excitable nerve tissue that describes the generation of an action potential due to the
activation–deactivation of a number of voltage-dependent ionic gates [20]. Analysing a network of Hodgkin–Huxley
neurons is a difficult task due to the complexity of the single-neuron model. This motivates the application of the
phase reduction method (for weak coupling) to reduce the network dynamics to a system of phase equations with the
phase interaction function constructed from the single neuron dynamics. The latter has been carried out explicitly
for the Hodgkin–Huxley model [21]. An alternative approach is to neglect details concerning the shape of a pulse by
considering anintegrate-and-firemodel [22]. The integrate-and-fire model has been used to study flashing fireflies
[23], cardiac pacemaker cells [24], and biological neural networks [25–30]. Mutual synchronization of integrate-
and-fire oscillators has also recently sparked interest within the physics community due to certain parallels with
stick-slip models and self-organized criticality [31].

Although considerable simplification is achieved by working with integrate-and-fire oscillators, the mathematical
analysis is still a challenging problem since the state of the system changes discontinuously at certain discrete time
(threshold crossing) events so that a complete description in terms of smooth ordinary differential equations is no
longer possible. Significant progress can be made, however, once it is realized that in the case of phase-locked
solutions such as synchronous states and travelling waves, the system can be described in terms of a set of phase
equations involving the relative shifts in the firing times of the oscillators (with the collective frequency of the
oscillators determined self-consistently). These steady-state phase equations have the same formal structure as
those obtained using phase reduction methods, with the important additional feature that they are also valid in the
strong coupling regime. Thus various analytical techniques developed for studying phase-locking in weakly coupled
oscillators may be extended to the case of integrate-and-fire oscillators with arbitrary coupling.

In this paper we present a detailed analysis of phase-locking in networks of integrate-and-fire oscillators. For
concreteness, we consider the particular problem of travelling waves along chains of integrate-and-fire oscillators
with local, delayed interactions. A corresponding analysis of rings of pulse-coupled oscillators based on group
theoretic methods has been presented elsewhere [32,33]. We begin in Section 2 by reviewing relevant results
concerning phase-locking and travelling waves in chains of weakly coupled limit cycle oscillators. We then derive
conditions for phase-locking in a chain of integrate-and-fire oscillators for arbitrary coupling strength (Section 3).
We also derive conditions for the linear stability of phase-locked solutions by considering small perturbations of the
firing times. In Section 4 we extend a continuum approximation method introduced by Kopell and Ermentrout [34]
to analyse travelling waves in long chains of integrate-and-fire oscillators. Finally, in Section 5 we study through
numerical examples how various instabilities arise with changes in the degree of anisotropy, the coupling strength
and the distribution of external inputs.

Note that one possible application of our work is to the study of central pattern generators for locomotion. The
generation and control of rhythmic activity results from a combination of synaptic interactions, intrinsic membrane
properties and network connectivity. Guided by the study of small networks in the spinal cord of the lamprey or
Xenopus tadpole and other experimentally accessible systems the fundamental properties of neurons that contribute
to rhythm generation are being uncovered. It is likely that each oscillator is actually a local subnetwork of neurons
rather than a single endogenous pacemaker cell. Since the precise details underlying such oscillators are still unknown
the aim of our mathematical analysis is not to provide an accurate model of CPGs but rather to gain insight into the
general forms of behaviour that chains of pulse-coupled oscillators can exhibit.
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2. Phase-locking in chains of weakly coupled limit cycle oscillators

In an important series of papers, Ermentrout and Kopell carried out a detailed study of the dynamics of a chain
of weakly coupled limit cycle oscillators [11,34,35]. A particular version of the system of equations that they
considered is (for anisotropic, nearest neighbour coupling)

Ẋn = F .X n/ + �
�
G+.X n+1; X n/ + G−.X n−1; X n/

�
; (1)

where Xn ∈ Rk; n = 1; : : : ; N + 1; F : Rk → Rk; G± : R2k → Rk and the boundary conditions are
G+.X N+2; X N+1/ ≡ 0 ≡ G−.X 0; X 1/ . In the absence of any coupling (� = 0), thenth oscillator is assumed
to have a stable limit cycle with frequency! n. In the case of weak coupling,� � 1, it was proven using invariant
manifold theory that there exists an asymptotically stable invariant torus of dimensionN + 1. Moreover, phase
variables� n ∈ R\Z; n = 1; : : : ; N + 1, may be chosen so that the dynamics on the torus can be expressed in the
form [11]

�̇ 1 = ! 1 + �h +.� 1; � 2; �/;

�̇ n = ! n + � [h+.� n; � n+1; �/ + h−.� n; � n−1; �/ ];

�̇ N+1 = ! N+1 + �h −.� N+1; � N ; �/; (2)

whereh± is a periodic function of its� arguments that depends on the nature of the coupling and on the dynamics
in a neighbourhood of a limit cycle. If! n = ! 1 + O.�/ then averaging theory [9] implies that

�̇ 1 = ! 1 + �H +.� 2 − � 1/ + O.� 2/;

�̇ n = ! n + � [H +.� n+1 − � n/ + H −.� n−1 − � n/ ] + O.� 2/;

�̇ N+1 = ! N+1 + �H −.� N − � N+1/ + O.� 2/; (3)

with

H ±.�/ =
Z 1

0
h±.� ; � + �; �/ d� : (4)

A basic issue concerning the dynamics of a chain of coupled oscillators is the conditions under which phase-
locking can occur, by which we mean a stable periodic solution to Eq. (3) and hence to Eq. (1). Such a solution
takes the form� n.t / = •t + � n, where• is the collective frequency of oscillations and the� n’s are constant. Of
particular interest from the viewpoint of biological systems are travelling wave solutions for which the phase� n varies
monotonically along the chain (see e.g. [15]). For sufficiently small� , phase-locked solutions of Eq. (3) correspond
to fixed points of an associated system of equations for the phase-differences� n = � n+1 − � n; n = 1; : : : ; N :

�̇ n = 1 n + H +.� n+1/ − H +.� n/ + H −.−� n/ − H −.−� n−1/ (5)

with boundary conditions

H −.−� 0/ ≡ 0 ≡ H +.� N+1/; (6)

where�1 n = ! n+1 − ! n and the timet has been rescaled according tot → �t . Note that fixed points of Eq. (5)
are independent of the collective frequency• ; the latter is determined from the equation

• = ! 1 + �H +.� 1/ + O.� 2/: (7)
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One finds that there are at least two different mechanisms that can generate travelling wave solutions. The first is
based on the presence of a gradient of frequencies along the chain, that is,1 n has the same sign for alln, with the
wave propagating from the high frequency region to the low frequency region. This can be established explicitly in
the case of an isotropic, odd interaction function,H ±.�/ = H.�/ = −H.−�/: Eq. (5) then simplifies according
to

�̇ n = 1 n + H.� n+1/ + H.� n−1/ − 2H.� n/ (8)

so that fixed point solutions8 = .� 1; : : : ; � N / satisfy the matrix equation

HHH.8/ = −AAA−1DDD; (9)

whereHHH.8/ = .H .� 1/; : : : ; H .� n// T;DDD = .1 1; : : : ; 1 N /T, andAAA is a tridiagonal matrix with components
Aii = −2; A i;i +1 = Ai+1;i = 1. For the sake of illustration suppose thatH.�/ = sin 2� � . Then a solution8
will exist if every component ofAAA−1DDD lies between±1. Let a0 = maxn{|.AAA−1DDD/ n|}. If a0 < 1 then for each
n = 1; : : : ; N there are two distinct solutions� ±

n in the interval [0,1] withH ′.� −
n / > 0 andH ′.� +

n / < 0. In other
words, there are 2N phase-locked solutions. Linearizing Eq. (8) about a phase-locked solution8 and exploiting the
structure of the matrixAAA, it can be proven that only the solution8 − = .� −

1 ; : : : ; � −
N / is stable. Assuming that the

frequency gradient is monotonic, this solution corresponds to a stable travelling wave. When the gradient becomes
too steep to allow phase-locking (i.e.a0 > 1), two or more pools of oscillators (frequency plateaus) tend to form
that oscillate at different frequencies [11].

Waves induced by frequency differences are important in peristalsis [36,11] and are also known to exist in
certain central pattern generators (CPGs) for swimming including the leech [37] and the Xenopus tadpole [38].
However, there is no evidence for frequency gradients in the lamprey CPG [15]. Moreover, in contrast to the waves
observed in the lamprey CPG, waves produced by a frequency gradient do not have a constant speed or, equivalently,
constant phase lags along the chain. Constant speed waves in a chain of identical oscillators can be generated by
an alternative mechanism based on properties of the coupling. This can be understood by considering a chain of
identical oscillators with one-way coupling. SettingH − = 0 and1 n = 0 in Eq. (5) shows that if there exists
a non-zero valuē� at whichH +. �̄/ = 0; H +′. �̄/ > 0 then there exists a stable travelling wave solution with
constant phase lag,� n = �̄ for all n. An interaction function having the above so-callededge propertyoccurs for
almost all kinds of coupling including chemical synapses. One important exception is that of electrical synapses
(gap junctions) where the coupling is diffusive so thatG±.U; U/ = 0 in Eq. (1) and the henceH ±.0/ = 0. If the
coupling is in both directions, as in the lamprey CPG, then the analysis is considerably more involved. Nevertheless,
it can be shown that for non-diffusive, anisotropic coupling,H + 6= H −; H ±.0/ 6= 0, and sufficiently long chains of
identical oscillators, there exist stable travelling waves with constant phase lags (except in a small boundary layer).
The method of proof involves a continuum limit analysis in which solutions of Eq. (5) are shown to converge to
solutions of a class of nonlinear, singularly perturbed, two-point boundary value problems [34,35].

An important question concerning the dynamics of weakly coupled oscillators is how large the coupling strength�
is permitted to be without the loss of the invariant torus. If the rate of attraction to the limit cycle is sufficiently strong
an equation of the form (2) also holds in the strong coupling regime. One then has a phase model whose interaction
functions no longer depend on phase differences (since averaging theory is no longer appropriate). Such a model
can exhibit more complex behaviour than the averaged model. In particular, for sufficiently large interactions, the
coupling can act to stop all oscillations leading to so-calledoscillator death. This has been studied in some detail
for several models of excitable cells in which the functionh± naturally takes the product form [39,40]

h.� n; � m; �/ = �R.� n/P .� m/; (10)
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whereP .� / is a positive pulse-like function (associated with conductances) andR.� / is analogous to the phase-
response curve for a forced oscillator [2].

In this paper, we shall consider another class of models for coupled excitable cells that is based on the integrate-
and-fire model of neural oscillators. Such a model, which may be regarded as a reduction of the Hodgkin–Huxley
model [41], preserves the pulse-like nature of neural interactions without being concerned about the particular details
of the shape of action potentials. It will allow us to incorporate various details concerning neural interactions, such
as axonal transmission delays and synaptic processing, in a relatively straightforward manner. As we shall establish
in Section 3, one of the interesting features of integrate-and-fire chains is that the conditions for phase-locking are
formally identical to those derived from Eq. (3) except that the former hold for all values of the coupling strength�
rather than just in the weak coupling limit. Thus one can extend the continuum approximation method of Kopell and
Ermentrout [34] to analyse travelling waves in chains of integrate-and-fire oscillators, with the important additional
features that the analysis holds for arbitrary values of the coupling strength� (see Section 4).

3. Phase-locking in chains of integrate-and-fire oscillators

3.1. The model

Consider a chain ofN + 1 integrate-and-fire oscillators labelledn = 1; : : : ; N + 1. LetUn.t/ denote the state
of thenth oscillator at timet . Suppose that the variablesUn.t/ satisfy the set of coupled equations

U̇n.t / = −Un.t/
� s

+ I n + �
X

〈m;n〉
Êm.t/ (11)

for 0 < U n < 1 where〈·; n〉 denotes summation over nearest neighbours ofn. Here � s represents a membrane
time constant and� corresponds to a conductance (in appropriate units). For convenience, we fix the units of time
by setting� s = 1. Typical values of the membrane time constant are 5–20 ms. Eq. (11) is supplemented by the
condition that the oscillator fires a single pulse or spike wheneverUn = 1 and that the state is immediately reset to
Un = 0. In Eq. (11),I n denotes a fixed external input andÊn; n = 1; : : : ; N + 1, represents the input from thenth
oscillator. We shall assume thatI n > 1 so that in the absence of any coupling.� = 0/ each oscillator fires at a rate
1=T̄n with T̄n = ln [I n=.I n − 1/ ]. The inputs take the form

Êm.t/ =
Z ∞

0
� .� /E m.t − � / d� (12)

for m = 1; : : : ; N + 1, whereEm.t/ is the sequence of spikes transmitted from themth oscillator at timet and
� .� / specifies a distribution of delayed connections. Neglecting the shape of an individual pulse, each spike train
can be represented as a sequence of Dirac delta-functions

En.t/ =
∞X

j =−∞
�.t − Tn

j /; (13)

whereTn
j is thej th firing-time of thenth oscillator, that is,Un.T n

j / = 1.
We decompose� .� / as� .� / = � e.� / − � i .� / where� e;i .� / represent distributions of excitatory (e) and inhibitory

(i) connections between neighbouring oscillators with� e;i .� / ≥ 0 for all � and
R∞

0 � e;i .� / d� = We;i < ∞. In neural
circuits underlying locomotion [38] and cortical microcircuits [42], there is a mixture of excitation and inhibition
mediated through synaptic interactions. In fact both inhibitory and excitatory post synaptic potentials (PSPs) have
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some finite rise and fall time. Moreover, the former are often generated by inhibitory interneurons leading to another
form of delay in interaction process. Motivated by such architectures we take

� e.� / = � � 2exp.−�� /2.� /; � i .� / = � e.� − � d/; (14)

where2.x/ = 1 if x ≥ 0 and2.x/ = 0 if x < 0. In this case the inhibitory pathway is delayed with respect to
the excitatory one and both forms of PSP are assumed to be identical withWe;i = 1. An analogous construction is
considered by Ritz et al. [43]. For the moment we shall also assume that the connections between oscillators are
isotropic. In Section 4 we shall relax this assumption to allow for anisotropy. This requires the introduction of a pair
of distributions for right-directed delayed interactions,� +.� / , and similarly for left-directed connections,� −.� / .

3.2. Phase-reduction and averaging in the weak coupling limit

We shall first show how in the weak coupling limit Eq. (11) with reset can be reduced to a phase equation of the
form (2). Following van Vreeswijk et al. [44], we introduce the phase variable n.t / according to

.mod 1/ n.t / + t

T̄ n
= 9 n.Un.t//; (15)

where

9 n.U/ = 1

T̄n

Z U

0

dx
I n − x

= 1

T̄n
ln

�
I n

I n − U

�
: (16)

Under such a transformation Eq. (11) becomes

˙ n.t / = �R T̄n

�
 n.t / + t

T̄n

� X

〈m;n〉
Êm.t/ (17)

with

RT .� / =
�
1 − e−T

�
eT �

T
(18)

for 0 ≤ � < 1 andRT .� + j / = RT .� / for all j ∈ Z. In the absence of any coupling the phase variable
 n.t / is constant in time and all oscillators fire with their natural periodsT̄n. For weak coupling, each oscillator
still approximately fires at the unperturbed rate but now the phases slowly drift according to Eq. (17). Since the
distribution� .� / is normalizable with� .� / → 0 as� → ∞, we can neglect the contribution tôEm.t/ from spikes
fired sufficiently far in the past. Hence, to first order in� , we can take the firing-times to beTn

j = .j − n.t // T̄n. Under

this approximation, Eqs. (12) and (17) lead to the following equation for the shifted phases� n.t / =  n.t / + t=T̄n:

�̇ n = 1

T̄n
+ �

X

〈m;n〉
RT̄n

.� n/PT̄m
.� m/ + O.� 2/; (19)

where

PT .� / =
∞X

j =0

� ..� + j /T / (20)

for 0 ≤ � < 1 andPT is extended outside this range by taking it to be a periodic function of� .
Comparison of Eq. (19) with Eqs. (2) and (10) shows thatRT may be interpreted as the phase-response curve

(PRC) of an individual integrate-and-fire oscillator andPT is the corresponding pulse-like function that contains all
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details concerning the distribution of delays. As discussed in some detail by Hansel et al. (1995), integrate-and-fire
oscillators have a type I PRC, which means that an instantaneous excitatory stimulus always advances its phase
(RT .� / is positive for all� ). On the other hand, in certain cases, limit cycle oscillators based on Hodgkin–Huxley-
like models of excitable cells are of type II. That is, an excitatory impulse can either advance or retard the phase
depending upon the point on the cycle at which the stimulus is applied (RT .� / takes on both positive and negative
values over the domain� ∈[0,1]). Since Eq. (19) was derived in the weak coupling regime, we can simplify it further
by assuming thatI n = I + O.�/ and averaging over the period̄T = ln [I=.I − 1/ ]. This leads to an equation of the
form (3) with isotropic coupling,

�̇ n = ! n + �
X

〈m;n〉
HT̄ .� m − � n/ + O.� 2/ (21)

with

! n = 1

T̄n

and

HT .�/ =
Z 1

0
RT .� /P T .� + �/ d� : (22)

(Note that an averaged interaction function for integrate-and-fire models was previously computed by Ermentrout
[45].) We conclude that in the weak coupling regime, phase-locking can be analysed along the lines described in
Section 2 for the given interaction function (22).

A number of points are in order. First, the interaction functionHT̄ in Eq. (22) depends explicitly on the natural
frequency 1=T̄ of the oscillators. In general, this would mean that the phase-lag induced along a chain by a travelling
wave would vary with the speed of locomotion (see Section 2). However, it appears that in certain vertebrates such
as the lamprey, the phase-lag is approximately independent of the speed of swimming. Indeed, it is found that
the wavelength of a travelling wave is comparable to the length of the animal’s body. A possible mechanism for
this, based on additional long-range coupling, has been considered by Ermentrout and Kopell [46]. Second, since
integrate-and-fire oscillators are of type I the interaction functionHT .�/ would be positive for all� in the case
of purely excitatory interactions. In order to allow for the more general type II form of interaction function, we
have assumed that there exists a combination of excitatory and inhibitory interactions between the integrate-and-fire
oscillators, see Eq. (14). In particular,PT .� / = Pe

T .� / −P i
T .� / wherePe;i

T = P ∞
j =0� e;i ..� + j /T / . The summation

over j is easily performed for� e;i satisfying Eq. (14) and gives

Pe
T .� / = � 2e−��T

1 − e−�T

�
�T + Te−�T

1 − e−�T

�
; 0 ≤ � < 1; P i

T = Pe
T

�
� − � d

T

�
: (23)

As before, these functions are extended outside their ranges by taking them to be periodic functions of� . For an
appropriate combination of excitatory and inhibitory connections it is possible for the effective interaction function
of an integrate-and-fire oscillator to be approximately sinusoidal (see Fig. 1).

3.3. Phase-locked solutions for arbitrary coupling

It is possible to study phase-locked solutions of Eq. (11) without the assumption of weak coupling, as we shall
now demonstrate. Suppose that every oscillator fires with the same fixed periodT , which is to be determined self-
consistently. The state of each oscillator can then be characterized by a constant phase� n ∈ R\Z, and the firing
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Fig. 1. Isotropic interaction functionHT .�/ determined by Eqs. (22) and (23) with� = 10; � d
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Fig. 7. Functionsf T .�/; g T .�/ for an anisotropic interaction functionK ±
T .� ; � ±/ with � + = 5; � − = 10; T = 1:2 and� d = 0:6.

Fig. 8. Self-consistent collective periodT for a local perturbation of inputs of size� and an isotropic interaction function with� d = 0:6 , � = 10,
� = 0:1 and� = 0:01� . Results shown are for a chain of 36 integrate-and-fire oscillators. For� < � ∗ the collective frequency is determined
by • R.T / . Beyond� ∗ the collective frequency is determined by•.x c; T /. At the pointA phase-locking disappears. Inset shows shape of local
perturbation of inputs across lattice.

and descending pathways may be incorporated by considering coupling functions that are phase-shifted versions
of one another [34].) As an illustration, suppose that we introduce distinct delay parameters� + = 5; � − = 10 and
write K ±

T .�/ = K ±
T .� ; � ±/ . The resulting functionsf T .�/ andgT .�/ are shown in Fig. 7 where the asymmetry

f T .� L / 6= f T .� R/ is clearly seen. In the case of zero input gradient, this anisotropy will produce a travelling wave
down the chain sinceQ in Eq. (58) will be positive.

5.2. Local regions of non-monotonic input

Assuming that the continuum limit approximation remains valid one may also explore the consequences of non-
monotonic distributions for the inputI .x/ . In the uncoupled case, this would induce regions for which there is a
local increase or decrease in the natural frequency. We write the input gradient as

I .x/ = Î .x/ + �p.x/; (63)

whereÎ .x/ is monotonically increasing inx, say, andp.x/ is nonzero only on a finite number of intervals on each
of which it has a fixed sign. The parameter� measures the strength of the local change in input, which we take in
numerical experiments to be as shown in the inset of Fig. 8.
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Fig. 9. Type I Solution with� R > � c determined by• R.T / for a local increase in input at position 20 extending out to neighbours up to three units
away is shown with�’s and� = � ∗ = 0:045. The type II solution that occurs for a larger� .� = 0:05/ is shown with+’s. In this case the collective
frequency is now determined by•.x c; T / > • R.T / . Results are for an isotropic interaction function withI 1 = 1:3; � = 0:1; � d = 0:6; � = 10
and� = 0:01� . Note that the transition region.n ∼ 20/ is not a layer satisfying the boundary layer equation but is a part of the outer solution.

Fig. 10. Distribution of frequenciesT−1 across chain for a large local perturbation of inputs of size� = 0:1. All other relevant parameter values
are as in Fig. 9.

For the purposes of illustration, suppose that a solution belongs to class (b) of Theorem 2 with� = 0 and
f ′′

T > 0. If � is increased but kept sufficiently small such that• R.T / > • max.T / then the solution remains of
type I and is different from the� = 0 solution only on the support ofp.x/ . As � increases•.x c; T / grows until
•.x c; T / = • max.T / . Since•.x; T / = Î .x/ + �p.x/ +2�f T .� c/ andÎ .x/ is increasing,•.x c; T / can only exceed
• R.T / if








