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EFFECTIVE PERMEABILITY OF A GAP JUNCTION WITH
AGE-STRUCTURED SWITCHING\ast 

PAUL C. BRESSLOFF\dagger , SEAN D. LAWLEY\dagger , AND PATRICK MURPHY\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We analyze the diffusion equation in a bounded interval with a stochastically gated
interior barrier at the center of the domain. This represents a stochastically gated gap junction
linking a pair of identical cells. Previous work has modeled the switching of the gate as a two-state
Markov process and used the theory of diffusion in randomly switching environments to derive an
expression for the effective permeability of the gap junction. In this paper we extend the analysis
of gap junction permeability to the case of a gate with age-structured switching. The latter could
reflect the existence of a set of hidden internal states such that the statistics of the non-Markovian
two-state model matches the statistics of a higher-dimensional Markov process. Using a combination
of the method of characteristics and transform methods, we solve the partial differential equations
for the expectations of the stochastic concentration, conditioned on the state of the gate and after
integrating out the residence time of the age-structured process. This allows us to determine the
jump discontinuity of the concentration at the gap junction and thus the effective permeability. We
then use stochastic analysis to show that the solution to the stochastic PDE is a certain statistic
of a single Brownian particle diffusing in a stochastically fluctuating environment. In addition to
providing a simple probabilistic interpretation of the stochastic PDE, this representation enables an
efficient numerical approximation of the solution of the PDE by Monte Carlo simulations of a single
diffusing particle. The latter is used to establish that our analytical results match those obtained
from Monte Carlo simulations for a variety of age-structured distributions.
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1. Introduction. Gap junctions are intracellular gates that allow small diffusing
molecules to undergo cytoplasmic transfer between adjacent cells [13, 37, 17]. Cells
sharing a gap junction channel each provide a hemichannel (connexon) that connects
head-to-head. Each hemichannel is composed of proteins called connexins that exist
as various isoforms named Cx23 through Cx62, with Cx43 being the most common.
The physiological properties of a gap junction, including its permeability and gating
characteristics, are determined by the particular connexins forming the channel. Gap
junctions have been found in nearly all animal organs and tissues and facilitate direct
electrical and chemical signaling [10]. This signaling does not need to be confined
locally, and long-range signaling via the propagation of chemicals or ions from a trig-
gering cell can occur [11, 36, 38, 31, 32]. Gap junctions control the flow of diffusing
molecules due to their restrictive geometries and via the action of voltage and chem-
ical gates, analogous to the opening and closing of ion channels [8]. This is often
modeled by taking the gap junctions to have an effective permeability. In the case of
steady-state solutions, it is then possible to reduce the effects of gap junctions to a
permeability-dependent rescaling of the diffusion coefficient, from which an effective
diffusion coefficient can be calculated.
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The classical setup analyzing diffusive flow through gap junctions is the following
[25]. Suppose molecules diffuse along a one-dimensional line composed of two cells
connected by a gap junction (see Figure 1.1(a)). To illustrate the idea, we will not con-
sider nonlinearities arising from chemical interactions. Compared to the cytoplasm,
gap junctions have a high resistance, here modeled by an effective permeability \mu . We
will assume that both cells are of length L, so that the location of the gap junction is
at L. In each cell, particles diffuse according to

(1.1)
\partial u

\partial t
= D

\partial 2u

\partial x2
, x \in (0, L) \cup (L, 2L).

For physiological scales within cells, the diffusion coefficient D can vary from a few
\mu m2/s to hundreds of \mu m2/s, depending on factors such as particle size and the
viscosity of the media. At the intercellular boundary x = L, the concentration is
discontinuous due to the permeability. Conservation of the diffusive flux allows us to
write down interior boundary conditions at each gap junction

(1.2)  - D
\partial u(L - , t)

\partial x
=  - D

\partial u(L+, t)

\partial x
= \mu [u(L - , t) - u(L+, t)].

It should be noted that only the first equality is conservation of flux. The second
equality is the choice for the form of the flux through the gap junction, in our case
based on the difference in concentration at the interior boundary. Here the parameter
\mu is a measure of the velocity for the particles moving through the gap junction based
on the difference in concentration on either side, and as such has units of length per
time. To have a well-posed problem, we also need exterior boundary conditions at
x = 0 and x = 2L. For concreteness, we assume that there are concentration reservoirs
at both ends and impose the Dirichlet boundary conditions

(1.3) u(0, t) = 0, u(2L, t) = \eta ,

where \eta is the exterior concentration at the right boundary and, without loss of
generality, we have set the exterior concentration at the left boundary to zero. This
is valid since the same boundary conditions used here can be obtained by shifting
the density u to be 0 at x = 0 without changing (1.1), (1.2). While other boundary
conditions may be considered, the current choice greatly simplifies the analysis in
later sections.

In steady-state, there is a constant flux J0 =  - DK0, and the density within each
cell is given by a linear function with slope K0. Enforcing the external boundary
condition at x = 0 and interior boundary conditions at x = L, we find that

(1.4) u(x) =

\biggl\{ 
K0x, x \in (0, L),
K0x+ U, x \in (L, 2L),

where U = u(L+) - u(L - ) is the change in density across the cellular gate. This gives
two unknowns to solve for: K0 and U . By enforcing the exterior boundary condition
at x = 2L we arrive at \eta = 2K0L + U . Since J0 = \mu [u(L - )  - u(L+)] =  - \mu U , it
follows that U = DK0/\mu and thus \eta = 2K0L +DK0/\mu . The latter equation can be
solved for K0, which establishes that the steady-state diffusive flux is

(1.5) J0 =  - D\eta 

2L

\biggl[ 
1 +

D

2\mu L

\biggr]  - 1

.
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Fig. 1.1. Pair of cells, each of length L, connected internally by a gap junction. (a) Static
gap junction with permeability \mu . In steady-state, there is a constant flux J0 through the system,
but there is a jump discontinuity of size U at the gap junction. (b) Dynamic gap junction that
stochastically switches between open and closed states with transition rates \alpha 0,1. In the open state
particles pass through the gap junction freely.

Defining an effective diffusion coefficient De =  - J0(2L/\eta ), we see that the reciprocal
can be expressed more succinctly as

(1.6)
1

De
=

1

D
+

1

2\mu L
.

In the above model, the permeability \mu of the gap junction is introduced as
a model parameter, rather than being derived from first principles. Recently, we
developed one approach to deriving an effective permeability, in which a gap junction
randomly switches between an open and a closed state due to thermal fluctuations [5]
(see Figure 1.1(b)). This could be due to a physical gate at the gap junction, which
only allows the passage of molecules when it is open. More specifically, suppose that
there is a discrete random variable n(t) \in \{ 0, 1\} such that the gap junction is open
when n(t) = 0 and closed when n(t) = 1.1 We will assume that transitions between
the two states n = 0, 1 are described by the two-state Markov process

0
\alpha 0

\rightleftharpoons 
\alpha 1

1.

Analogous to stochastically gated neuronal ion channels [2], these switching rates
could depend on the local voltage of the cell in the case of a voltage-gated gap junction
or the local concentration of the diffusing signaling molecule in the case of a chemically
gated gap junction. In the latter case, this would lead to a nontrivial coupling between
the switching process and diffusion. For analytical tractability, we assume that the
random switching of the gate is independent of the diffusion process, which would
hold for a voltage-gated gap junction in which the voltage dynamics evolves on a
slower time-scale than stochastic switching and diffusion.

1In our previous work, we also determined the permeability of a one-dimensional array of N gap
junctions under the simplifying assumption that all gap junctions open and close together. The case
of N independently switching gap junctions is much more complicated, since one has to assign a
discrete random variable nk(t) \in \{ 0, 1\} to each gate so that the resulting Markov chain is of size
2N . The reduced model of simultaneously switching gates provides an upper bound to the effective
permeability and can also be used to model multiple diffusing molecules independently switching
between different conformational states, only one of which allows them to traverse a gap junction
[5].
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The random opening and closing of the gap junction means that the boundary
conditions (1.2) of the classical model have to be replaced by the stochastic boundary
conditions

u(L - , t) = u(L+, t), \partial xu(L
 - , t) = \partial xu(L

+, t) for n(t) = 0,(1.7a)

\partial xu(L
 - , t) = 0 \partial xu(L

+, t) = 0 for n(t) = 1.(1.7b)

That is, when the gap junction is open, there is continuity of the concentration and the
flux across x = L, whereas when the gap junction is closed, the right-hand boundary
of the first cell and the left-hand boundary of the second cell are reflecting. The
effective permeability of the gap junction can be obtained by introducing the first-
order moments

Vn(x, t) = \BbbE [u(x, t)1n(t)=n],

where expectation is taken with respect to realizations of the discrete stochastic
process n(t), and 1n(t)=n = 1 if n(t) = n and is zero otherwise. Setting V (x, t) =
V0(x, t) + V1(x, t), one finds that V (x) = limt\rightarrow \infty V (x, t) satisfies the same steady-
state equations (1.4). However, in order to determine the constant slope K0, and
hence the effective flux J0, it is necessary to solve the boundary value problems for
the individual components Vn(x). The final result is that the effective permeability
\mu e in the case of two cells with a single stochastically gated gap junction satisfies [5]

(1.8)
1

\mu e
=

2\rho 1
\rho 0

tanh(\xi L)

\xi D
,

where

(1.9) \xi =
\sqrt{} 
(\alpha 0 + \alpha 1)/D, \rho \equiv 

\biggl( 
\rho 0
\rho 1

\biggr) 
=

1

\alpha 0 + \alpha 1

\biggl( 
\alpha 1

\alpha 0

\biggr) 
.

The dependence of \mu e on L comes from the fact that the particle source is located at
L and that our effective permeability is essentially a measure of velocity, which must
include the effects of diffusion-driven transport over the adjoining distance. Since
0 < tanh(\xi L) < 1, this transportation effect increases the effective permeability, an
effect that disappears for \xi L \gg 1. We conjecture that a similar phenomenon would
hold for a more general two-dimensional domain, provided that there is an external
source of particles at the boundary opposite the gate.

In this paper we extend the analysis of gap junction permeability [5] by adapting
our recent work on one-dimensional diffusion in domains with age-structured switching
boundaries [7]. Age-structured models are probably best known within the context of
birth-death processes in population biology, where the birth and death rates depend on
the age of the underlying populations [33, 40, 9, 19]. These could be cells undergoing
differentiation or proliferation [41, 39, 35] or whole organisms undergoing reproduction
[26]. There are also a growing number of applications of age-structured models within
cell biology, including cell motility [14, 15] and microtubule catastrophes [21]. In
the latter case, experimental evidence suggests that the rate at which a microtubule
switches from a growth phase to a shrinkage phase (catastrophe rate) increases with
the age of the microtubule. Diffusion in age-structured switching environments can
be motivated as follows. The gating dynamics of protein-based channels is often
governed by transitions between conformational states in a very complex potential
landscape, reflecting the intrinsic multidimensionality of the problem. This can result
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in local residence times that are nonexponential, as measured using patch clamp
experiments [18]. One way to model this is to treat the system as having a large
number of conformational states with exponential transition rates between each. Since
most observed nonexponential distributions can be approximated by a finite sum of
exponentials, this can then be used to fit the data. One is essentially lifting from a low-
dimensional non-Markovian state space to a high-dimensional Markovian one. The
drawback is that the number of states needed to fit the data changes, depending on the
conditions, such as temperature, under which the data is obtained. One workaround
is to use an age structured model that only incorporates two states, the open and
close states, and whose first passage time statistics from the open state to the closed
state, or vice versa, match that of the original process.

Finally, note that for simplicity we restrict our analysis to one-dimensional do-
mains. However, biological cells that communicate via gap junctions are typically
spherically shaped such that the gap junctions are small holes relative to the size
of cells. This adds another major level of complexity, beyond dealing with higher-
dimensional characteristics, since it is necessary to introduce a boundary layer in the
neighborhood of each junction in order to deal with the singular nature of Green's
functions in higher dimensions, which is known as the narrow escape problem [20].
Previous work has analyzed diffusion in higher-dimensional domains with stochasti-
cally gated small holes in the boundary, but without any age structure [34, 4]. An
alternative approach would be to carry out an effective homogenization of the medium,
along lines analogous to nonswitching gap junctions [25].

2. Single gap junction with age-structured switching. Let us again con-
sider a pair of cells of size L connected by a gap junction at x = L that stochastically
switches between an open state and a closed state, denoted by n = 0 and n = 1, re-
spectively (see Figure 1.1(b)). Now, however, the switching rates are taken to depend
on the residence time \tau that the gap junction has been in the current state. This
generates a non-Markovian chain for the state of each gate given by

0
\alpha 0(\tau )
\rightleftharpoons 

\alpha 1(\tau )
1,

where we restrict \alpha n(\tau ) so that the expected time for the gate to change state is
finite. The resulting diffusion equation takes the form (1.1) with exterior boundary
conditions (1.3) and state-dependent interior boundary conditions at the gap junction
given by (1.7). A key point that we will use later is that the discrete process is non-
Markovian only if the state of the gate given by n(t) is being tracked. The probability
of the gate changing states depends on both n and the residence time \tau . If we also
keep track of the history by tracking \tau , the process (n(t), \tau (t)) is Markovian as the
probability of a transition happening in the next infinitesimal time interval [t, t+ dt]
is now only dependent on information at time t.

Let \Lambda n(t, \tau ) denote the probability density that n(t) = n, and \tau (t) = \tau , where
\tau (t) is the time elapsed since the last transition. The corresponding age-structured
master equation for \Lambda n is

\partial \Lambda 0(t, \tau )

\partial t
+

\partial \Lambda 0(t, \tau )

\partial \tau 
=  - \alpha 0(\tau )\Lambda 0(t, \tau ),(2.1a)

\partial \Lambda 1(t, \tau )

\partial t
+

\partial \Lambda 1(t, \tau )

\partial \tau 
=  - \alpha 1(\tau )\Lambda 1(t, \tau ),(2.1b)
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which is supplemented by the boundary conditions

\Lambda 0(t, 0) =

\int \infty 

0

\alpha 1(\tau )\Lambda 1(t, \tau )d\tau , \Lambda 1(t, 0) =

\int \infty 

0

\alpha 0(\tau )\Lambda 0(t, \tau )d\tau ,(2.1c)

and the initial conditions \Lambda n(0, \tau ) = pn(\tau ) with
\sum 

n=0,1

\int \infty 
0

pn(\tau )d\tau = 1. The upper
limit \infty in (2.1c) is greater than the time t in order to capture any transitions from
a state where the age of the gate \tau was positive at t = 0. Finally, the marginal
distribution \lambda n(t) is obtained by integrating with respect to \tau :

(2.2) \lambda n(t) =

\int \infty 

0

\Lambda n(t, \tau )d\tau .

Note that \lambda n(t) is the probability that the system is in state n at time t and thus
\lambda 0(t) + \lambda 1(t) = 1 for all t.

Since the randomly switching boundary conditions make the formerly determin-
istic variable u into a random variable, we will analyze its behavior by looking at
moment equations. As previously mentioned, the process (n, \tau ) is Markovian as
the history of the gate is being tracked through \tau , so we will first introduce the
\tau -dependent first-order moments Vn with

(2.3) Vn(x, t, \tau ) d\tau = \BbbE [u(x, t)1\{ n(t)=n\} \cup \{ \tau <\tau (t)<\tau +d\tau \} ].

As in the case without age structure, this expectation is taken with respect to re-
alizations of the discrete stochastic process n(t), but we have extended this by also
conditioning on a particular residence time \tau (t) for the age of the state n(t). In par-
ticular 1\{ n(t)=n\} \cup \{ \tau <\tau (t)<\tau +d\tau \} = 1 if n(t) = n and \tau (t) \in (\tau , \tau + d\tau ), and is zero
otherwise. That is, Vn satisfies

\BbbE [u(x, t)1\{ n(t)=n\} \cup \{ \tau (t)\in A\} ] =

\int 
A

Vn(x, t, \tau ) d\tau 

for subsets A \subset [0,\infty ). Assuming the density \Lambda n exists, the Radon--Nikodym theorem
guarantees the existence and uniqueness of Vn. Extending our previous work on
diffusion in switching environments [3, 28, 7], the following system of equations for
Vn(x, t, \tau ) can be derived:

\partial Vn

\partial t
+

\partial Vn

\partial \tau 
= D

\partial 2Vn

\partial x2
 - \alpha n(\tau )Vn(x, t, \tau ), x \in (0, L) \cup (L, 2L)(2.4)

with exterior boundary conditions

(2.5a) Vn(0, t, \tau ) = 0, Vn(2L, t, \tau ) = \Lambda n(t, \tau )\eta 

and interior boundary conditions

V0(L
 - , t, \tau ) = V0(L

+, t, \tau ), \partial xV0(L
 - , t, \tau ) = \partial xV0(L

+, t, \tau ),(2.5b)

\partial xV1(L
 - , t, \tau ) = 0, \partial xV1(L

+, t, \tau ) = 0.(2.5c)

The boundary conditions for \tau are given by

V0(x, t, 0) = N1(x, t), V1(x, t, 0) = N0(x, t)(2.6)
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with

(2.7) Nn(x, t) :=

\int \infty 

0

\alpha n(\tau )Vn(x, t, \tau )d\tau ,

and the initial conditions at t = 0 are

(2.8) Vn(x, 0, \tau ) = V (0)
n (x)pn(\tau )

for some initial spatial distribution V
(0)
n (x). For a full derivation of (2.4) with similar

boundary conditions, we refer readers to [7]. The key idea is to discretize space,
formulate the probabilistic problem for the system of discretized equations, and then
retake the continuum limit to arrive at (2.4).

In order to derive a formula for the effective permeability of the gap junction, we
need to determine the \tau -independent moments

(2.9) Mn(x, t) \equiv 
\int \infty 

0

Vn(x, t, \tau )d\tau = \BbbE [u(x, t)1n(t)=n],

which evolve according to a non-Markovian master equation. We can find the general
form of the master equation in a fairly straightforward manner [7]. Integrating (2.4)
from \tau = 0 to \tau = \infty , interchanging differentiation with integration, and using the
fundamental theorem of calculus yields

\partial Mn(x, t)

\partial t
+ Vn(x, t,\infty ) - Vn(x, t, 0) = D

\partial 2Mn(x, t)

\partial x2
 - 
\int \infty 

0

\alpha n(\tau )Vn(x, t, \tau )d\tau .

Using the boundary condition (2.6) and the fact that Vn(x, t, \tau ) \rightarrow 0 as \tau \rightarrow \infty since
the expected switching time is finite, we obtain

(2.10)
\partial Mn(x, t)

\partial t
= D

\partial 2Mn(x, t)

\partial x2
 - Nn(x, t) +N1 - n(x, t), x \in (0, L) \cup (L, 2L)

with boundary conditions

Mn(0, t) = 0, Mn(2L, t) = \eta \lambda n(t),(2.11a)

M0(L
 - , t) = M0(L

+, t), \partial xM0(L
 - , t) = \partial xM0(L

+, t),(2.11b)

\partial xM1(L
 - , t) = 0 = \partial xM1(L

+, t).(2.11c)

We are ultimately interested in the steady-state solution

(2.12) M(x) = lim
t\rightarrow \infty 

[M0(x, t) +M1(x, t)],

under the assumption that the following limits exist:

(2.13) \lambda \ast 
n = lim

t\rightarrow \infty 
\lambda n(t)

with \lambda \ast 
0 + \lambda \ast 

1 = 1. Adding the steady-state versions of (2.10) for M0(x) and M1(x)
gives

(2.14) D
d2M(x)

dx2
= 0, x \in (0, L) \cup (L, 2L),
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with M(0) = 0 and M(2L) = \eta , which indicates that M(x) is the piecewise linear
function

(2.15) M(x) =

\biggl\{ 
K0x, x \in [0, L),
K0(x - 2L) + \eta , x \in (L, 2L].

Given the slope K0, we can determine the effective permeability by setting J0 =
 - K0/D and comparing with (1.5). However, in order to determine K0, it is necessary
to impose the interior boundary conditions (2.11b), (2.11c) at x = L, which involve
the components Mn(x) rather than M(x). This means that we have to solve equations
(2.10) directly, and thus deal with the fact that the integral terms Nn are currently
expressed in terms of Vn, rather that Mn. In order to rewrite Nn in terms of Mn,
and to solve the resulting equation for Mn, we will make use of transform techniques.
Since the analysis is rather involved, it is useful first to review the calculation of \lambda n(t)
[14, 7]. Moreover, we need the expressions for \lambda \ast 

n in order to specify the steady-state
boundary conditions (2.11a). One exception is the symmetric case \alpha 0(\tau ) = \alpha 1(\tau ), for
which \lambda \ast 

0 = \lambda \ast 
1 = 1/2.

2.1. Calculation of \bfitlambda \bfitn (\bfitt ). The first step is to introduce the complementary
functions

(2.16) rn(t) =

\int \infty 

0

\alpha n(\tau )\Lambda n(t, \tau )d\tau 

for n = 0, 1. We then decompose the right-hand sides of (2.2) and (2.16) in order
to distinguish between switching events that occur due to nonzero age at t = 0 and
switching events for which \tau < t:

\lambda n(t) =

\int t

0

\Lambda n(t, \tau )d\tau +

\int \infty 

t

\Lambda n(t, \tau )d\tau ,(2.17a)

rn(t) =

\int t

0

\alpha n(\tau )\Lambda n(t, \tau )d\tau +

\int \infty 

t

\alpha n(\tau )\Lambda n(t, \tau )d\tau .(2.17b)

The hyperbolic equations (2.1a) and (2.1b) can be solved using the method of char-
acteristics:

\Lambda n(t, \tau ) = \Lambda n(t - \tau , 0)Wn(\tau ) if t > \tau ,(2.18a)

\Lambda n(t, \tau ) = \Lambda n(0, \tau  - t)
Wn(\tau )

Wn(t - \tau )
if t \leq \tau ,(2.18b)

where

(2.19) Wn(\tau ) \equiv e - 
\int \tau 
0

\alpha n(t
\prime )dt\prime 

is the survival probability that the system has not switched after residing in state n
for time \tau . Substituting the solutions (2.18a) and (2.18b) into (2.17) and imposing
the initial conditions \Lambda n(0, \tau ) = pn(\tau ) shows that

\lambda n(t) = (r1 - n \ast Wn)(t) +Hn(t),(2.20a)

rn(t) = (r1 - n \ast \omega n)(t) + hn(t)(2.20b)

with (f \ast g)(t) :=
\int t

0
f(t - \tau )g(\tau )d\tau . We have used (2.1c) and set

(2.21) \omega n(\tau ) :=  - dWn(\tau )

d\tau 
= \alpha n(\tau )e

 - 
\int \tau 
0

\alpha n(t
\prime )dt\prime 
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in addition to defining the functions

Hn(t) =

\int \infty 

t

pn(\tau  - t)
Wn(\tau )

Wn(\tau  - t)
d\tau =

\int \infty 

0

pn(\tau )
Wn(\tau + t)

Wn(\tau )
d\tau ,(2.22)

hn(t) =

\int \infty 

t

pn(\tau  - t)
\omega n(\tau )

Wn(\tau  - t)
d\tau =

\int \infty 

0

pn(\tau )
\omega n(\tau + t)

Wn(\tau )
d\tau (2.23)

that together describe the evolution of the initial conditions. It is key to note that

Hn(0) = \lambda n(0),  - dHn(t)
dt = hn(t). Additionally, H,h \rightarrow 0 as t \rightarrow \infty , indicating that

the initial data is forgotten in the large-time limit.
The next step is to Laplace transform the convolution equations (2.20a) and

(2.20b), which yields

\widetilde \lambda n(s) = \widetilde r1 - n(s)\widetilde Wn(s) + \widetilde Hn(s),(2.24a) \widetilde rn(s) = \widetilde r1 - n(s)\widetilde \omega n(s) + \widetilde hn(s).(2.24b)

After some algebra, and using the fact that \widetilde \omega n(s) =  - s\widetilde Wn(s)+1, \widetilde hn(s) =  - s \widetilde Hn(s)+

Hn(0) =  - s \widetilde Hn(s) + \lambda n(0), we arrive at the matrix equation [7]

(2.25)

\left(  s+ \widetilde \omega 0(s)\widetilde W0(s)
 - \widetilde \omega 1(s)\widetilde W1(s)

 - \widetilde \omega 0(s)\widetilde W0(s)
s+ \widetilde \omega 1(s)\widetilde W1(s)

\right)  \Biggl( \widetilde \lambda 0(s)\widetilde \lambda 1(s)

\Biggr) 
=

\biggl( 
\lambda 0(0)
\lambda 1(0)

\biggr) 
.

We can now invert this equation and use the final value theorem of Laplace transforms,
which states that if limt\rightarrow \infty f(t) exists, then

(2.26) lim
s\rightarrow 0+

sF (s) = lim
t\rightarrow \infty 

f(t).

This yields the solution

(2.27) lim
t\rightarrow \infty 

\biggl( 
\lambda 0(t)
\lambda 1(t)

\biggr) 
= lim

s\rightarrow 0+

\Biggl( 
s\widetilde \lambda 0(s)

s\widetilde \lambda 1(s)

\Biggr) 
=

1

a\lambda + b\lambda 

\biggl( 
a\lambda a\lambda 
b\lambda b\lambda 

\biggr) \biggl( 
\lambda 0(0)
\lambda 1(0)

\biggr) 
=

\biggl( a\lambda 

a\lambda +b\lambda 
b\lambda 

a\lambda +b\lambda 

\biggr) 
independent of the initial data, where we have used \lambda 0(0) + \lambda 1(0) = 1 and defined

(2.28a) a\lambda = lim
s\rightarrow 0+

\widetilde \omega 1(s)\widetilde W1(s)
=

1\int \infty 
0

W1(t)dt
,

(2.28b) b\lambda = lim
s\rightarrow 0+

\widetilde \omega 0(s)\widetilde W0(s)
=

1\int \infty 
0

W0(t)dt
.

The last equalities follow assuming we have a holding time distribution with a finite
first moment and that the distribution of switching times is nonarithmetic. In other
words, if Tn is the stochastic time spent in state n, we need \BbbE [Tn] < \infty , and the
distribution of (T1, T2, . . . ) is not supported on a set \{ ti| ti+1 = ti + d\} for some
constant d. This is a well known result from alternating renewal process theory [1],
which states that

(2.29) lim
t\rightarrow \infty 

\BbbP (n(t) = 1) =
\BbbE [T1]

\BbbE [T0] + \BbbE [T1]

with an identical statement holding true with 0 and 1 switched. Since \widetilde Wn(0) =
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0

Wn(t)dt = \BbbE [Tn], this is the same as our result. The reason we have gone through
the above calculation is that it sets the groundwork and mathematical techniques for
solving the equations governing the unstructured moments Mn(x, t).

Finally, note that in the Markovian case, in which \alpha n(\tau ) = \alpha n for all \tau \geq 0, we
have \scrL \{ W (t)\} = \scrL \{ e - \alpha nt\} = (s+ \alpha n)

 - 1, so that a\lambda = \alpha 1, b\lambda = \alpha 0.

2.2. Calculation of \bfitN \bfitn (\bfitx , \bfitt ) on [0, \bfitL ). Consider the boundary-value problem

(2.30)
\partial Mn(x, t)

\partial t
= D

\partial 2Mn(x, t)

\partial x2
 - Nn(x, t) +N1 - n(x, t), x \in (0, L),

with boundary conditions

Mn(0, t) = 0, M0(L, t) = F0(t), \partial xM1(L, t) = 0,(2.31a)

where F0(t) is some unknown function. We will use a combination of transform
methods and the method of characteristics to express the functions Nn(x, t) in terms
of Mn(x, t) so that (2.30) forms a closed system of equations. This will then allow
us to solve for the steady-state solutions Mn(x) in terms of the steady-state value
F \ast 
0 = limt\rightarrow \infty F0(t). Finally, the latter will be determined by solving an analogous

boundary-value problem in the domain (L, 2L] and imposing the matching boundary
conditions (2.11b) (see section 2.4). Note that in our previous work [7], we solved a
simpler problem in which F0(t) was a known constant and we did not have to deal
with any matching conditions. Nevertheless, the first part of the analysis proceeds
along identical lines to [7], so we will only sketch the basic steps.

We begin by Fourier transforming the moment equations (2.4). In order to ensure
that V0, V1, and V = V0 + V1 all lie in the same Fourier space, we take them to
be periodic functions on the domain [0, L], and then extend them to odd periodic
functions on [ - L,L] in order to simplify the Fourier representation to just a sine
series. These periodic functions will be discontinuous at x = \pm L. Therefore, we
introduce the sine series

(2.32) Vn(x, t, \tau ) =

\infty \sum 
l=1

\widehat Vn,l(t, \tau ) sin(l\pi x/L), n = 0, 1,

with

(2.33) \widehat Vn,l(t, \tau ) =
1

L

\int L

 - L

Vn(x, t, \tau ) sin(l\pi x/L)dx.

Fourier transforming equation (2.4) then gives

\partial \widehat Vn,l

\partial t
+

\partial \widehat Vn,l

\partial \tau 
=  - 

\bigl[ 
Dk2l + \alpha n(\tau )

\bigr] \widehat Vn,l +
2Dkl
L

( - 1)l+1Vn(L, t, \tau ).(2.34)

where kl = l\pi /L. We have used the fact that the sine transform of second derivatives
picks up a boundary term. We also have the initial conditions

(2.35a) \widehat Vn,l(0, \tau ) = \widehat V (0)
n,l pn(\tau ),

\widehat V1 - n,l(t, 0) =

\int \infty 

0

\alpha n(\tau )\widehat Vn,l(t, \tau )d\tau = \scrN n,l(t), n = 0, 1.(2.35b)

Here \scrM n,l(t) and \scrN n,l(t) denote the sine transforms of Mn(x, t) and Nn(x, t). For
the moment, we leave the boundary conditions for Vn(L, t, \tau ) unspecified.
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The method of characteristics can now be used to find a solution along analogous
lines to the analysis of \Lambda n(t, \tau ) [7]. For t > \tau , we have\widehat Vn,l(t, \tau ) = \widehat Vn,l(t - \tau , 0)Wn(\tau )e

 - Dk2
l \tau +Bn,l(t, \tau ),(2.36)

where

(2.37) Bn,l(t, \tau ) = Wn(\tau )e
 - Dk2

l \tau 
2Dkl
L

( - 1)l+1

\int \tau 

0

eDk2
l \tau 

\prime 

Wn(\tau \prime )
Vn(L, t - \tau + \tau \prime , \tau \prime )d\tau \prime .

Similarly, for t \leq \tau we have

\widehat Vn,l(t, \tau ) = \widehat Vn,l(0, \tau  - t)
Wn(\tau )

Wn(\tau  - t)
e - Dk2

l t + Cn,l(t, \tau ),(2.38)

where
(2.39)

Cn,l(t, \tau ) = Wn(\tau )e
 - Dk2

l t
2klD

L
( - 1)l+1

\int t

0

eDk2
l t

\prime 

Wn(\tau  - t+ t\prime )
Vn(L, t

\prime , \tau  - t+ t\prime )dt\prime .

The functions Bn,l(t, \tau ) and Cn,l(t, \tau ) are specified in terms of the boundary conditions
for Vn(L, t, \tau ). The next step is to decompose the right-hand sides of (2.7) and (2.9)
into two parts, one of which contains the propagation of the initial data. After Fourier
transforming we have

\scrM n,l(t) =

\int t

0

\widehat Vn,l(t, \tau )d\tau +

\int \infty 

t

\widehat Vn,l(t, \tau )d\tau ,

\scrN n,l(t) =

\int t

0

\alpha n(\tau )\widehat Vn,l(t, \tau )d\tau +

\int \infty 

t

\alpha n(\tau )\widehat Vn,l(t, \tau )d\tau .

Substituting the characteristic solution into this pair of equations and using (2.35a)--
(2.35b) yields

\scrM n,l(t) = (\scrN 1 - n,l \ast \Phi n,l)(t) + \widehat V (0)
n,l e

 - Dk2
l tHn(t) +Rn,l(t),(2.40a)

\scrN n,l(t) = (\scrN 1 - n,l \ast \phi n,l)(t) + \widehat V (0)
n,l e

 - Dk2
l thn(t) + Sn,l(t),(2.40b)

where

(2.41a) Rn,l(t) =

\int t

0

Bn,l(t, \tau )d\tau +

\int \infty 

t

Cn,l(t, \tau )d\tau ,

(2.41b) Sn,l(t) =

\int t

0

\alpha n(\tau )Bn,l(t, \tau )d\tau +

\int \infty 

t

\alpha n(\tau )Cn,l(t, \tau )d\tau .

\scrM n,l and \scrN n,l are analogous to \lambda n and rn from the previous section. Rn,l and Sn,l do
not have analogues and describe the propagation of the unknown interior boundary
data at x = L along characteristics in Fourier space. It is also again worth mentioning

that \scrM n,l(0) = \widehat V (0)
n,l Hn(0) is the initial data for the Fourier coefficients of the first

conditional moments Mn.
Analogous to the calculation of \lambda n(t), we now apply Laplace transforms to (2.40),

which leads to the following algebraic system:\widetilde \scrM n,l(s) = \widetilde \scrN 1 - n,l(s)\widetilde Wn(s+Dk2l ) + \widehat V (0)
n,l
\widetilde Hn(s+Dk2l ) + \widetilde Rn,l(s),(2.42a) \widetilde \scrN n,l(s) = \widetilde \scrN 1 - n,l(s)\widetilde \omega n(s+Dk2l ) + \widehat V (0)

n,l
\widetilde hn(s+Dk2l ) + \widetilde Sn,l(s).(2.42b)
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Solving (2.42a) for \widetilde \scrN 1 - n,l(s) and combining this with (2.42b) gives [7]

\widetilde \scrN n,l(s) =
\widetilde \omega n(s+Dk2l )\widetilde Wn(s+Dk2l )

\Bigl[ \widetilde \scrM n,l(s) - \widetilde Rn,l(s)
\Bigr] 

 - \widehat V (0)
n,l

\widetilde Hn(s+Dk2l )\widetilde Wn(s+Dk2l )
+ \widehat V (0)

n,l Hn(0) + \widetilde Sn,l(s).(2.43)

Equation (2.43) thus determines the Fourier--Laplace transform of Nn(x, t) in terms
of the corresponding transform of Mn(x, t) and the boundary conditions at x = L.
Moreover, after some algebra it can be shown that [7]

s\widetilde \scrM n,l(s) - \scrM n,l(0) =  - Dk2l \widetilde \scrM n,l(s) + \widetilde \scrN 1 - n,l(s) - \widetilde \scrN n,l(s)(2.44)

+ [Dk2l + s] \widetilde Rn,l(s) + \widetilde Sn,l(s).

The inverse Fourier--Laplace transform of (2.44) recovers (2.10) with the boundary
conditions

(2.45) Mn(0, t) = 0, Mn(L, t) = Fn(t)

with

(2.46)
2Dkl
L

( - 1)l+1 \widetilde \scrF n(s) = [Dk2l + s] \widetilde Rn,l(s) + \widetilde Sn,l(s).

One final condition is needed so that \widetilde Rn,l(s) and \widetilde Sn,l(s) can be uniquely expressed

in terms of \widetilde \scrF n(s). Following [7], we take

\widetilde Rn,l(s) =
2

Lkl
( - 1)l+1 \widetilde \scrF n(s)

\Biggl[ 
1 - 

\widetilde Wn(s+Dk2l )\widetilde Wn(s)

\Biggr] 
,(2.47)

which yields the correct result when u(L, t) = \eta and hence Vn(L, t, \tau ) = \eta \Lambda n(t, \tau ).

2.3. Steady-state analysis. Suppose that the following limits exist:

Nn(x) = lim
t\rightarrow \infty 

Nn(x, t), F \ast 
n = lim

t\rightarrow \infty 
F \ast 
n(t).

The steady-state version of (2.10) takes the form

(2.48) 0 = D
d2Mn(x)

\partial x2
 - Nn(x) +N1 - n(x)

with boundary conditions

(2.49) Mn(0) = 0, M0(L) = F \ast 
0 , \partial xM1(L) = 0.

For the moment, rather than imposing the Neumann boundary condition, we take
M1(L) = F \ast 

1 . In Fourier space, we have

(2.50) 0 =  - Dk2l \scrM n,l +\scrN 1 - n,l  - \scrN n,l +
2Dkl
L

( - 1)l+1F \ast 
n ,

where now \scrM n,l and \scrN n,l are the constant Fourier coefficients of the steady-state
solutions. In order to determine the Fourier coefficients \scrN n,l, we apply the final value
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theorem of Laplace transforms to (2.43), (2.46), and (2.47) and then rewrite (2.43) in
terms of \scrM n,l and F \ast 

n :

(2.51) \scrN n,l =
\widetilde \omega n(Dk2l )\widetilde Wn(Dk2l )

\scrM n,l +
2

Lkl
( - 1)l+1F \ast 

n

\Biggl[ 
1\widetilde Wn(0)

 - \widetilde \omega n(Dk2l )\widetilde Wn(Dk2l )

\Biggr] 
.

Combined with the fact that Mn(x) = M(x) - M1 - n(x), we can then solve explicitly
for the Fourier coefficients \scrM n,l.

In the general asymmetric case, we find that

(2.52) \scrM n,l =
1

Lkl
( - 1)l+1

\Biggl[ 
2F \ast 

n +

\Biggl( 
F \ast 
1 - n\widetilde W1 - n(0)

 - F \ast 
n\widetilde Wn(0)

\Biggr) 
bl

\Biggr] 
,

on setting

bl =
2\widetilde W1 - n(Dk2l )

\widetilde Wn(Dk2l )\widetilde W1 - n(Dk2l ) +
\widetilde Wn(Dk2l )\widetilde \omega 1 - n(Dk2l )

=
2\Bigl( \widetilde Wn(Dk2l )

\Bigr)  - 1

+
\Bigl( \widetilde W1 - n(Dk2l )

\Bigr)  - 1

 - Dk2l

,(2.53)

and using the relation \widetilde \omega n(Dk2l ) = 1  - Dk2l
\widetilde Wn(Dk2l ). Note that bl is independent of

the value of n and that the steady-state solution is again independent of the initial
data as expected.

Using the sine transform of the linear function y = x/L, (2.52) can be rewritten
as

(2.54a) M0(x) =
x

L
F \ast 
0  - 

\Biggl( 
F \ast 
0\widetilde W0(0)

 - F \ast 
1\widetilde W1(0)

\Biggr) \infty \sum 
l=1

al sin(klx),

(2.54b) M1(x) =
x

L
F \ast 
1 +

\Biggl( 
F \ast 
0\widetilde W0(0)

 - F \ast 
1\widetilde W1(0)

\Biggr) \infty \sum 
l=1

al sin(klx),

where for compactness we have set

al =
( - 1)l+1

Lkl
bl.(2.55)

Note that \widetilde Wn(0) is the mean time to leave state n, denoted by \BbbE [Tn], and that adding
M1(x) and M0(x) recovers the linear function M(x).

Enforcing the Neumann boundary condition and solving for F \ast 
n in terms of the

other boundary value F \ast 
1 - n, we arrive at

(2.56) F \ast 
n = F \ast 

1 - n

\widetilde Wn(0)
\sum \infty 

l=1 bl\widetilde Wn(0)\widetilde W1 - n(0) +\widetilde W1 - n(0)
\sum \infty 

l=1 bl
, kl =

\pi l

L
.

Now recall from (2.15) that M(x) = K0x on x \in [0, L). Hence, adding (2.54) implies
that

(2.57) K0 =
F \ast 
0 + F \ast 

1

L
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and setting n = 1, we calculate

(2.58) F \ast 
1 = K0L

\widetilde W1(0)
\sum \infty 

l=1 bl\widetilde W0(0)\widetilde W1(0) +
\bigl( \widetilde W0(0) +\widetilde W1(0)

\bigr) \sum \infty 
l=1 bl

.

In the symmetric case \alpha 0(\tau ) = \alpha 1(\tau ) \equiv \alpha (\tau ), set Wn = W , etc. The above results
reduce to

bl =
2\widetilde W (Dk2l )

1 + \widetilde \omega (Dk2l )
=

2(1 - \widetilde \omega (Dk2l ))

Dk2l (1 + \widetilde \omega (Dk2l ))
(2.59)

with the simpler expression for the unknown boundary value

F \ast 
1 = K0L

\sum \infty 
l=1 bl\widetilde W (0) + 2
\sum \infty 

l=1 bl
,(2.60)

where \widetilde W (0) is the mean time between switching events.
We can now use this result to calculate the effective permeability of an interior

gate separating two cellular domains.

2.4. Calculation of permeability. Our main goal is to calculate the effective
permeability, which depends on the steady-state flux J0 =  - DK0. In order to deter-
mine K0, we have to repeat the above analysis for the corresponding boundary value
problem on x \in (L, 2L):

(2.61)
\partial Mn(x, t)

\partial t
= D

\partial 2Mn(x, t)

\partial x2
 - Nn(x, t) +N1 - n(x, t), x \in (L, 2L),

with boundary conditions

M0(L, t) = G0(t), \partial xM1(L, t) = 0, Mn(2L, t) = \eta \lambda n(t).(2.62a)

Also, define the boundary value ofM1(x, t) at the right side of the gate byM1(L
+, t) =

G1(t). It is convenient to perform the change of variables y = 2L - x with y \in [0, L)
and to set Qn(y, t) = Mn(2L - y, t) - \lambda n(t)\eta . The second condition ensures that Q0

and Q1 vanish at x = 0, so that they can be extended to odd periodic functions on
[ - L,L] as before. Note that these transformations do not change the governing PDE,
and the boundary conditions on the new domain are

Qn(0, t) = 0, Q0(L, t) = G0(t) - \eta \lambda 0(t), \partial yQ1(L, t) = 0.(2.63)

We can thus immediately write down the steady-state solution for Wn(y) (see (2.54)):

(2.64a) Q0(y) =
y

L
\widehat F \ast 
0  - 

\Biggl( \widehat F \ast 
0\widetilde W0(0)

 - 
\widehat F \ast 
1\widetilde W1(0)

\Biggr) \infty \sum 
l=1

al sin(kly),

(2.64b) Q1(y) =
y

L
\widehat F \ast 
1 +

\Biggl( \widehat F \ast 
0\widetilde W0(0)

 - 
\widehat F \ast 
1\widetilde W1(0)

\Biggr) \infty \sum 
l=1

al sin(kly)

with \widehat F \ast 
n = G\ast 

n  - \eta \lambda \ast 
n and G\ast 

n = limt\rightarrow \infty Gn(t). Moreover,

\widehat F \ast 
n = \widehat F \ast 

1 - n

\widetilde Wn(0)
\sum \infty 

l=1 bl\widetilde Wn(0)\widetilde W1 - n(0) + ilW1 - n(0)
\sum \infty 

l=1 bl
.(2.65)
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Now recall from (2.15) that M(x) = K0(x  - 2L) + \eta on x \in (L, 2L], which implies
Q(y) = Q0(y) +Q1(y) =  - K0y. Hence, adding (2.64) shows that

(2.66) K0 =  - 
\widehat F \ast 
0 + \widehat F \ast 

1

L
=

\eta  - G\ast 
0  - G\ast 

1

L
.

and

(2.67) G\ast 
1  - \lambda \ast 

1\eta =  - K0L
\widetilde W1(0)

\sum \infty 
l=1 bl\widetilde W0(0)\widetilde W1(0) +

\bigl( \widetilde W0(0) +\widetilde W1(0)
\bigr) \sum \infty 

l=1 bl
.

To calculate the slope K0, all that is left is to enforce the matching condition
M0(L

 - ) = M0(L
+). Using M0(x) = M(x) - M1(x), this condition becomes

M(L - ) - M1(L
 - ) = M(L+) - M1(L

+)

or

(2.68) K0L - F \ast 
1 =  - K0L+ \eta  - G\ast 

1.

Substituting for F \ast 
1 and G\ast 

1, we arrive at

K0L - K0L
\widetilde W1(0)

\sum \infty 
l=1 bl\widetilde W0(0)\widetilde W1(0) +

\bigl( \widetilde W0(0) +\widetilde W1(0)
\bigr) \sum \infty 

l=1 bl

=  - K0L+ \eta  - \lambda \ast 
1\eta +K0L

\widetilde W1(0)
\sum \infty 

l=1 bl\widetilde W0(0)\widetilde W1(0) +
\bigl( \widetilde W0(0) +\widetilde W1(0)

\bigr) \sum \infty 
l=1 bl

,

which can be rearranged to determine K0 and hence J0:

J0 =  - D\eta \lambda \ast 
0

2L

\Biggl( 
1 - 

\widetilde W1(0)
\sum \infty 

l=1 bl\widetilde W0(0)\widetilde W1(0) +
\bigl( \widetilde W0(0) +\widetilde W1(0)

\bigr) \sum \infty 
l=1 bl

\Biggr)  - 1

.(2.69)

Finally, comparing with (1.5), we obtain the effective permeability

(2.70)
1

\mu e
=

2L\lambda \ast 
1

D\lambda \ast 
0

\widetilde W0(0)\widetilde W1(0) +
\bigl( \widetilde W0(0) - \lambda \ast 

0

\lambda \ast 
1

\widetilde W1(0)
\bigr) \sum \infty 

l=1 bj\widetilde W0(0)\widetilde W1(0) +
\bigl( \widetilde W0(0) +\widetilde W1(0)

\bigr) \sum \infty 
l=1 bj

.

This can be simplified by noting that we can rewrite (2.28a) as

(2.71) \lambda \ast 
n =

\BbbE [Tn]

\BbbE [T1 - n] + \BbbE [Tn]
=

\widetilde Wn(0)\widetilde Wn(0) +\widetilde W1 - n(0)
,

reducing the effective permeability to

(2.72)
1

\mu e
=

2L\widetilde W1(0)

D\widetilde W0(0)

1

1 +

\biggl( \Bigl( \widetilde W0(0)
\Bigr)  - 1

+
\Bigl( \widetilde W1(0)

\Bigr)  - 1
\biggr) \sum \infty 

l=1 bl

.

This quantity depends on the length of the domain and the statistics of the gate
through the Fourier modes kl by way of the \widetilde Wn(Dk2l ) terms present in bl. For sym-
metric switching rates this permeability can be reduced to

(2.73)
1

\mu e
=

2L

D

\widetilde W (0)\widetilde W (0) + 2
\sum \infty 

l=1 bj
,

which reduces to the previous permeability in the case of symmetric switching rates.
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Note that (2.54) and (2.64) automatically satisfy the flux continuity condition
\partial xM0(L - ) = \partial xM0(L+), since

\partial xM0(L - ) =
F \ast 
0 + F \ast 

1

L
= K0

and

\partial xM0(L+) =  - \partial yQ0(L - ) =  - 
\widehat F \ast 
0 + \widehat F \ast 

1

L
= K0

is an immediate condition of imposing the solution (2.15) for M(x).
Since the effective permeability \mu e can theoretically take on values anywhere in

the range (0,\infty ), it is not always the easiest characteristic of the system to gain
information from. Other options are the gradient K0 and the jump in density across
the gate U . These three characteristics, \mu e, K0, and U , of the steady-state solution
are related to each other by U = \eta  - 2LK0 and \mu e =  - J0

U = DK0

U . We will use U
in plotting since it gives better graphical information than the effective permeability
or the steady-state gradient, taking on values in (0, \eta ). Finally, it is worth noting
that for symmetric switching, the effective permeability is restricted to ( D

2L ,\infty ), and
the jump discontinuity is likewise restricted to [0, 1/2). In order to restrict movement
across the gate further, asymmetric switching rates are needed.

3. Particle perspective. In this section, we show that the solution to the sto-
chastic PDE given by (1.1), (1.3), and (1.7) is a certain statistic of a single Brownian
particle diffusing in a stochastically fluctuating environment. In addition to provid-
ing a simple probabilistic interpretation of the stochastic PDE, this representation
enables efficient numerical approximation of the solution of the PDE by Monte Carlo
simulations of a single diffusing particle.

Before deriving our results, we put them in the context of prior work. Represent-
ing solutions to deterministic PDEs in terms of statistics of Brownian motion has a
long history, dating back over 70 years to Kakutani, Kac, and Doob [12, 22, 23]. Re-
cently, we have shown that solutions to PDEs with stochastically switching boundary
conditions can be represented by statistics of a Brownian particle in a stochastic envi-
ronment [3] (see also [28, 6, 29, 30]). In [3], we assumed that the boundary condition
switching times were exponentially distributed, which simplified the analysis in that
(a) there was a simple transformation between the equations describing the forward
time evolution of the mean PDE and the backward time evolution of statistics of the
particle and (b) statistics of the switching boundary condition were independent of
the direction of time.

However, these simplifications do not hold in the present work since the times
between transitions of the gate are not exponentially distributed. In order to han-
dle this more complicated situation, we employ techniques from stochastic analysis.
Since these techniques are less common in the applied mathematics literature, we first
introduce our basic approach with a simple example of the method of characteristics.
Consider the deterministic PDE,

\partial 

\partial t
u(x, t) = b(x)

\partial 

\partial x
u(x, t), x \in \BbbR , t > 0; u(x, 0) = \phi (x),(3.1)

and suppose \{ X(s)\} s\geq 0 satisfies the deterministic ordinary differential equation and
initial condition

dX

ds
= b(X(s)), s \in (0, T ]; X(0) = x \in \BbbR .(3.2)

(In order to match the subsequent stochastic analysis, we evolve X backward in time.)
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Fix T > 0 and define the function

Z(s) := u(X(s), T  - s), s \in [0, T ].(3.3)

Differentiating Z and using the chain rule and (3.1)--(3.2) implies that Z is constant,

Z \prime (s) =
\partial 

\partial x
u(X(s), T  - s)

dX

ds
 - \partial 

\partial t
u(X(s), T  - s) = 0.(3.4)

Hence, Z(0) = Z(T ), which upon using (3.1)--(3.2) implies that

u(x, T ) = \phi (X(T )).(3.5)

In other words, (3.5) states that the solution to the PDE (3.1) can be represented
as a function or ``statistic"" of the ``particle"" X. Below, we extend this argument to
solve the stochastic PDE given by (1.1), (1.3), and (1.7) using tools from stochastic
analysis, including It\^o's formula, local times, and stopping times [24].

3.1. Probabilistic representation. Consider a single particle diffusing in the
interval [0, 2L] with diffusivity D > 0 and reflecting boundary conditions at the end-
points x = 0 and x = 2L. Suppose the particle diffuses in the presence of a stochastic
gate \{ n(s)\} s\geq 0 at x = L, so that the particle is reflected at x = L when the gate is
closed (n = 1) and diffuses freely past x = L when the gate is open (n = 0). In order
to relate statistics of this single particle to the solution of the stochastic PDE given by
(1.1), (1.3), and (1.7), we need to suppose that the gate experienced by the particle,
\{ n(s)\} s\geq 0, is the time reversal of the gate experienced by the PDE, \{ n(t)\} t\geq 0.

Specifically, fix a positive time T > 0 and let X(s) \in \BbbR denote the position of a
diffusing particle at time s \in [0, T ] which satisfies the stochastic differential equation
(SDE),

dX(s) =
\surd 
2D dW (s) + n(s)ST (s) dKL(s) + dK0(s) - dK2L(s),(3.6)

where n is the time reversal of n,

n(s) := n(T  - s), s \in [0, T ],(3.7)

and \{ W (s)\} s\geq 0 is a standard Brownian motion that is independent of \{ n(t)\} t\geq 0.
Furthermore,

ST (s) :=

\Biggl\{ 
 - 1 if X

\bigl( 
s - R(T  - s)

\bigr) 
\leq L,

1 if X
\bigl( 
s - R(T  - s)

\bigr) 
> L,

(3.8)

where R(t) is the time until n(t) switches (often called the residual in renewal theory),

R(t) := sup\{ h > 0 : n(t+ \sigma ) = n(t) for all \sigma \in [0, h]\} ,

and Kx(s) is the local time [24] of X(s) at x \in \{ 0, L, 2L\} . That is, Kx(s) is nonde-
creasing and increases only when X(s) = x. Formally, the local time that a diffusing
particle spends at a location x is defined by

(3.9) Kx(s) = lim
\varepsilon \rightarrow 0+

1

2\varepsilon 

\int s

0

1\{ x - \varepsilon ,x+\varepsilon \} ds,

where 1\{ x - \varepsilon ,x+\varepsilon \} is the indicator function for the interval (x - \varepsilon , x+\varepsilon ). The significance
of the second local time term dK0(s) in (3.6) is that it forces X(s) to reflect from
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x = 0 x = L x = 2L

t = T

t = 0

X(s)

X(0)

X(σ(T ))

t = T − s

s

n(T ) = n(0) = 0

n(0) = n(T ) = 1

n(s) = n(T − s) = 1

Fig. 3.1. Single particle diffusing in the presence of a stochastic gate. The gate experienced by
the particle is the time reversal of the gate experienced by the PDE.

x = 0, and the final local time term dK2L(s) in (3.6) forces X(s) to reflect from
x = 2L. Similarly, the first local time term in (3.6) forces X(s) to reflect from x = L
when n(T  - s) = 1. The direction of reflection is determined by whether the particle
was to the left or the right of x = L when the gate closed, which is described by
(3.8). Intuitively, we can think of dKx0(s) as an instantaneous positive unit impulse
\delta (X(s)  - x0)ds whenever a diffusing particle hits x = x0. Summed together, the
local time terms incorporate the reflecting boundary conditions and the geometry of
the domain into the SDE (3.6) for the diffusing particle. Figure 3.1 summarizes this
setup.

Below, we use \BbbE x to denote expectation conditioned on the initial particle position,

X(0) = x \in [0, 2L].(3.10)

We also use \BbbE x[ \cdot | n] to denote expectation conditioned on (3.10) and a realization
of the gate, n = \{ n(t)\} t\geq 0. Analogously, \BbbP x and \BbbP x( \cdot | n) denote the associated
probability measures.

To find a relationship between the solution u(x, t) to (1.1), (1.3), and (1.7) and
statistics of X, we define the stochastic process (which is analogous to (3.3) above),

Z(s) := u(X(s), T  - s), s \in [0, T ].

Note that Z is formed from evaluating the stochastic function u at a spatial coordinate
determined by the stochastic position of the particle X. Hence, Z depends on the
gate \{ n(t)\} t\in [0,T ] and the path of the particle \{ X(s)\} s\in [0,T ]. As in (3.4) above, we
now want to differentiate Z. However, since Z is stochastic, we use the stochastic
version of the chain rule known as It\^o's formula [24] to obtain

Z(s) - Z(0) = u(X(s), T  - s) - u(X(0), T )

=

\int s

0

( - \partial 

\partial t
+D

\partial 2

\partial x2
)u(X(s\prime ), T  - s\prime ) ds\prime 

+

\int s

0

n(T  - s\prime )ST (s
\prime )

\partial 

\partial x
u(X(s\prime ), T  - s\prime ) dKL(s

\prime )

+

\int s

0

\partial 

\partial x
u(X(s\prime ), T  - s\prime ) dK0(s

\prime ) - 
\int s

0

\partial 

\partial x
u(X(s\prime ), T  - s\prime ) dK2L(s

\prime ) +M,

(3.11)
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where M satisfies \BbbE x[M | n] = 0. As a technical aside, It\^o's formula holds for twice
differentiable functions, but u is (i) discontinuous in time at x = L when the gate
opens or closes and (ii) discontinuous in space at x = L while the gate is closed.
However, we can ignore technicality (i) because the particle is almost surely not at
x = L when the gate opens or closes. This can be made rigorous by introducing the
left derivative with respect to the time variable s

(3.12)
\partial  - 

\partial s
f(s) = lim

\varepsilon \rightarrow 0+

f(s) - f(s - \varepsilon )

\varepsilon 

and using a generalized It\^o's formula for functions continuous almost everywhere in
time [16]. Noting that the set of times of the switching events Tn have measure zero
and that

(3.13)
\partial  - 

\partial s
u(x, T  - s) =  - \partial +

\partial t
u(x, T  - s),

where \partial +

\partial t is the analogously defined right derivative, the generalized It\^o's formula

then states that (3.11) with \partial 
\partial t replaced by \partial +

\partial t holds almost surely. This leads to the
same result as our formulation. Point (ii) is taken care of through the term involving
dKL(s), as the particle reflects at x = L while the gate is closed due to the addition
of a boundary after the domain changes form (and thus cannot cross x = L, so the
discontinuity is irrelevant).

Now, define the stopping time

\sigma (T ) := inf
\bigl\{ 
s \in [0, T ] : X(s) \in \{ 0, 2L\} 

\bigr\} 
,(3.14)

which is the first time the particle reaches x = 0 or x = 2L (or \sigma (T ) = \infty if the
particle does not reach one of these points before time T ). Next, if we evaluate (3.11)
at s equal to the minimum of \sigma (T ) and T and use the PDE in (1.1), the definition of
\sigma (T ) in (3.14), and the boundary conditions in (1.7), then we find that

u
\Bigl( 
X
\bigl( 
min\{ \sigma (T ), T\} 

\bigr) 
, T  - min\{ \sigma (T ), T\} 

\Bigr) 
 - u(X(0), T ) = M.(3.15)

Since \BbbE x[M | n] = 0, taking the expected value of (3.15) conditioned on a realization
n = \{ n(t)\} t\geq 0 of the gate implies

\BbbE x[u(X(0), T ) | n] = \BbbE x[u
\bigl( 
X(\sigma (T )), T  - \sigma (T )

\bigr) 
1\sigma (T )\leq T 1X(\sigma (T ))=0 | n]

+ \BbbE x[u
\bigl( 
X(\sigma (T )), T  - \sigma (T )

\bigr) 
1\sigma (T )\leq T 1X(\sigma (T ))=2L | n]

+ \BbbE x[u
\bigl( 
X(T ), 0

\bigr) 
1\sigma (T )>T | n].

(3.16)

Since u(x, T ) is measurable with respect to \{ n(t)\} t\geq 0, we have that

\BbbE x[u(X(0), T ) | n] = u(x, T ).(3.17)

Furthermore, the definition of \sigma (T ) in (3.14) and the boundary conditions in (1.3)
imply

u
\bigl( 
X(\sigma (T )), T  - \sigma (T )

\bigr) 
1\sigma (T )\leq T 1X(\sigma (T ))=0 = 0,(3.18)

u
\bigl( 
X(\sigma (T )), T  - \sigma (T )

\bigr) 
1\sigma (T )\leq T 1X(\sigma (T ))=2L = \eta .(3.19)
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Therefore, assuming the simple initial condition

u(x, 0) = 0, x \in (0, L),(3.20)

(3.16)--(3.19) imply

u(x, T ) = \eta \BbbP x(\sigma (T ) \leq T \cap X(\sigma (T )) = 2L | n).(3.21)

We note that our analysis does not require the initial condition (3.20), but the relation
in (3.21) simplifies under this assumption.

To understand (3.21), note that the two independent sources of randomness in the
system are (i) the realization of the stochastic gate \{ n(t)\} t\geq 0 and (ii) the Brownian
motion \{ W (s)\} s\geq 0 driving the path of the particle \{ X(t)\} s\geq 0. Equation (3.21) is an
average over the Brownian motion for a fixed realization of the gate. That is, (3.21)
depends on the stochastic realization of gate, but the randomness from the Brownian
motion has been averaged out.

If we then average (3.21) over realizations of the gate, then we find that

\BbbE [u(x, T )] = \eta \BbbP x(\sigma (T ) \leq T \cap X(\sigma (T )) = 2L).(3.22)

Since we are interested in the large time behavior of the mean of u, we take T \rightarrow \infty 
in (3.22) to obtain

lim
T\rightarrow \infty 

\BbbE [u(x, T )] = \eta lim
T\rightarrow \infty 

\BbbP x(X(\sigma (T )) = 2L),(3.23)

where we have used that \BbbP x(\sigma (T ) \geq T ) \rightarrow 0 as T \rightarrow \infty .
To summarize, (3.23) states that the large time mean of the solution to the

stochastic PDE given by (1.1), (1.3), and (1.7), evaluated at a point x \in [0, 2L], is
the inhomogeneous boundary condition \eta multiplied by the probability that a single
particle starting at x \in [0, 2L] will reach 2L before 0, assuming the particle diffuses
in the presence of a stochastic gate at x = L. This is commonly referred to as the
splitting probability. Importantly, the statistics of the gate experienced by this single
particle (denoted by \{ n(s)\} s\geq 0) are the same as the statistics of the gate experienced
by the PDE (denoted by \{ n(t)\} t\geq 0), except for two important differences. First, the
gate experienced by this single particle is initially in state 0 with probability

\BbbP (n(0) = 0) = \lambda \ast 
0 = \widetilde W0(0)/

\bigl( \widetilde W0(0) +\widetilde W1(0)
\bigr) 
,(3.24)

where \widetilde Wn is the Laplace transform of the survival probability Wn defined in (2.19).
That is, Wn(t) is the probability that the gate \{ n(t)\} t\geq 0 (the gate experienced by

the PDE) has not switched after residing in state n for time t \geq 0, and \widetilde Wn(0) is the
mean time spent in state n before switching. Equation (3.24) follows immediately
from noting that (3.6)--(3.7) implies that the initial state of the gate experienced by
the particle is n(T ) and limT\rightarrow \infty \BbbP (n(T ) = 0) = \lambda \ast 

0.
Second, the duration \tau > 0 that \{ n(s)\} s\geq 0 spends in its initial state (either open

or closed) has the following distribution:

\BbbP (\tau \leq t) = lim
T\rightarrow \infty 

\BbbP (\tau (T ) \leq t).

Again, this follows immediately from (3.6)--(3.7) and the definition of \tau (T ). The large
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T distribution of \tau (T ) was shown in Lemma 2.6 of [27] to be

(3.25) lim
T\rightarrow \infty 

\BbbP (\tau (T ) \leq t) = \BbbP (\xi a1 + (1 - \xi )a0 \leq t),

where \xi \in \{ 0, 1\} is a Bernoulli random variable with \BbbP (\xi = 0) = \lambda \ast 
0 and the distribu-

tion of an is

(3.26) \BbbP (an \leq t) =
1\widetilde Wn(0)

\int t

0

Wn(s) ds.

We emphasize that this subtlety in the time spent in the initial state did not appear
in our previous work, which assumed exponential switching times [3] because an is
exponential under this assumption.

3.2. Approximating mean PDE solution by particle simulation. The
theory developed in the previous subsection yields an algorithm for approximating
limt\rightarrow \infty \BbbE [u(x, t)] using an average of realizations of a single particle moving in the
switching environment in place of an average of realizations of the full stochastic PDE.
There is a bit of a tradeoff in terms of the numerical cost here. It often takes on the
order of 105 trials per particle starting location to obtain accurate results; however,
since the steady-state solution is piecewise linear, only a few starting locations near
the gate and the ends of the domain are needed, and for reasonably small L the particle
will exit the domain before the mean of the realizations of the PDE approaches steady
state. It is also less costly to simulate Brownian motion than it is to numerically solve
a PDE in general, especially considering that Monte Carlo trials are independent, and
thus easily parallelizable.

It is key that when simulating single particles the initial length of time the gate is
in its initial state \tau is chosen according to the age distribution given in (3.25), which
assumes that the gate has been open for some previous amount of time already. To see
both the improved accuracy of this method and how a naive particle simulation fails,
we will consider symmetric switching with \omega 0(\tau ) = \omega 1(\tau ) \equiv \omega (\tau ) = 1[1,2], a uniform
distribution on [1, 2]. With symmetric switching, the right-hand side of (3.25), the
initial age distribution of the gate, simplifies to (3.26) with W0(\tau ) = W1(\tau ) \equiv W (\tau ).
We generate an age a for the initial state of the gate using inverse transform sampling.
In the case of a uniform distribution on [\tau 1, \tau 2], this corresponds to

a(\rho ) =

\Biggl\{ 
\tau 1+\tau 2

2 \rho if \rho \leq 2\tau 1
\tau 1+\tau 2

,

\tau 2  - 
\sqrt{} 
\tau 22  - \tau 21

\surd 
1 - \rho , if \rho > 2\tau 1

\tau 1+\tau 2
,

where \rho is a uniform [0, 1] distributed random variable. We also perform a naive
simulation where the duration of the initial state of the gate is simply chosen according
to \BbbP (\tau \leq t) = W (t). The results of both simulations compared to the theoretical
result predicted by the steady-state solution are shown in Figure 3.2. While the
naive splitting probability estimate has the correct features, it is linear and has a
jump in density at the gate, it also deviates from the true steady-state solution as
the initial location of the particle approaches the gate. Near the gate the probability
of the particle passing through or reflecting off the gate is much higher, so detailed
initial statistics given by the age distribution \BbbP (a \leq t) are needed to give a correct
match.
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Fig. 3.2. Analytical steady-state solution for the splitting probability (dashed light curve) com-
pared against a naive simulation (solid blue curve) and a simulation with corrected statistics for \tau 
(black curve). Both \eta and L are set to 1.

4. Examples of rate functions.

4.1. Markovian transition rates. We first consider the Markovian case of \tau -
independent rates \alpha n(\tau ) = \alpha n, which was previously analyzed in [5]. It is a straight-
forward calculation to show that

\widetilde Wn(s) =
1

s+ \alpha n
.

The coefficient bl in (2.53) reduces to

bj =
2\Bigl( \widetilde Wn(Dk2l )

\Bigr)  - 1

+
\Bigl( \widetilde W1 - n(Dk2l )

\Bigr)  - 1

 - Dk2l

=
2

\alpha 0 + \alpha 1 +Dk2l
,(4.1)

and hence the effective permeability is

(4.2)
1

\mu e
=

2L

D

\alpha 0

\alpha 1

\Biggl[ \infty \sum 
l=1

2(\alpha 0 + \alpha 1)

\alpha 0 + \alpha 1 +Dk2l
+ 1

\Biggr]  - 1

.

Using the identity,

\infty \sum 
l=1

2

\alpha 0 + \alpha 1 +Dk2l
=

\xi L coth (\xi L) - 1

\alpha 0 + \alpha 1
, where \xi :=

\sqrt{} 
(\alpha 0 + \alpha 1)/D,

it follows that (4.2) is equivalent to the result (1.8) from [5].

4.2. Age-structured transition rates. Consider a case where the transition
from the closed state n = 1 to the open state n = 0 has a constant associated rate
\alpha 1(\tau ) = \alpha , while the transition from the open state to the closed state passes through
m  - 1 irreversible substates, m \geq 1, each with a constant associated rate \alpha as well
for simplicity. We assume the gate is still open while in these substates.

To model this using our age-structured formulation, we can construct a transition
rate function \alpha 0(\tau ) such that the first passage time distribution from n = 0 directly
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n = 0n = 1 n = 0n = 1

Fig. 4.1. Reduction of a simple continuous time Markov process for the gate into an effective
two-state age-structured process by using a phase-type distribution to collapse the intermediate states
going from n = 0 to n = 1.

to n = 1 using \alpha 0(\tau ) is the same as the distribution associated with passing through
m - 1 substates with constant rates. This is equivalent to constructing a phase-type
distribution from state n = 0 to state n = 1 since we started with a continuous-time
Markov process (see Figure 4.1). Since the transition from open to closed is indepen-
dent and identically distributed exponentially for each transition between substates,
the first passage time from open to closed has a gamma distribution with shape pa-
rameter m and rate parameter \alpha . Therefore we have

(4.3) \omega 1(\tau ) = \alpha e - \alpha \tau , \omega 0(\tau ) =
\alpha m

(m - 1)!
\tau m - 1e - \alpha \tau .

The associated Laplace transforms for \omega n and Wn are

\widetilde \omega 1(s) = \alpha (s+ \alpha ) - 1, \widetilde \omega 0(s) = \alpha m(s+ \alpha ) - m,(4.4)

\widetilde W1(s) =
1

s+ \alpha 
, \widetilde \omega 0(s) =

1 - \alpha m(s+ \alpha ) - m

s
,(4.5)

with \widetilde W1(0) = 1/\alpha , \widetilde W0(0) = m/\alpha . Substituting this into (2.72), the resulting effective
permeability can be written as

(4.6)
1

\mu e
=

2L

D

1

m+ \alpha (m+ 1)
\sum \infty 

l=1 bl
,

where the coefficients bl take the form

(4.7) bl =
2
\bigl( 
(Dk2l + \alpha )m  - \alpha m

\bigr) 
(Dk2l + \alpha )m+1  - \alpha m+1

\sim 2

Dk2l + (m+ 1)\alpha 
for large l,

and the jump in density U at the gate is

(4.8) U = \eta 
m

1 +m

m

m+ \alpha 
\sum \infty 

l=1 bl
.

This result matches one's intuition, namely, if the number of substates increases,
the time needed on average for the gate to close will increase, increasing the effective
permeability, and thus decreasing the jump at the gate (see Figure 4.2(a)). In the
case m = 1 when there are no intermediate states, the permeability reduces to what
was found in the Markovian case in the previous section if one imposes symmetric
switching rates \alpha 0 = \alpha 1.
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deterministic

Pareto dist. (γ = 1.1)
uniform dist. on [0,T]

(a) (b)

Fig. 4.2. Steady-state jump discontinuity U of the concentration at the gap junction with a
switching gate. (a) Plot of U against switching rate \alpha for the age-structured switching distribution
given in (4.3). (b) Plot of U against mean switching time for the various distributions given in
(4.9). We set \eta = L = 1 in all plots.

4.3. Jump discontinuity U as a function of mean switching time. When
comparing the effects of different switching time distributions, it is helpful to compare
them by fixing the mean switching time, then comparing the jump discontinuity U
at the gate for each distribution. We will consider five distributions with symmet-
ric switching: deterministic, exponential (Markovian), gamma, Pareto, and uniform,
given, respectively, by

\omega d(\tau ) = \delta (\tau  - t0),

\omega e(\tau ) = \alpha e - \alpha \tau ,

\omega g(\tau ) =
1

\Gamma (k)\beta k
\tau k - 1e - 

\tau 
\beta with k = 4,(4.9)

\omega p(\tau ) =

\Biggl\{ 
0 if \tau < \tau 0,
\gamma \tau \gamma 

0

\tau \gamma +1 if \tau \geq \tau 0
with \gamma = 1.1,

\omega u(\tau ) =
1

\tau 1
1[0,\tau 1]

with means given, respectively, by t0, 1/\alpha , \beta k, \gamma \tau 0/(\gamma  - 1), and \tau 1/2. In the case
of deterministic switching (\omega d(\tau ) = \delta (t  - t0)), we assume the initial switching time
is uniformly distributed on [0, t0] so that the large time limit of the mean solution
exists.

If we fix a mean switching time \BbbE [T ], then we obtain the following results for the
jump discontinuity at the gate (see also Figure 4.2(b)). First, all the jump disconti-
nuities have the same overall behavior, starting at 0 in the case of fast switching, and
saturating at 0.5 (since we have symmetric switching with \eta = 1 = L) in the slow
switching limit. However, there is a clear ordering based on the various distributions,
which is related to the second moment \BbbE [T 2] of the switching time. Perhaps unsur-
prisingly, a larger second moment or variance results is a greater value of U , since it
allows greater times between conformational changes to the gate. We will use sub-
scripts to distinguish between expected values for various distributions. Formulating
\BbbE [T 2] in terms of \BbbE [T ] where possible, we have \BbbE p[T

2] = \infty for the Pareto distribution
since \gamma < 2, \BbbE e[T

2] = (\BbbE e[T ])
2 for the exponential distribution, \BbbE u[T

2] = (\BbbE u[T ])
2/3
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for the uniform distribution, \BbbE g[T
2] = (\BbbE g[T ])

2/4 for the gamma distribution since
k = 4, and \BbbE d[T

2] = 0 for the deterministic delta distribution.

5. Discussion. In this paper, we extended recent work on determining the effec-
tive permeability of a stochastically gated gap junction to the case of age-structured
switching [5]. Using the method of characteristics and Fourier/Laplace transforms,
we solved the PDEs for the first moments of the stochastic concentration, conditioned
on the state of the gate and after integrating out the residence time \tau of the age-
structured process. This allowed us to determine the mean jump discontinuity of the
concentration at the gap junction and thus the effective permeability, which depends
on the diffusive speed D as well as the length of the domain L. We conjecture that
this dependence on the distance from the particle source to the gate also holds in
more complex geometries and that the dependence on this distance vanishes in the
limit or a far-field source.

Using a corresponding single particle representation of the stochastic process that
takes into account the changing environment, we showed that the results of our analy-
sis matched numerical results from Monte Carlo simulations. One challenging prob-
lem is how to generalize the analysis of a single age-structured gap junction to a
one-dimensional array of N gap junctions. If the gap junctions independently switch,
then one has to assign an age-structured discrete random variable nk(t, \tau ) \in \{ 0, 1\} 
to each gate, k = 1, . . . , N . An upper bound on the permeability can be obtained
by assuming that the gates switch simultaneously; however, this has complications
as well. It is highly nontrivial to calculate how the memory of each gate propagates
through space and interacts with the memory of other gates. Even in the memoryless
case, the resulting system of equations is nontrivial to solve, which is why we have
focused on the analysis of a single gate.
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