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We review recent work concerning the effects of dendritic structure on single neuron
response and the dynamics of neural populations. We highlight a number of concepts
and techniques from physics useful in studying the behaviour of the spatially extended
neuron. First we show how the single neuron Green’s function, which incorporates de-
tails concerning the geometry of the dendritic tree, can be determined using the theory
of random walks. We then exploit the formal analogy between a neuron with dendritic
structure and the tight–binding model of excitations on a disordered lattice to analyse
various Dyson–like equations arising from the modelling of synaptic inputs and random
synaptic background activity. Finally, we formulate the dynamics of interacting pop-
ulations of spatially extended neurons in terms of a set of Volterra integro–differential
equations whose kernels are the single neuron Green’s functions. Linear stability analysis
and bifurcation theory are then used to investigate two particular aspects of population
dynamics (i) pattern formation in a strongly coupled network of analog neurons and (ii)
phase–synchronization in a weakly coupled network of integrate–and–fire neurons.

1. Introduction

The identification of the main levels of organization in synaptic neural circuits may
provide the framework for understanding the dynamics of the brain. Some of these
levels have already been identified1. Above the level of molecules and ions, the
synapse and local patterns of synaptic connection and interaction define a micro-
circuit. These are grouped to form dendritic subunits within the dendritic tree of
single neurons. A single neuron consists of a cell body (soma) and the branched pro-
cesses (dendrites) emanating from it, both of which have synapses, together with an
axon that carries signals to other neurons (figure 1). Interactions between neurons
constitute local circuits. Above this level are the columns, laminae and topographic
maps involving multiple regions in the brain. They can often be associated with the
generation of a specific behaviour in an organism. Interestingly it has been shown
that sensory stimulation can lead to neurons developing an extensive dendritic tree.
In some neurons over 99% of their surface area is accounted for in the dendritic
tree. The tree is the largest volumetric component of neural tissue in the brain, and
with up to 200,000 synapses consumes 60% of the brains energy2.
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Fig. 1. Branching dendritic tree of an idealized single neuron.

Neurons display a wide range of dendritic morphology, ranging from compact
arborizations to elaborate branching patterns. Those with large dendritic subunits
have the potential for pseudo–independent computations to be performed simul-
taneously in distinct dendritic subregions3. Moreover, it has been suggested that
there is a relationship between dendritic branching structure and neuronal firing
patterns4. In the case of the visual system of the fly the way in which postsynaptic
signals interact is essentially determined by the structure of the dendritic tree5 and
highlights the consequences of dendritic geometry for information processing. By
virtue of its spatial extension, and its electrically passive nature, the dendritic tree
can act as a spatio–temporal filter. It selects between specific temporal activations
of spatially fixed synaptic inputs, since responses at the soma depend explicitly on
the time for signals to diffuse along the branches of the tree. Furthermore, intrinsic
modulation, say from background synaptic activity, can act to alter the cable prop-
erties of all or part of a dendritic tree, thereby changing its response to patterns of
synaptic input. The recent interest in artificial neural networks6,7,8 and single node
network models ignores many of these aspects of dendritic organization. Dendritic
branching and dendritic subunits1, spatio–temporal patterns of synaptic contact9,10,
electrical properties of cell membrane11,12, synaptic noise13 and neuromodulation14

all contribute to the computational power of a synaptic neural circuit. Importantly,
the developmental changes in dendrites have been proposed as a mechanism for
learning and memory.

In the absence of a theoretical framework it is not possible to test hypotheses
relating to the functional significance of the dendritic tree. In this review, therefore,
we exploit formal similarities between models of the dendritic tree and systems
familiar to a theoretical physicist and describe, in a natural framework, the physics
of the extended neuron. Our discussion ranges from the consequences of a diffusive
structure, namely the dendritic tree, on the response of a single neuron, up to an
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investigation of the properties of a neural field, describing an interacting population
of neurons with dendritic structure. Contact with biological reality is maintained
using established models of cell membrane in conjunction with realistic forms of
nonlinear stochastic synaptic input.

A basic tenet underlying the description of a nerve fibre is that it is an electrical
conductor15. The passive spread of current through this material causes changes in
membrane potential. These current flows and potential changes may be described
with a second–order linear partial differential equation essentially the same as that
for flow of current in a telegraph line, flow of heat in a metal rod and the diffusion
of substances in a solute. Hence, the equation as applied to nerve cells is com-
monly known as the cable equation. Rall16 has shown how this equation can also
represent an entire dendritic tree for the case of certain restricted geometries. In
a later development he pioneered the idea of modelling a dendritic tree as a graph
of connected electrical compartments17. In principle this approach can represent
any arbitrary amount of nonuniformity in a dendritic branching pattern as well as
complex compartment dependencies on voltage, time and chemical gradients and
the space and time–dependent synaptic inputs found in biological neurons. Com-
partmental modelling represents a finite–difference approximation of a linear cable
equation in which the dendritic system is divided into sufficiently small regions such
that spatial variations of the electrical properties within a region are negligible. The
partial differential equations of cable theory then simplify to a system of first–order
ordinary differential equations. In practice a combination of matrix algebra and
numerical methods are used to solve for realistic neuronal geometries18,19.

In section 2, we indicate how to calculate the fundamental solution or Green’s
function of both the cable equation and compartmental model equation of an arbi-
trary dendritic tree. The Green’s function determines the passive response arising
from the instantaneous injection of a unit current impulse at a given point on the
tree. In the case of the cable equation a path integral approach can be used, whereby
the Green’s function of the tree is expressed as an integral of a certain measure over
all the paths connecting one point to another on the tree in a certain time. Bound-
ary conditions define the measure. The procedure for the compartmental model is
motivated by exploiting the intimate relationship between random walks and diffu-
sion processes20. The space–discretization scheme yields matrix solutions that can
be expressed analytically in terms of a sum over paths of a random walk on the
compartmentalized tree. This approach avoids the more complicated path integral
approach yet produces the same results in the continuum limit.

In section 3 we demonstrate the effectiveness of the compartmental approach in
calculating the somatic response to realistic spatio–temporal synaptic inputs on the
dendritic tree. Using standard cable or compartmental theory, the potential change
at any point depends linearly on the injected input current. In practice, postsy-
naptic shunting currents are induced by localized conductance changes associated
with specific ionic membrane channels. The resulting currents are generally not
proportional to the input conductance changes. The conversion from conductance
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changes to somatic potential response is a nonlinear process. The response function
depends nonlinearly on the injected current and is no longer time–translation invari-
ant. However, a Dyson equation may be used to express the full solution in terms
of the bare response function of the model without shunting. In fact Poggio and
Torre21,22 have developed a theory of synaptic interactions based upon the Feynman
diagrams representing terms in the expansion of this Dyson equation. The nonlin-
earity introduced by shunting currents can induce a space and time–dependent cell
membrane decay rate. Such dependencies are naturally accommodated within the
compartmental framework and are shown to favour a low output–firing rate in the
presence of high levels of excitation.

Not surprisingly, modifications in the membrane potential time constant of a
cell due to synaptic background noise can also have important consequences for
neuronal firing rates. In section 4 we show that techniques from the study of
disordered solids are appropriate for analyzing compartmental neuronal response
functions with shunting in the presence of such noise. With a random distribution
of synaptic background activity a mean–field theory may be constructed in which
the steady state behaviour is expressed in terms of an ensemble–averaged single–
neuron Green’s function. This Green’s function is identical to the one found in the
tight–binding alloy model of excitations in a one–dimensional disordered lattice.
With the aid of the coherent potential approximation, the ensemble average may
be performed to determine the steady state firing rate of a neuron with dendritic
structure. For the case of time–varying synaptic background activity drawn from
some coloured noise process, there is a correspondence with a model of excitons
moving on a lattice with random modulations of the local energy at each site. The
dynamical coherent potential approximation and the method of partial cumulants
are appropriate for constructing the average single–neuron Green’s function. Once
again we describe the effect of this noise on the firing–rate.

Neural network dynamics has received considerable attention within the con-
text of associative memory, where a self–sustained firing pattern is interpreted as
a memory state7. The interplay between learning dynamics and retrieval dynamics
has received less attention23 and the effect of dendritic structure on either or both
has received scant attention at all. It has become increasingly clear that the intro-
duction of simple, yet biologically realistic, features into point processor models can
have a dramatic effect upon network dynamics. For example, the inclusion of signal
communication delays in artificial neural networks of the Hopfield type can destabi-
lize network attractors, leading to delay–induced oscillations via an Andronov–Hopf
bifurcation24,25. Undoubtedly, the dynamics of neural tissue does not depend solely
upon the interactions between neurons, as is often the case in artificial neural net-
works. The dynamics of the dendritic tree, synaptic transmission processes, com-
munication delays and the active properties of excitable cell membrane all play some
role. However, before an all encompassing model of neural tissue is developed one
must be careful to first uncover the fundamental neuronal properties contributing
to network behaviour. The importance of this issue is underlined when one recalls
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that the basic mechanisms for central pattern generation in some simple biological
systems, of only a few neurons, are still unclear26,27,28. Hence, theoretical modelling
of neural tissue can have an immediate impact on the interpretation of neurophysi-
ological experiments if one can identify pertinent model features, say in the form of
length or time scales, that play a significant role in determining network behaviour.
In section 5 we demonstrate that the effects of dendritic structure are consistent with
the two types of synchronized wave observed in cortex. Synchronization of neural
activity over large cortical regions into periodic standing waves is thought to evoke
typical EEG activity29 whilst travelling waves of cortical activity have been linked
with epileptic seizures, migraine and hallucinations30. First, we generalise the stan-
dard graded response Hopfield model31 to accomodate a compartmental dendritic
tree. The dynamics of a recurrent network of compartmental model neurons can be
formulated in terms of a set of coupled nonlinear scalar Volterra integro–differential
equations. Linear stability analysis and bifurcation theory are easily applied to this
set of equations. The effects of dendritic structure on network dynamics allows the
possibility of oscillation in a symmetrically connected network of compartmental
neurons. Secondly, we take the continuum limit with respect to both network and
dendritic coordinates to formulate a dendritic extension of the isotropic model of
nerve tissue32,30,33. The dynamics of pattern formation in neural field theories lack-
ing dendritic coordinates has been strongly influenced by the work of Wilson and
Cowan34 and Amari32,35. Pattern formation is typically established in the pres-
ence of competition between short–range excitation and long–range inhibition, for
which there is little anatomical or physiological support36. We show that the dif-
fusive nature of the dendritic tree can induce a Turing–like instability, leading to
the formation of stable spatial and time–periodic patterns of network activity, in
the presence of more biologically realistic patterns of axo–dendritic synaptic con-
nections. Spatially varying patterns can also be established along the dendrites and
have implications for Hebbian learning37. A complimentary way of understanding
the spatio–temporal dynamics of neural networks has come from the study of cou-
pled map lattices. Interestingly, the dynamics of integrate–and–fire networks can
exhibit patterns of spiral wave activity38. We finish this section by discussing the
link between the neural field theoretic approach and the use of coupled map lattices
using the weak–coupling transform developed by Kuramoto39. In particular, we an-
alyze an array of pulse–coupled integrate–and–fire neurons with dendritic structure,
in terms of a continuum of phase–interacting oscillators. For long range excitatory
coupling the bifurcation from a synchronous state to a state of travelling waves is
described.

2. The uniform cable

A nerve cable consists of a long thin, electrically conducting core surrounded by
a thin membrane whose resistance to transmembrane current flow is much greater
than that of either the internal core or the surrounding medium. Injected current
can travel long distances along the dendritic core before a significant fraction leaks
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out across the highly resistive cell membrane. Linear cable theory expresses conser-
vation of electric current in an infinitesimal cylindrical element of nerve fibre. Let
V (ξ, t) denote the membrane potential at position ξ along a cable at time t mea-
sured relative to the resting potential of the membrane. Let τ be the cell membrane
time constant, D the diffusion constant and λ the membrane length constant. In
fact τ = RC, λ =

√
aR/(2r) and D = λ2/τ , where C is the capacitance per unit

area of the cell membrane, r the resistivity of the intracellular fluid (in units of
resistance × length), the cell membrane resistance is R (in units of resistance ×
area) and a is the cable radius. In terms of these variables the basic uniform cable
equation is

∂V (ξ, t)
∂t

= −V (ξ, t)
τ

+ D
∂2V (ξ, t)

∂ξ2
+ I(ξ, t), ξ ∈ R, t ≥ 0 (1)

where we include the source term I(ξ, t) corresponding to external input injected
into the cable. In response to a unit impulse at ξ′ at t = 0 and taking V (ξ, 0) = 0
the dendritic potential behaves as V (ξ, t) = G(ξ − ξ′, t), where

G(ξ, t) =
∫ ∞
−∞

dk

2π
eikξe−(1/τ+Dk2)t (2)

=
1√

4πDt
e−t/τe−ξ

2/(4Dt) (3)

and G(ξ, t) is the fundamental solution or Green’s function for the cable equation
with unbounded domain. It is positive, symmetric and satisfies∫ ∞

−∞
dξG(ξ, t) = e−t/τ (4)

G(ξ, 0) = δ(ξ) (5)(
∂

∂t
+

1
τ
−D

∂2

∂ξ2

)
G(ξ, t) = 0 (6)∫ ∞

−∞
dξ1G(ξ2 − ξ1, t2 − t1)G(ξ1 − ξ0, t1 − t0) = G(ξ2 − ξ0, t2 − t0) (7)

Equation (5) describes initial conditions, (6) is simply the cable equation without
external input whilst (7) (with t2 > t1 > t0) is a characteristic property of Markov
processes. In fact it is a consequence of the convolution properties of Gaussian
integrals and may be used to construct a path integral representation. By dividing
time into an arbitrary number of intervals and using (7) the Green’s function for
the uniform cable equation may be written

G(ξ − ξ′, t) =
∫ ∞
−∞

n−1∏
k=0

dzke−(tk+1−tk)/τ√
4πD(tk+1 − tk)

exp

− 1
4D

n−1∑
j=0

(
zj+1 − zj
tj+1 − tj

)2
 (8)

with z0 = ξ′, zn = ξ. This gives a precise meaning to the symbolic formula

G(ξ − ξ′, t) =
∫ z(t)=ξ

z(0)=ξ′
Dz(t′) exp

(
− 1

4D

∫ t

0

dt′ż2

)
(9)
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where Dz(t) implies integrals on the positions at intermediate times, normalised as
in (8).

In the compartmental modelling approach an unbranched cylindrical region of a
passive dendrite is represented as a linked chain of equivalent circuits as shown
in figure 2. Each compartment consists of a membrane leakage resistor Rα in
parallel with a capacitor Cα, with the ground representing the extracellular medium
(assumed to be isopotential). The electrical potential Vα(t) across the membrane
is measured with respect to some resting potential. The compartment is joined
to its immediate neighbours in the chain by the junctional resistors Rα,α−1 and
Rα,α+1. All parameters are equivalent to those of the cable equation, but restricted
to individual compartments. The parameters Cα, Rα and Rαβ can be related to the
underlying membrane properties of the dendritic cylinder as follows. Suppose that
the cylinder has uniform diameter d and denote the length of the αth compartment
by lα. Then

Cα = cαlαπd, Rα =
1

gαlαπd
, Rαβ =

2rαlα + 2rβlβ
πd2

(10)

where gα and cα are the membrane conductance and capacitance per unit area, and
rα is the longitudinal resistivity. An application of Kirchoff’s law to a compart-
ment shows that the total current through the membrane is equal to the difference
between the longitudinal currents entering and leaving that compartment. Thus,

Cα
dVα
dt

= − Vα
Rα

+
∑
<β;α>

Vβ − Vα
Rαβ

+ Iα(t), t ≥ 0 (11)

where Iα(t) represents the net external input current into the compartment and
< β;α > indicates that the sum over β is restricted to immediate neighbours of α.
Dividing through by Cα (and absorbing this factor within the Iα(t)), equation (11)
may be written as a linear matrix equation18:

dV
dt

= QV + I(t), Qαβ = −δα,β
τα

+
∑

<β′;α>

δβ,β′

ταβ′
(12)

where the membrane time constant τα and junctional time constant ταβ are

1
τα

=
1

Cα

 ∑
<β′;α>

1
Rαβ′

+
1

Rα

 ,
1

ταβ
=

1
CαRαβ

(13)

Equation (12) may be formally solved as

Vα(t) =
∑
β

∫ t

0

dt′Gαβ(t− t′)Iβ(t′) +
∑
β

Gαβ(t)Vβ(0), t ≥ 0 (14)

with

Gαβ(t) =
[
eQt
]
αβ

(15)
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Fig. 2. Equivalent circuit for a compartmental model of a chain of successive cylindrical segments
of passive dendritic membrane.

The response function Gαβ(T ) determines the membrane potential of compartment
α at time t in response to a unit impulse stimulation of compartment β at time t−T .
The matrix Q has real, negative, nondegenerate eigenvalues λr reflecting the fact
that the dendritic system is described in terms of a passive RC circuit, recognized as
a dissipative system. Hence, the response function can be obtained by diagonalizing
Q to obtain Gαβ(t) =

∑
r Cr

αβe
−|λr|t for constant coefficients determined, say, by

Sylvester’s expansion theorem. We avoid this cumbersome approach and instead
adopt the recent approach due to Bressloff and Taylor40.

For an infinite uniform chain of linked compartments we set Rα = R, Cα = C

for all α, Rαβ = Rβα = R′ for all α = β + 1 and define τ = RC and γ = R′C.
Under such assumptions one may write

Qαβ = −δα,β
τ

+
Kαβ

γ
,

1
τ

=
1
τ

+
2
γ

. (16)

The matrix K generates paths along the tree and in this case is given by

Kαβ = δα−1,β + δα+1,β (17)

The form (16) of the matrix Q carries over to dendritic trees of arbitrary topol-
ogy provided that each branch of the tree is uniform and certain conditions are
imposed on the membrane properties of compartments at the branching nodes and
terminals of the tree40. In particular, modulo additional constant factors arising
from the boundary conditions at terminals and branching nodes [Km]αβ is equal to
the number of possible paths consisting of m steps between compartments α and
β (with possible reversals of direction) on the tree, where a step is a single jump
between neighbouring compartments. Thus calculation of Gαβ(t) for an arbitrary
branching geometry reduces to (i) determining the sum over paths [Km]αβ , and
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then (ii) evaluating the following series expansion of eQt,

Gαβ(t) = e−t/τ
∑
m≥0

(
t

γ

)m 1
m!

[Km]αβ (18)

The global factor e−t/τ arises from the diagonal part of Q.
For the uniform chain, the number of possible paths consisting of m steps be-

tween compartments α and β can be evaluated using the theory of random walks41,

[Km]αβ = N0[|α− β|, m] (19)

where

N0[L, m] =
(

m

[m + L]/2

)
(20)

The response function of the chain (18) becomes

Gαβ(t) = e−t/τ
∑
m≥0

(
t

γ

)2m+|β−α| 1
(m + |β − α|)!m!

(21)

= e−t/τI|β−α|(2t/γ) (22)

where In(t) is a modified Bessel function of integer order n. Alternatively, one may
use the fact that the response function Gαβ(t) satisfies

dGαβ

dt
=
∑
γ

QαγGγβ , Gαβ(0) = δα,β (23)

which may be solved using Fourier transforms, since for the infinite chain Gαβ(t)
depends upon |α− β| (translation invariance). Thus

Gαβ(t) =
∫ π

−π

dk

2π
eik|α−β|e−ε(k)t (24)

where

ε(k) = τ−1 − 2γ−1 cos k (25)

Equation (24) is the well known integral representation of equation (22). The
response function (22) is plotted as a function of time (in units of γ) in figure 3 for
a range of separations m = α−β. Based on typical values of membrane properties18

we take γ = 1msec and τ = 10γ. The response curves of figure 3 are similar to
those found in computer simulations of more detailed model neurons19; that is, the
simple analytical expression, equation (22), captures the essential features of the
effects of the passive membrane properties of dendrites. In particular the sharp rise
to a large peak, followed by a rapid early decay in the case of small separations, and
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Fig. 3. Response function of an infinite chain as a function of t (in units of γ) with τ = 10γ for
various values of the separation distance m.

the slower rise to a later and more rounded peak for larger separations is common
to both analyses.

A re–labelling of each compartment by its position along the dendrite as ξ = lα,
ξ′ = lβ, α, β = 0±1,±2, . . . , with l the length of an individual compartment makes
it easy to take the continuum limit of the above model. Making a change of variable
k → k/l on the right hand side of (24) and taking the continuum limit l→ 0 gives

G(ξ − ξ′, t) = e−t/τ lim
l→0

∫ π/l

−π/l

dk

2π
eik(ξ−ξ′)e−[k2l2t/γ+... ] (26)

which reproduces the fundamental result (3) for the standard cable equation upon
taking D = liml→0 l2/γ.

An arbitrary dendritic tree may be construed as a set of branching nodes linked
by finite length pieces of nerve cable. In a sense, the fundamental building blocks of
a dendritic tree are compartmental chains plus encumbant boundary conditions and
single branching nodes. Rall42 has described the conditions under which a branched
tree is equivalent to an infinite cable. From the knowledge of boundary conditions
at branching nodes, a tree geometry can be specified such that all junctions are
impedance matched and injected current flows without reflection at these points.
The statement of Rall’s 3/2 power law for equivalent cylinders has the particularly
simple geometric expression that d

3/2
p =

∑
d

3/2
d where dp (dd) is the diameter of

the parent (daughter) dendrite. Analytic solutions to the multicylinder cable model
may be found in43 where a nerve cell is represented by a set of equivalent cylin-
ders. A more general analysis for arbitrary branching dendritic geometries, where
each branch is described by a one–dimensional cable equation, can be generated
by a graphical calculus developed in44, or using a path–integral method based on
equation (8)45,46. The results of the path–integral approach are most easily un-
derstood in terms of an equivalent compartmental formulation based on equation
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(18)40. For an arbitrary granching geometry, one can exploit various reflection ar-
guments from the theory of random walks41 to express [Km]αβ of equation (18) in

the form
∑(α,β)
µ cµN0[Lµ, m]. This summation is over a restricted class of paths

(or trips) µ of length Lµ from α to β on a corresponding uniform infinite dendritic
chain. It then follows from equations (21) and (22) that the Green’s function on an
arbitrary tree can be expressed in the form Gαβ(t) =

∑(α,β)
µ cµILµ(2t/γ). Explicit

rules for calculating the appropriate set of trips together with the coefficients cµ are
given elsewhere47. Finally, the results of the path–integral approach are recovered
by taking the continuum limit of each term in the sum–over–trips using equation
(26). The sum–over–trips representation of the Green’s function on a tree is par-
ticularly suited for determining short–time response, since one can then truncate
the (usually infinite) series to include only the shortest trips. Laplace transform
techniques developed by Bressloff et al47 also allow explicit construction of the
long–term response.

The role of spatial structure in temporal information processing can be clarified
with the aid of equation (14), assuming Vα(0) = 0 for simplicity. Taking the soma
to be the compartment labelled by α = 0 the response at the cell body to an input
of the form Iα(t) = wαI(t) is

V0(t) =
∑
β

wβ Îβ(t) (27)

where Îβ(t) =
∫ t

0
dt′G0β(t− t′)I(t′). Regarding wα as a weight and I(t) as a time–

varying input signal, the compartmental neuron acts as a perceptron48 with an input
layer of linear filters that transforms the original signal I(t) into a set of signals
Îα(t). The filtered signal is obtained with a convolution of the compartmental
response function G0β(t). Thus the compartmental neuron develops over time a set
of memory traces of previous input history from which temporal information can
be extracted. Applications of this model to the storage of temporal sequences are
detailed in49. If the weighting function wα has a spatial component as wα = w cos pα

then, making use of the fact that the Fourier transform of Gαβ(t) is given from (24)
as e−ε(k)t and that ε(k) = ε(−k), the somatic response becomes

V0(t) = w

∫ t

0

dt′e−ε(p)(t−t
′)I(t′) (28)

For a simple pulsed input signal I(t) = δ(t) the response is characterised by a
decaying exponential with the rate of decay given by ε(p). Taking τ À γ the decay
rate ε(p) is dominated by the p dependent term 2(1 − cos p)/γ. When p = 0 the
membrane potential V0(t) decays slowly with rate 1/τ . On the other hand with
p = π, V0(t) decays rapidly with rate 4/γ. The dependence of decay rates on the
spatial frequency of excitations is also discussed for the cable equation using Fourier
methods by Rall50.

To complete the description of a compartmental model neuron, a firing mecha-
nism must be specified. A full treatment of this process requires a detailed descrip-
tion of the interactions between ionic currents and voltage dependent channels in the
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soma (or more precisely the axon hillock) of the neuron. When a neuron fires there
is a rapid depolarization of the membrane potential at the axon hillock followed by
a hyperpolarization due to delayed potassium rectifier currents. A common way to
represent the firing history of a neuron is to regard neuronal firing as a threshold pro-
cess. In the so–called integrate–and–fire model, a firing event occurs whenever the
somatic potential exceeds some threshold. Subsequently, the membrane potential
is immediately reset to some resting level. The dynamics of such integrate-and–
fire models lacking dendritic structure has been extensively investigated51,52,53,54.
Rospars and Lansky55 have tackled a more general case with a compartmental
model in which it is assumed that dendritic potentials evolve without any influ-
ence from the nerve impulse generation process. However, a model with an active
(integrate–and–fire) compartment coupled to a passive compartmental tree can be
analyzed explicitly without this dubious assumption. In fact the electrical coupling
between the soma and dendrites means that there is a feedback signal across the
dendrites whenever the somatic potential resets. This situation is described in detail
by Bressloff56. The basic idea is to eliminate the passive component of the dynam-
ics (the dendritic potential) to yield a Volterra integro–differential equation for the
somatic potential. An iterative solution to the integral equation can be constructed
in terms of a second–order map of the firing times, in contrast to a first order map
as found in point–like models. We return again to the interesting dynamical aspects
associated with integrate–and–fire models with dendritic structure in section 5.

3. Synaptic interactions in the presence of shunting currents

Up till now the fact that changes in the membrane potential V (ξ, t) of a nerve cable
induced by a synaptic input at ξ depend upon the size of the deviation of V (ξ, t) from
some resting potential has been ignored. This biologically important phenomenon
is known as shunting. If such shunting effects are included within the cable equation
then the synaptic input current I(ξ, t) of equation (1) becomes V (ξ, t) dependent.
The postsynaptic current is in fact mainly due to localized conductance changes for
specific ions, and a realistic form for it is

I(ξ, t) = Γ(ξ, t)[S − V (ξ, t)] (29)

where Γ(ξ, t) is the conductance change at location ξ due to the arrival of a presy-
naptic signal and S is the effective membrane reversal potential associated with all
the ionic channels. Hence, the postsynaptic current is no longer simply proportional
to the input conductance change. The cable equation is once again given by (1)
with τ−1 → τ−1 + Γ(ξ, t) ≡ Q(ξ, t) and I(ξ, t) ≡ SΓ(ξ, t). Note the spatial and
temporal dependence of the cell membrane decay function Q(ξ, t). The membrane
potential can still be written in terms of a Green’s function as

V (ξ, t) =
∫ t

0

ds

∫ ∞
−∞

dξ′G(ξ − ξ′; t, s)I(ξ′, s) +
∫ ∞
−∞

dξ′G(ξ − ξ′; t, 0)V (ξ′, 0) (30)

but now the Green’s function depends on s and t independently and is no longer
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time–translation invariant. Using the n fold convolution identity for the Green’s
function we may write it in the form

G(ξ − ξ′; t, s) =
n−1∏
j=1

∫ ∞
−∞

dzjG(ξ − z1; t, t1)G(z1 − z2; t1, t2) . . . G(zn−1 − ξ′; tn−1, s)

(31)

This is a particularly useful form for the analysis of spatial and temporal varying
cell membrane decay functions induced by the shunting current. For large n the
Green’s function G(ξ − ξ′; t, s) can be approximated by an n fold convolution of
approximations to the short time Green’s function G(zj− zj+1; tj , tj+1). Motivated
by results from the analysis of the cable equation in the absence of shunts it is
natural to try

G(zj − zj+1; tj , tj+1) ≈ e−
(tj+1−tj)

2 (Γ(zj ,tj)+Γ(zj+1,tj+1))G(zj − zj+1, tj+1 − tj) (32)

where G(ξ, t) is the usual Green’s function for the cable equation with unbounded
domain and the cell membrane decay function is approximated by its spatio–temporal
average. Substituting this into (31) and taking the limit n→∞ gives the result

G(ξ − ξ′; t, s) = lim
n→∞

n−1∏
j=1

∫ ∞
−∞

dzje−
∆t
2 Γ(ξ,t)G(ξ − z1,∆t)

×e−∆tΓ(z1,t−∆t)G(z1 − z2,∆t)e−∆tΓ(z2,t−2∆t) . . . G(zn−1 − ξ′,∆t)e−
∆t
2 Γ(ξ′,s) (33)

where ∆t = (t − s)/n. The heuristic method for calculating such path–integrals
is based on a rule for generating random walks. Paths are generated by starting
at the point ξ and taking n steps of length

√
2D∆t choosing at each step to move

in the positive or negative direction along the cable with probability 1/2 × an
additional weighting factor. For a path that passes through the sequence of points
ξ → z1 → z2 . . .→ ξ′ this weighting factor is given by

W (ξ → z1 → z2 . . .→ ξ′) = e−∆t( 1
2 Γ(ξ,t)+Γ(z1,t−∆t)+...+ 1

2 Γ(ξ′,s)) (34)

The normalized distribution of final points ξ′ achieved in this manner will give the
Green’s function (33) in the limit n→∞. If we independently generate p paths of
n steps all starting from the point x then

G(ξ − ξ′; t, s) = lim
n→∞

lim
p→∞

1
p

paths∑
ξ→ξ′

W (ξ → z1 → z2 . . .→ ξ′) (35)

It can be shown that this procedure does indeed give the Green’s function satisfying
the cable equation with shunts45. For example, when the cell membrane decay
function only depends upon t such that Q(ξ, t) = τ−1 + Γ(t) then using (33), and
taking the limit ∆t→ 0, the Green’s function simply becomes

G(ξ − ξ′; t, s) = exp(−
∫ t

s

dt′Γ(t′))G(ξ − ξ′, t− s) (36)
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as expected, where G(ξ, t) on the right hand side of (36) satisfies the cable equation
on an unbounded domain given by equation (6).

To incorporate shunting effects into the compartmental model described by (11)
we first examine in more detail the nature of synaptic inputs. The arrival of an
action potential at a synapse causes a depolarisation of the presynaptic cell mem-
brane resulting in the release of packets of neurotransmitters. These drift across the
synaptic cleft and bind with a certain efficiency to receptors on the postsynaptic
cell membrane. This leads to the opening and closing of channels allowing ions
(Na+,K+,Cl−) to move in and out of the cell under concentration and potential
gradients. The ionic membrane current is governed by a time–varying conductance
in series with a reversal potential S whose value depends on the particular set of
ions involved. Let ∆gαk(t) and Sαk denote, respectively, the increase in synaptic
conductance and the membrane reversal potential associated with the kth synapse
of compartment α, with k = 1, . . . P . Then the total synaptic current is given by

P∑
k=1

∆gαk(t)[Sαk − Vα(t)] (37)

Hence, an infinite chain of compartments with shunting currents can be written

dV
dt

= H(t)V + I(t), t ≥ 0 (38)

where H(t) = Q + Q(t) and

Qαβ(t) = −δα,β
Cα

∑
k

∆gαk(t) ≡ −δα,βΓα(t), Iα(t) =
1

Cα

∑
k

∆gαk(t)Sαk (39)

Formally, equation (38) may be solved as

Vα(t) =
∫ t

0

dt′
∑
β

Gαβ(t, t′)Iβ(t′) +
∑
β

Gαβ(t, 0)V (0) (40)

with

Gαβ(t, s) = T
[
exp

(∫ t

s

dt′H(t′)
)]

αβ

(41)

where T denotes the time–ordering operator, that is T[H(t)H(t′)] = H(t)H(t′)Θ(t−
t′) + H(t′)H(t)Θ(t′ − t) where Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 otherwise. Note
that, as in the continuum case, the Green’s function is no longer time–translation
invariant. Poggio and Torre have pioneered a different approach to solving the
set of equations (38) in terms of Volterra integral equations21,22. This leads to an
expression for the response function in the form of a Dyson–like equation,

Gαβ(t, t′) = Gαβ(t− t′)−
∫ t

t′
dt′′

∑
γ

Gαγ(t− t′′)Γγ(t′′)Gγβ(t′′, t′) (42)



Physics of the Extended Neuron 15

where Gαβ(t) is the response function without shunting. The right–hand side of (42)
may be expanded as a Neumann series in Γα(t) and Gαβ(t), which is a bounded,
continuous function of t. Poggio and Torre exploit the similarity between the Neu-
mann expansion of (42) and the S–matrix expansion of quantum field theory. Both
are solutions of linear integral equations; the linear kernel is in one case the Green’s
function Gαβ(t) (or G(ξ, t) for the continuum version), in the other case the interac-
tion Hamiltonian. In both approaches the iterated kernels of higher order obtained
through the recursion of (42) are dependent solely upon knowledge of the linear ker-
nel. Hence, the solution to the linear problem can determine uniquely the solution
to the full nonlinear one. This analogy has led to the implementation of a graphical
notation similar to Feynman diagrams that allows the construction of the somatic
response in the presence of shunting currents. In practice the convergence of the
series expansion for the full Green’s function is usually fast and the first few terms
(or graphs) often suffice to provide a satisfactory approximation. Moreover, it has
been proposed that a full analysis of a branching dendritic tree can be constructed
in terms of such Feynman diagrams21,22. Of course, for branching dendritic geome-
tries, the fundamental propagators or Green’s functions on which the full solution
is based will depend upon the geometry of the tree40.

In general the form of the Green’s function (41) is difficult to analyze due to
the time–ordering operator. It is informative to examine the special case when i)
each post–synaptic potential is idealised as a Dirac–delta function, ie details of the
synaptic transmission process are neglected and ii) the arrival times of signals are
restricted to integer multiples of a fundamental unit of time tD. The time varying
conductance ∆gαk(t) is then given by a temporal sum of spikes with the form

∆gαk(t) = εαk
∑
m≥0

δ(t−mtD)aαk(m) (43)

where aαk(m) = 1 if a signal (action potential) arrives at the discrete time mtD and
is zero otherwise. The size of each conductance spike, εαk, is determined by factors
such as the amount of neurotransmitter released on arrival of an action potential
and the efficiency with which these neurotransmitters bind to receptors. The terms
defined in (39) become

Qαβ(t) = −δαβ
∑
m≥0

δ(t−mtD)qα(m), Iα(t) =
∑
m≥0

δ(t−mtD)uα(m) (44)

qα(m) =
∑
k

εαkaαk(m), uα(m) =
∑
k

εαkSαkaαk(m) (45)

and for convenience the capacitance Cα has been absorbed into each εαk so that
εαk is dimensionless.

The presence of the Dirac–delta functions in (43) now allows the integrals in
the formal solution (40) to be performed explicitly. Substituting (44) into (40) with
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tD = 1 and setting Vα(0) = 0, we obtain for non–integer times t,

Vα(t) =
∑
β

[t]∑
n=0

T

exp

∫ t′

n

dt′

Q−
∑
p≥0

Q̃(p)δ(t′ − p)




αβ

uβ(n) (46)

where [t] denotes the largest integer m ≤ t, Q̃αβ(p) = δα,βqα(p) and uα(n) and
qα(n) are given in (45). The time–ordered product in (46) can be evaluated by
splitting the interval [n, [t]] into LT equal partitions [ti, ti+1], where T = [t] − n,
t0 = n, tL = n+1, . . . , tLT = [t], such that δ(t− s)→ δi,Ls/L. In the limit L→∞,
we obtain

Vα(t) =
∑
β

[t]∑
n=0

([
e(t−[t])Qe−Q̃([t])eQe−Q̃([t]−1) . . . eQe−Q̃(n)

]
αβ

)
uβ(n) (47)

which is reminiscent of the path–integral equation (33) for the continuous cable
with shunts. Equation (47) may be rewritten as

Vα(t) =
∑
β

[
e(t−m)Qe−Q̃(m)

]
αβ

Xβ(m) (48)

Xα(m) =
∑
β

[
eQe−Q̃(m−1)

]
αβ

Xβ(m− 1) + uα(m), m < t < m + 1 (49)

with Xα(m) defined iteratively according to (49) and Xα(0) = uα(0). The main
effect of shunting is to alter the local decay rate of a compartment as τ−1 →
τ−1 + qα(m)/(t−m) for m < t ≤ m + 1.

The effect of shunts on the steady–state X∞α = limm→∞Xα(m) is most easily
calculated in the presence of constant synaptic inputs. For clarity, we consider two
groups of identical synapses on each compartment, one excitatory and the other
inhibitory with constant activation rates. We take Sαk = S(e) for all excitatory
synapses and Sαk = 0 for all inhibitory synapses (shunting inhibition). We also set
εαk = 1 for all α, k. Thus equation (45) simplifies to

qα = Eα + Eα, uα = S(e)Eα (50)

where Eα and Eα are the total rates of excitation and inhibition for compartment
α. We further take the pattern of input stimulation to be non–recurrent inhibition
of the form (see figure 4):

Eα = aαE,
∑
β

aβ = 1, Eα =
∑
β 6=α

Eα (51)

An input that excites the αth compartment also inhibits all other compartments in
the chain. The pattern of excitation across the chain is completely specified by the
aα’s. The steady state X∞α is

X∞α = S(e)E lim
m→∞

m∑
n=0

∑
β

aβ exp
(
−n

(
1
τ

+ E

))
I|β−α|(2n/γ) (52)
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Fig. 4. Non–recurrent inhibition

and we have made use of results from section 2, namely equations (16) and (22). The
series on the right hand side of (52) is convergent so that the steady–state X∞α is
well defined. Note that X∞α determines the long–term behaviour of the membrane
potentials according to equation (48). For small levels of excitation E, X∞α is
approximately a linear function of E. However, as E increases, the contribution of
shunting inhibition to the effective decay rate becomes more significant. Eventually
X∞α begins to decrease.

Finally, using parallel arguments to Abbott57 it can be shown that the nonlinear
relationship between X∞α and E in equation (52) provides a solution to the problem
of high neuronal firing–rates. A reasonable approximation to the average firing rate
Ω of a neuron is58

Ω = f(X∞0 (E)) =
fmax

1 + exp(g[h−X∞0 (E))]
(53)

for some gain g and threshold h where fmax is the maximum firing rate. Consider a
population of excitatory neurons in which the effective excitatory rate E impinging
on a neuron is determined by the average firing rate 〈Ω〉 of the population. For
a large population of neurons a reasonable approximation is to take E = c 〈Ω〉
for some constant c. Within a mean–field approach, the steady state behaviour of
the population is determined by the self–consistency condition E = cf(X∞0 (E))57.
Graphical methods show that there are two stable solutions, one corresponding to
the quiescent state with E = 0 and the other to a state in which the firing–rate is
considerably below fmax. In contrast, if X∞0 were a linear function of E then this
latter stable state would have a firing–rate close to fmax, which is not biologically
realistic. This is illustrated in figure 5 for aβ = δβ,1.

4. Effects of background synaptic noise

Neurons typically possess up to 105 synapses on their dendritic tree. The sponta-
neous release of neurotransmitter into such a large number of clefts can substantially
alter spatio–temporal integration in single cells59,60. Moreover, one would expect
consequences for such background synaptic noise on the firing rates of neuronal
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Fig. 5. Firing–rate/maximum firing rate f/fmax as a function of input excitation E for (a) linear
and (b) nonlinear relationship between steady–state membrane potential X∞0 and E. Points of
intersection with straight line are states of self–sustained firing.

populations. Indeed, the absence of such noise for in–vitro preparations, without
synaptic connections, allows experimental determination of the effects of noise upon
neurons in–vivo. In this section we analyse the effects of random synaptic activ-
ity on the steady–state firing rate of a compartmental model neural network with
shunting currents. In particular we calculate firing–rates in the presence of ran-
dom noise using techniques from the theory of disordered media and discuss the
extension of this work to the case of time–varying background activity.

Considerable simplification of time–ordered products occurs for the case of con-
stant input stimulation. Taking the input to be the pattern of non–recurrent inhi-
bition given in section 3, the formal solution for the compartmental shunting model
(40), with Vα(0) = 0 reduces to

Vα(t) =
∑
β

∫ t

0

dt′Ĝαβ(t− t′)Iβ(t′), Ĝαβ(t) =
[
e(Q−Q̃)t

]
αβ

(54)

where Q̃αβ = (Eα + Eα)δα,β and Iα = S(e)Eα. The background synaptic activity
impinging on a neuron residing in a network introduces some random element for
this stimulus. Consider the case for which the background activity contributes to
the inhibitory rate Eα in a simple additive manner so that

Eα =
∑
β 6=α

Eβ + ηα (55)

Furthermore, the ηα are taken to be distributed randomly across the population of
neurons according to a probability density ρ(η) which does not generate correlations
between the η’s at different sites, ie 〈ηαηβ〉η = 0 for α 6= β. Hence, Q̃αβ = (E +
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ηα)δα,β and the long time somatic response is

lim
t→∞

V0(t) ≡ V∞(E) = S(e)E

∫ ∞
0

dt′
∑
β 6=0

aβe−Et
′
[exp (Q− diag(η))t′]0β (56)

Writing Ĝαβ(t) = Gαβ(t)e−Et, and recognizing Gαβ(t) as the Green’s function
of an infinite nonuniform chain where the source of nonuniformity is the random
background ηα, the response (56) takes the form

V∞(E) = S(e)E
∑
β 6=0

aβG0β(E) (57)

and Gαβ(E) is the Laplace transform of Gαβ(t).
In the absence of noise we have simply that Gαβ(t) = G(0)

αβ (t) = [eQ(0)t]αβ(after
redefining Q(0) = Q) where

G(0)
αβ (E) =

∫ ∞
0

dt′e−Et
′
[
eQ(0)t

]
αβ

=
∫ π

−π

dk

2π

eik|α−β|

ε(k) + E
(58)

and we have employed the integral representation (24) for the Green’s function on
an infinite compartmental chain. The integral (58) may be written as a contour
integral on the unit circle C in the complex plane. That is, introducing the change
of variables z = eik and substituting for ε(k) using (25),

G(0)
αβ (E) =

∮
C

dz

2πi

z|α−β|

(E + τ−1 + 2γ−1)z − γ−1(z2 + 1)
(59)

The denominator in the integrand has two roots

λ±(E) = 1 +
γ(E + τ−1)

2
±

√(
1 +

γ(E + τ−1)
2

)2

− 1 (60)

with λ−(E) lying within the unit circle. Evaluating (59) we obtain

G(0)
0β (E) = γ

(λ−(E))β

λ+(E)− λ−(E)
(61)

Hence, the long–time somatic response (56) with large constant excitation of the
form of (51), in the absence of noise is

V∞(E) ∼ S(e)
∑
β 6=0

aβ(λ−(E))β (62)

with λ−(E) → 0 and hence V∞(E) → 0 as E → ∞. As outlined at the end
of section 3, a mean–field theory for an interacting population of such neurons
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leads to a self–consistent expression for the average population firing rate in the
form E = cf(V∞(E)) (see equation (53)). The nonlinear form of the function
f introduces difficulties when one tries to perform averages over the background
noise. However, progress can be made if we assume that the firing–rate is a linear
function of V∞(E). Then, in the presence of noise, we expect E to satisfy the
self–consistency condition

E = c 〈V∞(E)〉η + φ (63)

for constants c, φ. To take this argument to conclusion one needs to calculate the
steady–state somatic response in the presence of noise and average. In fact, as we
shall show, the ensemble average of the Laplace–transformed Green’s function, in
the presence of noise, can be obtained using techniques familiar from the theory of
disordered solids61,62. In particular 〈Gαβ(E)〉η has a general form that is a natural
extension of the noise free case (58);

〈Gαβ(E)〉η =
∫ π

−π

dk

2π

eik|α−β|

ε(k) + E + Σ(E, k)
(64)

The so–called self–energy term Σ(E, k) alters the pole structure in k–space and
hence the eigenvalues λ±(E) in equation (60).

We note from (56) that the Laplace–transformed Green’s function G(E) may be
written as the inverse operator

G(E) = [EI−Q]−1 (65)

where Qαβ = Q
(0)
αβ − ηαδα,β and I is the unit matrix. The following result may

be deduced from (65): The Laplace–transformed Green’s function of a uniform
dendritic chain with random synaptic background activity satisfies a matrix equation
identical in form to that found in the tight–binding-alloy (TBA) model of excitations
on a one dimensional disordered lattice63. In the TBA model Q(0) represents an
effective Hamiltonian perturbed by the diagonal disorder η and E is the energy of
excitation; 〈Gαβ(E)〉η determines properties of the system such as the density of
energy eigenstates.

Formal manipulation of (65) leads to the Dyson equation

G = G(0) − G(0)ΛG (66)

where Λ = diag(η). Expanding this equation as a series in η we have

Gαβ = G(0)
αβ −

∑
γ

G(0)
αγ ηγG(0)

γβ +
∑
γ,γ′

G(0)
αγ ηγG(0)

γγ′ηγ′G
(0)
γ′β − . . . (67)

Diagrams appearing in the expansion of the full Green’s function equation (66) are
shown in figure 6. The exact summation of this series is generally not possible.
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Figure 6: Diagrams appearing in the expansion of the single–neuron Green’s func-
tion (67).

The simplest and crudest approximation is to replace each factor ηγ by the site–
independent average η. This leads to the so–called virtual crystal approximation
(VCA) where the series (67) may be summed exactly to yield

〈G(E)〉η = [EI− (Q(0) − ηI)]−1 = G(0)(E + η) (68)

That is, statistical fluctuations associated with the random synaptic inputs are
ignored so that the ensemble averaged Green’s function is equivalent to the Green’s
function of a uniform dendritic chain with a modified membrane time constant
such that τ−1 → τ−1 + η. The ensemble–average of the VCA Green’s function is
shown diagrammatically in figure 7. Another technique commonly applied to the
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Figure 7: Diagrams appearing in the expansion of the ensemble–averaged Green’s
function (68).

summation of infinite series like (67) splits the sum into one over repeated and
un–repeated indices. The repeated indices contribute the so–called renormalized
background (see figure 8),

η̃α = ηα − ηαG(0)
ααηα + ηαG(0)

ααηαG(0)
ααηα . . .

=
ηα

1 + ηαG(0)
00

(69)

where we have exploited the translational invariance of G(0). Then, the full series
becomes

Gαβ = G(0)
αβ −

∑
γ 6=α,β

G(0)
αγ η̃γG(0)

γβ +
∑

γ 6=α,γ′;γ′ 6=β
G(0)
αγ η̃γG(0)

γγ′ η̃γ′G
(0)
γ′β − . . . (70)

Note that nearest neighbour site indices are excluded in (70). If an ensemble average
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Figure 8: Diagrammatic representation of the renormalized synaptic background
activity (69).

of (70) is performed, then higher–order moments contribute less than they do in
the original series (67). Therefore, an improvement on the VCA approximation is
expected when η̃α in (70) is replaced by the ensemble average η(E) where

η(E) =
∫

dηρ(η)
η

1 + ηG(0)
00 (E)

(71)

The resulting series may now be summed to yield an approximation G̃(E) to the
ensemble averaged Green’s function as

G̃(E) = G(0)(E + Σ̃(E)) (72)

where

Σ̃(E) =
η(E)

1− η(E)G(0)
00 (E)

(73)

The above approximation is known in the theory of disordered systems as the av-
erage t–matrix approximation (ATA).

The most effective single–site approximation used in the study of disordered
lattices is the coherent potential approximation (CPA). In this framework each den-
dritic compartment has an effective (site–independent) background synaptic input
Σ̂(E) for which the associated Green’s function is

Ĝ(E) = G(0)(E + Σ̂(E)) (74)

The self–energy term Σ̂(E) takes into account any statistical fluctuations via a
self–consistency condition. Note that Ĝ(E) satisfies a Dyson equation

Ĝ = G(0) − G(0)diag(Σ̂)Ĝ (75)

Solving (75) for G(0) and substituting into (66) gives

G = Ĝ − diag(η − Σ̂)G (76)

To facilitate further analysis and motivated by the ATA scheme we introduce a
renormalized background field η̂ as

η̂α =
ηα − Σ̂(E)

1 + (ηα − Σ̂(E))Ĝ00

, (77)
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and perform a series expansion of the form (70) with G(0) replaced by Ĝ and η by η̂.
Since the self–energy term Σ̂(E) incorporates any statistical fluctuations we should
recover Ĝ on performing an ensemble average of this series. Ignoring multi–site
correlations, this leads to the self–consistency condition

〈η̂α〉η ≡
∫

dηρ(η)
ηα − Σ̂(E)

1 + (ηα − Σ̂(E))G(0)
00 (E + Σ̂(E))

= 0 (78)

This is an implicit equation for Σ̂(E) that can be solved numerically.
The steady–state behaviour of a network can now be obtained from (57) and

(63) with one of the schemes just described. The self–energy can be calculated for a
given density ρ(η) allowing the construction of an an approximate Green’s function
in terms of the Green’s function in the absence of noise given explicitly in (61). The
mean–field consistency equation for the firing–rate in the CPA scheme takes the
form

E = cS(e)E
∑
β

aβG(0)
0β (E + Σ̂(E)) + φ (79)

Bressloff63 has studied the case that ρ(η) corresponds to a Bernoulli distribution.
It can be shown that the firing–rate decreases as the mean activity across the net-
work increases and increases as the variance increases. Hence, synaptic background
activity can influence the behaviour of a neural network and in particular leads
to a reduction in a network’s steady–state firing–rate. Moreover, a uniform back-
ground reduces the firing–rate more than a randomly distributed background in the
example considered.

If the synaptic background is a time-dependent additive stochastic process, equa-
tion (55) must be replaced by

Eα(t) =
∑
β 6=α

Eβ + ηα(t) + E (80)

for some stochastic component of input ηα(t). The constant E is chosen sufficiently
large to ensure that the the rate of inhibition is positive and hence physical. The
presence of time–dependent shunting currents would seem to complicate any anal-
ysis since the Green’s function of (54) must be replaced with

G(t, s) = T
[
exp

(∫ t

s

dt′Q(t′)
)]

, Qαβ(t) = Q
(0)
αβ − (E + E + ηα(t))δα,β (81)

which involves time–ordered products and is not time–translation invariant. How-
ever, this invariance is recovered when the Green’s function is averaged over a sta-
tionary stochastic process64. Hence, in this case the averaged somatic membrane
potential has a unique steady–state given by

〈V∞(E)〉η = S(e)E
∑
β 6=0

aβH0β(E) (82)
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where H(E) is the Laplace transform of the averaged Green’s function H(t) and

H(t− s) = 〈G(t, s)〉η (83)

The average firing–rate may be calculated in a similar fashion as above with the aid
of the dynamical coherent potential approximation. The averaged Green’s function
is approximated with

H(E) = G(0)(E + Λ(E) + E) (84)

analogous to equation (74), where Λ(E) is determined self–consistently. Details of
this approach when ηα(t) is a multi–component dichotomous noise process are given
elsewhere65. The main result is that a fluctuating background leads to an increase
in the steady–state firing–rate of a network compared to a constant background
of the same average intensity. Such an increase grows with the variance and the
correlation of the coloured noise process.

5. Neurodynamics

In previous sections we have established that the passive membrane properties of
a neuron’s dendritic tree can have a significant effect on the spatio–temporal pro-
cessing of synaptic inputs. In spite of this fact, most mathematical studies of the
dynamical behaviour of neural populations neglect the influence of the dendritic
tree completely. This is particularly surprising since, even at the passive level, the
diffusive spread of activity along the dendritic tree implies that a neuron’s response
depends on (i) previous input history (due to the existence of distributed delays as
expressed by the single–neuron Green’s function), and (ii) the particular locations
of the stimulated synapses on the tree (i.e. the distribution of axo–dendritic con-
nections). It is well known that delays can radically alter the dynamical behaviour
of a system. Moreover, the effects of distributed delays can differ considerably from
those due to discrete delays arising, for example, from finite axonal transmission
times66. Certain models do incorporate distributed delays using so–called α func-
tions or some more general kernel67. However, the fact that these are not linked
directly to dendritic structure means that feature (ii) has been neglected.

In this section we examine the consequences of extended dendritic structure on
the neurodynamics of nerve tissue. First we consider a recurrent analog network
consisting of neurons with identical dendritic structure (modelled either as set of
compartments or a one–dimensional cable). The elimination of the passive com-
partments (dendritic potentials) yields a system of integro–differential equations
for the active compartments (somatic potentials) alone. In fact the dynamics of
the dendritic structure introduces a set of continuously distributed delays into the
somatic dynamics. This can lead to the destabilization of a fixed point and the
simultaneous creation of a stable limit cycle via a super–critical Andronov–Hopf
bifurcation.

The analysis of integro–differential equations is then extended to the case of spa-
tial pattern formation in a neural field model. Here the neurons are continuously
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distributed along the real line. The diffusion along the dendrites for certain config-
urations of axo–dendritic connections can not only produce stable spatial patterns
via a Turing–like instability, but has a number of important dynamical effects. In
particular, it can lead to the formation of time–periodic patterns of network activity
in the case of short–range inhibition and long–range excitation. This is of particular
interest since physiological and anatomical data tends to support the presence of
such an arrangement of connections in the cortex, rather than the opposite case
assumed in most models.

Finally, we consider the role of dendritic structure in networks of integrate–and–
fire neurons51,69,70,71,38,72,72. In this case we replace the smooth synaptic input,
considered up till now, with a more realistic train of current pulses. Recent work
has shown the emergence of collective excitations in integrate–and–fire networks
with local excitation and long–range inhibition73,74, as well as for purely excitatory
connections54. An integrate–and–fire neuron is more biologically realistic than a
firing–rate model, although it is still not clear that details concerning individual
spikes are important for neural information processing. An advantage of firing–rate
models from a mathematical viewpoint is the differentiability of the output func-
tion; integrate–and–fire networks tend to be analytically intractable. However, the
weak–coupling transform developed by Kuramoto and others39,75 makes use of a
particular nonlinear transform so that network dynamics can be re–formulated in
a phase–interaction picture rather than a pulse–interaction one67. The problem
(if any) of non–differentiability is removed, since interaction functions are differen-
tiable in the phase–interaction picture, and traditional analysis can be used once
again. Hence, when the neuronal output function is differentiable, it is possible to
study pattern formation with strong interactions and when this is not the case, a
phase reduction technique may be used to study pulse–coupled systems with weak
interactions. We show that for long–range excitatory coupling, the phase–coupled
system can undergo a bifurcation from a stationary synchronous state to a state of
travelling oscillatory waves. Such a transition is induced by a correlation between
the effective delays of synaptic inputs arising from diffusion along the dendrites and
the relative positions of the interacting cells in the network. There is evidence for
such a correlation in cortex. For example, recurrent collaterals of pyramidal cells
in the olfactory cortex feed back into the basal dendrites of nearby cells and onto
the apical dendrites of distant pyramidal cells1,68.

5.1. Dynamics of a recurrent analog network

5.1.1. Compartmental model

Consider a fully connected network of identical compartmental model neurons la-
belled i = 1, . . . , N . The system of dendritic compartments is coupled to an ad-
ditional somatic compartment by a single junctional resistor r from dendritic com-
partment α = 0. The membrane leakage resistance and capacitance of the soma are
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denoted R̂ and Ĉ respectively. Let Viα(t) be the membrane potential of dendritic
compartment α belonging to the ith neuron of the network, and let Ui(t) denote the
corresponding somatic potential. The synaptic weight of the connection from neu-
ron j to the αth compartment of neuron i is written Wα

ij . The associated synaptic
input is taken to be a smooth function of the output of the neuron: Wα

ijf(Uj), for
some transfer function f , which will shall take as

f(U) = tanh(κU) (85)

with gain parameter κ. The function f(U) may be interpreted as the short term
average firing rate of a neuron (cf equation (53)). Also, Ŵijf(Uj) is the synaptic
input located at the soma. Kirchoff’s laws reduce to a set of ordinary differential
equations with the form:

Cα
dViα
dt

= −Viα
Rα

+
∑
<β;α>

Viβ − Viα
Rαβ

+
Ui − Vi0

r
δα,0

+
∑
j

Wα
ijf(Uj) + Iiα(t) (86)

Ĉ
dUi
dt

= −Ui

R̂
+

Vi0 − Ui
r

+
∑
j

Ŵijf(Uj) + Îi(t), t ≥ 0 (87)

where Iiα(t) and Îi(t) are external input currents. The set of equations (86) and
(87) are a generalisation of the standard graded response Hopfield model to the
case of neurons with dendritic structure31. Unlike for the Hopfield model there is
no simple Lyapunov function that can be constructed in order to guarantee stability.

The dynamics of this model may be re–cast solely in terms of the somatic vari-
ables by eliminating the dendritic potentials. Considerable simplification arises
upon choosing each weight Wα

ij to have the product form

Wα
ij = WijPα,

∑
α

Pα = 1 (88)

so that the relative spatial distribution of the input from neuron j across the com-
partments of neuron i is independent of i and j. Hence, eliminating the auxiliary
variables Viα(t) from (87) with an application of the variation of parameters formula
yields N coupled nonlinear Volterra integro–differential equations for the somatic
potentials (Viα(0) = 0);

dUi
dt

= −ε̂Ui +
∑
j

Ŵijf(Uj) + Fi(t)

+
∫ t

0

dt′

G(t− t′)
∑
j

Wijf(Uj(t′)) + H(t− t′)Ui(t′)

 (89)
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where ε̂ = (R̂Ĉ)−1 + (rĈ)−1

H(t) = (γ̂0γ̂)G00(t) (90)

G(t) = γ̂
∑
β

PβG0β(t) (91)

with γ̂ = (rĈ)−1 and γ̂0 = (rCα0)
−1 and Gαβ(t) is the standard compartmental

response described in section 2. The effective input (after absorbing Ĉ into Îi(t)) is

Fi(t) = Îi(t) + γ̂

∫ t

0

dt′
∑
β

G0β(t− t′)Iiβ(t′) (92)

Note that the standard Hopfield model is recovered in the limit γ, γ̂ →∞, or r →∞.
All information concerning the passive membrane properties and topologies of the
dendrites is represented compactly in terms of the convolution kernels H(t) and
G(t). These in turn are prescribed by the response function of each neuronal tree.

To simplify our analysis, we shall make a number of approximations that do not
alter the essential behaviour of the system. First, we set to zero the effective input
(Fi(t) = 0) and ignore the term involving the kernel H(t) (γ̂0γ̂ sufficiently small).
The latter arises from the feedback current from the soma to the dendrites. We
also consider the case when there is no direct stimulation of the soma, ie Ŵij = 0.
Finally, we set κ = 1. Equation (89) then reduces to the simpler form

dUi
dt

= −ε̂Ui +
∫ t

0

G(t− t′)
∑
j

Wijf(Uj(t′))dt′ (93)

We now linearize equation (93) about the equilibrium solution U(t) = 0, which
corresponds to replacing f(U) by U in equation (93), and then substitute into the
linearized equation the solution Ui(t) = eztU0i. This leads to the characteristic
equation

z + ε̂−WiG(z) = 0 (94)

where Wi, i = 1, . . . , N is an eigenvalue of W and G(z) = γ̂
∑
β PβG0β(z) with

G0β(z) the Laplace transform of G0β(t). A fundamental result concerning integro–
differential equations is that an equilibrium is stable provided that none of the roots
z of the characteristic equation lie in the right–hand complex plane76. In the case
of equation (94), this requirement may be expressed by theorem 1 of77: The zero
solution is locally asymptotically stable if

|Wi| < ε̂/G(0), i = 1, . . . , N (95)

We shall concentrate attention on the condition for marginal stability in which a
pair of complex roots ±iω cross the imaginary axis, a prerequisite for an Andronov–
Hopf bifurcation. For a super–critical Andronov–Hopf bifurcation, after loss of sta-
bility of the equilibrium all orbits tend to a unique stable limit cycle that surrounds
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the equilibrium point. In contrast, for a sub–critical Andronov–Hopf bifurcation
the periodic limit cycle solution is unstable when the equilibrium is stable. Hence,
the onset of stable oscillations in a compartmental model neural network can be
associated with the existence of a super–critical Andronov–Hopf bifurcation.

It is useful to re–write the characteristic equation (94) for pure imaginary roots,
z = iω, and a given complex eigenvalue W = W ′ + iW ′′ in the form

iω + ε̂− (W ′ + iW ′′)
∫ ∞

0

dte−iωtG(t) = 0, ω ∈ R (96)

Equating real and imaginary parts of (96) yields

W ′ = [ε̂C(ω)− ωS(ω)]/[C(ω)2 + S(ω)2] (97)

W ′′ = [ε̂S(ω) + ωC(ω)]/[C(ω)2 + S(ω)2] (98)

with C(ω) = Re G(iω) and S(ω) = −Im G(iω).
To complete the application of such a linear stability analysis requires specifica-

tion of the kernel G(t). A simple, but illustrative example, is a two compartment
model of a soma and single dendrite, without a somatic feedback current to the
dendrite and input to the dendrite only. In this case we write the electrical connec-
tivity matrix Q of equation (16) in the form Q00 = −τ1

−1, Q11 = −τ2
−1, Q01 = 0

and Q10 = γ−1 so that the somatic response function becomes:

τ1τ2

γ(τ1 − τ2)

[
e−t/τ1 − e−t/τ2

]
(99)

Taking τ2
−1 À τ1

−1 in (99) gives a somatic response as γ−1τ2/e−t/τ1 . This repre-
sents a kernel with weak delay in the sense that the maximum response occurs at
the time of input stimulation. Taking τ1 → τ2 → τ , however, yields γ−1te−t/τ for
the somatic response, representing a strong delay kernel. The maximum response
occurs at time t + τ for an input at an earlier time t. Both of these generic ker-
nels uncover features present for more realistic compartmental geometries77 and are
worthy of further attention. The stability region in the complex W plane can be
obtained by finding for each angle θ = tan−1(W ′′/W ′) the solution ω of equation
(96) corresponding to the smallest value of |W |. Other roots of (96) produce larger
values of |W |, which lie outside the stability region defined by ω. (The existence of
such a region is ensured by theorem 1 of77).
Weak delay
Consider the kernel G(t) = τ−1e−t/τ , so that G(z) = (zτ + 1)−1, and

S(ω) =
ωτ

1 + (ωτ)2
, C(ω) =

1
1 + (ωτ)2

(100)

¿From equations (97), (98) and (100), the boundary curve of stability is given by
the parabola

W ′ = ε̂− τ(W ′′)2

(1 + ε̂)2
(101)
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and the corresponding value of the imaginary root is ω = W ′′/(1+ ε̂). It follows that
for real eigenvalues (W ′′ = 0) there are no pure imaginary roots of the characteristic
equation (96) since ω = 0. Thus, for a connection matrix W that only has real
eigenvalues, (eg a symmetric matrix), destabilization of the zero solution occurs
when the largest positive eigenvalue increases beyond the value ε̂/G(0) = ε̂, and
this corresponds to a real root of the characteristic equation crossing the imaginary
axis. Hence, oscillations cannot occur via an Andronov–Hopf bifurcation.

Re W

Im W

τ = 0.1,10

τ = 0.2,5

τ = 1

Fig. 9. Stability region (for the equilibrium) in the complex W plane for a recurrent network with
generic delay kernels, where W is an eigenvalue of the interneuron connection matrix W. For a
weak delay kernel, the stability region is open with the boundary curve given by a parabola. On
the other hand, the stability region is closed in the strong delay case with the boundary curve
crossing the real axis in the negative half–plane at a τ–dependent value W−. This is shown for
various values of the delay τ with the decay rate ε̂ and gain κ both set to unity. All boundary
curves meet on the positive half of the real axis at the same point W+ = ε̂ = 1.

Strong delay
Consider the kernel G(t) = τ−2te−t/τ , so that G(z) = (zτ + 1)−2, and

S(ω) =
2ωτ

[1 + (ωτ)2]2
, C(ω) =

1− ω2τ2

[1 + (ωτ)2]2
(102)

The solution of (97) and (98) is

W ′ = ε̂(1− ω2τ2)− 2ω2τ (103)

W ′′ = 2ε̂ωτ + ω(1− ω2τ2) (104)

Equations (103) and (104) define a parametric curve in the complex W plane, and
the boundary of the stability region is shown in figure 9 for a range of delays τ . Since
the stability region closes in the left half plane, it is now possible for the equilibrium
to lose stability when the largest negative eigenvalue crosses the boundary, even
when this eigenvalue is real. Whether or not this leads to an Andronov–Hopf
bifurcation can only be determined with further analysis. For the case of real



30 Physics of the Extended Neuron

eigenvalues the points of destabilization W+, W− are defined by W ′′ = 0 and
equation (95). Using (95), (103) and (104) we have

W+ = ε̂, W− = −(4ε̂ + 2τ−1 + 2ε̂2τ) (105)

Thus, W + is independent of the delay τ , although W− is not. The most ap-
propriate way to determine if a compartmental network can support oscillations
via an Andronov–Hopf bifurcation is through the transfer function approach of
Allwright78. The conditions under which destabilization of an equilibrium is asso-
ciated with the appearance or disappearance of a periodic solution are described by
Bressloff77.

5.1.2. Semi–infinite cable

Since the integral equation formulation of compartmental neural network dynamics
(89) has a well defined continuum limit, all results can be taken over easily to
the corresponding cable model. For example, suppose that the dendritic tree is
represented by a semi–infinite cable 0 ≤ ξ <∞ with the soma connected to the end
ξ = 0. The cable equation then yields the following system of equations (cf. (86)
and (87))

dUi(t)
dt

= −Ui(t)
τ̂

+ ρ0[Vi(0, t)− Ui(t)] (106)

∂Vi(ξ, t)
∂t

= D
∂2Vi(ξ, t)

∂ξ2
− Vi(ξ, t)

τ
+
∑
j

Wij(ξ)f(Uj(t)) (107)

Here Ii(t) = ρ0[Vi(0, t)− Ui(t)] is the current density flowing to the soma from the
cable at ξ = 0. We have assumed for simplicity that there are no external inputs

Wij(ξ)

j i

ξ

f(Uj)

soma

dendrites

Fig. 10. Basic interaction picture for neurons with dendritic structure.
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and no synaptic connections directly on the soma. Equation (107) is supplemented
by the boundary condition

− ∂V

∂ξ

∣∣∣∣
ξ=0

= Ii(t) (108)

The basic interaction picture is illustrated in figure 10.
We can eliminate the dendritic potentials Vi(ξ, t) since they appear linearly

in equation (107). Using a standard Green’s function approach79, one obtains a
solution for Vi(0, t) of the form

Vi(0, t) = 2
∫ t

−∞
dt′
∫ ∞

0

dξ′G(ξ′, t− t′)
∑
j

Wij(ξ′)f(Uj(t′))

−2ρ0

∫ t

−∞
dt′G(0, t− t′) [Vi(0, t′)− Ui(t′)] (109)

where G(ξ, t) is the fundamental solution of the one–dimensional cable equation
(4). (The additional factor of 2 in equation (109) is due to the fact that we have a
semi–infinite cable with a reflecting boundary). To simplify our analysis, we shall
assume that the second term on the right–hand side of equation (109) is negligible
compared to the first term arising from synaptic inputs. This approximation, which
corresponds to imposing the homogeneous boundary condition ∂V /∂ξ|ξ=0 = 0,
does not alter the essential behaviour of the system. As in the analysis of the
compartmental model, we assume that the distribution of axo–dendritic weights
can be decomposed into the product form Wij(ξ) = P (ξ)Wij . Substituting equation
(109) into (106) then leads to the integro–differential equation (93) with ε̂ = τ̂−1+ρ0

and G(t) = 2ρ0

∫∞
0

P (ξ)G(ξ, t)dξ. For concreteness, we shall take P (ξ) = δ(ξ − ξ0)
and set ρ0 = 1/2 so that G(t) = G(ξ0, t).

Linear stability analysis now proceeds along identical lines to the compartmental
model with the Laplace transform G(z) of G(t) given by

G(z) =
1

2
√

ε + z
exp

(
−ξ0

√
ε + z

)
, ε = τ−1 (110)

where we have set the diffusion constant as D = 1. Thus we obtain equations (97)
and (98) with

C(ω) =
1

2
√

ε2 + ω2
e−A(ω)ξ0 [A(ω) cos (B(ω)ξ0)−B(ω) sin (B(ω)ξ0)] (111)

S(ω) =
1

2
√

ε2 + ω2
e−A(ω)ξ0 [A(ω) sin (B(ω)ξ0) + B(ω) cos (B(ω)ξ0)] (112)

and
√

ε + iω = A(ω) + iB(ω) where

A(ω) =
√

[
√

ε2 + ω2 + ε]/2, B(ω) =
√

[
√

ε2 + ω2 − ε]/2 (113)
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Equations (98), (111) and (112) imply that for real eigenvalues (W ′′ = 0) the points
of destabilization are

W + =
ε̂

C(0)
= ε̂
√

εe
√
εξ0 , W− =

ε̂

C(ω0)
, (114)

where ω0 is the smallest, non–zero positive root of the equation

−ω

ε̂
= H(ω, ξ0) ≡

[
A(ω) sin (B(ω)ξ0) + B(ω) cos (B(ω)ξ0)
A(ω) cos (B(ω)ξ0)−B(ω) sin (B(ω)ξ0)

]
(115)

H(ω, ξ0) is plotted as a function of ω in figure 11 for ξ0 = 2. We are interested in the
points of intersection of H(ω, ξ0) with the straight line through the origin having
slope −ε̂. We ignore the trivial solution ω = 0 since this corresponds to a static
instability. Although there is more than one non–zero positive solution to equation
(115), we need only consider the smallest solution ω0 since this will determine
the stability or otherwise of the resting state with respect to an Andronov–Hopf
bifurcation. Since the point ω0 lies on the second branch of H(ω, ξ0), it follows that
C(ω0) and hence W− is negative.
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H( ω ,ξ0)

ω 0

Fig. 11. Plot of function H(ω, ξ0).

5.2. Neural pattern formation

We now show how the presence of spatial structure associated with the arrangement
of the neurons within the network allows the possibility of Turing or diffusion–driven
instability leading to the formation of spatial patterns. The standard mechanism
for pattern formation in spatially organized neural networks is based on the compe-
tition between local excitatory and more long–range inhibitory lateral interactions
between cells80,33. This has been used to model ocular dominance stripe formation
in the visual cortex81,82 and the generation of visual hallucination patterns83. It
also forms a major component in self–organizing networks used to model the for-
mation of topographic maps. In these networks, the lateral connections are fixed
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whereas input connections to the network are modified according to some Hebbian
learning scheme (see eg36). All standard models specify the distribution of lateral
connections solely as a function of the separation between presynaptic and postsy-
naptic neurons, whereas details concerning the spatial location of a synapse on the
dendritic tree of a neuron are ignored.

In this section we analyse a model of neural pattern formation that takes into
account the combined effect of diffusion along the dendritic tree and recurrent inter-
actions via axo–dendritic synaptic connections84,85. For concreteness, we consider
a one–dimensional recurrent network of analog neurons. The associated integral
equation, after eliminating the dendritic potentials, is obtained from equation (93)
by the replacements Ui(t) → U(x, t) and Wij → W (x, x′). We also impose the
homogeneity condition W (x, x′) = W0J(x− x′) with J(x) a symmetric function of
x. The result is the integro–differential equation of the form

∂U(x, t)
∂t

= −ε̂U(x, t) + W0

∫ t

−∞
dt′G(t− t′)

∫ ∞
−∞

dx′J(x− x′)f(U(x′, t′)) (116)

Note that in the special case G(t − t′) = δ(t − t′), equation (116) reduces to the
standard form

∂U(x, t)
∂t

= −ε̂U(x, t) + W0

∫ ∞
−∞

dx′J(x− x′)f(U(x′, t)) (117)

which is the basic model of nerve tissue studied previously by a number of authors80,33.
Although pattern formation is principally a nonlinear phenomenon, a good in-

dication of expected behaviour can be obtained using linear stability analysis. We
begin by considering the reduced model described by equation (117). First, linearize
about the zero homogeneous solution U(x) ≡ 0. Substituting into the linearized
equation a solution of the form U(x, t) = U0ezt+ipx, where p is the wavenumber of
the pattern and z is the so called growth factor, then leads to the characteristic
equation

z + ε̂ = W0J̃(p) (118)

where J̃(p) is the Fourier transform of J(x). Denote the solution of equation (118)
by z(p). A Turing–like instability is said to arise if and only if

(A) Re z(0) < 0 (the zero solution is stable to homogeneous perturbations)

(B) there exists at least one non–zero value of p for which Re z(p) ≥ 0.

If Re z(p) ≥ 0 over an interval (p1, p2) then large–scale spatial patterns with
wavenumbers in this interval are expected to grow. (Such growth is bounded by
the saturating nonlinearities within the system). The stability and shape of the
resulting patterns of network activity, which depend on the specific nonlinearities
and the choice of initial conditions, can generally only be determined by computer
simulation. Note that the pattern is stationary if Im z(0) = 0 at the bifurcation
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point (static Turing instability), whereas a time–periodic spatial pattern can form
if Im z(0) 6= 0 (dynamic Turing instability). For the reduced system described
by equation (117), z(p) is real for all p since J(x) is assumed to be a symmetric
function of x, and hence a dynamic Turing instability cannot occur.

Let us investigate the occurrence of static patterns. That is, we assume that
z is real and look for the onset of a Turing instability as specified by conditions
(A) and (B) above. As mentioned previously, the usual mechanism for inducing
a Turing instability in the reduced model is based on the competition between
local excitatory and more long–range inhibitory interactions between neurons80,33.
Indeed, it is easy to show that a purely excitatory network with symmetric weights
(J(x) = J(−x)) cannot support the formation of spatial patterns. For

|J̃(p)| ≤ 2
∫ ∞

0

dx|J(x)|| cos px| ≤ 2
∫ ∞

0

dx|J(x)| (119)

so that if J(x) ≥ 0 for all x then |J̃(p)| ≤ J̃(0) and the result follows. A typical
choice for J(x) is the so–called Mexican hat function (see figure 12a). This can be
constructed in terms of a difference of two exponentials, for example,

J(x) = Λ
[
e−γ1|x| − Γe−γ2|x|

]
(120)

under the conditions Γ < 1, γ1 > γ2 > 0 and Λ = +1. (The case Λ = −1, which rep-
resents short–range inhibition and long–range excitation, will be considered below
in the full model). The Fourier transform J̃(p) of this function,

J̃(p) = 2Λ
[

γ1

p2 + γ2
1

− Γ
γ2

p2 + γ2
2

]
(121)

is shown in figure 12b. Taking W0 as a bifurcation parameter, it is clear from figure
12b that for sufficiently small W0 the dispersion relation satisfies z(p) < 0 for all p.
However, as W0 is increased a critical value W0c is reached such that

ε̂ = W0cJ̃(pc), J̃(pc) = max
p
{J̃(p)} (122)

Such a critical point satisfies the conditions for a Turing instability provided that
pc 6= 0. From equation (121) we obtain the result

p2
c =

γ2
1

√
Γγ2/γ1 − γ2

2

1−
√

Γγ2/γ1

(123)

so that pc 6= 0 when Γ > (γ2/γ1)3. Note that if we had taken Λ = −1 in equation
(121) then pc = 0 and a Turing instability does not occur.

Now consider the full model described by equation (116). The associated char-
acteristic equation takes the form

z + ε̂−W0J̃(p)G(z) = 0 (124)
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In contrast to the reduced model it is now possible for dynamic instabilities to occur
due to the presence of distributed delays, as realized by the kernel G(z). A necessary
condition for dynamic pattern formation is that there exists a pair ω, p 6= 0 such
that

ε̂ + iω = W0J̃(p)G(iω) (125)

Without loss of generality, we take ω, p ≥ 0. Equating real and imaginary parts
along identical lines to section 5.1, we obtain the following result (since W0J̃(p) is
real by assumption):

ε̂ = W0J̃(p)C(ω), ω = −W0J̃(p)S(ω) (126)

It follows that the bifurcation condition, W0 = W0c, for a dynamic Turing instability
is

W0cJ̃(pmin) = −W− (127)

which should be contrasted with the bifurcation condition, W0 = W
′
0c, for a static

Turing instability, namely

W
′

0cJ̃(pmax) = W+ (128)

where W+, W− are the points of destabilization as in equation (105) for strong
delays and equation (114) for a semi–infinite cable, and

J̃(pmin) = min
p

J̃(p), J̃(pmax) = max
p

J̃(p) (129)

Assuming that J̃(pmin) < 0 < J̃(pmax), a dynamic Turing instability will occur if
W0c < W

′
oc and pmin 6= 0, whereas a static Turing instability will occur if W

′
0c < W0c

and pmax 6= 0.
In terms of the Mexican hat function (121) with Λ = +1 (short–range excitation,

long–range inhibition), it is clear that a dynamic Turing instability is not possible
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since pmin = 0. However, it is possible for bulk oscillations to occur instead of static
patterns when

J̃(pc) >
W+|J̃(0)|

W− (130)

with pc given by equation (123). On the other hand, when Λ = −1 (short–range
inhibition, long–range excitation) a dynamic instability can occur since pmin = pc
and pmax = 0, and provided that

J̃(0) <
W+|J̃(pc)|

W− (131)

As recently pointed out by Swindale36, it is surprisingly difficult to find physiological
and anatomical data to support the case of short–range excitation and long–range
inhibition assumed in standard models of neural pattern formation. A canonical
cortical circuit appears to possess both short–range lateral inhibition and excitation
together with more long–range excitatory connections1.
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Fig. 13. Static versus dynamic instabilities: (a) two–compartment model with strong delay τ , (b)
sem–infinite cable with dendritic location ξ0.

It is interesting to consider transitions between dynamic and static instabilities
as a function of the effective delay arising from dendritic structure. One finds a
major difference between the strong delay kernel of a two–compartmental model
and the diffusion kernel associated with a semi–infinite cable. In the former case,
a dynamic instability typically occurs over a finite range of values for the effective
delay τ , that is, there are two transition points, whereas in the latter case there
is a single transition point as the distance ξ0 from the soma is varied. (Note that
ξ0 determines the effective delay due to diffusion along the dendriric cable in the
sense that the time–to–peak of the Green’s function G(ξ0, t) increases with ξ0). This
difference is illustrated in figures 13a and 13b. In figure 13a we plot W− and λW +

as a function of τ (see equation(105)) and in figure 13b we plot W− and λW + as a
function of ξ0 (see equation (114)). In both cases λ = J̃(pmin)/|J̃(pmax)| is chosen
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such that W− and λW+ intercept. In figure 14 we show a typical dynamic pattern
U(x, t) for ξ0 > ξ0c in the case of a semi–infinite cable, where ξ0c is the transition
point between static and dynamic instabilities.
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Fig. 14. Dynamic pattern formation

5.3. Phase–synchronization in an array of integrate–and–fire neurons

In this section we consider cell membrane properties with a nonlinear relationship
between membrane ionic current and transmembrane potential15,86 and the effect
of both distributed and discrete delays on an important aspect of neurodynamics,
namely synchronization of coupled neural oscillators87,88,53,89,66. Distributed delays
are a consequence of both dendritic structure and the synaptic transmission process,
whilst discrete delays arise from the finite axonal propagation velocities of action
potentials. A distinction between synaptic and dendritic delay is possible since the
latter only affects the response kernel of a neuron whilst the former defines synaptic
input and is independent of the response kernel. We incorporate these biologically
realistic features into a version of the integrate–and–fire model developed by Abbott
and Kepler90 from a systematic reduction of the Hodgkin–Huxley equations for
excitable somatic tissue. The analytical intractability of this nonlinear neuronal
model is much reduced with the aid of averaging techniques valid in the limit of
weak coupling39. Indeed a nonlinear transform may be used to study interacting
networks of such pulse–coupled neurons in a phase–interaction representation. In
the uncoupled state a neuron is imagined to fire with a natural period T and for
sufficiently weak coupling only the relative firing–phase between neurons can evolve.
As we shall demonstrate, all three types of delay and the natural neuronal firing
frequency in such a reduced array of phase–coupled oscillators can significantly affect
the stability of synchronous oscillatory states and, hence, provide a mechanism for
the onset of travelling waves.
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5.3.1. Synaptic and communication delays

For concreteness, consider a one–dimensional array of nonlinear integrate–and–fire
neurons distributed along the x–axis. The somatic potential U(x, t) satisfies the
equation

∂U(x, t)
∂t

= f(U(x, t)) + I(x, t) (132)

where I(x, t) is the net input into the soma due to synaptic connections with
other neurons in the array. When U(x) = 1 the neuron at x fires and is reset
to U(x) = 0. In the absence of any synaptic input I(x, t), each neuron fires with
a period T =

∫ 1

0
dUf(U)−1. The nonlinearity f of equation (132) can be fitted to

neurophysiological data using a cubic90.
In the weak–coupling regime the relevant dynamical variable is the phase φ(x, t)

of each oscillator, and standard phase reduction techniques may be applied91,39,92.
In particular, following75, we introduce the nonlinear transform

φ + t/T ≡ Ψ(U) = T−1

∫ U

0

dU ′

f(U ′)
(133)

The phase variable φ(x, t) satisfies the equation

∂φ(x, t)
∂t

= I(x, t)F (t/T + φ(x, t)), t ∈ (0, T ) (134)

where F (z) = T−1/[f ◦Ψ−1(z)], and F (z + n) = F (z), n ∈ Z. The neuron at x

fires when t = (n− φ(x, t))T for integer n. A synaptic input spike train then takes
the form

E(x, t) =
0∑

n=−∞
Es(t + [φ(x, t)− n]T ) (135)

for 0 < t + Tφ(x, t) < T , where Es(t) represents the post–synaptic potential. For
simplicity, we shall take Es(t) = gα2te−αt, which is known to approximate the
shape of the post–synaptic potential associated with the opening and closing of
ionic channels. Note that this so–called α–function is equivalent to the strong delay
kernel considered in section 5.1.1. The total synaptic input current to the soma is
taken to have the form

I(x, t) =
1
σ

∫ ∞
−∞

dyW (|x− y|/σ)E(y, t−D(|x− y|/v)) (136)

where σ fixes the space constant of the synaptic weight kernel W and D is a delay
operator dependent on the axonal propagation velocity v. For simplicity we consider
D(|x|) = |x|.

To continue with this analysis one now assumes that t/T varies much more
quickly than φ(x, t). This is valid if the system is weakly coupled. Substituting
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equation (135) and (136) into equation (134) and averaging over a single period T ,
one finds that

∂φ(x, t)
∂t

=
∫ ∞
−∞

dyW (|y|)H(φ(x + y, t)− φ(x, t)− |y|/(νT )) (137)

where

H(φ) =
1
T

∫ T

0

dt
0∑

n=−∞
Es(t + [φ− n]T )F (t/T ) =

∫ ∞
0

dθEs(θT )F (θ − φ) (138)

We have performed a change of variables so that |x| now represents a dimensionless
distance between the oscillators rather than position and we have introduced the
parameter

ν =
v

σ
(139)

so that ν−1 has dimensions of time and characterises an effective delay. As discussed
in75, the function F (θ) is the phase interaction function of the model in the case of
an instantaneous synapse. For simplicity, we shall take F (θ) = − sin 2πθ, which is
known to be a good approximation when f of equation (132) has an experimentally
determined form92. In the limit α → ∞, Es(x) → δ(x), in which case H(φ) =
sin 2πφ and we recover the model considered in93.

Following Ermentrout et al93, we construct travelling wave solutions of equation
(137) of the form φ(x, t) = βx+Ωβt, with the frequency Ωβ satisfying the dispersion
relation

Ωβ =
∫ ∞
−∞

dyW (|y|)H(βy − |y|/(νT )) (140)

When β = 0, the solution is synchronous. To explore the stability of the travelling
wave solutions φ(x, t), linearize equation (137) about φ(x, t) to get

∂ψ(x, t)
∂t

=
∫ ∞
−∞

dyW (|y|)H ′(βy − |y|/(νT )) [ψ(x + y, t)− ψ(x, t)] (141)

which has solutions of the form ψ(x, t) = eλpt+ipx with

λp =
∫ ∞
−∞

dyW (|y|)H ′(βy − |y|/(νT ))
[
eipy − 1

]
(142)

Note that H ′(φ) indicates differentiation with respect to φ.
The travelling wave solution is stable provided that Re λp < 0 for all p 6= 0.

(The neutrally stable mode λ0 = 0 represents constant phase-shifts φ̄→ φ̄+δ). The
function H(φ) involves the convolution of the instantaneous interaction function
F (θ) with the synaptic transmission function Es(θT ) and may be written as

H(φ) = A sin 2πφ−B cos 2πφ (143)
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where

A = [(2π)2 − (αT )2]K, B = −4παTK, K =
−gα2T

[(2π)2 + (αT )2]2
(144)

Note the non-trivial dependence of the dynamical behaviour on the period T of the
oscillators. This should be contrasted with the analysis of Ermentrout et al93 who
simply assume a particular form for the phase interaction function H(φ), rather than
deriving it from an explicit model. In our case, H(φ) depends explicitly on both
the properties of the synaptic interactions and the period of neuronal oscillation.
Substituting (143) into (142) shows that

Re λp = π[Λ(p, 2πβ̂) + Λ(−p, 2πβ̃)] (145)

where

Λ(p, β) = A[Wc(p + β) + Wc(p− β)− 2Wc(β)]

+ B[Ws(p + β)−Ws(p− β)− 2Ws(β)] (146)

with β̂ = β− 1/(νT ), β̃ = −β − 1/(νT ), Wc(p) =
∫∞

0
dyW (y) cos(py) and Ws(p) =∫∞

0
dyW (y) sin(py). For example, if the interaction kernel has the form W (x) =

0
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Fig. 15. W (x) = e−|x|. Stability diagram of ν/ω vs β with α/ω = 1. Black (white) regions denote
stable (unstable) solutions.

e−|x| then Wc(p) = (1 + p2)−1 and Ws(p) = p/(1 + p2)−1. In this case (and
also for the case W (x) = Θ(1 − |x|)) the stability of travelling waves is solely
determined by the propagation delay time ν−1, the synaptic rise time α−1 and the
natural frequency of the neuronal oscillator ω = 2π/T . For fast rise times, in the
sense that α/ω → ∞, the synchronous state (β = 0) is unstable for small ν/ω

and stable travelling waves appear. As the ratio ν/ω increases the synchronous
solution stabilizes. Ermentrout et al93 have suggested that this change in stability
of the synchronous solution as the propagation delay grows is consistent with the
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oscillatory behaviour observed in both visual cortex, showing a tendency towards
synchrony and olfactory cortex, tending to produce travelling oscillatory waves; the
latter has long–range connections and hence longer axonal delays. However, this
may be an over–simplification since stability can alter rapidly in the presence of a
finite ratio α/ω. In figure 15 we plot the stability of solutions as a function of the
ratio ν/ω and wavenumber β for α/ω = 1. For a sufficiently large ratio of neuronal
period to propagation delay time the synchronous state can lose stability in favour
of travelling wave solutions.

5.3.2. Dendritic delays

In this section, we demonstrate the influence of dendritic structure on synchroniza-
tion of coupled neural oscillators. The location of synaptic inputs on the dendritic
tree can significantly affect the stability of synchronous oscillatory states and, hence,
provides a mechanism for the onset of travelling waves94. A one–dimensional array
of neurons, each filtering input through an idealised passive dendritic cable, is used
to model the nonlinear behaviour induced by axo–dendritic interactions in neural
populations. As in section 5.3.1, consider a one–dimensional array of pulse–coupled
nonlinear integrate–and–fire neurons distributed along the x–axis, but now take
each neuron’s soma to be connected to a semi–infinite uniform dendritic cable as
in section 5.1.2. The input I(x, t) of equation (132) is the total current entering
the soma from the cable. Eliminating dendritic potentials along identical lines to
previous examples we find that I(x, t) is of the form84

I(x, t) =
∫ t

−∞
dt′
∫ ∞

0

dξ′G(ξ′, t− t′)
∫ ∞
−∞

dx′W (ξ′, |x− x′|)E(x′, t′) (147)

where G(ξ, t) is the fundamental solution of the cable equation given by equation (3).
Also, W (ξ, |x − x′|) is the connection from a neuron at x′ impinging on a synapse
located at ξ on the dendritic cable of a neuron at x, and E(x′, t) represents the
post–synaptic potential due to an input spike train from the neuron at x′, equation
(135). In the following analysis we fix length and time scales by setting D = 1 and
τ = 1. (Thus ξ is measured in terms of electronic distance, which has typical values
in the range 1–10 cm. Typical values for the membrane time constant τ are 5–20
msec).

Introducing the phase variables φ(x, t) as described in section 5.3.1, dropping all
signal communication delays (v →∞) and applying the phase reduction technique
yields

∂φ(x, t)
∂t

=
∫ ∞

0

dξ′
∫ ∞
−∞

dyW (ξ′, |y|)H(ξ′, φ(x + y, t)− φ(x, t)) (148)

where

H(ξ, φ) =
∫ ∞

0

dθG(ξ, θT )F (θ − φ) (149)
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Equation (148) gives the general phase equation for a network of weakly coupled
oscillators with dendritic structure. The function H(ξ, φ) involves the convolution
of the instantaneous interaction function F (θ) with the synaptic response function
G(ξ, t) which depends on the location ξ of the synapse on the dendritic cable.
For simplicity we shall neglect the shape of the post–synaptic potential and take
F (θ) = − sin(2πθ). Equation (149) may be evaluated using the following Fourier
representation of the fundamental solution (2): G(ξ, t) = (2π)−1

∫∞
−∞ dkeikξ−ε(k)t

where ε(k) = k2 + 1. The result is

H(ξ, φ) =
∫ ∞
−∞

dk

2π
eikξ [A(k) sin 2πφ−B(k) cos 2πφ] (150)

where

A(k) =
ε(k)

ε(k)2 + ω2
, B(k) =

ω

ε(k)2 + ω2
, ω =

2π

T
(151)

Travelling wave solutions of the form found in section 5.3.1 satisfy the dispersion
relation

Ωβ =
∫ ∞

0

dξ′
∫ ∞
−∞

dyW (ξ′, |y|)H(ξ′, βy) (152)

Linearizing equation (148) gives

∂ψ(x, t)
∂t

=
∫ ∞

0

dξ′
∫ ∞
−∞

dyW (ξ′, |y|)H ′(ξ′, βy) [ψ(x + y, t)− ψ(x, t)] (153)

which has solutions of the form ψ(x, t) = eλpt+ipx with

λp =
∫ ∞

0

dξ′
∫ ∞
−∞

dyW (ξ′, |y|)H ′(ξ′, βy)
[
eipy − 1

]
(154)

and H ′(ξ, φ) indicates differentiation with respect to φ. Once again, the travelling
wave solution will be stable provided that Reλp < 0 for all p 6= 0.

We shall now study the stability of the synchronous state β = 0 using equations
(149) and (154) for two general choices of the axo–dendritic weight distribution
W (ξ, x).
(I) Uncorrelated weight distribution
Suppose that the weight distribution has the product form (cf. section 5.1.2)

W (ξ, x) = P (ξ)W (x), P (ξ) ≥ 0,

∫ ∞
0

P (ξ)dξ = 1 (155)

In other words, the distribution of axon collaterals across the dendritic tree of a
post–synaptic neuron is independent of the separation between the neuron and the
corresponding pre–synaptic neuron. The distribution P (ξ) determines the proba-
bility density of these axon collaterals. Substituting equation (155) into (148) gen-
erates the standard phase equation describing weakly coupled oscillator systems91.
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The resulting phase interaction function is given by H(φ) =
∫∞

0
P (ξ)H(ξ, φ)dξ.

From equations (149), (154) and (155), the real part of the eigenvalue λp can be
written as

Re λp =
1
2

∫ ∞
−∞

dkP̃ (k)A(k)
[
W̃ (p + 2πβ) + W̃ (p− 2πβ)− 2W̃ (2πβ)

]
(156)

where P̃ (k) and W̃ (p) denote the Fourier transforms of P (ξ) and W (y). Sup-
pose that the weight distribution W (x) is excitatory and an exponentially decaying
function of y, W (y) = e−γ|y|/2. The interactions are short–range (long–range) for
large (small) γ. Then W̃ (p) = γ/(γ2 + p2) and one can show that the term in
square brackets of equation (156) is negative (positive) when p2 > 12π2β2 − γ2

(p2 < 12π2β2 − γ2). This means that the synchronous state β = 0 will be stable
(with γ > 0) if and only if Ā ≡

∫∞
−∞ dkP̃ (k)A(k) is positive. To investigate the

latter condition, set P (ξ) = δ(ξ − ξ0), so that the location of each synaptic input
on the dendritic tree is uniformly fixed at ξ0. Then P̃ (k) = eikξ0 and the integral
Ā can be evaluated by closing the contour in the upper-half complex k-plane. One
finds that Ā is positive if cos (r|ξ0| sin(θ/2) + θ/2) > 0 and is negative otherwise.
Here r2 =

√
1 + ω2 and θ = tan−1(ω) with 0 ≤ θ ≤ π/2.

We deduce from the above analysis that as the distance ξ0 of the synapse from
the soma increases from zero, it reaches a critical value ξ0c = (π− θ)/(2r sin(θ/2)).
Increasing ξ0 further produces alternating bands of stability and instability of the
synchronous state as shown in figure 16. (These regions of stability/instability would
be reversed in the case of inhibitory weights). Here ξ0, or rather the time–to–peak
of the Green’s function G(ξ0, t), plays an analogous role to that of an axonal time
delay, since it characterizes the effective delay due to diffusion along the dendrites.
We note that the time–to–peak can be as large as a few 100 msec whereas axonal
delays are typically 1–10 msec (at least in myelinated fibres). It should be noted
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that when the synchronous state is unstable, the solutions φ̄(x, t) for all β 6= 0
are also unstable. Hence, destabilization of the synchronous state for uncorrelated
weight distributions does not lead to the formation of travelling oscillatory waves. It
is also clear that for this example, the range of the coupling γ−1 does not influence
the stability of the synchronous state.
(II) Correlated weight distribution
When one considers the synaptic organization of the brain1 one finds that the
decoupling of network and dendritic co–ordinates is an over–simplification. As
discussed at the start of section 5, a synapse tends to be located further away from
the soma as the separation between cortical neurons increases. This results in a
reduction in the effectiveness of the synaptic connection due to diffusion along the
dendritic tree. Motivated by this observation concerning the synaptic organization
of cortical tissue, we make the following assumption about the distribution W (ξ, x):
The average distance of a synapse from the soma |ξ| increases with the separation
|x − x′| between neurons. This property can be realised by a distribution of the
form

W (ξ, x) = W (x)δ(|x| − ξ) (157)

For the weight distribution (157), our model has certain formal similarities to the
model considered in section 5.3.1. Long–range interactions are delayed by the effects
of diffusion in the former case and by the effects of axonal transmission times in the
latter case. Indeed, if one took G(ξ, t) = δ(t − |ξ|/ν) then equations (148), (149)
and (157) would formally reduce to the model of section 5.3.1 with α/ω → ∞.
Substituting equation (157) into equation (154) gives

Re λp =
1
2

∫ ∞
−∞

dkA(k)[W̃ (p + k + 2πβ) + W̃ (p + k − 2πβ)− 2W̃ (k + 2πβ)] (158)

In order to simplify the analysis, we shall take W (x) = W0Θ(L− |x|) where Θ is a
step function. Here L determines the range of the interactions rather than γ−1 as
in case I. Then W̃ (p) = 2W0p

−1 sin pL and

Re λp =
1
2
W0 [B(p + 2πβ) + B(p− 2πβ)− 2B(2πβ)] (159)

where B(p) = 2π[A(p) + C(p) + C(−p)],

C(p) =
e−rL cos θ/2

[
p sin θ̄ − r cos(θ̄ + θ/2)

]
2r [p2 + r2 + 2pr sin(θ/2)]

(160)

and θ̄ = rL sin(θ/2) + θ/2 + pL with r, θ defined as in example I.
In the limit L→∞ (all–to–all coupling), C(p)→ 0 and one finds from equation

(159) with B(p) replaced by A(p) that the synchronous state is unstable if ω >

1 and stable if ω < 1. We also expect the synchronous state to be stable for
sufficiently small values of L for all ω, since this corresponds to the limit of short–
range interactions and hence small delays. We now use equations (159) and (160) to
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Fig. 17. Stability diagram for the correlated weight distribution. L vs β with ω = 1/2. White
(black) regions correspond to unstable (stable) travelling wave solutions.

determine the stability of travelling wave solutions with wavenumber β as a function
of the range of coupling L. We find that if ω < 1 then the synchronous state is
stable for all L. On the other hand, if ω > 1 then the synchronous state is unstable
for large L and stable for small L. Whenever the synchronous state is unstable,
there exist stable travelling wave solutions over a finite range of non-zero values of
the wavenumber β. The stability region in the (β, L)–plane for ω = 1/2 is shown
in figure 17.

We conclude that for a correlated weight distribution, increasing the range of
excitatory interactions can destabilize the synchronous state leading to the onset of
stable travelling oscillatory waves when ω > 1. Thus dendritic structure provides an
alternative to axonal delays93,95 as a possible mechanism underlying the differences
between oscillations in the visual and olfactory cortex. The fact that bifurcations
occur when ω = O(1) and L = O(1) is particularly suggestive since these corre-
spond to the typical frequencies (10–100 Hz) and length-scales (1–10 cm) relevant
to cortical oscillations96.

6. Discussion

In this review we have shown how one particular attribute of the biological neuron,
namely the diffusive nature of the dendritic tree, can form the basis for a physi-
cal theory of neural tissue. Undoubtedly, many of the phenomenon seen in nerve
tissue are not generated solely by diffusive processes. For example, action poten-
tials are actively regenerated in a nonlinear fashion as they travel along the axon.
Furthermore, throughout this review we have ignored some of the smaller neuronal
structures, such as spines. Almost all excitatory inputs onto cortical pyramidal cells
synapse on the tiny protrusions known as dendritic spines97 that have been linked
with the basis of memory98. The standard cable equation fails for such small struc-
tures and must be replaced by an electro–diffusion model that can take into account
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rapid changes in ionic concentration gradients99. Of more concern is the fact that
many spines are excitable and may nonlinearly amplify synaptic inputs100,101 These
and other complications aside, the application of existing physical principles allows
the rapid development of a minimal theory of neural tissue that can be shaped by
interaction with neurophysiological data.

Finally, the interplay between learning dynamics, memory retrieval, pattern
formation and travelling cortical waves in a neural field possessing dendritic coor-
dinates is a fascinating and as yet relatively unexplored area. The huge interest
in artificial neural nets in the physics community relates almost exclusively to the
Hopfield model and spin glass systems7. Many aspects of learning and memory in
these systems have been thoroughly explored, and important metaphors for dynam-
ics have been developed (basins of attraction, storage capacity etc.). Unfortunately,
the direct application of results is impossible since these models have no contact
with neurpophysiological data at the cellular level. By building simple, yet bio-
logically realistic models of neural tissue, one can avoid these pitfalls, and work
within a framework that has the potential to describe observed phenomenon such
as cortical waves. In our analysis of neurodynamics in section 5 we concentrated
on the spatio–temporal patterns associated with network output activity. However,
associated with any such pattern is a corresponding pattern of activity along the
dendrite of each neuron. (The latter can have a particularly non–trivial structure
when there is a correlation between the location of a synapse on the dendritic tree
and the positions of the interacting neurons in cortex84,85). A fundamental point
to note within the context of learning and adaptation is that the modification of
a synapse depends on both the level of pre–synaptic activity (network ouput pat-
terns) and post–synaptic activity (dendritic patterns). Experimentally it has been
found that a persistent synaptic enhancement can be induced by brief periods of
synaptic activity, so–called long–term potentiation (LTP), (see eg.102). This typi-
cally requires the conjunction of pre–synaptic stimulation with a sufficient level of
post–synaptic depolarization, which has been interpreted as a biological instance
of the type of synapse underlying so–called Hebbian learning103. The induction of
LTP appears to involve both pre– and post–synaptic mechanisms. It is thought
that the post–synaptic part typically involves the influx of Ca2+ ions into the cell
following the activation of N–methyl–D-asparate (NMDA) receptors located on a
dendritic spine104. The pre–synaptic part is thought to involve changes in the re-
lease of neurotransmitters due to the effects of a retrograde messanger. A strong
candidate for the latter is nitric oxide (NO). This is released when a post–synaptic
neuron is sufficiently depolarized, and then diffuses to the pre–synaptic neuron105.
One of the particularly interesting features of NO release is that the molecules
are relatively small so that they can diffuse over quite a large neighbouring region
of the post–synaptic neuron thus providing a potential mechanism for non–local
learning106. We conclude that any analysis of learning at the network level should
take into account the non–trivial relationship between patterns of output activity
and patterns of dendritic activity.
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