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Abstract
We consider the directed intermittent search for one or more targets in a one-
dimensional domain with stochastic resetting. A particle (searcher) randomly 
switches between a stationary search phase and a rightward moving ballistic 
phase. The particle can detect a target at some fixed rate whenever it is within 
range of the target and is in the stationary state. In the absence of resetting, 
there is a nonzero probability of failure. We calculate the hitting (detection) 
probability and conditional mean first passage time (MFPT) with and without 
resetting, for both a single target and a pair of competing targets. We also 
present an alternative probabilistic method for taking into account the effects 
of resetting, which is based on conditional expectations, stopping times and an 
application of the strong Markov property. Such an approach has previously 
been used to analyze diffusion processes in randomly switching environments.

Keywords: Stochastic resetting, random intermittent search,  
first passage times, strong Markov processes

(Some figures may appear in colour only in the online journal)

1.  Introduction

A topic of increasing interest is the theory of stochastic processes under resetting [26]. The 
simplest example of such a process is a Brownian particle whose position is reset randomly in 
time at a constant rate r (Poissonian resetting) to some fixed point Xr, which could be its initial 
position. This system exhibits two of the major features observed in more complex models: 
(i) convergence to a nontrivial nonequilibrium stationary state (NESS); (ii) the mean time for 
a Brownian particle to find a hidden target is finite and has an optimal value as a function of 
the resetting rate r [17–19]. There have been numerous studies of more general stochastic 
processes with both Poissonian and non-Poissonian resetting, memory effects, and spatially 
extended systems, see the recent review [21] and references therein.
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Of particular relevance to the analysis developed in this paper, is a study of a run-and-
tumble particle under resetting [20]. In the absence of resetting such a model is an example of 
a one-dimensional velocity jump process

dX
dt

= VN(t),� (1.1)

where X(t) is the position of the particle at time t and the discrete random variable 
N(t) ∈ {1, . . . , N} indexes the current velocity state VN(t). Transitions between the velocity 
states are governed by a discrete Markov process with generator A. Define P(x, n, t | y, m, 0)dx  
as the joint probability that x � X(t) < x + dx and N(t) = n given that initially the particle 
was at position X(0) = y and was in state N(0) = m. Setting

pn(x, t) ≡
∑

m

P(x, t, n|0, 0, m)σm,� (1.2)

with initial condition pn(x, 0) = δ(x)σn, 
∑

m σm = 1, the evolution of the probability density 
is described by the differential Chapman–Kolmogorov (CK) equation

∂pn

∂t
= −Vn

∂[ pn(x, t)]
∂x

+
N∑

n′=1

Ann′pn′(x, t).� (1.3)

In the run-and-tumble model considered in [20], there are two velocity states V1 = −v, V2 = v 
and switching between the two states occurs at the same rate α. This symmetric model thus 
reduces to unbiased diffusion in the fast switching limit. The authors showed that when reset-
ting is included, the system supports a NESS and that the time to reach a target can be optim
ized with respect to the resetting rate. One additional feature of the velocity jump process is 
that one needs to specify resetting protocols for both the position and velocity of the particle.

One-dimensional velocity-jump processes (without resetting) have been applied to a wide 
range of problems in cell biology [10], including run-and-tumble during bacterial chemotaxis 
[1, 2, 5, 23], molecular motor-based intracellular transport [9, 29], microtubule catastrophes 
[6, 15], and cytoneme-based morphogenesis [13]. They have also been used to model random 
intermittent search processes, where a particle switches between a set of ballistic non-search 
states and a stationary or slowly diffusing search state [4]; in the case of unbiased search and a 
single target in a bounded domain, the search time can be minimized with respect to the rates 
of switching between the different particle states.

In the presence of a chemotactic signal bacterial run-and-tumble becomes biased towards 
a food source (or away from a toxic region). This bias typically arises from a concentration-
dependent modification in the switching rates between the different velocity states. More 
extreme cases of biased behavior can occur in other types of systems such as motor-driven 
intracellular transport [7, 28, 29]. For example, the directed transport of mRNA granules has 
been observed in the dendrites of neurons [16, 24, 32], see figure 1. First, mRNA-binding 
proteins allow mRNA to be sequestered away from cell nucleus by inhibiting translation. The 
repressed mRNAs are then packaged into ribonucleoprotein granules that are subsequently 
transported into the dendrite via molecular motor complexes. Finally, the mRNA is local-
ized to an activated synapse by actin–based myosin motor proteins, and local translation is 
initiated following neutralization of the repressive mRNA-binding protein. By fluorescently 
labeling either the mRNA or mRNA-binding proteins and using live-cell imaging to track the 
movement of granules in cultured neurons, it has been found that under basal conditions, the 
majority of granules in dendrites are stationary or exhibits small oscillations around a few 
synaptic sites, whereas others exhibit bidirectional transport. However, activating a neuron 
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using a chemical signal induces the conversion of stationary or oscillatory granules into pre-
dominantly anterograde-moving granules.

Motivated by the problem of mRNA transport, we previously analyzed a stochastic model 
of directed intermittent search for a hidden target on a semi-infinite track [7]. A particle 
injected at one end of the track randomly switches between a stationary search phase and a 
mobile, non-search phase that is biased in the anterograde direction. Since the particle has a 
non-zero probability of failure to find (be absorbed by) the target, it is not possible to optimize 
the search process in the sense of maximizing the target detection probability and minimizing 
the corresponding search time. On the other hand, if stochastic resetting to the origin were 
included in such a model, then the particle would eventually find the target and the search time 
could be minimized with respect to the resetting rate. Within the context of motor transport, it 
is known that molecular motors within a dendrite can be transported back to the cell body via 
the action of retrograde motors such as dynein. However, this retrograde transport will tend to 
have speeds of around 1 µm s−1 so that resetting would not be instantaneous. Another inter-
esting form of resetting could occur at the population level, since the removal and retrograde 
transport of motor complexes within the dendrite is supplemented by the injection of new 
motor complexes into the axon. If the rates of removal and injection were approximately bal-
anced then there would be an effective form of resetting, but with more complicated statistics.

Another potential candidate for directed intermittent search with resetting is cytoneme-
based morphogenesis [13]. Cytonemes are thin, dynamic, actin-rich cellular extensions with 
a diameter of around 100 nm and lengths that vary from 1 to 100 µm. There is growing exper
imental evidence that cytonemes can form direct cell-to-cell contacts, thus allowing the active 
transport of morphogens or their corresponding receptors to embryonic cells during develop-
ment [22, 25, 33, 34]. In the particular case of Wnt signaling in zebrafish [34], it has been 
found that Wnt is clustered at the membrane tip of cytonemes, which nucleate from a source 

activity

microtubule

mRNA granule-motor
complex

retrograde transport of motors
back to the cell body

Figure 1.  Schematic diagram illustrating mRNA granule mobility in dendrites. Under 
basal conditions, most granules are either stationary (or exhibit localized oscillations), 
whereas a minority exhibit bidirectional transport. Activity induces transcription of 
mRNA at the cell body and converts existing stationary granules into anterograde 
granules. A form of resetting could be based on the dynein dependent retrograde 
transport of motors back to the cell body.

P C Bressloff﻿J. Phys. A: Math. Theor. 53 (2020) 105001



4

cell and dynamically grow along the surface of an array of target cells, until making contact 
with one of the cells and delivering their cargo, see figure 2. However, analogous to microtu-
bule catastrophes, a cytoneme can suddenly switch to a shrinkage phase and rapidly retract 
(reset). This is then followed by the growth of a newly nucleated cytoneme.

The above examples suggest that it is worthwhile exploring the general problem of directed 
intermittent search with stochastic resetting. In this paper, we focus on the limiting case of uni-
directional transport, whereby a particle injected on to a semi-infinite track randomly switches 
between a stationary search phase and a rightward moving ballistic phase. (The particle could 
represent a molecular motor complex or the tip of a cytoneme, for example. However, the 
analysis is independent of any particular interpretation.) We begin by considering a sin-
gle hidden target and calculating the hitting probability Π (probability of finding or being 
absorbed by the target) and the conditional MFPT T in the absence of resetting (section 2).  
Although these quantities have been determined previously [7], we use Laplace transform 
methods here in order to extend the analysis to include the effects of resetting. The latter is 
carried out in two ways. First, we write down a renewal equation for the survival probability 
in an analogous fashion to previous treatments [17, 18, 20]. Using Laplace transforms we 
show that the hitting probability is now unity and that the unconditional MFPT has a mini-
mum value with respect to the resetting rate r. Second, in section 3 we show how the renewal 
method for stochastic resetting is equivalent to a probabilistic method based on conditional 
expectations, stopping times and an application of the strong Markov property. (For another 
approach to analyzing stochastic resetting without recourse to renewal theory, see [19, 30].) 
We have recently used such an approach to study a variety of problems, including search-and-
capture models [13] and diffusion processes in randomly switching environments [11, 12]. 
The probabilistic method is then used to analyze the effects of resetting in the case of a pair of 
targets that compete for resources (section 4). For simplicity, we assume throughout that reset-
ting occurs instantaneously after which the search process immediately restarts. However, one 

llec tegratllec ecruos

cytoneme

catastrophe morphogen

Figure 2.  One-dimensional search-and-capture model of a cytoneme. For simplicity, 
the cytoneme grows along the surface of a one-dimensional array of target cells until 
it eventually forms a contact with one of the cells and delivers morphogen from its tip. 
There is a non-zero probability of the cytoneme undergoing a catastrophe and rapidly 
shrinking to zero (resetting), before a new search process begins.
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could easily include some form of waiting time between successive search stages. In the case 
of cytonemes this could represent the time to nucleate a new cytoneme [13]. Finally,

2.  Directed intermittent search for a single target

Consider a single particle moving along a semi-infinite, one-dimensional track, see figure 3. 
Suppose that at time t  =  0 the particle enters one end of the track, which we take to be at 
x  =  0. Within the interior of the track, 0 < x < ∞, the particle can be in one of two states 
labeled by n = 0, 1: stationary (n  =  0), or moving to the right (anterograde) with speed v. 
Transitions between the states are governed by a two-state Markov process. We further assume 
that there is a hidden target at a fixed but unknown location x  =  X1. If the particle is within 
a distance a of the target and is in the stationary state, then the particle can detect or, equiva-
lently, be absorbed by the target at a rate k. We assume throughout that a  <  X1. This particular 
search problem was previously analyzed in [7]. Our goal is to determine how the search pro-
cess is modified by the inclusion of stochastic resetting, whereby the particle can reset to its 
initial position x  =  0 at a Poisson rate r, see figure 3. In order to proceed, it is first necessary 
to develop an alternative approach to analyzing the case without resetting.

2.1.  Directed search without resetting

Let X(t) and N(t) denote the random position and state of the particle at time t. Setting

Pn(x, t|x0, n0)dx = P(x < X(t) < x + dx, N(t) = n|X(0) = x0, N(0) = n0),

with initial condition Pn(x, 0|x0, n0) = δ(x − x0)δn,n0 , we have the following master equa-
tion describing the evolution of the probability densities for t  >  0:

∂P1(x, t)
∂t

= −v
∂P1(x, t)

∂x
− βP1(x, t) + αP0(x, t)� (2.1a)

resetting

v

target

x=0 x=X1

α β α β

(A) (B)

v

Figure 3.  Stochastic model of directed intermittent search along a one-dimensional 
track. There is a target of fixed but unknown location at x  =  X1. The particle is injected 
at x  =  0 at time t  =  0 and switches between a right-moving state with speed v and a 
stationary state. The particle can only find the target if it is in the stationary state and 
within a distance a of the target. In the absence of resetting, a particle at position (A) 
has a non-zero probability of finding the target, whereas a particle at position (B) cannot 
find the target. When resetting is included a particle at either position eventually finds 
the target.

P C Bressloff﻿J. Phys. A: Math. Theor. 53 (2020) 105001



6

∂P0(x, t)
∂t

= βP1(x, t)− αP0(x, t)− kχ(x − X1)P0(x, t),� (2.1b)

where we have dropped the explicit dependence on initial conditions. Here α,β  are the trans
ition rates between the stationary and mobile state as indicated in figure 3. We have introduced 
the indicator function χ according to

χ(x) =
{

1, if |x| < a
0, otherwise.� (2.2)

Since the particle cannot return to the origin (without resetting), it is not necessary to impose 
any boundary conditions.

Let J(t) denote the probability flux due to absorption by the target at X given that x0  =  0 
and n0  =  1:

J(t) = k
∫ X+a

X−a
P0(x, t)dx.� (2.3)

Define the hitting probability Π to be the probability that the particle eventually finds the tar-
get, that is, it is absorbed somewhere in the interval X − a � x � X + a rather than irrevers-
ibly passing beyond the target:

Π =

∫ ∞

0
J(t)dt.� (2.4)

The conditional mean first passage time (MFPT) T is then defined to be the mean time it takes 
for the particle to find the target given that it does find the target:

T =

∫∞
0 tJ(t)dt∫∞
0 J(t)dt

.� (2.5)

2.2.  Calculation of Π and T

There are two alternative methods for calculating the hitting probability Π and the conditional 
MFPT T defined by equations (2.4) and (2.5), one based on the forward master equation and 
the other based on solving the corresponding backward equation. Previously we used the latter 
approach by working with probability fluxes in the time domain [7]. Here we will use Laplace 
transforms and survival probabilities so that the analysis can be extended to include resetting.

Introduce the survival probability Qm(x0, t) that the particle has not yet been absorbed by 
the target at time t given that it started at x  =  x0 in state m. That is,

Qm(x0, t) =
∫ ∞

0
[P0(x, t|x0, m) + P1(x, t|x0, m)]dx.� (2.6)

Note that Qm(x0, t) = 1 for x0 > X1 + a. Setting m  =  1, x0  =  0, and Pn(x, t) = Pn(x, t|0, 1), 
we have

P C Bressloff﻿J. Phys. A: Math. Theor. 53 (2020) 105001
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∂Q1(0, t)
∂t

=

∫ ∞

0

∂[P0(x, t) + P1(x, t)
∂t

dx

=

∫ ∞

0

[
−v

∂P1(x, t)
∂x

− kχ(x − X1)P0(x, t)
]

dx

= −k
∫ X1+a

X1−a
P0(x, t)dx = −J(t),

where J(t) is the probability flux into the target. It follows that

Π = 1 − lim
t→∞

Q1(0, t), T = Π−1
∫ ∞

0
[Q1(0, t)− (1 −Π)]dt.� (2.7)

The survival probabilities evolve according to the backward master equation

∂Q1(x0, t)
∂t

= v
∂Q1(x0, t)

∂x0
− β[Q1(x0, t)− Q0(x0, t)],� (2.8a)

∂Q0(x0, t)
∂t

= α[Q1(x0, t)− Q0(x0, t)]− kχ(x0 − X1)Q0(x0, t),� (2.8b)

for 0 < x0 � X1 + a. Introducing the Laplace transforms

Q̃m(x0, s) =
∫ ∞

0
e−stQm(x0, t)dt,� (2.9)

and using the initial conditions Qm(x0, 0) = 1, we have

v
∂Q̃1(x0, s)

∂x0
− (β + s)Q̃1(x0, s) + βQ̃0(x0, s) = −1,� (2.10a)

αQ̃1(x0, s)− (α+ s)Q̃0(x0, s)− kχ(x0 − X1)Q̃0(x0, s) = −1,� (2.10b)

with Q̃1(x0, s) = 1/s for x0 > X1 + a. Solving equation (2.10b) for Q̃0 gives

Q̃0(x0, s) =
αQ̃1(x0, s) + 1

α+ s + kχ(x0 − X1)
.� (2.11)

Substituting (2.11) into equation (2.10a) then yields

∂Q̃1(x0, s)
∂x0

=
1
v

(
β + s − αβ

α+ s + kχ

)
Q̃1(x0, s)− 1

v

(
β

α+ s + kχ
+ 1

)
.

� (2.12)
This equation  can be solved separately in the three domains 0  <  x  <  X1  −  a, 
X1 − a < x < X1 + a and X1 + a < x < ∞, after imposing continuity across the boundaries 
at x = X1 ± a together with the condition Q̃1(x0, s) = 1/s for x0 � X1 + a. It is convenient 
to set

fk(s) =
1
v

(
β + s − αβ

α+ s + k

)
, gk(s) =

1
v

(
β

α+ s + k
+ 1

)
.

In the first domain, the solution has the form

Q̃1(x0, s) = A(s)e f0(s)x0 − g0(s)
f0(s)

(
e f0(s)x0 − 1

)
,� (2.13)
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and in the second domain it is given by

Q̃1(x0, s) =
1
s
−
[

1
s
− gk(s)

fk(s)

](
1 − e fk(s)[x−X1−a]

)
.� (2.14)

The latter satisfies the continuity condition at x  =  X1  +  a. Imposing continuity at x  =  X1  −  a 
then determines the constant A according to

A(s) = e−f0(s)[X1−a]
{

g0(s)
f0(s)

(
e f0(s)[X1−a] − 1

)
+

e−2afk(s)

s
+

gk(s)
fk(s)

(
1 − e−2afk(s)

)}
.� (2.15)

It is now straightforward to read off the hitting probability and conditional MFPT. In terms 
of Laplace transforms,

Π = 1 − lim
s→0

sQ̃1(0, s) = 1 − lim
s→0

sA(s) = 1 − e−2fk(0)a
� (2.16)

and

T = Π−1 lim
s→0

(
Q̃1(0, s)− 1 −Π

s

)

= Π−1 lim
s→0

[
e−f0(s)[X1−a]

{
g0(s)
f0(s)

(
e f0(s)[X1−a] − 1

)
+

gk(s)
fk(s)

(
1 − e−2afk(s)

)

+
e−2afk(s)

s

}
− e−2afk(0)

s

]

= Π−1
{(

g0(0)− f ′0(0)e
−2afk(0)

)
[X1 − a] +

gk(0)
fk(0)

(
1 − e−2afk(0)

)

−2af ′k(0)e
−2afk(0)

}
.

�

(2.17)

Setting

λ = fk(0) =
β

v
k

α+ k
, µ1 = gk(0) =

β + α

vα
� (2.18)

and

µ2 = f ′k(0) =
1
v

(
1 +

αβ

(α+ k)2

)
, µ3 =

gk(0)
fk(0)

=
α+ β + k

βk
,� (2.19)

we obtain the result

Π = 1 − e−2λa, T = (X1 − a)µ1 −
2aµ2

e2λa − 1
+ µ3.� (2.20)

The latter is identical to the one obtained using alternative methods [7].
In figure 4 we plot Π and T as functions of α for different values of β . It can be seen 

that increasing the parameter α, which controls how much time the particle spends in the 
stationary search mode, decreases both the hitting probability and the conditional MFPT. 
Similarly, increasing the parameter β, which controls how much time the particle spends in 
the anterograde mobile state, increases both the hitting probability and the MFPT. Our results 
are consistent with the intuitive picture that one cannot simultaneously maximize the hitting 
probability and minimize the MFPT. Note that since we do not have any specific application 
in mind, we fix time and space units by setting k  =  1 and a  =  1, respectively.
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2.3.  Directed search with stochastic resetting

Now suppose that the particle can reset to its initial position x  =  x0 and state n0  =  1 at a con-
stant rate r (Poissonian resetting), see figure 3. We will take x0  =  0 below. (With a small modi-
fication, one could assume instead that the particle resets to the stationary state or a mixture 
of the two, see below.) Since the resetting process preserves the initial conditions, we have the 
renewal equation

Q(r)
1 (x0, t) = e−rtQ1(x0, t) + r

∫ t

0
e−rτQ1(x0, τ)Q(r)

1 (x0, t − τ)dτ ,� (2.21)

where Q(r)
m (x0, t) is the survival probability in the presence of resetting and Qm(x0, t) is the 

survival probability without resetting, as calculated in section 2.2. The first term on the right-
hand side represents trajectories with no resettings. The integrand in the second term is the 
contribution from trajectories that last reset at time τ ∈ (0, t), and consists of the product of 
the survival probability starting from x0 with resetting up to time t − τ  and the survival prob-
ability starting from Xr without any resetting for the time interval τ . Since we have a convolu-
tion, it is natural to introduce the Laplace transform

Q̃1(x0, s) =
∫ ∞

0
Q1(x0, t)e−stdt,

and similarly for Q̃(r)
1 (x0, s). Laplace transforming the renewal equation and rearranging leads 

to the general result

Q̃(r)
1 (x0, s) =

Q̃1(x0, r + s)

1 − rQ̃1(x0, r + s)
.� (2.22)

Two results immediately follow from this renewal condition with x0  =  0. First, the hitting 
probability with resetting is given by
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Figure 4.  Plots of (a) the hitting probability Π and (b) the MFPT T as a function of α 
for different β. Other parameter values are X  =  10, a  =  1, k  =  1, and v = 1.
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Π(r) = 1 − lim
t→∞

Q(r)
1 (0, t) = 1 − lim

s→0
sQ̃(r)

1 (0, s)

= 1 − lim
s→0

s
Q̃1(0, r + s)

1 − rQ̃1(0, r + s)

= 1 − lim
s→0

s
A(r)

1 − rA(r)
= 1.

�

(2.23)

That is, in contrast to the previous case without resetting, the particle does eventually find the 
target. Second, the now unconditional MFPT takes the form

T(r) =

∫ ∞

0
Q(r)

1 (0, t)dt = Q̃(r)
1 (0, 0) =

A(r)
1 − rA(r)

.� (2.24)

Note from equation (2.11) that if we had taken the initial and reset state to be the stationary 
state n0  =  0 rather then the ballistic state, then

T(r) =
A(r)

1 − rA(r)
+

1
α

,

where α−1 is the mean time to exit the stationary state. (It would also be straightforward 
to include a more general waiting time density for the time to enter the ballistic state at the 
origin.)

We now observe that T(r) → ∞ as r → 0, since in the no resetting limit there is a nonzero 
probability of failure to find the target, and these particular sample paths have an infinite FPT. 
Morever, T(r) → ∞ in the limit r → ∞, as resetting occurs so often that the particle never 
has the chance to reach the target. Analogous to Brownian motion with stochastic resetting 
[17, 18], this suggests that there is a value of r that minimizes T(r). The latter is indeed found 
to be the case, as demonstrated in figures 5 and 6. However, the dependence on the switching 
rates α,β  is also non-trivial. For fixed β = 10, say, we know from figure 4 that in the absence 
of resetting the hitting probability is high for small α and decreases as α increases. This 
suggests that the optimal rate of resetting should be an increasing function of α, in order to 
counteract the increasing number of failures, see figure 5. Moreover, for small α the MFPT 
T(r) increases with r, whereas for large α it decreases with r, see figure 7. Now suppose that 
α = 10, say, and we vary β. Figure 4 shows that the hitting probability decreases significantly 
as β decreases (no resetting), suggesting that optimal resetting rate increases, which is seen in 
figure 6. Finally, note that an upper bound on the optimal resetting rate will depend on the ratio 
v/X1, since there is no advantage resetting before a particle can physically reach the target. For 
the given parameter values v/X1 = 0.1.

3. The renewal method and the strong Markov property

Implicit in the use of renewal methods is that the underlying stochastic process satisfies the 
strong Markov property. In order to explore this connection further, we briefly review some 
probability theory. First, it is useful to introduce the notion of a natural filtration. Given a sto-
chastic process {X(t) : t ∈ Σ]} on some time interval Σ, the natural filtration Ft  is taken to be 
the set of sample paths generated by the stochastic process, that is,

Ft = {X(s), s � t}.

(More precisely, Ft  belongs to a σ-algebra.) In other words, Ft  contains the history of the 
stochastic process up to time t. A random variable is said to be measurable with respect to the 
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natural filtration Ft  if its probability density can be determined from the distribution of sample 
paths up to time t. A random variable T ∈ R+, which is defined on the same probability space 
as X(t), is a stopping time if for every t ∈ Σ we can completely determine whether or not T  
has occurred before time t using the information contained in all the events that have occurred 
up to time t, that is, the filtration Ft . A classical example of a stopping time is a first passage 
time.

Recall that a stochastic process {X(t)}t∈Σ is said to have the Markov property if the condi-
tional probability distribution of future states of the process (conditional on both past and pre-
sent states) depends only upon the present state, not on the sequence of events that preceded 
it. That is, for all t′ > t we have
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Figure 5.  Plots of the MFPT T(r) as a function of the resetting rate r for various 
switching rates α with k = v = 1, β = 10, X1  =  10 and a  =  1.
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switching rates β with k = v = 1, α = 10, X1  =  10 and a  =  1.
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P[Xt′ � x|Xs, s � t] = P[Xt′ � x|Xt].

The strong Markov property is similar to the Markov property, except that the ‘present’ is 
defined in terms of a stopping time. That is, given any finite-valued stopping time T  with 
respect to the natural filtration of X, if the stochastic process Y(t) = X(t + T )− X(T ) is inde-
pendent of {X(s), s < T } and has the same distribution as Ŷ(t) = X(t)− X(0) then X is said 
to satisfy the strong Markov property.

In order to apply the above ideas to stochastic resetting, we introduce two new discrete 
random variables. First, let L(t) ∈ {0, 1} indicate whether the particle has (L(t) = 1) or has 
not (L(t) = 0) been absorbed by the target in the time interval [0, t]. Second, let Nreset(t) be 
the Poisson process associated with resetting, which counts the number of resets up to time t. 
It follows that

P[Nreset(t) = n|Nreset(t) = 0] =
rne−rt

n!
.� (3.1)

Consider the following set of first passage times; 

T = inf{t > 0; X1 − a � X(t) � X1 + a, L(t) = 1},
S = inf{t > 0; Nreset(t) = 1, L(t) = 0},
R = inf{t > 0; X1 − a � X(t + S) � X1 + a, L(t + T0) = 1},

where we have suppressed the explicit dependence on the initial condition X(0) = 0, N(0) = 1. 
Here T  is the FPT for finding the target irrespective of the number of resettings, S  is the FPT 
for the first resetting given that the target hasn’t yet been found, and R is the FPT for finding 
the target given that at least one resetting has occurred. Next we introduce the sets

Ω = {T < ∞}, Γ = {S < T < ∞} ⊂ Ω.
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Figure 7.  Plots of the MFPT T(r) as a function of the switching rate α for various 
resetting rates r with k = v = 1, β = 10, X1  =  10 and a  =  1.
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That is, Ω is the set of all events for which the particle is eventually absorbed by the target, 
and Γ is the subset of events in Ω for which the particles resets at least once. It immediately 
follows that

Ω\Γ = {T < S = ∞}.

In other words, Ω\Γ is the set of all events for which the particle is absorbed without any 
resetting. We now use probabilistic arguments to recalculate the splitting probability Π(r) and 
MFPT T(r) in the presence of resetting.

First, the hitting probability Π(r) can be decomposed as

Π(r) := P[Ω] = P[Ω\Γ] + P[Γ].� (3.2)

We note that

P[Ω\Γ] = P[T 1Ω\Γ < ∞] = −
∫ ∞

0
e−rτ dQ1(0, τ)

dτ
dτ = −rQ̃1(0, r) + 1.

We also have

P[Γ] = P[S < ∞]P[R < ∞]

with

P[S < ∞] =

∫ ∞

0
rQ1(0, τ)e−rτdτ = rQ̃1(0, r).

Finally, from the strong Markov property P[R < ∞] = Π(r), so that

Π(r) = 1 − rQ̃1(0, r) + rQ̃1(0, r)Π(r),

which implies that Πr = 1.
Similarly, we can decompose the unconditional MFPT T(r) = E[T ] as

T(r) = E[T 1Ω\Γ] + E[T 1Γ],� (3.3)

with

E[T 1Ω\Γ] = −
∫ ∞

0
τe−rτ dQ1(0, τ)

dτ
dτ =

[
1 + r

d
dr

]
Q̃1(0, r),

and

E[T 1Γ] = E[(S +R)1Γ] = E[S1Γ] + E[R1Γ].� (3.4)

We now note that

E[S1Γ] = r
∫ ∞

0
τQ1(0, τ)e−rτdτ = −r

d
dr

Q̃1(0, r),

and from the strong Markov property,

E[R1Γ] = T(r)P[Γ] = T(r)rQ̃1(0, r).

Combining all of these results,

T(r) =

[
1 + r

d
dr

]
Q̃1(0, r)− r

d
dr

Q̃1(0, r) + T(r)rQ̃1(0, r),

which on rearranging recovers equation (2.24).
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4.  Pair of targets and competition

So far we have considered anterograde intermittent search for a single hidden target, under 
the assumption that additional targets are further downstream. In the absence of resetting, 
downstream targets have no effect on the hitting probability and conditional MFPT of the 
upstream target. However, an upstream target will have a significant effect on the search for 
downstream targets. In order to explore this phenomenon, let us consider two identical targets 
at positions x  =  X1 and x  =  X2 where the distance between the two targets is X2 − X1 > 2a, 
see figure 8. We begin by considering the case without resetting by extending the analysis of 
section 2. Again this provides an alternative derivation to the one developed in [7], which is 
more suitable for incorporating stochastic resetting.

4.1.  Pair of targets without resetting

Equation (2.13) establishes that the hitting probability π1(x0) to find the first target when 
x0 < X1 − a is

π1(x0) = 1 − lim
s→0

sQ̃1(x0, s) = 1 − e−2λa = Π,

with λ given by equation (2.18). That is, the hitting probability is independent of the start-
ing position x0 provided that it is to the left of the target detection domain [X1 − a, X1 + a]. It 
immediately follows that the probability that the particle will miss the first target and then find 
the second target is simply

Π2 = (1 −Π)Π.� (4.1)
Note that a similar argument can be applied to multiple targets. In particular, suppose that there 
are M targets at positions Xl, l = 1, . . . , M , with X1 < X2 < . . . < XM and no overlap between 
the reaction domains. The probability of missing the first n targets and finding the (n + 1)th tar-
get can be formulated in terms of a series of Bernouilli trials that have probability Π of success 
and 1 −Π of failure. In particular, Πn+1 = (1 −Π)nΠ. Hence, Πn+1 = e−2naλ − e−2(n+1)aλ. 

first target second target

resetting

v

x=0 x=X1

α β α β

(A) (C)

v

x=X2

v

α β

(B)

Figure 8.  Schematic diagram of unidirectional search with a pair of targets at X1 and 
X2, respectively. In the absence of resetting, only the particle at (A) has a non-zero 
probability of finding either target. The particle at position (B) only has a chance of 
finding the second target, whereas the particle at position (C) fails to detect either target. 
When resetting is included, all three particles eventually find one of the targets.
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The condition ∂Πn+1/∂β = 0 then implies that the maximum hitting probability is achieved 
when α and β satisfy the linear relationship

βmax(α) =
ln

(
1 + 1

n

)
v

2ka
(α+ k).� (4.2)

The maximum hitting probability of the (n + 1)th target is thus

Πmax =
nn

(n + 1)n+1 .� (4.3)

Interestingly the maximum hitting probability depends only on the number of targets.
In order to determine the conditional MFPTs, we introduce the discrete stochastic variable 

L(t) ∈ {0, 1, 2} with L(t) = l, l = 1, 2, indicating that the particle has been absorbed by the 
lth target before time t and L(t) = 0 indicating that the particle is still free. (In the case of M 
targets we would take L(t) ∈ {0, 1, . . .M}.) Consider the FPT

Tl,m(x0) = inf{t � 0; Xl − a � X(t) � Xl + a, L(t) = l|X(0) = x0, N(0) = m}.

The probability flux into the lth target cell is

Jl,m(x0, t) = k
∫ Xl+a

Xl−a
P0(x, t|x0, m)dx,

so that

Πl,m(x0, t) := P[0 < Tm
l (x0) < t] =

∫ t

0
Jl,m(x0, t′)dt′,

where Πl,m(x0, t) is the probability that the particle is captured by the lth target before time t, 
having started in state (x0,m). Since

dΠl,m(x0, t)
dt

= Jl,m(x0, t) =
∫ t

0

dJl,m(x0, t′)
dt′

dt′ + Jl,m(x0, 0),

and Jl,m(x0, 0) = kχ(x0 − Xl)δm,0, it follows that Πl,m(x0, t) satisfies the backward equation

∂Πl,1(x0, t)
∂t

= v
∂Pl,1(x0, t)

∂x0
− β[Πl,1(x0, t)−Πl,0(x0, t)],� (4.4a)

∂Πl,0(x0, t)
∂t

= α[Πl,1(x0, t)−Πl,0(x0, t)]− k
∑
j=1,2

χ(x0 − Xj)Πl,0(x0, t)

+ kχ(x0 − Xl)δm,0,

� (4.4b)

with the initial conditions Πl,m(x0, 0) = 0. Laplace transforming equations (4.4a) and (4.4b) 
yields

v
∂Π̃l,1(x0, s)

∂x0
− (β + s)Π̃l,1(x0, s) + βΠ̃l,0(x0, s) = 0,� (4.5a)

αΠ̃l,1(x0, s)− (α+ s)Π̃l,0(x0, s)− k
∑
j=1,2

χ(x0 − Xj)Π̃l,0(x0, s) +
k
s
χ(x0 − Xl)δm,0 = 0.� (4.5b)
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Taking the limit t → ∞ in equations (4.4a) and (4.4b) generates the following equations for 
the total hitting probability πl,m(x0):

0 = v
∂πl,1(x0)

∂x0
− β[πl,1(x0)− πl,0(x0)],� (4.6a)

−kχ(x0 − Xl) = α[πl,1(x0)− πl,0(x0)]− k
∑
j=1,2

χ(x0 − Xj)πl,0(x0).� (4.6b)

First, solving equation (4.4b) for π0
l  gives

πl,0(x0) =
απl,1(x0) + kχ(x0 − Xl)

α+ k
∑

j=1,2 χ(x0 − Xj)
,� (4.7)

which can be substituted into equation (4.4a) to yield

∂πl,1(x0)

∂x0
=

1
v

(
β − αβ

α+ k
∑

j=1,2 χ(x0 − Xj)

)
πl,1(x0)−

1
v

βkχ(x0 − Xl)

α+ k
∑

j=1,2 χ(x0 − Xj)
.� (4.8)

Using the fact that π1,1(x0) = 0 for x0 > X1 + a and π2,11(x0) = 0 for x0 > X2 + a. We have

πl,1(x0) = Al, l = 1, 2,� (4.9a)

for 0 � x0 � X1 − a,

π1,1(x0) = A1eλ(x0−X1+a) −
(

eλ(x0−X1+a) − 1
)

, π2,1(x0) = A2eλ(x0−X1+a)

� (4.9b)
for X1 − a < x0 � X1 + a,

π1,1(x0) = 0, π2,1(x0) = A2e2λa,� (4.9c)

for X1 + a < x0 � X2 − a, and

π1,1(x0) = 0, π2,1(x0) = A2e2λaeλ(x0−X2+a) −
(

eλ(x0−X2+a) − 1
)

� (4.9d)

for X2 − a < x0 � X2 + a. We have used f 0(0)  =  0, fk(0) = λ and imposed continuity con-
ditions at x  =  X1  −  a, x  =  X1  +  a and x  =  X2  −  a. Finally requiring π1,1(X1 + a) = 0 and 
π2,1(X2 + a) = 0 we determine the coefficients A1, A2, and thus obtain the expected hitting 
probabilities:

Π1 = π1,1(0) = A1 = 1 − e−2aλ = Π,

and

Π2 = π2,1(0) = A2 =
(
1 − e−2λa) e−2λa = Π(1 −Π).

In order to calculate the conditional MFPT Tl to be absorbed by the lth target we need to 
solve equations (4.5a) and (4.5b). The latter gives

Π̃l,0(x0, s) =
αΠ̃l,1(x0, s) + kχ(x0 − Xl)/s
α+ s + k

∑
j=1,2 χ(x0 − Xj)

,� (4.10)

which on substitution into equation (4.5a) yields
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∂Π̃l,1(x0, s)
∂x0

=
1
v

(
β + s − αβ

α+ s + k
∑

j=1,2 χ(x0 − Xj)

)
Π̃l,1(x0, s)

− 1
v

(
βkχ(x0 − Xl)/s

α+ s + k
∑

j=1,2 χ(x0 − Xj)

)
.

�

(4.11)

Equation (4.11) can be solved along similar lines to (2.12), except now we have five 
domains: (1) 0 � x0 � X1 − a, (2) X1 − a < x0 � X1 + a, (3) X1 + a < x0 � X2 − a, (4) 
X2 − a < x0 � X2 + a and (5) x0 > X2 + a. First note that Π1,1(x0, t) = 0 for x0 > X1 + a 
and Π2,1(x0, t) = 0 for x0 > X2 + a. In the case of the first target (l = 1),

Π̃1,1(x0, s) = a1(s)e f0(s)[x0−X1+a]� (4.12a)

for 0 � x0 < X1 − a,

Π̃1,1(x0, s) = b1(s)e fk(s)[x0−X1+a] +
k
s

hk(s)
fk(s)

(
1 − e fk(s)[x0−X1+a]

)
� (4.12b)

for X1 − a < x0 � X1 + a, and Π̃1
1(x0, s) = 0 for x0 � X1 + a. Here hk(s) = gk(s)− v−1. 

Imposing continuity at x = X1 ± a shows that

a1(s) = b1(s) =
k
s

hk(s)
fk(s)

(
1 − e−2afk(s)

)
.� (4.13)

Since khk(0)/fk(0) = 1, we see that

Π1 = lim
s→∞

sa1(s) = Π

as expected. Moreover the MFPT T1 is

T1 = Π−1
∫ ∞

0
[π1,1(0)−Π1,1(0, t)]dt = Π−1 lim

s→0

[
π1

1(0)
s

− Π̃1,1(0, s)
]

.� (4.14)

It can be checked that this reproduces the MFPT (2.20) for a single target.
Turning to the second target (l  =  2),

Π̃2,1(x0, s) = a2(s)e f0(s)[x0−X1+a]� (4.15a)

for 0 � x0 < X1 − a,

Π̃2,1(x0, s) = a2(s)e fk(s)[x0−X1+a]� (4.15b)

for X1 − a < x0 � X1 + a,

Π̃2,1(x0, s) = b2(s)e f0(s)[x0−X2+a]� (4.15c)

for X1 + a < x0 � X2 − a,

Π̃2,1(x0, s) = b2(s)e fk(s)[x0−X2+a] +
k
s

hk(s)
fk(s)

(
1 − e fk(s)[x0−X2+a]

)
� (4.15d)

for X2 − a < x0 � X2 + a,
and Π̃2,1(x0, s) = 0 for x0 � X2 + a. Imposing continuity at x  =  X1  +  a and x  =  X2  −  a shows 
that

b2(s) =
k
s

hk(s)
fk(s)

(
1 − e−2afk(s)

)
� (4.16)
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and

a2(s) =
k
s

hk(s)
fk(s)

e−2afk(s)e f0(s)[X1−X2+2a]
(

1 − e−2afk(s)
)

.� (4.17)

Hence,

Π2 = lim
s→∞

sa2(s) = Π(1 −Π)

as expected. The corresponding MFPT is

T2 =
1

Π(1 −Π)

∫ ∞

0
[π2,1(0)−Π2,1(0, t)]dt =

1
Π(1 −Π)

lim
s→0

[
π2,1(0)

s
− Π̃2,1(0, s)

]

= 2aµ2

(
1 − 1

e2λa − 1

)
+ µ1(X2 − 3a) + µ3.

�

(4.18)

As seen in figure  9, the addition of a target between a searcher and its intended target 
qualitatively changes the behavior of the hitting probability as a function of the state transition 
rates. In particular, the hitting probability can now have a maximum value as a function of α. 
(A similar result holds on fixing α and varying β.) On the other hand, we find that the con-
ditional MFPT is relatively insensitive to the presence of the upstream target, and still varies 
monotonically with α and β.

4.2.  Pair of targets with resetting

Now suppose that we include resetting to the origin when in the moving state. We will develop 
the analysis using the probabilistic approach of section 3. Alternatively, one could use the 
renewal method and derive a backward equation for conditional survival probabilities along 
analogous lines to the analysis of a Brownian particle with resetting in an interval [31].

Consider the following set of FPTs:

Tl = inf{t > 0; Xl − a < X(t) � Xl + a, L(t) = l},
S = inf{t > 0; Nreset(t) = 1, L(t) = 0},
Rl = inf{t > 0; Xk − a < X(S + t) � Xk + a, L(S + t) = l},

for l = 1, 2. Recall that Xl is the position of the lth target and L(t) = l > 0 indicates that the 
particle has been absorbed by the lth target, whereas L(t) = 0 means that the particle has not 
been absorbed by any targets. Next we introduce the sets

Ωl = {Tl < ∞}, Γl = {T0 < Tl < ∞} ⊂ Ωl,

where Ωl  is the set of all events for which the particle is eventually absorbed by the lth target, 
and Γl  is the subset of events in Ωl  for which the particles resets at least once. Thus Ωl\Γl is the 
set of all events for which the particle is captured by the lth target cell without any resetting.

Let Π(r)
l  denote the hitting probability that the particle finds the kth target in the presence 

of resetting. Then

Π
(r)
l := P[Ωl] = P[Ωl\Γl] + P[Γl].� (4.19)

Next we have

P[Ωl\Γl] = P[Tl1Ωl\Γl < ∞] =

∫ ∞

0
e−rτ dΠl,1(0, τ)

dτ
dτ = rΠ̃l,1(0, r).
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We also have

P[Γl] = P[S < ∞]P[Rl < ∞]

with

P[S < ∞] =

∫ ∞

0
r[1 −Π1,1(0, τ)−Π2,1(0, τ)]e−rτdτ = [1 − rΠ̃1,1(0, r)− rΠ̃2,1(0, r)].

Finally, from the strong Markov property P[Rl < ∞] = Π
(r)
l , so that

Π
(r)
l = rΠ̃l,1(0, r) + [1 − rΠ̃1,1(0, r)− rΠ̃2,1(0, r)]Π(r)

l ,

which gives

Π
(r)
l =

Π̃l,1(0, r)

Π̃1,1(0, r) + Π̃2,1(0, r)
=

al(r)
a1(r) + a2(r)

.� (4.20)

It immediately follows that Π(r)
1 +Π

(r)
2 = 1, which means the particle is eventually absorbed 

by one of the targets. Example plots of Π(r)
1  are shown in figures 10 and 11. The latter illus-

trates the fact that the hitting probabilities depend on the separation X1 − X2 of the two targets 
according to equation  (4.17). As expected, the hitting probability of the upstream target is 
larger (Π1 > Π2). Moreover, for fixed r, decreasing the relative time spent in the ballistic 
(search) phase reduces (increases) Π2.

Similarly, we can decompose the MFPT T(r)
l = E[Tl] as

T(r)
l = E[Tl1Ωl\Γl ] + E[Tl1Γl ],� (4.21)
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Figure 9.  Anterograde unidirectional transport with two targets located at X1  =  5 and 
X2  =  10. The hitting probability Π2 of the downstream target is plotted as a function of 
α for various β. Also shown are the corresponding results when the upstream target is 
absent. Other parameter values are k = v = 1 and a  =  1.
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with

E[Tl1Ωl\Γl ] =

∫ ∞

0
τe−rτ dΠl,1(0, τ)

dτ
dτ = −

[
1 + r

d
dr

]
Π̃l,1(0, r),
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Figure 10.  Hitting probabilities Πl, l = 1, 2, for two competing targets and different 
switching rates plotted as a function of the resetting rate r. The hitting probability of the 
upstream target is larger (Π1 > Π2). Decreasing the relative time spent in the ballistic 
phase (smaller α) reduces Π2, whereas decreasing the relative time spent in the search 
phase (smaller β) increases Π2. The baseline rates are α = β = 10. Other parameter 
values are X1  =  5, X2  =  10, k = v = 1 and a  =  1.
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and
E[Tl1Γl ] = E[(S +Rl)1Γl ] = E[S1Γl ] + E[Rl1Γl ].� (4.22)

We now note that

E[S1Γl ] = P[Rl < ∞]r
∫ ∞

0
τ [1 −Π1,1(0, τ)−Π2,1(0, τ)]e−rτdτ

=

[
1
r
+ r

d
dr

Π̃1,1(0, r) + r
d
dr

Π̃2,1(0, r)
]
Π

(r)
l ,

and from the strong Markov property,

E[Rl1Γl ] = T(r)
l P[Γl] = T(r)

l [1 − rΠ̃1,1(0, r)− rΠ̃2,1(0, r)]Π(r)
l .

Combining all of these results and using equation (4.20, we find

rT(r)
l Π̃l,1(0, r) =

Π
(r)
l

r
+ r

Π̃l,1(0, r)

Π̃1,1(0, r) + Π̃2,1(0, r)

d
dr

[
Π̃1,1(0, r) + Π̃2,1(0, r)

]

− r
d
dr

Π̃l,1(0, r)− Π̃l,1(0, r).

Dividing through by rΠ̃l,1(0, r) then yields

T(r)
l =

1
r

(
1

r[Π̃1,1(0, r) + Π̃2,1(0, r)]
− 1

)
− d

dr
ln

[
Π̃l,1(0, r)

Π̃1,1(0, r) + Π̃2,1(0, r)

]
.

� (4.23)
Setting

Q̃(r)
1 (0, r) = 1 − r[Π̃1,1(0, r) + Π̃2,1(0, r)],� (4.24)

which relates the total hitting probability with the survival probability of the particle, we 
obtain the final result

T(r)
l = T(r) − d

dr
lnΠ

(r)
l ,� (4.25)

with

T(r) =
Q̃1(0, r)

1 − rQ̃1(0, r)
� (4.26)

the conditional MFPT that the particle is absorbed by either target. Note, in particular, that

Π
(r)
1 T(r)

1 +Π
(r)
2 T(r)

2 = (Π
(r)
1 +Π

(r)
2 )T(r) − d

dr
Π

(r)
1 − d

dr
Π

(r)
1 = T(r),

since Π(r)
1 +Π

(r)
2 = 1.

Equation (4.25) is identical in form to equation  (38) of [31], which was derived for a 
Brownian particle in an interval using the renewal method. In the latter case, the particle has a 
unit probability of being absorbed at either end in the absence of resetting, whereas in the case 
of directed intermittent search there is a finite probability of no absorption without resetting. 
In figure 12 we show sample plots of the conditional MFPTs as a function of the resetting 

rate. Note that the presence of a downstream target actually lowers the optimal MFPT T(r)
1  of 

the upstream target, since one is weighting sample paths that favor the first target. In the limit 
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X2 → ∞, the presence of a second target has no effect and we recover the MFPT plot for a 
single target.

5.  Discussion

In this paper we analyzed a biased velocity jump process in which a particle switches between 
a stationary state and right-moving ballistic state according to a two-state Markov process. 
The particle can detect (be absorbed by) a target at a fixed rate whenever it is in the stationary 
state and within range of the target. In addition, the particle can reset its position to the origin 
at some rate r. We determined hitting probabilities and (conditional) MFPTs as a function of 
various model parameters, both for a single target and a pair of competing targets. We also 
introduced an alternative method for analyzing stochastic processes with resetting, which is 
based on the use of conditional expectations, stopping times and the strong Markov property.

There are a number of possible extensions of the current work. First, one could consider a 
more complicated velocity jump process, in which the particle can exist in several distinct bal-
listic states, including motion in the retrograde direction (partially biased intermittent search). 
One example within the context of molecular motors is the so-called tug-of-war model of bidi-
rectional intracellular transport, in which opposing groups of motors (e.g. kinesin and dynein) 
are attached to a vesicle [27, 29]. A second extension would be to consider higher-dimensional 
search processes such as motor-driven transport on cytoskeletal networks [8] or cytonemes 
searching for target cells in a hexagonal array, for example [13].

Finally, we note that there are certain analogies between the directed intermittent search 
process to multiple targets and recent studies of first-passage time processes with resetting, 
where there are two possible outcomes of the search process, namely, target detection or death 
[3, 14]. The latter builds upon the theory of so-called mortal walkers [35]. One major finding 
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Figure 12.  Conditional MFPTs T(r)
l , l = 1, 2, as a function of the resetting rate for two 

competing targets and different positions X2 of the downstream target. Other parameter 
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of these studies is that the splitting probability for success can be maximized as a function 
of the resetting rate, which we also found in our analysis, see figure 9. There are, however, 
some major differences. First, we consider unidirectional transport. Second, in the case of a 
single target, we have the analog of mortality in the absence of resetting, namely, the searcher 
passing beyond the target. However, ‘mortality’ disappears in the presence of resetting since 
the searcher eventually finds the target. In order to have multiple outcomes in the presence of 
resetting, we had to introduce more than one target.
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