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INTERACTION BETWEEN SWITCHING DIFFUSIVITIES AND
CELLULAR MICROSTRUCTURE∗

PATRICK MURPHY† , PAUL C. BRESSLOFF† , AND SEAN D. LAWLEY†

Abstract. Single-particle tracking experiments have recently found that C. elegans zygotes rely
on space-dependent switching diffusivities to form intracellular gradients during cell polarization.
The relevant proteins switch between fast-diffusing and slow-diffusing states on timescales that are
much shorter than the timescale of diffusion or gradient formation. This manifests in models as
a small parameter, allowing an asymptotic analysis of the gradient formation. In this paper we
consider how this mechanism of rapidly switching diffusive states interacts with a locally varying
periodic microstructure in the cell, incorporated through a second small parameter. We show that
an asymptotic analysis based on both small parameters yields different results based on the order
of limits taken and suggest an explicit relation between the two parameters for when each type of
analysis is appropriate. We further investigate a mean first passage time problem for a diffusing
protein to gain insight into the effects of the microstructure on the global environment.
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1. Introduction. There has been a recent growth of interest in heterogeneous
diffusion within biological cells [1], driven by advances in single-particle tracking
(SPT) experiments, which track the trajectories of individual macromolecules within
the plasma membrane by attaching an observable tag such as a quantum dot, gold
nanoparticle, or a fluorophore [12, 8, 9]. These experiments have demonstrated that,
rather than moving freely, molecules tend to exhibit heterogenous dynamics, includ-
ing confined and anomalous diffusion. The most common method for analyzing SPT
data is to detect deviations from free diffusion based on the mean squared displace-
ment (MSD). That is, the MSD of unconfined Brownian motion is a linear function
of time, whereas a sublinear temporal variation of MSD is indicative of movement in
a confined environment, and a supralinear variation suggests directed motion. How-
ever, one limitation of MSD as a measure of heterogeneous diffusion is that it is based
on the statistics of multiple trajectories. A more effective statistical method is to
use parametric models of heterogeneous diffusion, based on the hidden Markov model
(HMM) framework [5, 10, 13]. These latter studies suggest that particles within the
plasma membrane can switch between different discrete conformational states with
different diffusivities. Such switching could be due to interactions between proteins
and the actin cytoskeleton [5] or due to protein-lipid interactions [15].

Motivated by the above experimental studies, we previously analyzed a model
of a Brownian particle that randomly switches between two distinct conformational
states with different diffusivities [2, 3]. We assumed that in each state the particle
undergoes normal diffusion (additive white noise) but took the switching rates to de-
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pend on spatial position. We showed that in the fast switching limit ε→ 0, where ε is
some dimensionless scale factor, one obtains Brownian motion with a space-dependent
diffusivity of the Itô form; see also [6, 7]. We also extended the theory to include col-
ored additive noise with correlation time κ. We found that the nature of the effective
multiplicative noise process obtained by taking both the white-noise limit (κ → 0)
and fast switching limit (ε→ 0) depends on the order the two limits are taken. More
specifically, taking the white-noise limit κ→ 0 first yields an Itô stochastic differential
equation (SDE), whereas a Stratonovich SDE is obtained when the fast switching limit
ε→ 0 is taken first. Moreover, the form of the effective diffusion coefficient differs in
the two cases. (The latter result holds even in the case of space-independent transition
rates, where one obtains additive noise processes with different diffusion coefficients.)

Independently of our theoretical work, an experimental and computational study
has found that C. elegans zygotes rely on space-dependent switching diffusivities as
a mechanism for the formation of intracellular gradient formation during cell polar-
ization [14]. During asymmetric cell division a pair of RNA-binding proteins muscle
excess-5 (MEX-5) and pharynx and intestine in excess-1 (PIE-1) form opposing sub-
cellular concentration gradients in the absence of a local source due to a spatially het-
erogeneous switching process. That is, both proteins switch between fast-diffusing and
slow-diffusing states on timescales that are much shorter (seconds) than the timescale
of gradient formation (minutes). Moreover, the switching rates are strongly polarized
along the anterior/posterior axis of the zygote. This means that fast-diffusing MEX-5
and PIE-1 proteins are approximately symmetrically distributed, whereas the corre-
sponding slow-diffusing proteins are highly enriched in the anterior and posterior cyto-
plasm, respectively. We have also applied our mathematical theory of space-dependent
switching diffusivities to derive explicit formulae for intracellular concentration gra-
dients in C. elegans [4], which closely match the experimental and numerical results
of [14].

In this paper, we further extend the theory of space-dependent switching diffu-
sivities by considering the effects of cellular microstructures. We can think of this
microstructure as reflecting localized cellular substrates that a diffusing particle can
temporarily bind to, thereby entering a slower diffusive state. Suppose that a particle
can switch between two states n = 0, 1 with diffusivities Dn according to a two-state
Markov process

D0

α0/ε


α1/ε

D1,

where α0,1 = O(1) and ε is a scale factor. Furthermore, we assume that the switching
rate out of state n depends on a macrostructure determined by x ∈ Ω ⊂ Rd, and a
microstructure determined by x/δ, where 0 < δ � 1 is the scale of the microstructure
in the cell. That is, αn = αn(x, x/δ). An example is shown in Figure 1, where α0 is
constant, whereas α1 has a monotonically increasing macrostructure superimposed on
a fast, spatially oscillating microstructure. We will use a combination of asymptotic
analysis and the method of multiple scales to investigate the fast switching limit ε→ 0
and the homogenization limit δ → 0. In particular, we will demonstrate that the av-
eraged system obtained by taking both limits depends on which order they are taken.

2. Switching diffusivities with spatial microstructure. Let un(x, t) denote
the concentration of proteins diffusing with diffusivity Dn, n = 0, 1, in a bounded
region Ω ⊂ Rd. The switching rates are given by 1

εαn
(
x, xδ

)
, with 0 < ε � 1

designating the timescale of the switching and δ determining the spatial scale of the
cellular microstructure. We further assume that the switching rates are bounded at
the microscale
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Fig. 1. Schematic illustration of a spatially varying switching rate with both macrostructure and
microstructure. A Brownian particle randomly switches between two conformational states n = 0, 1
having different diffusivities such that D0 < D1. The switching rate α0 from state n = 0 is taken to
be a constant. On the other hand, the switching rate α1 from state n = 1 monotonically increases at
the macroscale and periodically oscillates on the microscale. On average, the particle spends more
time in the slow diffusing state at the end x = 1 and approximately the same time in both states at
the end x = 0.

0 < αn,L(x) ≤ αn
(
x,
x

δ

)
≤ αn,U (x).(2.1)

(These conditions help ensure that α0,1 both remain bounded at O(1) throughout the
domain and that the proportions α0,1/

∑
n αn are always well defined.) To simplify

the analysis, we take the switching rates to be periodic in the variable x/δ. The
concentrations u0(x, t), u1(x, t) then satisfy a system of the form

∂un
∂t

= Dn∆un −
1

ε
αn

(
x,
x

δ

)
un +

1

ε
α1−n

(
x,
x

δ

)
u1−n + fn(x, t),(2.2)

where n = 0, 1, x ∈ Ω ⊂ Rd+ without loss of generality, and fn(x, t) is a function
describing any sources or sinks for the protein concentration in state n within the
domain. Note that we do not assign units to the space and timescales, but at the
level of cellular processes, which we have in mind, the length scale is often measured
in micrometers and the time scale in seconds. Throughout, we will use Neumann
boundary conditions ∂ηun

∣∣
∂Ω

= 0, where η represents the unit normal vector on the
boundary of Ω.

Our main goal is to compare several system reductions. The first is a fast-
switching limit ε → 0. In this limit, we can assume that a multitude of switching
events occur while the position of a particle stays roughly the same. Define the prob-
ability that for fixed x a particle is in state n by

ρn

(
x,
x

δ

)
=

α1−n
(
x, xδ

)
αn
(
x, xδ

)
+ α1−n

(
x, xδ

) .(2.3)
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Let the total protein concentration be given by u(x, t) = u0(x, t) + u1(x, t). The
fast-switching reduction is then found by assuming

un = uρn + εwn(2.4)

and substituting this into (2.2) to find an effective equation governing the total density
u(x, t).

On the other hand, the presence of a microstructure suggests that there are
effective switching rates αen(x) given by homogenizing in some proper way. These
rates can be found by utilizing the method of multiple scales. Assume the micro- and
macroscales are independent by setting y = x/δ. We assume that the microstructure
variable y is in Rd. Since we restricted αn(x, y) to be periodic in y, there exists a
vector yp such that

αn(x, y + yp) = αn(x, y) for all x, y.

We can then restrict the y domain to a bounded region Ωy ⊂ Rd defined by Ωy =
[0, yp,1]× · · · × [0, yp,d] and then extend any solution to the rest of the domain using
periodicity.

Under the separation of scales, the differential operator then becomes ∇ → ∇x +
1
δ∇y. Expanding un in powers of δ

un(x, t) = u(0)
n (x, y, t) + δu(1)

n (x, y, t) + δ2u(2)
n (x, y, t) +O(δ3),(2.5)

and again substituting into (2.2) results in a hierarchy of equations at different orders.
Enforcing solvability conditions allows us to derive effective equations for un(x, t).
This is a classical approach, an extensive general theory of which can be found in [11].

Performing both of these procedures allows us to find effective equations and
solutions in the limits ε→ 0 and δ → 0, but it is unclear in which order to take these
limits. We will show that there are qualitative and quantitative differences between
the two cases and illustrate these differences with some examples.

2.1. Limit order ε → 0 then δ → 0. We first perform the fast-switching
reduction. Substituting un = ρnu + εwn into (2.2), summing over n, and requiring
that w0 + w1 = 0 yields the equation

∂u

∂t
= ∆

(
D
(
x,
x

δ

)
u
)

+ f(x, t), ∂η[Du]
∣∣
∂Ω

= 0,(2.6)

where we have defined an effective diffusion coefficient D by

D
(
x,
x

δ

)
= D0ρ0

(
x,
x

δ

)
+D1ρ1

(
x,
x

δ

)
,(2.7)

and let f(x, t) =
∑
n fn(x, t).

We now homogenize by setting y = x/δ, ∇ → ∇x + 1
δ∇y and expanding

u(x, t) = u(0)(x, y, t) + δu(1)(x, y, t) + δ2u(2)(x, y, t) +O(δ3).(2.8)

The O(1/δ2) equation is

∆y

[
D(x, y)u(0)

]
= 0.(2.9)
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We require that the solution is periodic and bounded in the microstructure variable y.
By Liouville’s theorem, the only periodic bounded solutions are constant in y, hence

D(x, y)u(0)(x, y, t) = c0(x, t).(2.10)

At O(1/δ) we have

∆y

[
D(x, y)u(1)

]
+ 2∇x · ∇y

[
D(x, y)u(0)

]
= 0.(2.11)

Since D(x, y)u(0) = c0(x, t) is independent of y, the solution is again of the form

D(x, y)u(1)(x, y, t) = c1(x, t).(2.12)

Finally, the O(1) equation is

∆y

[
D(x, y)u(2)

]
+ 2∇x · ∇y

[
D(x, y)u(1)

]
+ ∆x

[
D(x, y)u(0)

]
=
∂u(0)

∂t
− f(x, t).

(2.13)

Again, since D(x, y)u(1) = c1(x, t) does not depend on y, this reduces to

∆y

[
D(x, y)u(2)

]
=
∂u(0)

∂t
−∆x

[
D(x, y)u(0)

]
− f(x, t).(2.14)

Note that the adjoint operator to ∆yD(x, y) is D(x, y)∆y, whose null space includes
constants in y. By the Fredholm alternative, to have a solution for D(x, y)u(2) we
must therefore have∫

Ωy

∂u(0)

∂t
−∆x

[
D(x, y)u(0)

]
− f(x, t) dy = 0,(2.15)

where the integration is done with respect to the microscale y. Therefore, since
D(x, y)u(0) = c0(x, t), we must have

〈D−1〉∞
∂
[
D(x, y)u(0)

]
∂t

−∆x

[
D(x, y)u(0)

]
− f(x, t) = 0,(2.16)

where

〈D−1〉∞ = 〈D−1〉∞(x) =
1

|Ωy|

∫
Ωy

D(x, y)−1 dy(2.17)

is the harmonic mean of the effective diffusion coefficient with respect to the mi-
crostructure variable y. Note that |Ωy| can be computed simply by using |Ωy| =∏d
k=1 |yp,k|. In one dimension, this reduces to

〈D−1〉∞(x) =
1

yp

∫ yp

0

D(x, s)−1ds.(2.18)

In (2.16), the Laplacian ∆ with respect to both scales has been replaced with the
Laplacian ∆x with respect to only the macroscale. Finally, if (2.16) holds, then
the Fredholm alternative is satisfied for any function in the nullspace of the adjoint
operator, completing the argument.
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In the case f(x, t) = 0, we have a steady-state solution to (2.16) given by

u(0)(x, y) =
A

D(x, y)
.(2.19)

At this point we can average out the microstructure by integrating the solution over
the cell Ωy. This yields

u(0)(x) = A〈D−1〉∞(x).(2.20)

Lastly, A can be determined by the normalization condition

A = u∗
[∫

Ω

〈D−1〉∞(x) dx

]−1

,(2.21)

where u∗ is the total concentration in the domain Ω, which is conserved due to the
no-flux boundary conditions.

There are a few things here to note. The first is that this reduction process
introduces a boundary layer of order

√
ε around ∂Ω due to changes in the boundary

conditions when taking the fast-switching limit. Higher order correction terms can be
introduced if needed, as was done for d = 1 in [4]. Second, for this order of limits, we
did not need to assume that the switching rates were periodic in the microstructure if

we are only interested in the steady-state problem ∂u(0)

∂t = 0. Alternatively, we could
work with nonperiodic α0 and α1 by defining Ωr = {y ∈ Rd+ : ‖y‖ < r}, and setting

u(0)(x) = lim
r→∞

1

|Ωr|

∫
Ωr

u(x, y) dy,(2.22)

which would instead yield

u(0)(x) = A〈D−1〉∞(x),(2.23)

where

〈D−1〉∞(x) = lim
r→∞

1

|Ωr|

∫
Ωr

D(x, y)−1 dy.(2.24)

In one dimension, this would reduce to

〈D−1〉∞(x) = lim
y→∞

1

y

∫ y

0

D(x, s)−1ds.(2.25)

The arguments with the Fredholm alternative would also still carry through. Since
the nullspace of the adjoint operator would still contain constants in y, and the right
hand side of (2.14) is independent of y, the argument still holds.

2.2. Limit order δ → 0 then ε → 0. Now we will instead first homogenize
the system of equations using the method of multiple scales by setting y = x/δ and
expanding
At O(1/δ) we have

un(x, t) = u(0)
n (x, y, t) + δu(1)

n (x, y, t) + δ2u(2)
n (x, y, t) +O(δ3).(2.26)

The O(1/δ2) equation is

Dn∆yu
(0)
n = 0.(2.27)
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Again by Louville’s theorem, the only bounded solutions are constant in y, therefore

u(0)
n (x, y, t) = u(0)

n (x, t).(2.28)

Dn∆yu
(1)
n + 2Dn∇x · ∇yu(0)

n = 0.(2.29)

Similar to before, we have that the second term vanishes since u
(0)
n does not depend

on y, therefore

u(1)
n (x, y, t) = u(1)

n (x, t).(2.30)

Finally, the O(1) equation is

Dn∆yu
(2)
n + 2Dn∇x · ∇yu(1)

n = −Dn∆xu
(0)
n

+
∂u

(0)
n

∂t
+

1

ε
αn(x, y)u(0)

n −
1

ε
α1−n(x, y)u

(0)
1−n − fn(x, t).(2.31)

Similar to before, the term involving u
(1)
n vanishes. Notice that unlike when we took

the fast-switching limit first, the right-hand side at O(1) is now dependent on the
microstructure variable y.

Since the only periodic bounded functions that are solutions to ∆yun = 0 are
constants, the Fredholm alternative gives us that the right-hand side of (2.31) must
satisfy

1

|Ωy|

∫
Ωy

−Dn∆xu
(0)
n +

∂u
(0)
n

∂t
+

1

ε
αn(x, y)u(0)

n −
1

ε
α1−n(x, y)u

(0)
1−n − fn(x, t) dy = 0.

(2.32)

Since only α0 and α1 depend on y, (2.32) reduces to

∂u
(0)
n

∂t
= Dn∆xu

(0)
n −

1

ε
αen(x)u(0)

n +
1

ε
αe1−n(x)u

(0)
1−n + fn(x, t),(2.33)

where we have defined the effective switching rate over a period αen by

αen(x) =
1

|Ωy|

∫
Ωy

αn(x, y) dy.(2.34)

We can now take a fast switching limit ε→ 0 like before, setting u
(0)
n = u(0)ρen +

εwn where now

ρen(x) =
αe1−n(x)

αe0(x) + αe1(x)
.(2.35)

The procedure is now the same as before, so we will just summarize the result below.
Summing (2.33) over n yields

∆x

[
De(x)u(0)

]
= 0,(2.36)

with boundary conditions
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∂η

[
Deu

(0)
] ∣∣
∂Ω

= 0,(2.37)

where the effective diffusion coefficient is defined by

De(x) = D0ρ
e
0(x) +D1ρ

e
1(x).(2.38)

Solving explicitly for the protein concentration, we find that

u(0)(x) =
A

De(x)
(2.39)

with normalization constant

A = u∗
[∫

Ω

D
−1

e (x)dx

]−1

.(2.40)

3. Examples in d = 1 space dimension. We now have two different ap-
proximate solutions based on taking the limits ε → 0 and δ → 0 in different orders.
The question naturally arises whether or not the order of limits differs significantly.
We will show that they do by considering a number of examples of space-dependent
switching rates in one dimension. We also take fn = 0, D0 = 0.1, D1 = 5, and
normalize all solutions so that the total concentration is unity.

As our first example, let Ω = (0, π) and

αn(x, x/δ) = x4 sin2(x/δ + φn) + 1,(3.1)

so that yp = π. The switching rates are then identical, save for a phase shift φn in the
microstructure. This can be thought of as corresponding to localized regions where a
single particle is much more likely to bind to another particle, entering a slow diffusive
state, and regions where the reverse holds instead. The degree of separation between
these regions is captured by φ0 − φ1. We take φ0 = 0, φ1 = φ. The key here is that
if we homogenize first (meaning, take δ → 0 first), we end up with

αe0(x) = αe1(x) =
x4

2
+ 1(3.2)

since the average value of a periodic function over one period does not depend on
the phase shift φ. This means that if we perform the limits in the order δ → 0, then
ε→ 0, we will end up with an effective diffusion coefficient given by D = D0/2+D1/2,
indicating that the solution to the reduced equation is simply

u(0)(x) =
1

π
.(3.3)

However, if we take limits in the reverse order, we end up with an effective averaged
solution

u(0)(x) = A〈D−1〉∞(x)(3.4)

with

〈D−1〉∞(x) =
1

yp

∫ yp

0

D(x, y)−1dy(3.5)
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and

A = u∗
[∫ π

0

〈D−1〉∞(x)dx

]−1

.(3.6)

Since we are no longer averaging the switching rates individually, and instead aver-
aging the reciprocal of the effective diffusion coefficient, we no longer have a constant
solution unless φ = 0. In the case of maximal separation φ = π/2, the difference in
the order of limits is most apparent, as illustrated in Figure 2.
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Fig. 2. Spatially varying switching rates given by (3.1) with φ0 = 0 and φ1 = π/2. (a) Plot of
switching rates as a function of x. Both have the same spatially averaged switching rate (indicated
by the monotonically increasing curve). (b) Plot of leading-order averaged concentration u(0)(x)
as a function x for the two limit orders. Note that the solutions are normalized so that the total
concentration is unity.
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Fig. 3. Spatially varying switching rates given by (3.7) with δ = 0.02.

In the above example, we assumed that the two switching rates had the same
macrostructure, which was modulated by the microstructure. Let us now consider an
example where both the macro- and microstructures differ (see Figure 3):
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α0(x, x/δ) = 5x2+0.7 sin2 (x/δ) +0.3, α1(x, x/δ) = 5x3.5+0.7 sin2 (x/δ + π/2) + 0.3.

(3.7)

In contrast to the previous example, the microstructure is now an additive rather than
a multiplicative term. Consequently, it is only significant for small values of x. Again
we find that in this regime, the reduction of the full solution depends on the order
with which the limits are taken; see Figure 4. Interestingly, both limit orders follow
the general trend of the full solution. However, we find that it is more appropriate to
take the fast switching limit first when ε� δ, while homogenization as a first step is
a better approximation when δ � ε. This also holds for larger x, as can be seen in
Figure 5 by zooming in on the plots. Based on our numerical studies, it appears that
a crossover regime ε = δ2 seems to be the dividing case where neither approximation
works much better than the other. This is likely related to the fact that this is the
diffusive scaling of the diffusion equation.
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Fig. 4. Spatially varying switching rates given by (3.7). Comparison between full solution and
the two different order limits for (a) ε = 10−2, δ = 10−3 and (b) ε = 10−5, δ = 10−2. In (a),
homogenizing the spatial structure prior to the fast-switching limit provides a better approximation,
while the opposite is true in (b) (see magnified figures below).
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Fig. 5. Magnified verison of Figure 4 for (a) ε = 10−6, δ = 10−3 and (b) ε = 10−5, δ = 10−2.

To see one connection with the diffusive scaling, we consider a simplified version
of our original equation (2.2), taking no macrostructure dependence in the switching
rates and setting fn(x, t) = 0:
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∂un
∂t

= Dn∆un −
1

ε
αn(x/δ)un +

1

ε
α1−n(x/δ)u1−n.(3.8)

Assuming that we are in the regime ε = δ2, we can introduce the scaling x/δ → x,
t/δ2 → t to arrive at

∂un
∂t

= Dn∆un − αn(x)un + α1−n(x)u1−n.(3.9)

The resulting reaction-diffusion equation does not depend on either small parameter,
and under our assumptions it is intractable to small-parameter approximations. This
suggests that any asymptotic analysis would need to be done prior to rescaling.

Since the analysis in previous sections does not cover this borderline case ε = δ2,
an asymptotic approximation with respect to only a single small parameter δ would
need to be developed. While this is fairly straightforward if there is no explicit
dependence on the macrostructure, this particular case for the switching rates results
in an approximate steady-state that is constant throughout the domain, just as in
sections 2.1 and 2.2. Extending an asymptotic analysis to the case of an explicit
macrostructure in the switching rates is a harder problem that we leave open.

4. Mean First Passage Time Analysis. The steady-state analysis and asymp-
totics in the previous sections provide insights into the global effects of the presence
of a cellular microstructure, particularly in cases where there are highly local regions
with a higher or lower chance of affecting the diffusivity of a diffusing protein. How-
ever, the average effect of this microstructure from the perspective of a single particle
is unclear and remains of some interest. We will now seek to gain more information
about such effects by investigating the mean first passage time (MFPT) for a parti-
cle starting at an initial location x to reach some portion of the boundary Γ ⊂ ∂Ω.
Intuitively, we expect that alternating regions of fast and slow switching will average
out from the perspective of a traveling particle, and the MFPT should not exhibit a
locally periodic structure, unlike the overall concentration profile.

We will first consider the MFPT problem for the full system. Let X(t) be the
location of a diffusing particle in Ω at time t. We want to calculate statistics for when
this particle first reaches some subset Γ ⊂ ∂Ω of the boundary. Let

pn(x, t) = p(x, t, n|z, 0,m)

be the probability densities for the pair (X(t), n(t)) at time t conditioned on an initial
location X(0) = z and an initial diffusive state m(t) = m. Then pn(x, t) satisfies the
same system of equations (2.2) as un(x, t) with fn ≡ 0 and the normalization condition∫

Ω

∑
n

pn(x, 0) dx = 1.(4.1)

Define a vector-valued function ~p(x, t) by

~p(x, t) =

(
p0(x, t)
p1(x, t)

)
,(4.2)

a transition matrix A(x, x/δ) by

A =

(
α0 −α1

−α0 α1

)
,(4.3)
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and a diffusion tensor D

D =

(
D0 0
0 D1

)
.(4.4)

We can then write the forward Chapman–Kolmogorov (CK) equation for ~p as

∂~p

∂t
= D∆~p− 1

ε
A~p ≡ L~p.(4.5)

Note that pn specifies the diffusive state since the distinct diffusivities, D0 6= D1,
make finding a single equation for the total probability p(x, t) = p0(x, t) + p1(x, t)
nontrivial. Since we are interested in a first passage time (FPT) problem, we will
impose a reflecting boundary condition ∂x~p = 0 on ∂Ω\Γ and an absorbing boundary
condition ~p = 0 on Γ.

Let T be the (stochastic) first time the particle reaches Γ. The FPT density
conditioned on the initial diffusive state m of the particle is then defined by

f(z, t,m) = −∂P(z, t,m)

∂t
,(4.6)

where the survival probability P is defined as

P(z, t,m) =

∫
Ω

∑
n

p(x, t, n|z, 0,m) dx.(4.7)

From f(z, t,m), we can arrive at the MFPT τ(z,m) by

τ(z,m) =

∫ ∞
0

tf(z, t,m)dt =

∫ ∞
0

P(z, t,m)dt(4.8)

after integrating by parts.
We can now derive an equation for τ by integrating the backward CK equation

corresponding to (4.5) over x ∈ Ω then t ∈ [0,∞). The backward CK equation is

∂~q

∂t
= L†~q,(4.9)

where now

~q :=
∑
n

(
p(x, t, n|z, 0, 0)
p(x, t, n|z, 0, 1)

)
=:

(
q0(x, t|z, 0)
q1(x, t|z, 0)

)
,(4.10)

and the subscript refers to the initial diffusive state m. Correspondingly, the Laplacian
∆ in the adjoint operator L† = D∆ − 1

εA
T is now applied to the initial position

z. We will use the subscript m when referring to a quantity related to the initial
diffusive state and reserve n for cases when the quantity corresponds to the forward
CK equation. The boundary conditions in terms of z are still absorbing on Γ and
reflecting on ∂Ω \ Γ.

Now that we have the backward equation, integrating over space and time yields(
−1
−1

)
= L†~τ ,(4.11)
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with

~τ =

(
τ(z, 0)
τ(z, 1)

)
:=

(
τ0(z)
τ1(z)

)
.(4.12)

To obtain an MFPT independent of the initial value of m, we define

τ(z) =
∑
m=0,1

ρm(z)τm(z).(4.13)

Here, ρm(z) designates the probability that the particle is in state m, conditioned on
the initial position X(0) = z. In the limit of fast switching ε→ 0, we can assume that
the particle switches states many times before moving a significant spatial distance,
indicating that a particle instantaneously forgets its initial state in the limit ε → 0.
Therefore, it is natural to take

ρm(z) =
α1−m(z, z/δ)

α0(z, z/δ) + α1(z, z/δ)
.(4.14)

Finally, since τ(z) = E[T |X(0) = z], we can integrate τ over a distribution of
initial locations g(z) to obtain a space-independent MFPT that only depends on the
geometry of the domain and the initial state of the diffusing particle

τ =

∫
Ω

τ(z)g(z) dz =

∫
Ω

( ∑
m=0,1

τm(z)ρm(z)

)
g(z) dz.(4.15)

Several natural choices for g(z) are a uniform distribution g(z) = 1/|Ω|, a distribution
based on the initial concentration profile g(z) = u(x, 0)/‖u(x, 0)‖, and a distribution
based on the steady-state concentration profile g(z) = u(x,∞)/‖u(x,∞)‖.

Investigating numerical solutions for the MFPT problem, we find that the mi-
crostructure does not directly appear in τ(z). This is a reasonable result since for a
FPT statistic, intuition would suggest alternating regions of high and low diffusivity
will average out as a single particle diffuses between them, especially if the variation
is at a much finer scale than any macrostructure effects. To make this precise, one
can look at fast switching and homogenization reductions with regard to the MFPT
equation. We will not go through the details, but it is straightforward to show that
in the limits ε → 0 then δ → 0, the resulting MFPT problem to leading order takes
the form of Poisson’s equation

∆zτ
(0)(z) = −〈D−1〉∞(z),(4.16)

where the effective diffusion coefficient is as previously defined and with boundary
conditions

∂ητ
(0)(z)

∣∣
∂Ω\Γ = 0, τ (0)(z)

∣∣
Γ

= 0.(4.17)

For the limits ε → 0 then δ → 0, the resulting MFPT problem to leading order
has a similar form

∆τ (0) =
−1

De(z)
,(4.18)

∂ητ
(0)(z)

∣∣
∂Ω\Γ = 0, τ (0)(z)

∣∣
Γ

= 0,(4.19)
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with

De(z) = D0
αe1(z)

αe0(z) + αe1(z)
+D1

αe0(z)

αe0(z) + αe1(z)
,(4.20)

where we have now averaged the switching rates prior to defining the effective diffusion
coefficient. In one dimension with Ω = (0, L) and Γ = {0, L}, these two equations
have respective explicit solutions

τ (0)(z) =

∫ L

0

∫ z′

0

〈D−1〉∞(z′)dz′′dz′ −
∫ z

0

∫ z′

0

〈D−1〉∞(z′′)dz′′dz′(4.21)

and

τ (0)(z) =

∫ L

0

∫ z′

0

1

De(z)
dz′′dz′ −

∫ z

0

∫ z′

0

1

De(z)
dz′′dz′.(4.22)

Using another example of switching rates (see Figure 6), we compare the two types
of limits to the original numerical solution of the MFPT. The results are shown in
Figure 7. It is worth observing that the same separation regime for ε and δ is apparent
here, with ε→ 0 first a better match when ε� δ2, δ → 0 first a better fit when ε� δ2,
and ε = δ2 a regime where neither asymptotic solution seems to do better, although
they again still follow the trend of the full problem. Another point of interest is that
in all the cases that we tested, the two asymptotic solutions were upper and lower
bounds for the true MFPT. In particular, taking δ → 0 first provides a lower bound,
while ε→ 0 first yields an upper bound.
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Fig. 6. (a) Another example of spatially varying switching rates: α0(x, x/δ) = 0.01(x+0.5)2(x−
L− 0.5)2 + sin2(x/δ) and α1(x, x/δ) = 0.01(x+ 0.5)4(x− L− 0.5)4 + sin2(x/δ + π/2). (b) Plot of
leading-order averaged concentration u(0)(x) as a function x for the two limit orders.

So far, we have formulated the FPT problem for the full system and then investi-
gated the limits ε, δ → 0. A natural question is whether or not one obtains the same
results if one takes the joint limits first and then derives the MFPT starting from
the averaged system. It is straightforward but tedious to show that for the limits
limε→0, limδ→0, and limε→0 limδ→0, it does not matter when the MFPT problem is
formulated. Simply put, deriving the MFPT before, in between, or after taking any
of the above limits does not change the resulting derivation. The only key observation
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Fig. 7. Mean first passage time τ(z) as a function of initial position z for (a) ε = 10−5, (b)
ε = 10−4, and (c) ε = 10−3. The switching rates are as in Figure 6. Note that the microstructure
appears to already be averaged out for this particular statistic of the system.

needed for these cases is that in the limit ε → 0, the initial probability distribution
ρ∗n(z) that a particle starting at z is initially in state n converges to the probability
distribution ρn(z). That is, the initial state is forgotten infinitely quickly in the fast-
switching limit. The troublesome case seems to be limδ→0 limε→0. This is a result of
the fast switching limit ε → 0 changing the structure of the differential operator. In
particular, this limit introduces an effective diffusion operator of Itô form ∆D(x, x/δ)
that captures the effects of the microstructure in place of the switching rates. The ef-
fective diffusion coefficient D(x, x/δ) is the only place in the resulting system of PDEs
where the microscale variable y = x/δ appears and creates issues when considering
whether to homogenize prior to formulating the MFPT.

To highlight the issue, we will attempt to find an MPFT equation after applying
both limits. We first consider (2.16) with a probabilistic formulation un = pn, fn = 0
and reflecting and absorbing boundary conditions as before. The resulting equation
after applying limits is

〈D−1〉∞
∂
[
D(x, y)p(0)

]
∂t

= ∆x

[
D(x, y)p(0)

]
.(4.23)

Where the product c0 = Dp(0) is independent of the variable y. We can immedi-
ately see a complication as the homogenization in section 2 actually eliminated the
microstructure for c0(x, t) = D(x, y)p(0)(x, y) due to the change in the structure of
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the operator, so (2.16) is actually an equation for c0 in terms of independent vari-
ables x and t. This is undesirable since we want an equation for the probability p(0)

independent of y to derive the backward CK equation. If we rewrite (2.16) in terms
of p(0), we end up with

∂p(0)

∂t
=

1

〈D−1〉∞(x)D(x, y)
∆x

[
D(x, y)p(0)

]
,(4.24)

from which it is uncertain how to go about formulating the MFPT, as it is not clear
if the survival probability P would satisfy the adjoint equation to (4.24).

5. Discussion. We investigated a cellular reaction-diffusion system inspired by
recent results in cell polarization. This model incorporates both fast switching based
on a small parameter ε and a local microstructure whose scale is determined by a
second small parameter δ. The two small parameter limits δ → 0 (homogenization
limit) and ε → 0 (fast switching limit) do not commute in general. The resulting
reduced models approximate well the average of the full system in various parameter
regimes. Based on numerical simulations, we find that the order of limits ε → 0,
δ → 0 is a better approximation when ε � δ2, while the order δ → 0, ε → 0 is more
accurate if ε� δ2; the separation seems to occur at the diffusive scaling ε = δ2.

We also calculated statistics for an individual particle interacting with the cellular
environment. In particular, we considered the MFPT for a diffusing protein to reach
part of the cellular boundary given a starting location z, as this statistic can give
a better sense of how the environment affects the transport of proteins. We found
that the microstructure is averaged out when determining the MFPT, since a diffus-
ing particle will tend to encounter many regions of faster or slower switching before
reaching the boundary. One interesting observation is that taking ε → 0 then δ → 0
prior to formulating the MFPT problem is not the same as taking the respective limits
after the formulation. The reaction-diffusion operator fundamentally changes form,
seemingly preventing the classical formulation in the first place. The theoretical im-
plications of this change in the form of the operator in the case of fast-switching and
how this impacts the FPT problem is an interesting question that warrants further
investigation.
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