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Delayed Feedback Model of Axonal Length Sensing
Bhargav R. Karamched1 and Paul C. Bressloff1,*
1Department of Mathematics, University of Utah, Salt Lake City, Utah
ABSTRACT A fundamental question in cell biology is how the sizes of cells and organelles are regulated at various stages of
development. Size homeostasis is particularly challenging for neurons, whose axons can extend from hundreds of microns to
meters (in humans). Recently, a molecular-motor-based mechanism for axonal length sensing has been proposed, in which
axonal length is encoded by the frequency of an oscillating retrograde signal. In this article, we develop a mathematical model
of this length-sensing mechanism in which advection-diffusion equations for bidirectional motor transport are coupled to a chem-
ical signaling network. We show that chemical oscillations emerge due to delayed negative feedback via a Hopf bifurcation,
resulting in a frequency that is a monotonically decreasing function of axonal length. Knockdown of either kinesin or dynein
causes an increase in the oscillation frequency, suggesting that the length-sensing mechanism would produce longer axons,
which is consistent with experimental findings. One major prediction of the model is that fluctuations in the transport of molecular
motors lead to a reduction in the reliability of the frequency-encoding mechanism for long axons.
INTRODUCTION
A fundamental question in cell biology is how the sizes of
subcellular stuctures are determined to scale with the size
of the cell and with physiological requirements. It appears
that self-organizing processes, together with physical con-
straints, play a major role in controlling organelle size (1).
At least three distinct control mechanisms have been identi-
fied (2).

1. Molecular rulers. In the case of linear structures such as
filaments, size control can be achieved by a molecular
ruler protein whose length is equal to the desired length
of the growing structure. One classical example is the
length of the l-phage tail, which is determined by the
size of the gene product H (gpH) (3). During assembly
of the tail, gpH is attached to the growing end in a folded
state and protects the growing end from the terminator
gene product U (gpU). As the tail elongates, gpH
stretches such that when it is fully extended, further
growth exposes the tail to the action of gpU.

2. Quantal synthesis. Size could be controlled by synthesiz-
ing exactly enough material to build a structure of the
appropriate size—a process known as quantal synthesis.
For example, precursor protein levels are known to
affect the length of flagella in the unicellular green
alga Chlamydomonas reinhardtii (4), and the length
of sea urchin cilia is correlated with the concentra-
tion of the protein tektin (5). One prediction of the
quantal synthesis model is that doubling the number of
flagella should halve their length. However, studies of
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Chlamydomonasmutants indicate a much weaker depen-
dence of length on the number of flagella, suggesting that
there is an additional length-controlling mechanism
involving dynamic balance (6) (see below).

3. Dynamic balance. Dynamic structures are constantly
turning over, so for them to maintain a fixed size, there
must be a balance between the rates of assembly and
disassembly. If these rates depend on the size in an
appropriate way, then there will be a unique balance
point that stabilizes the size of the organelle. For
example, eukaryotic flagellar microtubules undergo con-
tinuous assembly and disassembly at their tips, in which
a constant rate of disassembly is balanced by a length-
dependent rate of assembly due to a fixed number of
molecular motors transporting from the cell body, lead-
ing to a fixed flagellar length (6–8). An analogous dy-
namic balance mechanism is thought to control the
length of actin-based structures, such as the stereocilia
of the inner ear (9,10). Here, actin filaments constantly
treadmill back toward the cell body, with disassembly
at the base balanced by assembly at the tip. The latter
depends on the diffusion of actin monomers to the tip,
which results in a length-dependent rate of assembly. It
has also been suggested that a diffusion-induced length
dependence of the assembly rate plays a role in the
control of the hook length in bacterial flagella (11). A
different balance mechanism appears to control the
length of microtubules in yeast, where kinesin motors
move processively to the microtubule tips where they
catalyze disassembly. Longer microtubules recruit more
kinesin motors from the cytoplasm, which results in
a length-dependent rate of disassembly. When this is
combined with a length-independent rate of assembly,
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a unique steady-state microtubule length is obtained
(12–17). A related mechanism involves the modulation
of microtubular dynamic instabilities, that is, the catas-
trophe frequency (18,19).

The problem of length control is particularly acute for the
axons of neurons, which exhibit the most significant size
differences of any cell type, ranging from several microns
to a meter in humans. It is likely that different growth mech-
anisms operate at different stages of development (20). For
example, the initial growth of an axon is determined by pre-
programmed transcription factor levels (quantal synthesis)
(21), whereas the interstitial growth rates of axons that
have connected to their targets is driven by stretching of
the organism (22). A major question is whether or not there
is an intrinsic length sensor that can coordinate between the
transcriptional and metabolic processes controlled by the
nucleus and the differential axonal growth and length main-
tenance. In vitro experimental studies of axonal growth in a
variety of neuronal types support the existence of intrinsic
length sensors (23–26), but the underlying mechanisms
are still largely unknown. Given the lengths involved, it is
unlikely that a diffusion-based mechanism or a molecular
ruler such as a microtubule can be involved.

Recently, Rishal et al (27,28) have proposed a bidirec-
tional motor transport mechanism for cellular-length
sensing in axons, which would form the front end of a length
control mechanism that is distinct from those described in
the above list. A schematic illustration of the motor-based
model is shown in Fig. 1. An anterograde signal is trans-
ported by kinesin motors from the cell body to the tip of
the growing axon, where it activates the dynein-mediated
transport of a retrograde signal back to the cell body. The
retrograde signal then represses the anterograde signal via
negative feedback, resulting in an oscillating retrograde sig-
nal whose frequency decreases with axon length. If axonal
soma

anterograde signal

retrograde signal

growth
cone

FIGURE 1 Schematic diagram of the bidirectional motor-transport

mechanism for axonal length sensing hypothesized by Rishal et al. (27).

A kinesin-based anterograde signal activates a dynein-based retrograde

signal that itself represses the anterograde signal via negative feedback.

The frequency of the resulting oscillatory retrograde signal decreases

with axonal growth.
growth rates are correlated with this frequency, then spatial
information regarding the length of the axon can be commu-
nicated to the cell body, where the frequency-dependent
activation of transcription factors (29) could regulate axonal
growth. One major prediction of the model based upon
computer simulations is that reducing either anterograde
or retrograde signals (by the partial knockdown of kinesin
or dynein motor activity) should increase axonal length.
This prediction has been confirmed experimentally in pe-
ripheral sensory neurons (27). We note that a previous
model presented by Kam et al. (26) is inconsistent with
the experimental data. The earlier model assumes that the
unidirectional transport of a retrograde signal by dynein
motors maintains axonal growth until the signal at the cell
body becomes too weak due to a constant rate of signal
loss en route. In this case, the partial knockdown of motor
activity would lead to shorter axons.

In this article, we develop a mathematical model of the
biophysical mechanism proposed by Rishal et al. (27) to
carry out a more systematic investigation of the dynamical
process that generates oscillations, and how the oscillation
frequency depends on various biophysical parameters.
We first consider a simple delay-differential equation with
negative feedback that models the chemical signals at the
somatic and distal ends of the axon. The molecular motors
are not modeled explicitly; rather, their active transport is
assumed to introduce a discrete delay that varies linearly
with axonal length. We show how oscillations arise at a
critical axonal length via a Hopf bifurcation, and we obtain
a length-dependent frequency consistent with the previous
computational model. We then construct a system of advec-
tion-diffusion equations that couple the chemical signaling
with the active transport of kinesin and dynein motors.
Each advection-diffusion equation is an effective mean-field
equation for the transport of a population ofmotors of a given
type, which randomly switch between a motile state (bound
to a microtubule) and a diffusive state (unbound). We show
how this model supports a similar length-dependent fre-
quency to the delayed-feedback model. We also show how
knockdown of either motor type increases the frequency,
thus leading to longer axons, as found experimentally. One
prediction of our model is that the critical axonal length at
which oscillations first occur increases with diffusivity
D, but the frequency of oscillations beyond criticality is rela-
tively insensitive to D. Although the diffusion term partially
captures the stochastic nature of motor transport, there are
additional levels of stochasticity that are not captured by
themean-fieldmodel. By carrying out numerical simulations
of 1) the computational model of Rishal et al. (27) and 2)
a stochastic version of our advection-diffusion model,
we show that there are fluctuations in the frequency of
the oscillatory signal whose coefficient of variation (standard
deviation/mean) increases monotonically with length. This
suggests that the proposed mechanism for axonal length
sensing could break down for long axons.
Biophysical Journal 108(9) 2408–2419
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Model formulation

Delayed-feedback model

Consider an axon of length L with x ¼ 0 corresponding to
the proximal end (adjacent to the cell body or soma) and
x ¼ L corresponding to the distal end (axonal tip). In this
article, we ignore the dynamics of L by exploiting the fact
that axonal growth occurs much more slowly than the time-
scales of motor transport. Under this adiabatic approxima-
tion, we can treat L as fixed and investigate the occurrence
of oscillations in chemical signaling for fixed length. This
is then used to determine how the frequency of oscillations
varies as a function of length. Let uE(t) denote the antero-
grade chemical signal at x¼ L at time t, which is transported
by kinesin motors from the proximal end at x ¼ 0. In a
similar way, let uI(t) denote the retrograde signal at x ¼
0 at time t, which is transported by dynein motors from
the distal end, x ¼ L. For the moment, we will assume the
simplest possible model of active transport, in which both
types of motor travel at a constant speed, v, along the
axon (via binding to polarized microtubules). This means
that for given length L, there is delay, t ¼ L/v, between
the production of a signal at one end and its arrival at the
opposite end. This motivates the following delayed-feed-
back model (see Fig. 2):

duE
dt

¼ I0 � guE �WI f ðuIðt � tÞÞ; (1a)

duI ¼ �guI þWE f ðuEðt � tÞÞ; (1b)

dt

where g is a decay rate. For simplicity, we take the decay

rate to be the same for both chemical signals. The weights
WE and WI determine the strength of the positive and nega-
tive feedback terms based on some form of Michaelis-
Menten kinetics, so that f is given by the Hill function

f ðuÞ ¼ un

Kn þ un
(2)

for dissociation constant K and Hill coefficient n. We take

n ¼ 4 and fix the scale of the weights WE and WI and the
input I0 by setting K ¼ 2. The constant input, I0, determines
the rate at which kinesin packets are released at x ¼ 0 in the
UE

x = 0 x = L

UIaxon

anterograde signal

WE

retrograde signal

WI

I0

FIGURE 2 Schematic diagram of the feedback model. See text for

details.
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absence of negative feedback (WI ¼ 0).To match with the
results of Rishal et al. (27), we take g�1 ¼ 100 s. Since
kinesin and dynein motor velocities, v, are of order 1 mm/s,
it follows that tg ¼ 1 corresponds to an axonal length of
100 mm. In the following, we fix the units of time by setting
g ¼ 1.

Linear stability analysis

To relate our model to the length-sensing mechanism
hypothesized by Rishal et al. (27), we look for a periodic
solution of the coupled system given by Eq. 1 and determine
how the effective frequency, u, of the solution (if it exists)
depends on the delay, t, and thus on the axonal length,
L. First, setting time derivatives to zero in Eq. 1 yields the
steady-state solutions u�E and u�I :

u�E ¼ I0 �WI f
�
u�I
�
; u�I ¼ WE f

�
u�E
�
: (3)

Linearizing Eq. 1 about the steady state yields the linear

system

_yE ¼ �yE � aIyIðt � tÞ (4a)

_yI ¼ �yI þ aEyEðt � tÞ; (4b)
where, for P ¼ E,I, yPðtÞhuPðtÞ � u�P, _yPhdyP=dt, and
aPhWPf

0ðu�PÞ. This has the solution yP(t) ¼ eltYP, with l

determined from the eigenvalue equation set

ðlþ 1ÞeltYE ¼ �aIYIe
lðt�tÞ (5a)

ðlþ 1ÞeltYI ¼ aEYEe
lðt�tÞ: (5b)
In accordance with standard analysis of delay differential
equations, we determine the necessary conditions for the
emergence of a time-periodic solution via a Hopf bifurca-
tion, setting l ¼ iu and YP ¼ UP þ iVP in Eqs. 5a and 5b.
Equating real and imaginary parts in the resulting system
yields a matrix equation A(UE,VE,UI,VI)

u ¼ 0 with

A ¼

0
BB@

1 �u aIcosðutÞ aIsinðutÞ
u 1 �aIsinðutÞ aIcosðutÞ

�aEcosðutÞ �aEsinðutÞ 1 �u

aEsinðutÞ �aEcosðutÞ u 1

1
CCA

For (UE,VE,UI,VI)
u to be nontrivial, we require the matrix A
to have a zero determinant. It turns out that this holds ifUI¼
VE ¼ 0 and VI ¼ 5

ffiffiffiffiffiffiffiffiffiffiffiffi
aE=aI

p
UE. We thus obtain the

following conditions for a Hopf bifurcation:

u ¼ cotðutÞ; ffiffiffiffiffiffiffiffiffiffi
aEaI

p
sinðutÞ ¼ 1: (6)

It is clear that these conditions cannot be satisfied in the
absence of a delay (t ¼ 0). Indeed, setting t ¼ 0 in Eqs.
5a and 5b shows that there exists a pair of eigenvalues given
by l5 ¼ �15

ffiffiffiffiffiffiffiffiffiffiffiffiffi�aIaE
p

. Since the real part of l5 is always
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FIGURE 4 (a) Plot of critical delay tc as a function of the effective

coupling parameter
ffiffiffiffiffiffiffiffiffiffi
aEaI

p
. Both are in units of 100 s. (b) Frequency of

periodic solutions plotted against axonal delay. Parameter values are as in

Fig. 3.
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negative, it follows that the steady-state ðu�E; u�I Þ is stable,
and periodic solutions cannot exist in the absence of a delay.
On the other hand, if

ffiffiffiffiffiffiffiffiffiffi
aEaI

p
>1, then a pair of complex con-

jugate eigenvalues crosses the imaginary axis at a critical
positive delay, tc, which depends on

ffiffiffiffiffiffiffiffiffiffi
aEaI

p
(see Fig. 4 a).

Although this is not sufficient to guarantee the emergence
of a stable periodic solution via a supercritical Hopf bifurca-
tion for t > tc, the existence of stable oscillations beyond
the Hopf bifurcation point can be verified numerically as
illustrated in Fig. 3. Moreover, the frequency of the oscilla-
tion decreases monotonically with t such that there is an
approximately fivefold decrease in frequency when axonal
length reaches ~ 1000 mm (see Fig. 4 b). This is in agree-
ment with the computational model of Rishal et al. (27).

The Hopf bifurcation condition given by Eq. 6 can only
be satisfied if

ffiffiffiffiffiffiffiffiffiffi
aEaI

p
>1. Since aPhWPf

0ðu�PÞ, it follows
that the strengths, WP, of the chemical signals carried by ki-
nesin and dynein, respectively, must be sufficiently strong
and/or the Hill function must be sufficiently steep. The latter
suggests that oscillations are facilitated if the interactions
between the chemical signals and the opposing molecular
motors are cooperative in nature, as determined by the value
of the Hill coefficient n in Eq. 2. In conclusion, our simple
mathematical model makes explicit the crucial role of
negative feedback in the proposed frequency-encoding
mechanism for axonal length sensing, and it provides an
analytical framework for studying such a mechanism. How-
ever, as it stands, the model is too phenomenological. In
particular, it does not explicitly take into account the motion
of the molecular motors. To incorporate the latter, we now
consider a spatially extended version of our model that takes
the form of an advection-diffusion equation.
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FIGURE 3 Chemical signal oscillations in the delayed-feedback model

given by Eq. 1 for various values of the delay (in units of 100 s): t¼ 0.2 (a);

t¼ 0.29 (b); t¼ 0.75 (c); and t¼ 1.5 (d). Other parameter values are n¼ 4,

I0 ¼ 6, WE ¼ WI ¼ 5.5 such that tc z 0.25.
Advection-diffusion model

Let c5 (x,t) denote the density of kinesin (þ) and dynein
(�) motors at position x along the track. A simple model
of active motor transport is to assume that the motor den-
sities evolve according to an advection-diffusion equation
(30–32):

vcþ
vt

¼ �v
vcþ
vx

þ D
v2cþ
vx2

(7a)

vc� ¼ v
vc� þ D

v2c�
: (7b)
vt vx vx2

These are supplemented by the following boundary condi-
tions at the ends, x ¼ 0,L:
DvxcþðL; tÞ ¼ 0; Dvxc�ð0; tÞ ¼ 0 (8)

and
Jþð0; tÞ ¼ JEðtÞ; J�ðL; tÞ ¼ JIðtÞ; (9)

where we have introduced the fluxes
J5 ðx; tÞ ¼ 5 vc5 ðx; tÞ � D
vc5

vx
: (10)

The boundary conditions given by Eq. 8 impose the condi-
tion that the Fickian contribution to the flux of motors exit-

ing the axon is zero. We are also assuming that at end x¼ 0,
kinesin motors are injected in the anterograde direction at a
rate JE(t), whereas at end x ¼ L, dynein motors are injected
at a rate JI(t) in the retrograde direction. For simplicity, we
take the mean speed and diffusivity of both motor species to
be the same. Although dynein motors tend to move more
slowly than kinesin motors, they are of the same order of
magnitude. Moreover, we obtain similar results if the differ-
ences between the motors are taken into account.

Suppose that each kinesin motor complex carries an
amount kE of excitatory chemical signaling molecules, XE,
and each dynein motor carries an amount kI of inhibitory
chemical signaling molecules, XI. When kinesin motors
reach x ¼ L they release the molecules XE, which then
enhance the injection rate of mobile dynein motors, whereas
Biophysical Journal 108(9) 2408–2419
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when dynein motors reach x¼ 0, they release the molecules
XI, which then reduce the injection rate of mobile kinesin
motors. We thus take

JEðtÞ ¼ vðIE � wI f ½uIðtÞ�Þ (11a)

JIðtÞ ¼ �vwE f ½uEðtÞ�; (11b)
where uE(t) is the concentration of XE at x ¼ L, uI(t) is the

concentration of XI at x¼ 0, and IE is the flux of kinesin mo-
tors injected at the proximal end. The latter evolve accord-
ing to the pair of equations

duE
dt

¼ �guE þ kEcþðL; tÞ (12a)

duI ¼ �guI þ kIc�ð0; tÞ: (12b)

dt

In the case of pure ballistic motor transport at a fixed
speed, v, and D ¼ 0, the above model reduces to our
delayed-feedback model. First, note that the solutions to
Eqs. 7a and 7b have the simple form

cþðx; tÞ ¼ Fþðt � x=vÞ; c�ðx; tÞ ¼ F�ðt þ x=vÞ; (13)

with functions Fþ and F� determined by the boundary con-
ditions in Eq. 9—the boundary conditions in Eq. 8 are not
needed for these quasilinear differential equations. Thus,

FþðtÞ ¼ IE � wIf ½uIðtÞ�; F�ðt þ L=vÞ ¼ wEf ½uEðtÞ�:
(14)

Substituting this into Eqs. 12a and 12b, we recover our pre-

vious model given by Eq. 1 with I0 ¼ kEIE, and Wp ¼ kpwp

for P ¼ E,I. The spatially extended model can be analyzed
along similar lines to the simpler model using Green’s func-
tions (see Materials and Methods), and it also supports
chemical oscillations with a length-dependent frequency
(see Results).
MATERIALS AND METHODS

Analysis in terms of Green’s functions

In the case where the diffusion coefficient is nonzero, the solution to Eqs. 7a

and 7b subject to the boundary conditions of Eqs. 8 and 9 is given by:

cþðx; tÞ ¼
Z L

0

Gþðx; 0; x; tÞjþðxÞdxþ v

Z t

0

Gþð0; s; x; tÞ

� ½IE � wI f ðuIðsÞÞ�ds
(15)

and
Biophysical Journal 108(9) 2408–2419
c�ðx; tÞ ¼
Z L

0

G�ðx; 0; x; tÞj�ðxÞdxþ v

�
Z t

0

G�ðL; s; x; tÞwE f ðuEðsÞÞds; (16)

where jþ and j� are the initial conditions for c5 and G5 are the Green’s

functions for the respective advection-diffusion operators (see appendix):

Gþðx; s; x; tÞ ¼
XN
n¼ 1

e

�
�
�
Dlnþv2

4D

�
ðt�sÞ

�
e

�
� v

2D ðx�xÞ
�

�
�
sin

� ffiffiffiffiffi
ln

p
x
�
þ 2D

ffiffiffiffiffi
ln

p
v

cos
� ffiffiffiffiffiffiffi

lnx
p ��

�
�
sin

� ffiffiffiffiffi
ln

p
x
�
þ 2D

ffiffiffiffiffi
ln

p
v

cos
� ffiffiffiffiffiffiffi

lnx
p ��

(17a)

XN �
�
Dl þv2

�
ðt�sÞ v
G�ðx; s; x; tÞ ¼
n¼ 1

e
n 4D

e
2D ðx�xÞ

�
�
sin

� ffiffiffiffiffi
ln

p
x
�
þ 2D

ffiffiffiffiffi
ln

p
v

cos
� ffiffiffiffiffiffiffi

lnx
p ��

�
�
sin

� ffiffiffiffiffi
ln

p
x
�
þ 2D

ffiffiffiffiffi
ln

p
v

cos
� ffiffiffiffiffiffiffi

lnx
p ��

;

(17b)

where ln is an eigenvalue of the advection-diffusion operator satisfying

4Dv
ffiffiffiffiffi
ln

p
cotð ffiffiffiffiffi

ln
p

LÞ ¼ 4D2ln � v2. Substituting Eqs. 15 and 16 into Eqs.
12a and 12b, respectively, yields

duE
dt

¼ �uE þ vkE

�Z t

�N

Gþð0; s; L; tÞðIE � wI f ½uIðsÞ�Þds
�

(18a)

and
duI
dt

¼ �uI þ vkI

�Z t

�N

G�ðL; s; 0; tÞwE f ½uEðsÞ�ds
�
:

(18b)

We have taken the lower time limit to be t ¼ �N to eliminate the transient

terms.
Equation 18a and 18b have the steady-state solution

u�E ¼ vkEGþðLÞ
�
IE � wI f

	
u�I

�

(19a)

u�I ¼ vkIG�ðLÞwE f
	
u�E


; (19b)
with Z

GþðLÞ ¼

N

�N

Gþð0; 0; L; tÞdt;

G�ðLÞ ¼
Z N

�N

G�ðL; 0; 0; tÞdt:

Linearizing Eqs. 18a and 18b about the steady states gives
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_yE ¼ �yE � vaI

Z t

�N

Gþð0; s; L; tÞyIds (20a)

_y ¼ �y þ va

Z t

G ðL;s; 0; tÞy ds: (20b)
I I E
�N

� E

Introducing the causal Green’s function G5ðtÞ ¼ G5ðtÞHðtÞ, where H(t) is
the Heaviside function, we can take the upper time limit in the convolution

integrals to be t ¼ N. Fourier transforming the resulting linearized system

using the convolution theorem then yields

ðiuþ 1ÞYE ¼ �vaI
bGþðuÞYI (21a)

ðiuþ 1ÞYI ¼ vaE
bG�ðuÞYE; (21b)
where

bG5 ðuÞ ¼
Z N

�N

G5 ðtÞe�iutdt; YPðuÞ

¼
Z N

�N

yPðtÞe�iutdt:

Equations 21a and 21b are identical in form to Eqs. 5a and 5b for l ¼ iu

under the replacement e�iut/vbGþðuÞ. Thus, we can derive conditions

for the occurrence of a Hopf bifurcation much as they are derived in the

delay differential equation model. That is, we take u to be real and set

YP ¼ UP þ iVP for P ¼ E,I:

ðiuþ 1ÞðUE þ iVEÞ ¼ �vaIðUI þ iVIÞbGþðuÞ (22a)

ðiuþ 1ÞðU þ iV Þ ¼ va ðU þ iV ÞbG ðuÞ; (22b)
I I E E E �

with

bGþðuÞ ¼
XN
n¼ 0

1

iuþ Dln þ v2

4D

e

��
Dlnþv2

4D

�
s

�
e

�
� v

2D ðx�xÞ
�

�
�
sin

� ffiffiffiffiffi
ln

p
x
�
þ 2D

ffiffiffiffiffi
ln

p
v

cos
� ffiffiffiffiffi

ln
p

x
��

�
�
sin

� ffiffiffiffiffi
ln

p
x
�
þ 2D

ffiffiffiffiffi
ln

p
v

cos
� ffiffiffiffiffi

ln
p

x
��

(23a)

N
��

Dl þv2
�
s

�

bGþðuÞ ¼

X
n¼ 0

1

iuþ Dln þ v2

4D

e
n 4D

e
v
2D ðx�xÞ

�
�
sin

� ffiffiffiffiffi
ln

p
x
�
þ 2D

ffiffiffiffiffi
ln

p
v

cos
� ffiffiffiffiffi

ln
p

x
��

�
�
sin

� ffiffiffiffiffi
ln

p
x
�
þ 2D

ffiffiffiffiffi
ln

p
v

cos
� ffiffiffiffiffi

ln
p

x
��

:

(23b)

We then equate real and imaginary parts and solve the resulting 4� 4 matrix

equation for the vector (UE,VE,UI,VI)
T.
Numerical methods and parameter values

We simulated the advection-diffusion model given by Eq. 7 using a back-

ward Euler time discretization. We used an upwind scheme for the spatial

discretization associated with the advection term and a central difference

scheme for the spatial discretization of the diffusion term. Let Un
j be the nu-

merical approximation to the true solution of cþ in Eq. 7 at the jth spatial

lattice point and the nth time step, let Vn
j be the numerical approximation

to the true solution of c� in Eq. 7 at the jth spatial lattice point and the

nth time step, let k be the time step, and let h be the spatial step. Then,

the finite difference scheme used was

Unþ1
j � Un

j

k
¼ �v

Unþ1
j � Unþ1

j�1

h
þ D

Unþ1
jþ1 � 2Unþ1

j þ Unþ1
j�1

h2

(24a)

Vnþ1 � Vn Vnþ1 � Vnþ1 Vnþ1 � 2Vnþ1 þ Vnþ1

j j

k
¼ v

jþ1 j

h
þ D

jþ1 j j�1

h2
;

(24b)

where v and D are the motor velocities and diffusion coefficients, respec-

tively. For Eqs. 18a and 18b, we used an explicit scheme. To account for

the Neumann and Robin boundary conditions, which are given by Eqs. 8

and 9, respectively, we used ghost points. That is, if there are N spatial

lattice points with Nh ¼ L, we introduced points at the lattice point N þ
1 and �1 to account for the boundary conditions:

Un
Nþ1 � Un

N�1

2h
¼ 0;

Vn
1 � Vn

�1

2h
¼ 0

vUn
0 � D

U1 � U�1

2h
¼ vðIE � wI f ½uIðtÞ�Þ

�vVn
N � D

Vn
Nþ1 � Vn

N�1

2h
¼ �vwE f ½uEðtÞ�:

We solve for the ghost lattice points in the schemes for the boundary con-

ditions and substitute them into Eqs. 24a and 24b.

The motor velocity, v, was chosen to be 1 mm/s based on generally known

distributions of velocities for kinesin and dynein motors. Other parameters

were chosen for suitable computation of Eq. 7. The one thing we made sure

of was to keep IE > wI to allow for the continued propagation of the solu-

tions to Eq. 7. This corresponds to ensuring that the background flux of

kinesin motors at the proximal end is sufficient to overcome the suppressive

effects of the retrograde signal from the dynein motors. Choosing wI > IE
causes an abrupt end to the solutions and is not realistic for our biological

mechanism to function. Unless otherwise noted, parameter values were

taken as follows: I0 ¼ 10, wE ¼ wI ¼ 9, gE ¼ gI ¼ 1, kE ¼ kI ¼ 1, v ¼
1 mm s�1, D ¼ 0.1 mm2 s�1, L ¼ 100 mm, h ¼ 0.1 mm, k ¼ 1 s.
RESULTS

As shown in Materials and Methods, the advection-diffusion
model is structurally similar to the simple delayed-feedback
model, except that the discrete delay t¼ L/v is replaced by a
distribution of delays given by a corresponding Green’s
function that depends on the axonal length, L. This suggests
that the advection-diffusion model will also exhibit oscilla-
tions beyond a critical length, Lc, whose frequency de-
creases monotonically beyond Lc. This is indeed found to
be the case, as illustrated in Fig. 5. In contrast to the
Biophysical Journal 108(9) 2408–2419
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FIGURE 5 Chemical signal oscillations in the advection-diffusion model

described by Eq. 7 for various axonal lengths: L¼ 100 mm (a); L¼ 500 mm

(b); L¼ 1000 mm (c); and L¼ 2000 mm (d). Other parameter values are I0¼
10, wE ¼ wI ¼ 9, g ¼ 1, kE ¼ kI ¼ 1, v ¼ 1 mm s�1, and D ¼ 0.1 mm2 s�1.
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previous model, we can now also keep track of the density
profile of the kinesin and dynein motors during a single cy-
cle of the chemical oscillations. The variation in the density
profiles at different points in the cycle are shown in Fig. 6.
Fig. 6 a shows a growing distribution of kinesin motors due
to injection at the proximal end and negligible dynein.
Subsequent excitation of the dynein motors by the chemical
signal transported by the kinesin motors results in a growing
dynein distribution (Fig. 6 b). This leads to inhibition of the
a b

c d

FIGURE 6 Spatial profiles for kinesin and dynein motors at different

times during one cycle of period T ¼ 2p/u after transients have disap-

peared. (a) t ¼ 0. (b) t ¼ T/4. (c) t ¼ T/2. (d) t ¼ 3T/4. The initial condition

for the kinesin motors is a hyperbolic secant function, whereas the initial

condition for the dynein motors is zero. Here, L¼ 100 mm and other param-

eters are as in Fig. 5.
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kinesin motors (Fig. 6 c). The reduction in the kinesin motor
density causes the density of dynein motors to diminish
throughout the axon, which then allows the kinesin density
to grow again (Fig. 6 d).

One immediate issue that arises is how the emergence of
oscillations and the length-dependent frequency depend on
the diffusivity D. We find that for sufficiently long axons,
the frequency u is approximately independent of D.
On the other hand, the critical length, Lc, for the emergence
of oscillations does depend onD. This is illustrated in Fig. 7,
which shows the variation in frequency as a function of
length for different diffusivities. In each case, the frequency
is a monotonically decreasing function of L, consistent with
the delayed-feedback model. Increasing diffusion coeffi-
cient D also increases Lc so that it can result in the disap-
pearance of the oscillations, as shown in Fig. 8.
Knockdown of molecular motor activity

One of the key predictions of the mechanism proposed by
Rishal et al. (27) is that when the number of motors in a
given axon are inhibited or knocked down, the axon’s length
should grow due to a resulting increase in the frequency of
the retrograde signal. We can model the partial knockdown
of kinesin motors in an axon by decreasing the background
rate of kinesin flux I0. In a similar way, we can model dynein
knockdown by decreasing wE, the strength of the kinesin-
mediated excitation of dynein activity at the distal end.
In both cases, we find that the required axon length for
the normalized frequency to decay to a particular value is
greater than when kinesin or dynein motors are knocked
down to a lesser extent (see Fig. 9).
Effects of noise

Modeling active motor transport in terms of an advection-
diffusion equation is a mean-field treatment of the underly-
ing stochastic transport mechanism, in which motors
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randomly switch between a motile state (bound to a micro-
tubule) and a stationary or slowly diffusing state (unbound
to a microtubule). Although the advection-diffusion equa-
tion partially captures the stochastic nature of motor trans-
port at the population level, there are additional sources
of stochasticity not taken into account by the mean-field
model. First, the stochastic transport of an individual molec-
ular motor is more accurately described by a differential
Chapman-Kolmogorov equation, which determines the
probability density that the motor is at a particular location
and in a particular internal state (mobile or stationary) at
time t (32). If the transition rates between the internal states
are sufficiently fast compared to the hopping rate of motors
along the filament, then a quasi-steady-state reduction of the
Chapman-Kolmogorov equation to a Fokker-Planck equa-
tion can be carried out (33). Furthermore, if the number of
motors is sufficiently large, and they move independently
(i.e., no exclusion effects), then the concentration of motors
can be represented by an advection-diffusion equation,
which is obtained by multiplying the Fokker-Planck equa-
tion by the number of motors. It follows that additional sto-
chastic effects arise in the case of a finite number of motors
and slow transition rates. Yet another possible source of
noise is the random loss of chemical signals carried by the
motors, or the failure of a motor to rebind to the track; these
a b

FIGURE 9 Variation in frequency as a function of length for decreasing

flux d h I0 � wI (a) (representing knockdown of kinesin) and decreasing

excitatory coupling, wE (b) (representing knockdown of dynein). Other

parameters are the same as Fig. 5.
would also lead to additional decay terms in the mean-field
model.

The presence of various sources of noise suggests that the
encoding of axonal length in terms of the frequency of
a retrograde chemical signal could break down for long
axons due to the accumulation of fluctuations. We will
demonstrate this by presenting results of simulations of
1) a slightly modified version of the computational model
of Rishal et al. (27) and 2) a stochastic version of our
advection-diffusion model. The former explicitly takes
into account finite-size effects by tracking the motion of
individual motors. However, rather than explicitly modeling
the stochastic stop-and-go motion of molecular motors,
Rishal et al. (27) assume that each motor undergoes ballistic
motion with a constant velocity that is generated from an
experimentally determined velocity distribution, one for
kinesin and the other for dynein. We implemented the
computational model from that study using the same veloc-
ity distributions, but with a modified scheme for injecting
motors at each end. That is, rather than injecting motors
as packets of fixed size, we injected individual motors at
an instantaneous rate given by JE(t) and JI(t), respectively
(see Eqs. 11a and 11b). The background flux of kinesin
motors at x ¼ 0, JE, was taken to be 100 motors/min, each
motor was assumed to carry one unit of chemical signal,
and it was assumed that wE ¼ wI ¼ 9. The results of
computer simulations are shown in Fig. 10 averaged over
100 trials (see below). The mean oscillation frequency de-
creases monotonically with axonal length L, as in our advec-
tion-diffusion model, but the relative size of fluctuations
increases with L. This is established by plotting the coeffi-
cient of variation (CV), which is the standard deviation
over the mean, as a function of length L. It can be seen
that axons of length L ¼ 1000 mm have CV z 0.12, indi-
cating nontrivial noise levels.

It is important to note that our advection-diffusion model
is not a mean-field version of the above computational
model but is based on a more realistic model of the stop-
and-go transport of molecular motors. (The random switch-
ing between motile and nonmotile states would generate
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the velocity distributions used in the Rishal et al. model.)
Inclusion of finite-size effects is expected to generate
some form of multiplicative noise terms in the underlying
advection-diffusion model. We hope to explore this issue
in more detail elsewhere. Here, we take a more brute-force
approach by adding a constant white-noise term to the right-
hand side of Eqs. 7a and 7b:

vcþ
vt

¼ �v
vcþ
vx

þ D
v2cþ
vx2

þ mxþðx; tÞ (25a)

vc� ¼ v
vc� þ D

v2c� þ mx ðx; tÞ; (25b)

vt vx vx2 �

with m the noise strength, hx5ðx; tÞi ¼ 0, and

hx5 ðx; tÞx5 ðx0; t0Þi ¼ dðt � t0Þdðx � x0Þ;
hx5 ðx; tÞxHðx0; t0Þi ¼ 0:

The boundary conditions for this model are the same as in
the deterministic advection-diffusion model. It is important
to note that the above stochastic advection-diffusion model
does not exactly conserve the number of molecular motors.
However, conservation is approximately satisfied, sinceR L
0
x5ðx; tÞdxz0. The units of m are 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
length� time

p
.

We find that the variance in the frequency of oscillations
is approximately independent of length—the variance for
different values of the noise strength, m, are plotted in
Fig. 11 a. Since the mean frequency is a monotonically
decreasing function of length, it follows that the relative
size of frequency fluctuations increases with length. This
is illustrated in Fig. 11 b, where we plot the CVas a function
of length for m ¼ 1. As in the computational model, the size
of fluctuations increases monotonically with axonal length.
Note that for m ¼ 1, the CV for L ¼ 1000 mm is about 10
times larger than that obtained in the computational model
(see Fig. 10 b). The two different models yield compara-
ble-sized fluctuations for m ¼ 0.1. Irrespective of this,
a major prediction of both stochastic models is that the
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variance in the frequency of oscillations grows with axonal
length, indicating a significant degradation in the reliability
of frequency coding as a length-sensing mechanism for
very long axons.

Note that we use a heuristic method for measuring the
size of frequency fluctuations in Figs. 10 and 11. That is,
we consider N trials for a fixed axonal length, and for
each run we look at the power spectrum of the retrograde
signal. The frequency is assumed to be encoded by the
peak of the power spectrum for u > 0. The mean and vari-
ance of the set of peak frequencies across the N trials are
then calculated for each axonal length. One limitation of
this method is that identification of the peak of the spectrum
is difficult at large axonal lengths. Nevertheless, a high CV
is consistent with a broad power spectrum, as illustrated
in Fig. 12 in the case of the stochastic advection-diffusion
equation. For short axons (L ¼ 100 mm), the spectrum is
characterized by a sharp peak around the mean frequency
of oscillations. On the other hand, the spectrum is much
broader for long axons (L ¼ 1000 mm), so that it is difficult
to extract the mean frequency. Of course, the lengthscale at
which noise becomes significant will depend on the value of
the noise strength, m. However, the general trend is clear:
any stochasticity in the motion of the molecular motors
will lead to the accumulation of errors in the length-sensing
mechanism as the length of the axon increases.
DISCUSSION

In this article, we developed a mathematical model for
axonal length sensing based on a biophysical mechanism
recently proposed by Rishal et al. (27). We showed that
the underlying dynamical mechanism involves delayed
negative feedback due to the finite propagation speeds of
molecular motors. This can be incorporated into the kinetic
equations for retrograde chemical signaling using a discrete
delay, t ¼ L/v, or by convolving the chemical signals with
the Green’s function of an advection-diffusion equation
for motor transport. Both versions of the model support
chemical oscillations that emerge via a Hopf bifurcation,
resulting in a frequency that is inversely related to the
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axonal length. Furthermore, the advection-diffusion version
of the model suggests that knockdown of either kinesin or
dynein motors results in a longer axon (see Fig. 9). These
results are consistent with the experimental and computa-
tional studies carried out by Rishal et al. (27). The advantage
of our mathematical model is that it provides a compact
dynamical framework for understanding the origin of the
oscillations and exploring how the length-sensing mecha-
nism depends on various biophysical parameters.

One prediction of our model is that the effective diffu-
sivity, D, of motor transport only has a weak effect on the
retrograde signal frequency’s dependence on axonal length.
That is, increasing D increases the critical length, Lc, for
the onset of oscillations in the retrograde signal, but once
oscillations have formed, the frequency is approximately
D-independent. A second prediction is that fluctuations in
the transport of molecular motors result in a reduction in
the reliability of the frequency-encoding mechanism as the
length increases (see Fig. 11). This could have significant
implications for the viability of such a mechanism within
the context of axonal injury, where accurate information
regarding the location of the injury is needed to target regen-
eration at the correct location (26).

There are a number of issues that we hope to explore in
future work. First, it would be interesting to derive an
effective stochastic advection-diffusion equation with multi-
plicative noise, starting from a full stochastic model of stop-
and-go motor transport. Such a model would need to keep
track of the total number of kinesin and dynein motors. In
our simplifiedmodel, we assumed a sufficient supply of kine-
sin motors at the proximal end and of dynein motors at the
distal end. Themodel was self-regulating due to the feedback
signals. Another crucial issue is how the oscillatory retro-
grade signal could be decoded at the cell body to control
axonal length. One possibility is that the oscillation drives
a regulatory gene network (29). Interestingly, it has been
shown that such networks are more robust in the face of a
noisy environment when frequency-modulated rather than
amplitude-modulated (34). The effects of extrinsic noise
due to the stochastic nature of motor transport and intrinsic
noise within a gene network can be investigated by using
our mathematical model for generating chemical oscillations
as the front end of a frequency-modulated gene network.
APPENDIX: DERIVATION OF THE GREEN’S
FUNCTIONS

In this appendix, we derive the explicit formulae of Eqs. 17a and 17b for the

Green’s functions, G�ðx;s; x; tÞ, of the advection-diffusion model. For

concreteness, we will focus on the Green’s functionGþ, since the derivation
of G� is very similar. The Green’s function Gþ is defined according to the

equation

�vGþ
vs

� v
vGþ
vx

� D
v2Gþ
vx2

¼ dðx � xÞdðt � sÞ;
where d(x) is the Dirac-Delta function, supplemented by the boundary

conditions

vGþðx; s; x; tÞ þ D
vGþðx; s; x; tÞ

vx
¼ 0; x ¼ 0; L:

Introducing the linear differential operator L acting on functions

u ¼ uðx; sÞ yields

Luh
vu

vs
þ v

vu

vx
� D

v2u

vx2
;

and we define the inner product as
hf ; gih
Z L

0

Z N

0

fgdtdx:

We can then rewrite the equation for G in the more compact form

LyGþðx; s; x; tÞ ¼ dðx � xÞdðt � sÞ; (26)

where Ly is the adjoint operator:
Lyuh� vu

vs
� v

vu

vx
� D

v2u

vx2
:

Using integration by parts and the boundary conditions on G and the

kinesin concentration, cþ, one can show that

hGþ; Lcþi ¼ �
cþ; L

yGþ
�� Z L

0

Gþðx; 0; x; tÞcþðx; 0Þdx

�
Z N

0

Gþð0; s; x; tÞvðIE � wIf ½uIðsÞ�Þds;

which reduces to Eq. 15, since hGþ;Lcþi ¼ 0, hcþ; LyGþi ¼ cþðx; tÞ, and
Gþ(0,s;x,t) ¼ 0 for s > t (causality).
It remains to solve the adjoint problem given by Eq. 26. Introduce the

change of variables, s ¼ t � s, and set Gþðx;s; x; tÞ ¼ Gðx; x;sÞ. We

then have

vG

vs
� v

vG

vx
� D

v2G

vx2
¼ dðx� xÞdðsÞ; (27)

with Gðx; x;sÞ ¼ 0 for s<0. Applying the Laplace transform to Eq. 27 with
~Gðx; x; sÞ ¼
Z N

0

e�stGðx; x; tÞdt;

we obtain
s~G� v~G
0 � D~G

00 ¼ dðx� xÞ

where the prime symbol denotes differentiation with respect to x for fixed

s,x. It is convenient to eliminate the first derivative term by setting
~Gðx; x; sÞ ¼ gðx; x; sÞfðxÞ for an appropriately chosen function f. Substitut-
ing into the equation for ~G gives

�Dfg00 � ðvfþ 2Df0Þg0 þ ðsf� vf0 � Df00Þg
¼ dðx� xÞ:
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Hence, imposing f0 ¼ � v
2Df0f ¼ e

�
� v

2D x

�
, we see that g satisfies the

self-adjoint (Sturm-Liouville) equation

g00 þ
�
� v2 þ 4Ds

4D2

�
g ¼ �1

D
e

�
v
2D x

�
dðx� xÞ (28)

We can then solve this equation in terms of the eigenfunctions zn and

eigenvalues ln of the second-order equation

z00n þ lnzn ¼ 0;

supplemented by the homogeneous boundary conditions
�v

2
znð0Þ þ D

dzn
dx

ð0Þ ¼ 0

v
z ðLÞ þ D

dzn ðLÞ ¼ 0:

2

n dx

The latter follow from the boundary condition for Gþ. Using the fact

that the eigenfunctions form a complete orthonormal set, we have the

expansions

dðx� xÞ ¼
XN
n¼ 1

znðxÞznðxÞ

and
gðx; x; sÞ ¼
XN
n¼ 1

anðx; sÞznðxÞ

Substituting these into Eq. 28, we can solve for an(x,s) to obtain

gðx; x; sÞ ¼
XN
n¼ 1

1

sþ Dln þ v2

4D

e

�
v
2D x

�
znðxÞznðxÞ:

Substituting g and f back into the formula for ~G, inverting the Laplace

transform, and reverting back to original time coordinates, we finally obtain

Gþðx; s; x; tÞ ¼
XN
n¼ 1

e

�
�
�
Dlnþv2

4D

�
ðt�sÞ

�
e

�
� v

2D ðx�xÞ
�
znðxÞznðxÞ:

(29)

Using standard methods to solve boundary value problems, we find that

zn ¼ sin
ffiffiffiffiffi
ln

p
x þ 2D

ffiffiffi
l

p

v
cos

� ffiffiffiffiffi
ln

p
x
�
;

where ln solves
4Dv
ffiffiffiffiffi
ln

p
cot

� ffiffiffiffiffi
ln

p
L
�

¼ 4D2ln � v2:

We thus obtain Eq. 17a.
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