
VOLUME 80, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 25 MAY 1998

ersity,

led
ility

the
the
Traveling Waves in a Chain of Pulse-Coupled Oscillators
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We derive conditions for the existence of traveling wave solutions in a chain of pulse-coup
integrate-and-fire oscillators with nearest-neighbor interactions and distributed delays. A linear stab
analysis of the traveling waves is carried out in terms of perturbations of the firing times of
oscillators. It is shown how traveling waves destabilize when the detuning between oscillators or
strength of the coupling becomes too large. [S0031-9007(98)06205-X]
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Many processes in nature can be described in terms
finite chains of coupled nonlinear oscillators. Exampl
include the undulatory motion of swimming organism
such as the lamprey [1], leech [2], and the Xenopus tadp
[3], peristalsis in vascular and intestinal smooth musc
[4], and synchronization and waves of excitation that ari
during sensory processing in the cortex [5,6]. Vario
physical systems such as Josephson junction arrays [
and laser arrays [9] can also be modeled in terms of coup
oscillators. A basic question concerning these syste
is the condition under which traveling waves of activit
can occur. Traveling waves are typically phase-lock
solutions in which each oscillator has the same frequen
but the phase varies monotonically along the chain.

Almost all analysis to date has been carried out f
chains of oscillators in the weak-coupling regime whe
averaging methods can be used to reduce the mode
a system of phase equations. For a chain ofN 1 1
oscillators with nearest-neighbor coupling and natural fr
quenciesvn, n  1, . . . , N 1 1, these take the form [4]

Ùun  vn 1 e
X

km,nl
Hsum 2 und 1 Ose2d , (1)

wherekm, nl denotes a sum over nearest neighbors ofn.
The periodic interaction functionH depends on the nature
of the coupling and on the dynamics in a neighborhood
a limit cycle. The parametere determines the strength
of the interactions withe ø 1 for weak coupling. Any
phase-locked solution has the formunstd  Vt 1 zn,
wherezn is constant. Substitution ofÙun  V into Eq. (1)
yields N fixed point equations for the phase difference
fn  un11 2 un, n  1, . . . , N , which are independent
of the collective frequency of oscillationsV; the latter is
then determined from the remaining equationV  v1 1

eHsf1d. Note that in general explicitly solving for the
fixed pointshfnj is a nontrivial task since it is necessar
to take into account the boundary conditions at the en
of the chain. (In contrast, waves on a circular ring
identical oscillators arise naturally as a consequence
the underlying translational symmetry [10,11].) One find
that there are at least two different mechanisms that c
generate traveling wave solutions. The first is bas
0031-9007y98y80(21)y4815(4)$15.00
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on the presence of a gradient of frequencies along th
chain with the wave propagating from the high frequenc
region to the low frequency region. For example, if
vn11 2 vn  D . 0 in Eq. (1) then traveling waves
will occur provided thatD is sufficiently small; when
the gradient becomes too steep to allow phase lockin
two or more pools of oscillators (frequency plateaus
tend to form that oscillate at different frequencies [4].
The second mechanism for wave formation, which ca
occur in systems of identical oscillators with anisotropic
coupling, is due to so-called nondiffusive coupling in
which the interaction functionH satisfiesHs0d fi 0 [12].

In this Letter, we investigate traveling waves in a chain
of integrate-and-fire oscillators where the pulselike natur
of the interactions between biological oscillators is explic
itly incorporated [13]. Pulse-coupled oscillators also aris
within the context of certain physical systems such as dis
crete phase-locked loops [14] and stick-slip models [15
We derive a set of equations for phase-locked solution
that are structurally identical to those obtained from th
phase equation (1), and use this to establish the existence
traveling waves. In contrast to a chain of weakly coupled
limit cycle oscillators, our results for integrate-and-fire
chains hold for arbitrary values of the couplinge. We
also analyze the linear stability of traveling wave solution
for the integrate-and-fire chain and show how the conditio
for asymptotic stability reduces to that of a correspondin
phase model in the weak coupling limit. The existence an
stability of traveling wave solutions as a function of the
degree of detuning and the strength of coupling betwee
oscillators is investigated through a number of numerica
examples. For simplicity, we restrict our discussion to the
isotropic case.

Consider a chain ofN 1 1 integrate-and-fire oscillators
labeledn  1, . . . , N 1 1. Let Unstd denote the state of
the nth oscillator at timet. Suppose that the variables
Unstd satisfy the set of coupled equations

dUnstd
dt

 2Unstd 1 In 1 e
X

km,nl

bEmstd (2)

for 0 , Un , 1. Equation (2) is supplemented by the
condition that the oscillator fires a single pulse or spike
© 1998 The American Physical Society 4815
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wheneverUn  1 and that the state is immediately res
to Un  0. In Eq. (2),In denotes a fixed external inpu
and bEn, n  1, . . . , N 1 1, represents the inputs from the
nth oscillator. We shall assume thatIn . 1 so that in the
absence of any coupling (e  0) each oscillator fires at a
rate of1yTn with T n  lnsInyfIn 2 1gd. The inputs take
the form

bEmstd 
Z `

0
PstdEmst 2 td dt (3)

for m  1, . . . , N 1 1, where Emstd is the sequence of
spikes transmitted from themth oscillator at timet and
Pstd specifies a distribution of delayed connections.
the particular case of neural systems there are a numbe
possible sources of delays including axonal transmiss
delays, synaptic processing, and dendritic processing [1
Neglecting the shape of an individual pulse, each sp
train can be represented as a sequence of Dirac d
functionsEnstd 

P`
j2` dst 2 Tn

j d whereTn
j is thejth

firing time of thenth oscillator, that is,UnsTn
j d  1.

Suppose that we restrict our attention to phase-lock
solutions of Eq. (2) in which every oscillator fires with
the same fixed periodT , which has to be determined
self-consistently. The state of each oscillator can th
be characterized by a constant phaseun [ f0, 1g, and
the firing times of thenth oscillator becomeTn

j  s j 2

undT . Following Ref. [11], we integrate Eq. (2) over th
interval t [ s2Tun, T 2 Tund using the reset conditions
Uns2unT d  0 and UnsT 2 unTd  1 to obtain the
result

s1 2 e2T d21  In 1 e
X

km,nl
KT sum 2 und (4)

for n  1, . . . , N 1 1 where

KT sud  feT 2 1g21
Z T

0
etP̂st 1 uTd dt , (5)

with P̂std 
P`

j0 Pst 1 jT d for 0 # t , T . P̂std is
extended outside this range by taking it to be a period
function of t so thatKT su 1 1d  KT sud. Any solution
of Eq. (4) can be specified in terms of theN phase
differencesF  sf1, . . . , fNd, fn  un11 2 un, and the
collective frequency1yT . The phasesun are determined
only up to an arbitrary uniform phase shift. Compariso
of Eq. (4) with the corresponding set of conditions fo
phase-locked solutions (Ùun  V) of Eq. (1) shows that
they are formally identical, withKT playing the role of
the phase interaction functionH and vn ! In, V !

s1 2 e2T d21. It follows that various methods previously
developed to establish the existence of traveling wav
in chains of weakly coupled limit cycle oscillators ca
be carried over to the case of integrate-and-fire chai
Before illustrating this, however, a number of importa
differences between phase-locked solutions of Eqs.
and (4) need to be highlighted. First, Eq. (4) is exa
whereas Eq. (1) is valid only toOsed since it is derived
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under the assumption of weak coupling. Thus in th
former case, analysis of phase locking can be continu
to the strong coupling regime. Second, unlikeHsud,
KT sud explicitly depends on the collective frequency
of oscillations 1yT and the latter must be determined
self-consistently.

The third significant difference is that integrate-and
fire oscillators are of type I, which means that an instan
taneous excitatory stimulus always advances its phas
whereas limit cycle oscillators are typically of type II
since such a stimulus can either advance or retard t
phase, depending upon the point on the cycle at whic
the stimulus is applied [16]. This distinction manifests
itself in the nature of the coupling functionsHsud and
KT sud. In the case of purely excitatory interactions, only
the former takes on both positive and negative values ov
the domainu [ f0, 1g, whereasKT sud is a positive func-
tion. In order to allow for more general forms of the in-
teraction functionKT sud, we shall assume in Eq. (2) that
there exists a combination of excitatory (1) and inhibitory
(2) interactions between the integrate-and-fire oscilla
tors, such thatPstd  P1std 2 P2std with P6std $ 0.
Such combinations are found, for example, in neural ci
cuits underlying locomotion [3] and cortical microcircuits
[17], where there is a mixture of long and short rang
excitation and short range inhibition mediated throug
synaptic interactions. In fact both inhibitory and excita
tory post synaptic potentials (PSPs) have some finite ri
and fall time. Moreover, the former are often generate
by inhibitory interneurons leading to another form of de
lay in the interaction process. For simplicity, we conside
a situation with nearest-neighbor interactions in which th
inhibitory pathway is delayed with respect to the excita
tory one and describe both forms of PSP with a so-calle
a function gstd  a2te2at , wherea is the inverse rise
time. The interactions may be written asP1std  gstd
and P2std  gst 2 tddQst 2 tdd, wheretd is the de-
lay associated with the inhibitory pathway andQsxd  1
if x $ 0 and is zero otherwise.

If the number of oscillators is sufficiently large and
the frequency gradient is sufficiently small, then phase
locked solutions of Eq. (4) can be analyzed by extendin
a continuum approximation method developed by Kope
and Ermentrout for weakly coupled limit cycle oscillators
[12]. We shall briefly indicate the underlying idea and
present details elsewhere [18]. First, letfT and gT be
the even and odd parts ofKT , respectively, and define
V  s1 2 e2T d21. Rewrite Eq. (4) in terms offT , gT

and then consider the following continuum approximatio
(for N large but finite)

V  Isxd 1 e

∑
2fT sfd 1

1
N

f gT sfdgx

∏
(6)

supplemented by the boundary conditionsV  Is0d 1

ef fT sfd 1 gT sfdg at x  0 and V  Is1d 1

ef fT sfd 2 gT sfdg at x  1. Here Isxd is a smooth
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function of x, 0 # x # 1, such thatIn  IsnyfN 1 1gd
and fsxd is a smooth approximation offn, that is,
fn ø fsnyfN 1 1gd. The next step is to assume thatT
is fixed, so thatfT andgT are known functions, and solve
Eq. (6) for largeN . This generates a singularly perturbed
two-point boundary value problem forfsxd, which can
be solved using the method of matched asymptotic e
pansions [12,18]. The latter involves piecing together a
outer solution, which has sufficiently slow spatial variation
so that the termN21f gT sfdgx can be neglected in Eq. (6),
and an inner solution describing a rapidly varying bound
ary layer. Imposing certain conditions on the functionsfT

andgT , this yields a unique solution to the given boundar
value problem including a value forV, which we denote
by VsTd. If T is now treated as a free variable we obtain
a one-parameter family of solutions withVsTd a known
function of T . A unique, self-consistent, phase-locked
solution to Eq. (6) then exists provided that there exis
a unique periodT satisfyingVsT d  s1 2 e2T d21, and
such that the original hypotheses on the coupling function
fT andgT are not violated [18]. Finally, it can be proven
that the original discrete model of Eq. (4) has a solutio
that converges to the solution of the continuum mode
(nonuniformly in the boundary layer) in the limitN ! `.
An example of a boundary layer is shown in Fig. 1, wher
a traveling wave solution obtained by numerically solving
Eq. (4) is compared with the solution of the continuum
model given by Eq. (6).

The linear stability of a phase-locked solutionsF, T d of
Eq. (2) can be determined along similar lines to the anal
sis of globally coupled integrate-and-fire oscillators [19
by considering small perturbations of the phase-locked fi
ing patternsTn

j  s j 2 undT 1 d
n
j . Solving Eq. (2) and

the reset condition leads to an implicit map for the per

FIG. 1. A traveling wave solution forN  36, td  0.6,
a  10, e  0.1, b  0.01e, and I1  1.3. The points
represent the numerical solution of Eq. (4), while the soli
line is the solution of the corresponding continuum boundar
value problem. The right inset shows how the intersection o
VsT d and VsTd  f1 2 e2T g21 yields a unique value for the
collective period,T  1.47.
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n
j . Linearizing this map yields a linear delay

difference equation that has solutions of the formd
n
k 

lkdn with the eigenvaluel satisfying the equation [18]:

sl 2 1dAT
n sFddn 

X̀
j0

X
km,nl

aT
nm,jsFd

3 fl2jGnmslddm 2 dng , (7)

whereGnmsld  l if un , um andGnmsld  1 if un .

um and

AT
n sFd 

24In 2 1 1 e
X

km,nl
P̂ssssum 2 undT ddd

35 , (8)

aT
nm,jsFd  ee2T

Z T

0
etP0ssst 1 s j 1 um 2 undT ddd dt .

(9)

Here 0 indicates differentiation with respect tot. Note
that one solution to Eq. (7) is given by the eigenvalu
l0  1 and its corresponding eigenvectordm  d

for all m. This reflects the invariance of the dynam
ics with respect to a uniform shift in the firing time
of the oscillators. The condition for asymptotic sta
bility of a traveling wave solution isjlj , 1 for all
eigenvaluesl fi l0. In the weak-coupling limit, with
In  I for some fixed I . 1, solutions to Eq. (7) in
the complexl plane will either be in the neighborhood
of the real solutionl  1 or in the neighborhood of
one of the poles of

P`
j0 aT

nm,jsFdl2jGnmsld. These
poles all lie inside the unit circle and hence are n
important in terms of determining whether or not
phase-locked solution is stable. Thus to first ord
in e we set l  1 and T ! T  lnsIyfI 2 1gd on
the right-hand side of (7). The result is that toOsed
the spectrum close tol  1 coalesces intoN 1 1
distinct points given byl0  1 and lp  1 1 xmp,
p  1, . . . , N, where x  ef1 2 e2T gysTfI 2 1gd and
0, m1, . . . , mp are the eigenvalues of theN 1 1 3 N 1 1
matrix ĴmnsFd  JmnsFd 2 dm,n

P
kp,nl JpnsFd with

JmnsFd 
P

kp,nl K 0

T sup 2 unddm,p. The condition for
stability reduces to Remp , 0 for all p  1, . . . , N . An
identical stability condition would be found for phase
locked solutions of Eq. (1) withH ! KT . This can be
understood by noting that in the weak coupling limit a
averaging procedure applied to Eq. (2) leads to such
phase model [11].

We deduce from the above linear stability analysis th
in the weak coupling limit the behavior of the integrate
and-fire chain will be similar to that found previousl
for the phase-coupled model (1). However, we expe
new features to emerge as the coupling is increased.
investigate this further it is useful rewrite Eq. (4) in term
of the N phase differencesfn assuming a constant inpu
gradientIn11 2 In  b:

0  b 1 efKT sfn11d 2 KT sfnd 1 KT s2fnd

2 KT s2fn21dg , (10)
4817
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FIG. 2. Numerical continuation of a phase-locked solutio
into the strong coupling regime withN  36, td  1.0, a 
8, b  0.0005, and I1  1.1. Such solutions may destabilize
if one or more of the eigenvalues of the linearized firing ma
cross the unit circle and new stable solutions may appe
Numerical support for this possibility is provided in the lef
inset where we show a stable nonfrequency-locked soluti
which exists at the pointA (e  0.4) in the strong coupling
regime. At pointB (e  0.03), frequency locked states cease
to exist in favor of a stable two-plateau state in which eac
group of oscillators has a differing frequency, as shown in th
right inset.

s1 2 e2T d21  I1 1 eKT sf1d , (11)

and the boundary conditions are taken to beKT s2f0d ;
0 ; KT sfN11d. The parameterb determines the amount
of detuning of the oscillator frequencies. In the wea
coupling limit with T ! T , phase-locked solutions will
depend only on the parameterse, b through their ratio
bye. As previously found for weakly coupled phase os
cillators [4], we would expect that increasing the leve
of detuningb for fixed e (small) leads to the disappear-
ance of stable phase-locked solutions and the formati
of frequency plateaus. This is indeed the case as sho
in the right-hand inset of Fig. 2, which was obtained b
direct integration of Eq. (2). Outside the weak couplin
regime, on the other hand, Eqs. (10) and (11) cann
be solved for the phase differencesfn independently of
the collective periodT . The latter is determined self-
consistently to yieldT  Tse, bd. Thus, phase-locked
solutions now depend on both parameterse, b indepen-
dently. If e is increased for fixedb it is possible for
phase-locked solutions to persist into the strong coupli
regime (see Fig. 2). However, increasing the couplin
strengthe can induce instabilities due to one or mor
eigenvalues of Eq. (7) crossing the unit circle leading
new forms of solution in which the bulk of the oscillators
4818
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fire at approximately twice the frequency of the bounda
ones (see left-hand inset of Fig. 2). Note that in contr
to the weak-coupling regime, destabilization of a phas
locked solution no longer requires that eigenvalues cr
the unit circle close tol  1. Indeed, preliminary stud-
ies suggest that the mechanism of destabilization is v
distinct from that occurring for smalle and largeb. We
hope to pursue this issue further elsewhere.

We conclude that a gradient of synaptic drive c
sustain a stable traveling wave, with realistic neuron
firing frequencies, for a large range of coupling strengt
Importantly, such a mechanism is believed to underly t
swimming behavior observed in Xenopus embryos, wh
a rostral-caudal gradient in synaptic drive is believed to
sustained by positive feedback within the premotor neu
circuitry [3]. A more detailed model based on the wo
in this Letter is being used to test such hypotheses.
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