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Abstract
We analyze a piecewise deterministic PDE consisting of the diffusion equation
on a finite interval Ω with randomly switching boundary conditions and dif-
fusion coefficient. We proceed by spatially discretizing the diffusion equation
using finite differences and constructing the Chapman–Kolmogorov (CK)
equation for the resulting finite-dimensional stochastic hybrid system. We
show how the CK equation can be used to generate a hierarchy of equations
for the r-th moments of the stochastic field, which take the form of
r-dimensional parabolic PDEs on Ωr that couple to lower order moments at
the boundaries. We explicitly solve the first and second order moment
equations (r = 2). We then describe how the r-th moment of the stochastic PDE
can be interpreted in terms of the splitting probability that r non-interacting
Brownian particles all exit at the same boundary; although the particles are
non-interacting, statistical correlations arise due to the fact that they all move
in the same randomly switching environment. Hence the stochastic diffusion
equation describes two levels of randomness: Brownian motion at the indi-
vidual particle level and a randomly switching environment. Finally, in the
limit of fast switching, we use a quasi-steady state approximation to reduce the
piecewise deterministic PDE to an SPDE with multiplicative Gaussian noise in
the bulk and a stochastically-driven boundary.
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1. Introduction

There are a growing number of problems in biology that involve the coupling between a
piecewise deterministic dynamical system in d and a time-homogeneous Markov chain on
some discrete space Γ, resulting in a stochastic hybrid system [1], also known as a piecewise
deterministic Markov process [2]. One simple example concerns the intermittent dynamics of
a molecular motor moving along a cytoskeletal filament, with the continuous variable
representing spatial position along the filament and the discrete variable denoting the motile
state of the motor [3–9]; the latter could determine whether the motor is moving to the left or
to the right, see figure 1(a). Another example is a macromolecule diffusing in some bounded
intracellular domain, which contains a narrow channel within the boundary of the domain.
One obtains a hybrid system if the channel is controlled by a stochastic gate that switches
between an open and closed state (see figure 1(b)) or if the molecule switches between
different conformational states, only some of which allow the molecule to pass through the
channel [10]. In contrast to the previous example, the continuous dynamics now evolve
according to a stochastic differential equation (SDE). A third important example is the
membrane voltage fluctuations of a single neuron due to the stochastic opening and closing of
ion channels [11–19], see figure 1(c). Here the discrete states of the ion channels evolve
according to a continuous-time Markov process with voltage-dependent transition rates and,

Figure 1. Examples of stochastic hybrid systems for ODEs. (a) Intermittent motion of a
molecular motor. (b) Stochastically-gated Brownian motion. (c) Neuron with voltage-
gated ion channels.
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in-between discrete jumps in the ion channel states, the membrane voltage evolves according
to a deterministic equation that depends on the current state of the ion channels. In the limit
that the number of ion channels goes to infinity, one can apply the law of large numbers and
recover classical Hodgkin–Huxley type equations. However, finite-size effects can result in
the noise-induced spontaneous firing of a neuron due to channel fluctuations. Stochastic
hybrid systems also arise in neural networks [21] and gene networks [22, 23].

In all of the above examples, one can describe the evolution of the system in terms of a
forward differential Chapman–Kolmogorov (CK) equation, which takes the form of a
deterministic partial differential equation for the indexed set of probability densities p x t( , )n

with Ω∈ ⊂ x d and Γ∈n . The CK equation is the starting point for various approximation
schemes. For example, in the case of sufficiently fast switching between the discrete states,
one can use a quasi-steady-state (QSS) approximation to reduce the CK equation to a Fokker–
Planck (FP) equation [3, 8, 24]. Furthermore, when considering escape problems that are
dominated by rare events (for which the diffusion approximation breaks down), one can use
WKB methods and matched asymptotics [13, 18, 19] or large deviation theory [20, 25, 26].

In this paper, we consider a higher level of stochastic hybrid system, in which the
piecewise deterministic dynamics itself evolves according to a partial differential equation.
For concreteness, we focus on the diffusion equation on a finite interval with randomly
switching boundary conditions. One can view it as a macroscopic model of many Brownian
particles that all diffuse in the same randomly switching environment, which is a one-
dimensional version of example (b) in figure 1. This type of piecewise deterministic PDE has
recently been analyzed by Lawley et al [27] using the theory of random iterative systems.
These authors assumed that the left-hand boundary is Dirichlet, and the right-hand boundary
switches randomly between inhomogeneous Dirichlet and either Neumann or Dirichlet. In
both cases they showed that the solution of the stochastic PDE converges in distribution to a
random variable whose expectation satisfies a deterministic system of PDEs whose solution is
a linear function of x. They also found that the gradient of the solution is a much more
complicated function of parameters in the case of the Dirichlet–Neumann switching problem.
Note that the switching boundary problem is distinct from stochastic PDEs driven by additive
space–time Gaussian noise [28–31], since the former tends to induce stronger correlations at
fine spatial scales.

We will address two important issues raised by the study of Lawley et al [27]. First, can
one derive deterministic PDEs for higher moments of the random field and how do they
couple to lower moments? Second, does the resulting hierarchy of deterministic PDEs
(assuming it exists) have an interpretation in terms of the dynamics of individual Brownian
particles? We will tackle both issues by developing an alternative approach to analyzing
piecewise deterministic PDEs, based on discretizing space and constructing the CK equation
for the resulting finite-dimensional stochastic hybrid system. We show how the CK equation
can be used to determine the dynamics of the expectation of the stochastic field, thus reco-
vering the results of Lawley et al [27] in a simpler fashion. This construction is then extended
to generate a hierarchy of equations for the r-th moments, which take the form of r-dimen-
sional parabolic PDEs on Ωr that couple to lower order moments at the boundaries. We
explicitly solve the second order moment equations (r = 2). Finally, we describe how the r-th
moment of the stochastic PDE can be interpreted in terms of the splitting probability that r
non-interacting Brownian particles all exit at the same boundary; although the particles are
non-interacting, statistical correlations arise due to the fact that they all move in the same
randomly switching environment. Hence the stochastic diffusion equation describes two
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levels of randomness: Brownian motion at the individual particle level and a randomly
switching environment.

The paper is organized as follows. In section 2, we briefly summarize some aspects of
piecewise deterministic ODEs. We then introduce our piecewise deterministic PDE in
section 3, and determine the CK equation for the corresponding ODE obtained using finite
differences. The moment equations for Dirichlet–Dirichlet and Dirichlet–Neumann switching
boundaries are constructed and analyzed in sections 4 and 5, respectively. The relationship
between the moment equations and single Brownian particle dynamics is established in
section 6. Finally, in section 7 we use formal perturbation methods to approximate the
piecewise deterministic PDE in the limit of fast switching by an SPDE with multiplicative
Gaussian noise in the bulk of the domain and a stochastically-driven boundary.

2. Piecewise deterministic ODE

Before proceeding to analyze a piecewise deterministic PDE, it is useful to recall some basic
features of piecewise deterministic ODEs. The reasons are twofold: first, we will analyze the
stochastic PDE by discretizing space, which yields a finite-dimensional stochastic hybrid
system evolving according to a piecewise deterministic ODE. Second, we wish to relate the
deterministic PDEs obtained by taking moments of the full stochastic PDE to the CK
equations for system of Brownian particles. For the sake of illustration, consider a one-
dimensional stochastic hybrid system whose states are described by a pair

Ω∈ × ⋯ −x n K( , ) {0, , 1}, where x is a continuous variable in an interval Ω = L[0, ] and
n a discrete internal state variable taking values in Γ ≡ ⋯ −K{0, , 1}. (Note that one could
easily extend the model to higher-dimensions, ∈ x d . In this case Ω is taken to be a
connected, bounded domain with a regular boundary Ω∂ .) When the internal state is n, the
system evolves according to the ODE

τ=x F x˙ ( ) , (2.1)n

where the vector field → F :n is a continuous function, locally Lipschitz. That is, given a
compact subset  of Ω, there exists a positive constant Kn such that

Ω− ⩽ − ∀ ∈F x F y A x y x y( ) ( ) , , (2.2)n n n

for some constant An. Here τ is a fixed positive time constant that characterizes the relaxation
rate of the x-dynamics. For the moment we do not specify what happens to the particle on the
boundary Ω∂ , see below.

In order to specify how the system jumps from one internal state to the other for each
Γ∈n , we consider the positive time constant τn and the function ′W x( )nn defined on

Γ Γ× ×  with =W x( ) 0nn and ∑ =Γ∈ W x( ) 1m mn for all x n, . The hybrid evolution of the
system can be described as follows. Suppose the system starts at time zero in the state
x n( , ).0 0 Call x t( )0 the solution of (2.1) with =n n0 such that =x x(0)0 0. Let θ1 be the
random variable such that

θ
τ

> = −( )t t
exp .

n
1

0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Then in the random time interval θ[0, )1 the state of the system is x s n( ( ), )0 0 . We draw a
value of θ1 from the corresponding probability density
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τ τ
= −p t

t
( )

1
exp .

n n0 0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

If θ = ∞1 then we are done, otherwise we choose an internal state Γ∈n1 with probability
θW x( ( ))n n 0 11 0 and call x t( )1 the solution of the following Cauchy problem on θ ∞[ , )1 :

τ θ

θ θ

= ⩾

=
( )

( ) ( )
x t F x t t

x x

˙ ( ) ( ) , ,

.

n1 1 1

1 1 0 1

1⎪

⎪

⎧
⎨
⎩

Iterating this procedure, we construct a sequence of increasing jumping times θ ⩾( )k k 0 (setting
θ = 00 ) and a corresponding sequence of internal states ⩾n( )k k 0. The evolution x t n t( ( ), ( )) is
then defined as

θ θ= ⩽ < +( )x t n t x t n t( ( ), ( )) ( ), , if . (2.3)k k k k 1

Note that the path x(t) is continuous and piecewise C1. Moreover, although the evolution of
the continuous variable X(t) or the discrete variable N(t) is non-Markovian, it can be proven
that the joint evolution X t N t( ( ), ( )) is a strong Markov process [2].

Given the iterative definition of the stochastic hybrid process, let X(t) and N(t) denote the
stochastic continuous and discrete variables, respectively, at time t, >t 0, given the initial
conditions = =X x N n(0) , (0)0 0. Introduce the probability density =p x t( , )n

∣p x n t x n( , , , , 0)0 0 with

∈ + = = ( ){ }X t x x x N t n x n p x n t x n x( ) ( , d ), ( ) , , , , , 0 d .0 0 0 0

We also fix the units of time by setting τ = 1 and introducing the scaling τ→W Wmn mn n. It
follows that pn evolves according to the forward differential CK equation [1, 32]

∑
∂
∂

= − ∂
∂

+
Γ∈

p

t x
F x p x t A x p x t( ) ( , ) ( ) ( , ), (2.4)n

n n
m

nm m
⎡⎣ ⎤⎦

with

∑δ= −
Γ∈

A W W . (2.5)nm nm n m

k

km,

Note that Γ∑ = ∀ ∈=
− A m0n

K
nm0

1 . It remains to specify boundary conditions for the CK
equation (2.4). A natural choice is an absorbing or reflecting boundary at each end. Thus, at
x = 0 we would have either

= ∀ <p t n F(0, ) 0 such that (0) 0 (absorbing)n n

or

∑ =
=

−

F p t(0) (0, ) 0 (reflecting),
n

K

n n
0

1

and similarly at x = L. Hence, a particle that hits the first boundary condition is trapped
(absorbed) there for all future time, while a particle that hits the second boundary condition is
reflected back into the interior of the domain.

A simple example of a stochastic hybrid system is a molecular motor moving along a
filament track of length L. Suppose that the motor exists in two states: moving to the right
with speed v (n = 0) or moving to the left with velocity −v (n = 1). Assume that transitions
between the two states are given by the two-state Markov process, n = 0, 1
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⇌
β

α
0 1. (2.6)

Given the fixed transition rates α β, , the CK equation takes the simple form

β α
∂
∂

= −
∂
∂

− +
p

t
v

p

x
p p a, (2.7 )0 0

0 1

β α
∂
∂

=
∂
∂

+ −
p

t
v

p

x
p p b. (2.7 )1 1

0 1

At x = 0 the absorbing and reflecting boundary conditions are =p t(0, ) 01 and
=p t p t(0, ) (0, )0 1 , respectively.

So far we have assumed that the continuous process is piecewise deterministic. However,
it is straightforward to extend to the case where the continuous process is a piecewise SDE.
That is, consider the piecewise Ito SDE

= +X t F X D X W td ( ) ( ) 2 ( ) d ( ), (2.8)n n

where Γ∈n and W(t) is a Wiener process. The drift term Fn(X) and diffusion term Dn(X) are
both taken to be Lipschitz. When the SDE is coupled to the discrete process on Γ, the
stochastic dynamics can again be described by a differential CK equation, except now there is
an additional diffusion term:

∑
∂

∂
= − ∂

∂
+ ∂

∂
+

p x t

t x
F x p x t

x
D x p x t A x p x t

( , )
( ) ( , ) ( ) ( , ) ( ) ( , ). (2.9)n

n n n n
m

nm m

2

2
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Equation needs to be supplemented by boundary conditions at =x L0, . For example, for
each discrete state n one could impose an absorbing or reflecting boundary condition at each
end. Hence for each n we would impose

= −
∂

∂
=

=

p t F p t
D x p x t

x
(0, ) 0 (absorbing) or (0) (0, )

( ) ( , )
0 (reflecting).n n n

n n

x 0

In the special case of a pure Brownian particle existing in two states =n( 0, 1) with spatially
uniform diffusion coefficients D D,0 1 and transition rates α β, , we have

β α
∂
∂

=
∂

∂
− +

p

t
D

p

x
p p a, (2.10 )0

0

2
0

2 0 1

β α
∂
∂

=
∂

∂
+ −

p

t
D

p

x
p p b, (2.10 )1

1

2
1

2 0 1

with =p x t( , ) 0n or ∂ =p x t( , ) 0x n at =x L0, .

3. Piecewise deterministic PDE

We now turn to a piecewise deterministic PDE with switching boundaries. Consider the
indexed diffusion equation

∂
∂

= ∂
∂

∈ >u

t
D

u

x
x L t a, [0, ], 0 (3.1 )n

2

2
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with u satisfying the boundary conditions

′ = ′ =B u t u t C u L t u L t b( (0, ), (0, )) 0, ( ( , ), ( , )) 0 (3.1 )n n

and ∈ ⊆ n I is a discrete internal state variable. We assume that the latter evolves
according to a jump Markov process →m n with u-independent transition rates Wnm. The
jump propagator W tdnm is the probability that the system switches from the discrete internal
state m at time t to the discrete state n at time +t td . The resulting stochastic process is an
example of a piecewise deterministic PDE, in which u x t( , ) evolves deterministically between
jumps in the discrete variable n. When n switches, both the diffusion coefficient and the
boundary conditions change. In order to develop the basic theory, we will focus on the two-
state Markov process (2.6) and consider two cases for the possible boundary conditions. We
take the boundary conditions to be

η= = > = = =u t u L t n u L t n(0, ) 0, ( , ) 0 for 0, ( , ) 0 for 1 (3.2)

or

η= = > = ∂ = =u t u L t n u L t n(0, ) 0, ( , ) 0 for 0, ( , ) 0 for 1. (3.3)x

Thus, the left-hand boundary condition is Dirichlet and in the case of equation (3.2) the right-
hand boundary randomly switches between inhomogeneous Dirichlet and homogeneous
Dirichlet. In equation (3.3) the right-hand boundary randomly switches between
inhomogeneous Dirichlet and homogeneous Neumann. Both of these particular cases with

=D D0 1 were previously analyzed by Lawley et al [27] using the theory of random iterative
systems. In particular, these authors showed that in either case u x t( , ) converges in
distribution to a random variable whose expectation is a linear function of x.

In this paper, we develop an alternative approach to analyzing piecewise deterministic
PDEs of the form (3.1a) by discretizing space and constructing the CK equation for the
resulting finite-dimensional stochastic hybrid system. The first step is to spatially discretize
the piecewise deterministic PDE (3.1a) using a finite-difference scheme. One of the nice
features of this discretization is that we can incorporate the boundary conditions into the
resulting discrete Laplacian. Introduce the lattice spacing a such that + =N a L( 1) for
integer N, and let =u u aj( )j , = … +j N0, , 1. Then

∑Δ η δ δ η
η

= + = … =
=

u

t
u i N

D

a

d

d
, 1, , , (3.4)i

j

N

ij
n

j a i N n a
1

, ,0
0

2

for n = 0, 1. Away from the boundaries ( ≠i N1, ), Δij
n is given by the discrete Laplacian

Δ δ δ δ= + −+ −
D

a
a2 . (3.5 )ij

n n
i j i j i j2 , 1 , 1 ,

⎡⎣ ⎤⎦
On the left-hand absorbing boundary we have =u 00 , whereas on the right-hand boundary
we have in the case of Dirichlet–Dirichlet switching described in equation (3.2) that

η= = = =+ +u n u nfor 0, 0 for 1,N N1 1

and we have in the case of Dirichlet–Neumann switching described in equation (3.3)

η= = − = =+ + −u n u u nfor 0, 0 for 1.N N N1 1 1

These can be implemented by taking

Δ δ δ Δ δ δ Δ δ δ= − = − = −−
D

a

D

a

D

a
b2 , 2 , 2 (3.5 )j j j Nj N j N j j j j1

0 0

2 ,2 ,1
0 0

2 1, , 1
1 1

2 ,2 ,1
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
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and

Δ δ δ Δ δ δ= − = −− −
D

a

D

a
c2 or

2
, (3.5 )Nj N j N j Nj N j N j

1 1

2 1, ,
1 1

2 1, ,
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

depending on if we are considering Dirichlet–Dirichlet or Dirichlet–Neumann switching.
Let = …t u t u tu( ) ( ( ), , ( ))N1 and introduce the probability density

∈ + = =t n t n p tu u u u u uProb{ ( ) ( , d ), ( ) } ( , )d , (3.6)n

where we have dropped the explicit dependence on initial conditions. Following our analysis
of piecewise deterministic ODEs in section 2, see equation (2.4), the CK equation for the
stochastic hybrid system (3.4) is

∑ ∑ ∑Δ η δ δ
∂
∂

= − ∂
∂

+ +
= = =

p

t u
u p t A p tu u( , ) ( , ),(3.7)n

i

N

i j

N

ij
n

j a i N n n
m

nm m
1 1

, ,0

0,1

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

where A is the matrix

β α
β α

=
−

−
A . (3.8)

⎡
⎣⎢

⎤
⎦⎥

The left nullspace of the matrix A is spanned by the vector

ψ = ( )1
1

, (3.9)

and the right nullspace is spanned by

ρ
ρ
ρ α β

α
β≡ =

+ ( )1
. (3.10)0

1

⎛
⎝⎜

⎞
⎠⎟

A simple application of the Perron–Frobenius theorem shows that the two state Markov
process with master equation

∑
∂

=
=

P t

t
A P t

d ( )
( ) (3.11)n

m

nm m

0,1

is ergodic with ρ=→∞ P tlim ( )t n n.

4. Moment equations: Dirichlet–Dirichlet case

In this section, we consider the Dirichlet–Dirichlet switching of equation (3.2). Since the drift
terms in the CK equation are linear in the uj, it follows that we can obtain a closed set of
equations for the moment hierarchy. Since the process switches between boundary conditions
of the same type, the analysis of these moments equations is much simpler than the Dirichlet–
Neumann switching of equation (3.3) that we consider in section 5. We will proceed by
determining equations for the first and second moments.

4.1. First-order moments

Let

∫= ==v t u t p t u tu u( ) ( )1 ( , ) ( )d . (4.1)n k k n t n n k, ( )
⎡⎣ ⎤⎦
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Multiplying both sides of the CK equation (3.7) by uk(t) and integrating with respect to u
gives (after integrating by parts and using that →p tu( , ) 0n as → ∞u by the maximum
principle)

∑ ∑Δ η ρ δ δ= + +
= =

v

t
v A v

d

d
. (4.2)

n k

j

N

kj
n

n j a k N n

m

nm m k
,

1

, 0 , ,0

0,1

,

We have assumed that the initial discrete state is distributed according to the stationary
distribution ρn so that

∫ ρ=p tu u( , )d .n n

If we now retake the continuum limit →a 0, we obtain parabolic equations for

= =V x t u x t( , ) ( , )1 . (4.3)n n t n( )
⎡⎣ ⎤⎦

That is

β α
∂
∂

=
∂
∂

− +
V

t
D

V

x
V V a, (4.4 )0

0

2
0

2 0 1

β α
∂
∂

=
∂
∂

+ −
V

t
D

V

x
V V b, (4.4 )1

1

2
1

2 0 1

with

ρ η= = = > =V t V t V L t V L t(0, ) (0, ) 0, ( , ) 0, ( , ) 0. (4.5)0 1 0 0 1

It is now straightforward to recover the result of Lawley et al [27] by determining the steady-
state solution of equations (4.4a) and (4.4b) for = =D D 10 1 . First, note that

= + u x t V x t V x t[ ( , )] ( , ) ( , ). (4.6)0 1

Since equations (4.4a) and (4.4b) have a globally attracting steady-state, it follows that

∑= ≡
→∞ =

 u x t V x V xlim [ ( , )] ( ) ( ), (4.7)
t

n

n

0,1

where ≡ →∞V x V x t( ) lim ( , )n t n . Setting = =D D 10 1 and adding equations (4.4a) and (4.4b)
gives

ρ η= = =V

x
V V L

d

d
0, (0) 0, ( ) . (4.8)

2

2 0

Hence

ρ η=V x
x

L
( ) .0

Setting ξ α β= + , it is also straightforward to obtain that

ρ η ρ ξ
ξ

ρ
ρ ρ η ξ

ξ
= + = −V x

x

L L
x V x

x

L

x

L
( )

sinh ( )

sinh ( )
and ( )

sinh ( )

sinh ( )
.0 0 1

0
1 0 1

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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4.2. Second-order moments

Let

∫= ==v t u t u t p t u t u tu u( ) ( ) ( )1 ( , ) ( ) ( )d . (4.9)n kl k l n t n n k l, ( )
⎡⎣ ⎤⎦

Multiplying both sides of the CK equation (3.7) by u t u t( ) ( )k l and integrating with respect to
u gives (after integration by parts)

∑ ∑Δ Δ η δ δ δ= + + + +
= =

v

t
v v v v A v

d

d
. (4.10)

n kl

j

N

kj
n

n jl lj
n

n jk a n n k l N n l k N

m

nm m kl
,

1

, , ,0 , , , ,

0,1

,
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

If we now retake the continuum limit →a 0, we obtain a system of parabolic equations for
the equal-time two-point correlations

= =C x y t u x t u y t( , , ) ( , ) ( , )1 , (4.11)n n t n( )
⎡⎣ ⎤⎦

given by

β α
∂
∂

=
∂
∂

+
∂
∂

− +
C

t
D

C

x
D

C

y
C C a, (4.12 )0

0

2
0

2 0

2
0

2 0 1

β α
∂
∂

=
∂
∂

+
∂
∂

+ −
C

t
D

C

x
D

C

y
C C b. (4.12 )1

1

2
1

2 1

2
1

2 0 1

The two-point correlations couple to the first-order moments via the boundary conditions:

= = = =C y t C x t C x t C y t a(0, , ) ( , 0, ) ( , 0, ) (0, , ) 0 (4.13 )0 0 1 1

and

η η= =
= =

C L y t V y t C x L t V x t

C L y t C x L t b

( , , ) ( , ), ( , , ) ( , ),
( , , ) ( , , ) 0. (4.13 )

0 0 0 0

1 1

To see why these are the correct boundary conditions, note that if =n t( ) 0 and x = L, then
η=u x t( , ) with probability one, and thus

η η= = == = C L y t u L t u y t u y t V y t( , , ) ( , ) ( , )1 ( , )1 ( , ).n t n t0 ( ) 0 ( ) 0 0
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Deriving the other boundary conditions is similar.
As in the case of the first-moment equations, we can solve for the steady-state correla-

tions explicitly. Again, for simplicity, set = =D D 10 1 and define

∑= ≡
→∞ =

 u x t u y t C x y C x ylim [ ( , ) ( , )] ( , ) ( , ),
t

n

n

0,1

where ≡ →∞C x y C x y t( , ) lim ( , , )n t n . Adding the pair of equations (4.12a) and (4.12b) gives

∂
∂

+ ∂
∂

=C

x

C

y
0, (4.14)

2

2

2

2

with boundary conditions

η η= = = =C y C x C L y V y C x L V x(0, ) ( , 0) 0, ( , ) ( ) ( , ) ( ). (4.15)0 0
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Using separation of variables, we find that

∑ π π π π= +
>

C x y A n x L n y L n x L n y L( , ) [sinh ( ) sin ( ) sin ( ) sinh ( )], (4.16)
n

n

0

where

∫η
π

π

η ρ
π

π ρ ξ π

π ξ

=

=
− +

+

+ ( )

A
n L

V z n z L z

n L

n L L n

n L

2

sinh ( )
( ) sin ( )d

2

sinh ( )

( 1) ( )

( )
.

n

L

n

0
0

2
0

1
0

2

2 2

In figure 2 we plot the truncated Fourier series of C.

4.3. Higher-order moments

Equations for r-th order moments >r 2 can be obtained in a similar fashion. Let

∫= … = …… =v t u t u t p t u t u tu u( ) ( ) ( )1 ( , ) ( ) ( )d . (4.17)n k k
r

k k n t n n k k,
( )

( )r r r1 1 1
⎡⎣ ⎤⎦

Multiplying both sides of the CK equation (3.7) by …u t u t( ) ( )k kr1 and integrating with respect
to u gives (after integration by parts)

∑∑ ∑ ∑Δ η δ δ= + +…

= =
… …

=
… …

−

=
…− + − +

v

t
v v A v

d

d
.

n k k
r

l

r

j

N

k j
n

n k k jk k
r

a n

l

r

n k k k k
r

k N

m

nm m k k
r,

( )

1 1
,

( )
,0

1
,

( 1)
,

0,1
,

( )r

l l l r l l r l r

1

1 1 1 1 1 1 1

If we now retake the continuum limit →a 0, we obtain a system of parabolic equations for
the equal-time r-point correlations

= … =C x y u x t u x t u x t( , ) ( , ) ( , ) ( , )1 , (4.18)n
r

r n t n
( )

1 2 ( )
⎡⎣ ⎤⎦

given by

∑ β α
∂

∂
=

∂
∂

− +
=

C

t
D

C

x
C C a, (4.19 )

r

l

r r

l

r r0
( )

0

1

2
0
( )

2 0
( )

1
( )

∑ β α
∂

∂
=

∂
∂

+ −
=

C

t
D

C

x
C C b. (4.19 )

r

l

r r

l

r r1
( )

1

1

2
0
( )

2 0
( )

1
( )

The r-point correlations couple to the −r( 1)-order moments via the boundary conditions:

… = … = … =
= = =

C x x t C x x t C x x t a( , , , ) ( , , , ) ( , , , ) 0, (4.20 )r
r

x

r
r

x

r
r

x L
0
( )

1
0 1

( )
1

0 1
( )

1
l l l

and

η… = … …
=

−
− +C x x t C x x x x t b( , , , ) ( , , , , , ), (4.20 )r

r
x L

r
l l r0

( )
1 0

( 1)
1 1 1

l

for l = 1,…,r.

5. Moment equations: Dirichlet–Neumann case

In this section, we consider the Dirichlet–Neumann switching of equation (3.3). As before, we
will obtain a closed set of equations for the moment hierarchy. Since the process now
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switches between boundary conditions of different types, the analysis of these moments
equations is much more complicated than the Dirichlet–Dirichlet switching of equation (3.3)
that we considered above in section 4. Nevertheless, we will be able to solve for the first and
second moments.

5.1. First-order moments

As in section 4, we define

= =V x t u x t( , ) ( , )1 , (5.1)n n t n( )
⎡⎣ ⎤⎦

and obtain the parabolic equations

β α
∂
∂

=
∂
∂

− +
V

t
D

V

x
V V a, (5.2 )0

0

2
0

2 0 1

β α
∂
∂

=
∂
∂

+ −
V

t
D

V

x
V V b, (5.2 )1

1

2
1

2 0 1

with

ρ η= = = > ∂ =V t V t V L t V L t(0, ) (0, ) 0, ( , ) 0, ( , ) 0. (5.3)x0 1 0 0 1

To see why these are the correct boundary conditions, note that if =n t( ) 0 and x = L, then
η=u x t( , ) with probability one, and thus

η ηρ= = = == V L t u L t n t( , ) ( , )1 ( ( ) 0) .n t0 ( ) 0 0
⎡⎣ ⎤⎦

Deriving the other boundary conditions is similar.
It is now straightforward to recover the result of Lawley et al [27] by determining the

steady-state solution of equations (5.2a) and (5.2b) for = =D D 10 1 . First, note that

Figure 2. Plots of C x x( , ) for Dirichlet–Dirichlet switching on the left and Dirichlet–
Neumann switching on the right. The parameters are η= =L 1, ξ = 10, and either
ρ = 0.750 , 0.5, or 0.25. In each figure, the Fourier series is truncated after 200 terms.

For the Dirichlet–Neumann switching, a 50 000-dimensional version of the infinite-
dimensional system found in equation (5.25) is solved to estimate the Fourier
coefficients.
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= + u x t V x t V x t[ ( , )] ( , ) ( , ). (5.4)0 1

Since equations equations (5.2a) and (5.2b) have a globally attracting steady-state, it follows
that

∑= ≡
→∞ =

 u x t V x V xlim [ ( , )] ( ) ( ), (5.5)
t

n

n

0,1

where ≡ →∞V x V x t( ) lim ( , )n t n . Adding equations (5.2a) and (5.2b) and using the boundary
conditions in equation (5.3) gives

ρ η κ= = = +V

x
V V L

d

d
0, (0) 0, ( ) , (5.6)

2

2 0

and κ = V L( )1 . Hence

ρ η κ= +V x
x

L
( ) ,0

⎡⎣ ⎤⎦
with

α β β ρ η κ− + = − +( )V

x
V

L
x

d

d
( ) (5.7)

2
1

2 1 0

and = ∂ =V V L(0) 0, ( ) 0x1 1 . It follows that
ρ

ρ η κ= + + +ξ ξ− ( )V x a b
L

x( ) e e ,x x
1

1
0

with ξ α β= + . The boundary conditions imply that

ξ ξ
ρ

ρ η κ= − = +( )a b a L
L

, 2 cosh ( ) ,1
0

which yields the solution

ρ ρ η κ
ξ

ξ
ξ

= + − +( )V x
L

x

L

x

L
( )

1 sinh ( )

cosh ( )
. (5.8)1 1 0

⎡
⎣⎢

⎤
⎦⎥

Finally, we obtain κ by setting x = L:

κ ρ ρ η κ ξ ξ= + − −( ) L L1 ( ) tanh ( ) ,1 0
1⎡⎣ ⎤⎦

which can be rearranged to yield

κ ρ ρ η ξ ξ
ρ ρ ξ ξ

= −
+

−

−
L L

L L

1 ( ) tanh ( )

( ) tanh ( )1 0

1

0 1
1

and thus [27]

η
ρ ρ ξ ξ

=
+ −( )

V x
x

L L L
( )

1 ( ) tanh ( )
. (5.9)

1 0
1

In the limit ξ → ∞ (fast switching)

η=V x
x

L
( ) .

In section 6 we relate these first moments to a certain hitting probability for a particle
diffusing in a random environment.
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5.2. Second-order moments

As in section 4, we define

= =C x y t u x t u y t( , , ) ( , ) ( , )1 , (5.10)n n t n( )
⎡⎣ ⎤⎦

and obtain the parabolic equations

β α
∂
∂

=
∂
∂

+
∂
∂

− +
C

t
D

C

x
D

C

y
C C a, (5.11 )0

0

2
0

2 0

2
0

2 0 1

β α
∂
∂

=
∂
∂

+
∂
∂

+ −
C

t
D

C

x
D

C

y
C C b. (5.11 )1

1

2
1

2 1

2
1

2 0 1

The two-point correlations couple to the first-order moments via the boundary conditions:

= = = =C y t C x t C x t C y t a(0, , ) ( , 0, ) ( , 0, ) (0, , ) 0 (5.12 )0 0 1 1

and

η η= = ∂
= ∂ =

C L y t V y t C x L t V x t C L y t

C x L t b

( , , ) ( , ), ( , , ) ( , ), ( , , )
( , , ) 0. (5.12 )

x

y

0 0 0 0 1

1

As in the case of the first-moment equations, we can solve for the steady-state correla-
tions explicitly. Again, for simplicity, set = =D D 10 1 and add the pair of equations (5.11a)
and (5.11b). Define

∑= ≡
→∞ =

 u x t u y t C x y C x ylim [ ( , ) ( , )] ( , ) ( , ),
t

n

n

0,1

where = →∞C x y C x y t( , ) lim ( , , )n t n . Then we have

∂
∂

+ ∂
∂

=C

x

C

y
0, (5.13)

2

2

2

2

with boundary conditions

= =C y C x a(0, ) ( , 0) 0 (5.14 )

and

η η= + = +C L y V y C L y C x L V x C x L b( , ) ( ) ( , ), ( , ) ( ) ( , ). (5.14 )0 1 0 1

Using separation of variables, we have =C x y f x g y( , ) ( ) ( ) with

μ″ = − ″ = ±f x

f x

g y

g y

( )

( )

( )

( )
2

for a constant μ. The general solution is

∑ π π π π= + +
>

C x y
A

L
xy A n x L n y L n x L n y L( , ) [sinh ( ) sin ( ) sin ( ) sinh ( )]. (5.15)

n

n
0

2
0

Note that

∑ π π= +C L y A
y

L
A n n y L a( , ) sinh ( ) sin ( ) (5.16 )

n

n0
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and

∑ π π π π∂ = + + −[ ]C L y
A

L
y

n

L
A n n y L n y L b( , ) cosh ( ) sin ( ) ( 1) sinh ( ) . (5.16 )x

n

n
n0

2

It follows from equations (5.8) and (5.9) that

ρ η κ
ρ
ξ

ξ
ξ

ρ= + +( )V y
L

y

L

y

L
( )

sinh ( )

cosh ( )
.0 0

1
0

⎡
⎣⎢

⎤
⎦⎥

Moreover, C1 satisfies the equation

α β β
∂
∂

+
∂
∂

− + = −
C

x

C

y
C x y C x y( ) ( , ) ( , ) (5.17)

2
1

2

2
1

2 1

with

= = ∂ = ∂ =C x C y C L y C x L( , 0) (0, ) 0, ( , ) ( , ) 0.x y1 1 1 1

The general solution of C1 is

∑

∑

ρ ξ ξ

π ξ π

π π ξ

= + +

+ +

+ +

>

>

( )
( )

C x y C x y B y x x y

B n L x n y L

B n x L n L y

( , ) ( , ) [ sinh ( ) sinh ( )]

sinh ( ) sin ( )

sin ( ) sinh ( ) . (5.18)

n

n

n

n

1 1 0

0

2 2

0

2 2

From the boundary conditions (5.14b)

∑
ρ η ξ ξ

π ξ π

= + +

+ +
>

( )
C L y V y B y L L y

B n L L n y L

( , ) ( ) [ sinh ( ) sinh ( )]

sinh ( ) sin ( ).
n

n

0 0 0

0

2 2

Equating terms on the two sides of this equation shows that

ρ ηρ ρ η κ ξ= + +( )A B L L asinh ( ), (5.19 )0 0 0 0 0

η ρ η κ
ρ

ξ ξ
+ + =( )

L L
B L b

cosh ( )
0, (5.19 )0

1
0

and

ρ π π ξ= + >( )A n B n L L n csinh ( ) sinh ( ) , 0. (5.19 )n n0
2 2

The first two equations determine A B,0 0 and the remaining equations determine Bn in terms
of An.

The final step is to determine the coefficients >A n, 0n using the other boundary
condition ∂ =C L y( , ) 0x 1 . (By symmetry the boundary conditions at y = L are automatically
satisfied.) We thus require
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∑

∑

ρ ξ ξ ξ

π ξ π ξ π

π π ξ

− ∂ = +

+ + +

+ − +

>

>

( )
( )

C L y B y L y

n L B n L L n y L

n L B n L y

( , ) [( ) cosh ( ) sinh ( )]

( ) cosh ( ) sin ( )

( )( 1) sinh ( ) .

x

n

n

n

n
n

1 0

0

2 2 2 2

0

2 2

Using equation (5.16b) and rearranging gives

∑

∑

∑

γ π ξ ξ ρ ξ

π

ρ π π ξ

ξ ξ ρ ξ

π ρ π

ρ π
π ξ

π ξ

− = + +

+ −

× + +

= + +

+ −

+
+

+

>

>

>

( )

( )
( )

( )

( )

A n y L B L A L y B y

n

L

A n y L B n L y

B L A L y B y

n

L
n y L

n
n L y

n L L
A

sin ( ) cosh ( ) sinh ( )

( 1)

sinh ( ) sinh ( )

cosh ( ) sinh ( )

( 1) sinh ( )

sinh ( )
sinh ( )

sinh ( )
, (5.20)

n
n n

n

n

n n

n

n

n

0

0 1 0
2

0

0

1
2 2

0 1 0
2

0

0
1

0

2 2

2 2

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢⎢⎢
⎤

⎦

⎥⎥⎥

where

γ ρ π π π ξ π ξ

ρ π π ρ π ξ π

π ξ

= + + +

= + +

× +

( )

( )

A
n

L
n A n L B n L L

n

L
n n L n

n L L A

cosh ( ) ( ) cosh ( )

cosh ( ) ( ) sinh ( )

cotanh ( ) . (5.21)

n n n n

n

1
2 2 2 2

1 0
2 2

2 2

⎡
⎣⎢

⎤
⎦⎥

Multiplying both sides of equation (5.20) by πm y Lsin ( ) and integrating with respect to y
yields

∑γ Γ Λ+ = − >
>

L
A A m

2
, 0, (5.22)m m

n

mn n m

0

where

∫Λ π ξ ξ ρ ξ= + +( )m y L B L A L y B y ysin ( ) cosh ( ) sinh ( ) d (5.23)m

L

0
0 1 0

2
0

⎡⎣ ⎤⎦
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and

∫Γ π ρ π ρ π
π ξ

π ξ

π

= − +
+

+

×

( )
( )

n

L
n y L n

n L y

n L L

m y L y

( 1) sinh ( ) sinh ( )
sinh ( )

sinh ( )

sin ( )d . (5.24)

mn
n

L

0
1 0

2 2

2 2

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

Using the integral formula

∫ ∫ξ π ξ ξ

ξ π ξ π
ξ ξ

ξ π
π π π ξ ξ

π
ξ π

ξ

= − − → −

= −
+

− −
−

− → −

=
+

− − → −

= −
+

ξ π ξ π

ξ π ξ π

ξ

+ −

+ −

+

y m y L y y

m L m L

m L

m

L

m

L
m

m L

m L
L

sinh ( ) sin ( )d
1

4i
e e d ( )

1

4i

e 1

i

1

4i

e 1

i
( )

1

2

1

( )
cos ( )e ( )

( 1)
( )

sinh ( ),

L L
m L y m L y

m L L m L L

L

m

0 0

( i ) ( i )

( i ) ( i )

2 2

1
2 2

⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥

it follows that

Γ π ρ π
π π

ρ π
π ξ π

= −
+

+
+ +

+ +nm

L

n

n L m L

n

n L m L
( 1)

sinh ( )

( ) ( )

sinh ( )

( ) ( )
.mn

n m
2

2
1

1 2 2 0 2 2 2

⎡
⎣⎢

⎤
⎦⎥

Similarly

Λ ξ ξ ρ
π

π
ξ π

ξ= + − + −
+

+ +( )B L A L
L

m
B

m L

m L
Lcosh ( ) ( 1) ( 1)

( )
sinh ( ).m

m m
0 1 0

2
2

1 1
0 2 2

Introducing the change of coefficients (for >n 0)

π=A n Asinh ( ) ,n n

equation (5.22) can be rewritten as

∑γ
ρ ρ

ξ π
Λ

+ −
+

+
+ +

= −
>

+ +  A
n

n m

n

n L m
A

m
( 1)

( )
, (5.25)m m

n

n m
n

m

0

1 1

2 2

0

2 2 2

⎡
⎣⎢

⎤
⎦⎥

where

γ ρ π π ρ π ξ π ξ= + + + ( )m L m m L
1

2
coth ( ) ( ) cotanh ( ) ( ) .m 1 0

2 2 2 2⎡
⎣⎢

⎤
⎦⎥

If we assume that the infinite-dimensional matrix equation (5.25) has a unique solution, then
taking the limit → ∞m shows that ∼A m1m

2 for large m and thus ∼ π−A mem
m 2 for large

m. In figure 2 we plot estimates of C x x( , ) by truncating its Fourier series expansion in
equation (5.15), where the coefficients are estimated by solving a truncated version of
equation (5.25). We find that the numerical solution converges to a unique solution, except
for a small boundary layer around x = L, which shrinks as more terms in our numerical
approximation scheme are included. As a further consistency check, we note that the
Dirichlet-Dirichelt and Dirichlet–Neumann numerical solutions match in the limit α β≫
(ρ ≈ 10 ), which is to be expected since both systems spend most of the time in the state
corresponding to the inhomogeneous Dirichlet condition at x = L.
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5.3. Higher-order moments

Analogous to section 4.3, one can show that the equal-time r-point correlations

= … =C x x x u x t u x t u x t( , ,..., ) ( , ) ( , ) ( , )1 , (5.26)n
r

r r n t n
( )

1 2 1 2 ( )
⎡⎣ ⎤⎦

for the Dirichlet–Neumann problem satisfy the system of PDEs in equation (4.3) subject to
the boundary conditions in equation (4.20b) and

… = … = ∂ … =
= = =

C x x t C x x t C x x t( , , , ) ( , , , ) ( , , , ) 0, (5.27)r
r

x

r
r

x
x

r
r

x L
0
( )

1
0 1

( )
1

0 1
( )

1
l l

l
l

for l = 1,…,r.

6. Particle perspective

The representation of solutions to certain second-order linear PDEs as statistics of solutions to
associated SDEs is well established [32]. In this section, we relate the r-th moments of the
random PDEs considered above to statistics of Brownian particles diffusing in a randomly
switching environment. We find that after a simple rescaling, the r-th moment of the random
PDE is the probability that r non-interacting Brownian particles all exit at the same boundary.
Although the particles are non-interacting, statistical correlations arise due to the fact that they
all move in the same randomly switching environment. Hence the stochastic diffusion
equation describes two levels of randomness; Brownian motion at the individual particle level
and a randomly switching environment. In section 6.1, we consider the Brownian particle
situation corresponding to the Dirichlet–Neumann switching PDE of section 5. The particle
situation corresponding to the Dirichlet–Dirichlet switching PDE of section 4 is similar and is
explained briefly in section 6.2

6.1. Hitting probability: Dirichlet–Neumann case

The first-moment equations (5.2a) and (5.2b) are identical in form to the CK equation
describing a single particle switching between two discrete internal states with distinct dif-
fusion coefficients D D,0 1 and boundary conditions. The one major difference is that within
the single particle perspective, all boundary conditions are homogeneous. For example,
suppose that there is an absorbing boundary at x = 0, whereas the boundary at x = L is
absorbing (reflecting) when the particle is in state n = 0 (n = 1)

β α
∂
∂

=
∂

∂
− +

p

t
D

p

x
p p a, (6.1 )0

0

2
0

2 0 1

β α
∂
∂

=
∂

∂
+ −

p

t
D

p

x
p p b, (6.1 )1

1

2
1

2 0 1

with

= = = ∂ =p t p t p L t p L t(0, ) (0, ) 0, ( , ) 0, ( , ) 0. (6.2)x0 1 0 1

Here = ∣p x t p x n t y m( , ) ( , , , , 0)n for y m, fixed is the probability density of finding the
particle in discrete state n and position x at time t. For this example there is no non-trivial
steady-state solution.

At the single particle level one is often interested in solving first passage problems.
Quantities of particular interest are the splitting probability of exiting one end rather than the
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other, and the associated conditional mean first-passage time. One way to determine these
quantities is to consider the corresponding backward CK equation for =q y t( , )m

∣p x n t y m( , , , , 0) with x n, fixed:

β
∂
∂

=
∂

∂
− −

q

t
D

q

y
q q a[ ], (6.3 )0

0

2
0

2 0 1

α
∂
∂

=
∂

∂
+ −

q

t
D

q

y
q q b[ ]. (6.3 )1

1

2
1

2 0 1

Let γ y t( , )m be the total probability that the particle is absorbed at the end x = L, say, after time
t given that it started at y in state m. That is,

∫γ = − ∂ ′
∂

′
∞

y t D
p L t y m

x
t( , )

( , 0, , , 0)
d . (6.4)m

t
0

Differentiating equations (6.3a) and (6.3b) with respect to x and integrating with respect to t,
we find that

γ γ
β γ γ

∂
∂

=
∂
∂

− −
t

D
y

a[ ], (6.5 )0
0

2
0

2 0 1

γ γ
α γ γ

∂
∂

=
∂
∂

+ −
t

D
y

b[ ]. (6.5 )1
1

2
1

2 0 1

The probability γ y t( , )m can be used to define two important quantities. The first is the hitting
probability

π γ=y y( ) ( , 0) (6.6)m m

and the second is the conditional mean first passage time Tm(y)

∫
∫γ

γ

γ

γ
= −

∂
=

∞
∞

T y t
y t

y
t

y t t

y
( )

( , )

( , 0)
d

( , )d

( , 0)
(6.7)m

t m

m

m

m0

0

after integration by parts. Setting t = 0 in equations (6.5a) and (6.5b), and using
γ∂ =y( , 0) 0t m for all ≠y L shows that

π
β π π=

∂
∂

− −D
y

a0 [ ], (6.8 )0

2
0

2 0 1

π
α π π=

∂
∂

+ −D
y

b0 [ ] (6.8 )1

2
1

2 0 1

with boundary conditions

π π π π= = = ∂ =L L(0) (0) 0, ( ) 1, ( ) 0.y0 1 0 1

This hitting probability is closely related to the first moments of the piecewise deter-
ministic PDE considered in section 5. Specifically, it is easy to check that

π
ρ η

=x V x( )
1

( ).n
n

n

This equation can be thought of as a type of Feynman–Kac formula for relating diffusion in a
random environment to a piecewise deterministic PDE. Furthermore, let π x x( ,..., )n

r
r1 be the
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probability that r Brownian particles all exit at x = L given that the initial positions of the
Brownian particles are x x,..., r1 and =n n(0) . Then

π
ρ η

=
→∞

x x C x x t( ,..., )
1

lim ( ,..., , ), (6.9)n
r

r
n

r t
n

r
r1

( )
1

where Cn
r( ) is the r-th moment defined in equation (5.26). Though the particles are non-

interacting, the probability that all r particles exit at x = L is not the product of the
probabilities of each particle exiting at x = L because the particles are all diffusing in the same
randomly switching environment. Equation (6.9) follows from writing down the backward
equation for the joint probability density for r particles, and then constructing the multi-
particle version of equation (6.4). The crucial step is determining the appropriate
inhomogeneous boundary condition for the resulting r-dimensional time-independent PDE
that determines the splitting probability. The boundary condition takes the form

π π… = … …
=

−
− +x x x x x x( , , ) ( , , , , ), (6.10)r

r
x L

r
l l r0

( )
1 0

( 1)
1 1 1

l

for l = 1,…,r. This ensures that if one of the particles starts on the right-hand boundary when
the latter is in the state n = 0, then the particle is immediately removed and thus one just has to
determine the splitting probability that the −r 1 remaining particles also exit at the right-hand
boundary. Finally, performing a similar scaling to the first-moments yields the desired result.

Finally, we remark that the relationship found in this section between hitting probabilities
of Brownian particles and moments for a related piecewise deterministic PDE can be gen-
eralized to systems with more than two boundary states. First, note that the forward equation,
equation (6.1), was used to find moments of the piecewise deterministic PDE and the
backward equation, equation (6.1), was used to find splitting probabilities for Brownian
particles. Further, observe that when the forward equations and backward equations are
viewed as matrix equations, then the matrix appearing in the backward equation is just the
transpose of the matrix in the forward equation, and the matrix appearing in the backward
equation is the generator for the Markov jump process controlling the boundary switching.
This simple relation holds because the Markov jump process controlling the boundary
switching has only two states and therefore must be reversible. If one considers more than two
possible states for the boundary, one has to reverse the time of the Markov jump process
controlling the switching to go between the particle perspective of this section (in which we
study the backward equation) and the PDE perspective of the rest of this paper (in which we
study the forward equation).

6.2. Hitting probability: Dirichlet–Dirichlet case

Consider r Brownian particles diffusing in the interval L[0, ] with absorbing boundary
conditions at both endpoints. Let n(t) be an independent Markov jump process and
π x x( ,..., )n

r
r1 be the probability that all r particles exit at x = L at times when =n t( ) 0 given

that the initial positions of the Brownian particles are x x,..., r1 and =n n(0) . Then

π
ρ η

=
→∞

x x C x x t( ,..., )
1

lim ( ,..., , ), (6.11)n
r

r
n

r t
n

r
r1

( )
1

where Cn
r( ) is the r-th moment of the Dirichlet–Dirichlet switching PDE defined in

equation (4.18). This follows from an argument similar to the argument above in section 6.1.
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7. QSS approximation

So far we have used finite differences and the continuum limit to derive exact equations for
the moments of the piecewise deterministic PDE (3.1a). In this final section we use formal
perturbation methods to derive an approximation of the PDE in the limit that the switching
rates α β → ∞, , which takes the form of an SPDE with Gaussian spatiotemporal noise (when

≠D D0 1) and a randomly perturbed boundary condition. We will assume that the limit of the
lattice spacing, →a 0, and the limit of the switching rates, α β →, 0, commute, so that we
can first carry out the QSS approximation of the spatially discrete process and then take the
continuum limit.

First, introducing a small parameter, ϵ, and performing the rescalings α α ϵ→ and
β β ϵ→ , the CK equation (3.7) of the spatially discretized process can be written in the form

∑ ∑
ϵ

∂
∂

= − ∂
∂

+
= =

p

t u
H p t A p tu u u( ) ( , )

1
( , ), (7.1)n

i

N

i
i
n

n
m

nm m
1 0,1

⎡⎣ ⎤⎦

with

∑ Δ η δ δ= +
=

H uu( ) . (7.2)i
n

j

N

ij
n

j a i N n

1

, ,0

In the limit ϵ → 0, one can show that ρ ϕ→p t tu u( , ) ( , )n n [26] with ϕ satisfying the
Liouville equation

∑ϕ ϕ∂
∂

= − ∂
∂=t u

H tu u( ) ( , ),
i

N

i
i

1

where

∑ ρ=
=

H Hu u( ) ( ) . (7.3)i

n
i
n

n
0,1

Assuming deterministic initial conditions, the Liouville equation is equivalent to the
deterministic mean-field equation

=
u

t
H u

d

d
( ). (7.4)i

i

Taking the continuum limit of this equation using the discrete Laplacian given by
equations (3.5a)–(3.5c) gives the deterministic diffusion equation

∂
∂

= ∂
∂

u

t
D

u

x
a(7.5 )

2

2

with ρ= ∑ =D Dn n n0,1 and the boundary conditions

η= =u t u L t b(0, ) 0, ( , ) . (7.5 )

This follows from the definition of H u( )i . Note that in the fast switching limit, the right-hand
boundary condition reduces to inhomogeneous Dirichlet alone, that is, we do not obtain a
Robin boundary condition that mixes Dirichlet and Neumann. First, this is consistent with the
steady-state solution for the first moment, see equation (5.9). It is also consistent with the
known relationship between random walks and diffusion equations in bounded domains.
More specifically, in order to obtain a diffusion equation with a Robin boundary condition in
the continuum limit of a random walk with a partially absorbing boundary, it is necessary to
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take the probability of absorption for a random walker to be O(a), where a is the lattice
spacing [33]. This is clearly not the case here.

In the regime ϵ< ≪0 1, there are typically a large number of transitions between the
discrete states n = 0, 1 while u hardly change at all. This suggests that the system rapidly
converges to the above QSS solution, which will then be perturbed as u slowly evolves. The
resulting perturbations can be analyzed using a QSS diffusion or adiabatic approximation, in
which the CK equation (7.1) is approximated by a FP equation for the total density
ϕ = ∑t p tu u( , ) ( , )n n . The QSS approximation was first developed from a probabilistic
perspective by Papanicolaou [34], see also [32]. It has subsequently been applied to a wide
range of problems in biology, including bacterial chemotaxis [35], wave-like behavior in
models of slow axonal transport [3, 4], and molecular motor-based models of random
intermittent search [8, 9]. The first step in the QSS reduction is to introduce the decomposition

ϕ ρ ϵ= +p t t w tu u u( , ) ( , ) ( , ), (7.6)n n n

with

∑ ∑ϕ = =t p t w tu u u( , ) ( , ), ( , ) 0.
n

n
n

n

Substituting into equations (5.2a) and (5.2b) yields

∑

∑

ϕ ρ ϵ ϕ ρ ϵ

ϵ
ϕ ρ ϵ

∂
∂

+
∂

∂
= − ∂

∂
+

+ +

=

=

( )t

t

w t

t u
H t w t

A t w t

u u
u u u

u u

( , ) ( , )
( ) ( , ) ( , )

1
( , ) ( , ) . (7.7)
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n

n n

m

nm m m

1

0,1

⎡⎣ ⎤⎦
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Summing both sides of equation (7.7) with respect to n then gives

∑ ∑ ∑ϕ ϕ ϵ∂
∂

= − ∂
∂

− ∂
∂= = =

( )t

t u
H t

u
H w t

u
u u u u
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( ) ( , ) ( ) ( , ) . (7.8)
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N

i
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i

N

i n
i
n

n

1 1 0,1

⎛
⎝
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⎞
⎠
⎟⎟

Substituting equation (7.8) into (7.7) then gives

∑ ∑

∑ ∑ ∑
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Introduce the asymptotic expansion

ϵ ϵ∼ + + + …w w w wn n n n
0 1 2 2

and collect O (1) terms:

∑ ∑ρ ϕ= ∂
∂

−
= =

( )A w x t
u

H H tu u u( , ) ( ) ( ) ( , ) , (7.9)
m

N

nm m n
i

N

i
i
n

i

1 1
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where we have dropped the superscript on wn
0. The Fredholm alternative theorem shows that

this has a solution, which is unique on imposing the condition ∑ =w x t( , ) 0n n . More
explicitly, using the fact that = −w w0 1, we find that
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∑
ρ

α β
ϕ= −

+
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∂
−

=
( )w

u
H H tu u u

( )
( ) ( ) ( , ) .

i

N

i
i i0

0

1
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Finally, substituting this back into equation (7.8) and using = −w w0 1 yields the FP equation
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i j
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i
i i

j
j j

0 1

, 1

0 1 0 1⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

which is of the Stratonovich form [32]. The corresponding SDE or Langevin equation is

ϵ
ρ ρ

α β
= +

+
−U H t H H W tu u ud ( )d 2

( )
( ) ( ) d ( ), (7.11)i i i i

0 1 0 1⎡⎣ ⎤⎦
where W(t) is a Wiener process with

δ= = − ′ ′W t W t W t t t t td ( ) 0, d ( )d ( ) ( )d d .

It remains to determine the resulting SPDE in the continuum limit →a 0, where a is the
lattice spacing of the discretization scheme, see section 3. This is straightforward to determine
since, the Wiener process is space-independent, reflecting that switching between the discrete
states n = 0, 1 applies globally. Thus, we obtain the SPDE (defined in the sense of Strato-
novich)

ϵ
ρ ρ

α β
= ∂

∂
+

+
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∂
( )U x t D

U

x
t D D

u

x
W t ad ( , ) d 2

( )
d ( ) (7.12 )

2

2

0 1
0 1

2

2

⎡
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⎤
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with the boundary conditions

η η ϵ β
α α β

= = +
+

u t u L t t t W t b(0, ) 0, ( , )d d 2
( )

d ( ). (7.12 )

We have thus established that in the limit of fast switching, there is space-independent
multiplicative noise in the bulk of the domain when switching in the diffusion coefficient
occurs ( ≠D D0 1) together with a randomly driven boundary condition at x = L.

8. Discussion

In this paper we have studied the one-dimensional diffusion equation with randomly
switching boundary conditions and diffusion coefficient. To analyze this stochastic process,
we discretized spaced and constructed the CK equation for the resulting finite-dimensional
stochastic hybrid system. By retaking the continuum limit, we have derived boundary value
problems that the moments of the process satisfy. In the case of the steady state first moment,
the boundary value problem is a system of two ordinary differential equations which we
solved to quickly recover results in [27]. Furthermore, we found Fourier series representations
for the steady state second moment. We carry out these calculations in the case of switching
between two Dirichlet boundary conditions and switching between a Dirichlet and a Neu-
mann condition, noting that the analysis of the Dirichlet–Neumann case is significantly more
complicated. Finally, we relate these piecewise deterministic PDEs to statistics for particles
diffusing in a random environment, which can be interpreted as types of Feynman–Kac
formulae.
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For pedagogical reasons, we have focused on the specific example of the one-dimen-
sional diffusion equation on a finite interval with two diffusion coefficients and two possible
states for the boundary condition on one end of the interval. However, one can derive
analogous moment equations for much more general piecewise deterministic PDE. One can
consider general parabolic equations in higher-dimensions while allowing both the boundary
conditions and the elliptic operator on the right-hand side of the PDE to randomly switch
between arbitrarily many discrete states.

Of course, if the piecewise deterministic PDE under consideration is more complicated,
then the resulting moment equations are more difficult to solve. Nevertheless, there are many
examples for which the moment equations are explicitly solvable. For example, if we consider
parabolic equations in one spatial dimension with N possible discrete states, then the resulting
steady state first moment equations are simply a linear system of N ordinary differential
equations.
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