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Path integrals and large deviations in stochastic hybrid systems
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We construct a path-integral representation of solutions to a stochastic hybrid system, consisting of one or more
continuous variables evolving according to a piecewise-deterministic dynamics. The differential equations for
the continuous variables are coupled to a set of discrete variables that satisfy a continuous-time Markov process,
which means that the differential equations are only valid between jumps in the discrete variables. Examples
of stochastic hybrid systems arise in biophysical models of stochastic ion channels, motor-driven intracellular
transport, gene networks, and stochastic neural networks. We use the path-integral representation to derive a
large deviation action principle for a stochastic hybrid system. Minimizing the associated action functional with
respect to the set of all trajectories emanating from a metastable state (assuming that such a minimization scheme
exists) then determines the most probable paths of escape. Moreover, evaluating the action functional along a
most probable path generates the so-called quasipotential used in the calculation of mean first passage times.
We illustrate the theory by considering the optimal paths of escape from a metastable state in a bistable neural
network.
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I. INTRODUCTION

There are a growing number of problems in biological
physics that involve the coupling between a piecewise-
deterministic dynamical system and a continuous-time Markov
process, which is modeled as a stochastic hybrid process. Often
the system of interest exhibits bistability, and one is interested
in an associated escape problem. One of the best known
examples of a stochastic hybrid system is a conductance-based
model of a neuron [1–7]. Here the discrete states of the ion
channels evolve according to a continuous-time Markov pro-
cess with voltage-dependent transition rates and, in between
discrete jumps in the ion channel states, the membrane voltage
evolves according to a deterministic equation that depends
on the current state of the ion channels. However, escape
problems in stochastic hybrid systems are also important in
the study of genetic switches [8,9], motor-driven intracellular
transport [10,11], and stochastic neural networks [12]. The
last example represents the dynamics of synaptically coupled
neuronal populations. The state of each local population is
described in terms of two stochastic variables, a continuous
synaptic variable and a discrete activity variable. The synaptic
variables evolve according to piecewise-deterministic dynam-
ics describing, at the population level, synapses driven by
spiking activity. The dynamical equations for the synaptic
currents are only valid between jumps in spiking activity, and
the latter are described by a continuous-time Markov process
whose transition rates depend on the synaptic variables. In
the mean-field limit, one recovers standard rate-based neural
network models [12].

A general issue regarding metastability in a stochastic
dynamical system is how to determine the most probable (opti-
mal) paths of escape. A mathematical approach to addressing
this issue in the weak noise limit is large deviation theory
[13–15]. In order to give a heuristic definition of the latter,
consider some random dynamical system in Rn for which

there exists a well defined probability density functional Pε[x]
over the different sample trajectories {x(t)}T0 in a given time
interval [0,T ]. Here ε is a small parameter that characterizes
the noise level; it could correspond to �−1 where � is the
system size, or represent a fast time scale of the dynamics. A
large deviation principle for the random paths is that

Pε[x] ∼ e−A[x]/ε, ε → 0,

where A[x] is known as an action functional. Solving the
first passage time problem for escape from a fixed-point
attractor of the underlying deterministic system involves
finding the most probable paths of escape, which minimize
the action functional with respect to the set of all trajectories
emanating from the fixed point (under certain additional
constraints). Evaluating the action functional along a most
probable path from the fixed point to another point x generates
a corresponding quasipotential �(x) (assuming that the action
can be minimized). It follows that any errors in the form of the
quasipotential can generate exponentially large errors in the
mean first passage time (MFPT) to escape from a metastable
state. This explains, for example, why approximating a jump
Markov process by a Langevin equation using some form of
diffusion approximation can generate large errors in the MFPT,
as recently demonstrated for stochastic ion channels [3]

One method for deriving the correct quasipotential is to
use a Wentzel-Kramers-Brillouin (WKB) approximation of
the (quasi-)steady-state probability density. This method has
been applied to master equations [16–21] and more recently to
stochastic hybrid systems [3,6,7,9,11,12]. In the former case,
one can interpret the WKB equation for the quasipotential in
terms of a Hamilton-Jacobi equation, whose corresponding
Hamiltonian H is related to the Lagrangian of large deviation
theory according to the Legendre transformation L(x,ẋ) =
pẋ − H (x,p). This can be established by constructing the
Doi-Peliti path-integral representation of solutions to the
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master equation [22–24], and using the latter to derive a large
deviation principle. Thus large deviation theory provides a
rigorous foundation for the application and interpretation of
WKB methods.

The major issue we wish to address in this paper is how
to derive a large deviation principle for stochastic hybrid
systems, so that we can interpret the quasipotential obtained
using a WKB approximation in terms of an underlying
variational problem for optimal paths in the space of stochastic
trajectories. In previous work on stochastic ion channels [6]
and stochastic neural networks [12], we simply assumed that
such a variational principle exists. Rather than using abstract
probability theory along the lines of Ref. [13], we will proceed
by constructing a path-integral representation of solutions to a
stochastic hybrid system. We will then use this to derive a large
deviation principle for the stochastic neural network model
previously constructed in [12]. Applications to stochastic ion
channel models will be developed elsewhere. We begin in
Sec. II by reviewing the analogous theory of large deviations
in chemical master equations. We then consider the issue of
large deviations in stochastic hybrid systems (Sec. III). The
path-integral construction of a stochastic hybrid system is
presented in Sec. IV, and this is then used to analyze optimal
paths in a stochastic neural network model in Sec. V.

II. LARGE DEVIATIONS IN CHEMICAL
MASTER EQUATIONS

In order to motivate the issues addressed in this paper
regarding stochastic hybrid systems, it is useful to review
the corresponding issues within the more familiar context
of chemical master equations. For the sake of illustration,
consider the birth-death master equation

dPn(t)

dt
= ω+(n − 1)Pn−1(t) + ω−(n + 1)Pn+1(t)

− [ω+(n) + ω−(n)]Pn(t) (2.1)

for n = 0, . . . ,N with boundary conditions P−1(t) =
PN+1(t) = 0 and transition rates ω±(n,t). Multiplying both
sides of Eq. (2.1) by n/N and summing over n gives

d〈n/N〉
dt

= 〈�+(n/N )〉 − 〈�−(n/N )〉, (2.2)

where ω±(n) = N�±(n/N ), and the brackets 〈· · · 〉 denote
a time-dependent ensemble average over realizations of the
stochastic dynamics, that is, 〈A(n/N )〉 = ∑

n Pn(t)A(n/N )
for any function of state A(n/N ). If the transition rates in
(2.1) are nonlinear functions of n, then there is coupling
between different order moments, resulting in a moment
closure problem. That is, 〈�±(n/N )〉 �= �±(〈n〉/N ) for finite
N . However, in the thermodynamic limit N → ∞, statistical
correlations can be ignored so that one can take the mean-
field limit 〈�±(n/N )〉 → �±(〈n/N〉). This then yields a
deterministic equation for the fraction x of open ion channels:

dx

dt
= �+(x) − �−(x). (2.3)

A diffusion approximation of the birth-death master
Eq. (2.1) for large but finite N can be obtained by carrying out
a Kramers-Moyal or system-size expansion to second order

in 1/N [25,26].This yields a Fokker-Planck (FP) equation
describing the evolution of the probability density of a cor-
responding continuous stochastic process that is the solution
to a stochastic differential equation. A rigorous analysis of
the diffusion approximation has been carried out by Kurtz
[27]. First, introduce the rescaled variable x = n/N and set
N�±(x) = ω±(Nx). Equation (2.1) can then be rewritten in
the form

dp(x,t)

dt
= N{�+(x − 1/N )p(x − 1/N,t)

+�−(x + 1/N)p(x + 1/N,t)

− [�+(x) + �−(x)]p(x,t)}. (2.4)

Treating x, 0 � x � 1, as a continuous variable and Taylor
expanding terms on the right-hand side to second order in
N−1 leads to the FP equation

∂p(x,t)

∂t
= − ∂

∂x
[A(x)p(x,t)] + 1

2N

∂2

∂x2
[B(x)p(x,t)],

(2.5)

with

A(x) = �+(x) − �−(x), B(x) = �+(x) + �−(x). (2.6)

The FP equation takes the form of a conservation equation

∂p

∂t
= −∂J

∂x
, (2.7)

where J (x,t) is the probability flux,

J (x,t) = − 1

2N

∂

∂x
[B(x)p(x,t)] + A(x)p(x,t). (2.8)

The FP equation is supplemented by the no-flux or reflecting
boundary conditions at the ends x = 0,1 and a normalization
condition,

J (0,t) = J (1,t) = 0,

∫ 1

0
p(x,t)dx = 1. (2.9)

The FP equation has a unique steady-state solution obtained by
setting J (x,t) = 0 for all 0 � x � 1. The resulting first-order
ODE can be solved to give a steady–state probability density
of the form

PFP(x) = N e−N�(x)

B(x)
, (2.10)

with the so-called quasipotential

�(x) ≡ −2
∫ x A(x ′)

B(x ′)
dx ′ = −2

∫ x �+(x ′) − �−(x ′)
�+(x ′) + �−(x ′)

dx ′.

(2.11)

Here N is a normalization factor.
It can be shown that in the large-N limit, the steady-state

density of the full master Eq. (2.1) is identical in form to
(3.15) but with a different quasipotential. As highlighted in the
Introduction, one method for constructing the quasipotential
of a chemical master equation is to use a WKB approximation
of the (quasi)stationary probability density [16–21]. Substi-
tuting the stationary solution Pn = φε(n/N ) into (2.1) with
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ε = 1/N 
 1 and x = n/N treated as a continuous variable,
we have

0 = �+(x − 1/N)φε(x − 1/N )

+�−(x + 1/N)φε(x + 1/N )

− [�+(x) + �−(x)]φε(x). (2.12)

A WKB solution takes the form

φε(x) ∼ K(x; ε)e−�(x)/ε, (2.13)

with K(x; ε) ∼ ∑∞
m=0 εmKm(x). Substituting Eq. (2.13) into

Eq. (2.12), Taylor expanding with respect to ε, and collecting
the O(1) terms gives

�+(x)(e�′(x) − 1) + �−(x)(e−�′(x) − 1) = 0, (2.14)

where �′ = d�/dx. Solving this quadratic equation in e�′

shows that there is a unique nontrivial solution

� =
∫ x

ln
�−(y)

�+(y)
dy. (2.15)

The other solution is �(x) = const, which is associated with
solutions of the corresponding deterministic dynamics.

Equation (2.14) has the form of a stationary Hamilton-
Jacobi equation H (x,�′(x)) = 0 for �, with Hamiltonian

H (x,p) =
∑
r=±

�r (x)[erp − 1]. (2.16)

This suggests a corresponding classical mechanical interpre-
tation, in which H determines the motion of a particle with
position x and conjugate momentum p. A trajectory of the
particle is given by the solution of Hamilton’s equations

ẋ = ∂H

∂p
=

∑
r=±1

r�r (x)erp, (2.17)

ṗ = −∂H

∂x
=

∑
r=±1

∂�r

∂x
(x)[1 − erp]. (2.18)

Introducing the Lagrangian

L(x,ẋ) = p · ẋ − H (x,p), (2.19)

it follows that �(x) with �(x̄) = 0 corresponds to the classical
action evaluated along the least-action trajectory from x̄ to x:

�(x) = inf
x(−∞)=x̄,x(T )=x

∫ T

−∞
L(x,ẋ)dt. (2.20)

(The lower limit is taken to be at t = −∞, since we are
interested in the steady-state solution, and thus x̄ corresponds
to a stable fixed point of the deterministic system.) Since
p = �′ everywhere along this path, we have

�(x) =
∫ x

x̄

p(x ′)dx ′, (2.21)

with the integral taken along the trajectory. It follows that
the leading-order term in the WKB approximation is deter-
mined by finding zero-energy solutions p = p(x) such that
H (x,p(x)) = 0.

An important issue is how to physically interpret the least-
action trajectory obtained from the WKB approximation in

terms of the underlying stochastic process. It turns out that the
least-action path is the most probable (optimal) path from x̄

to x. This can be established rigorously using large deviation
theory [13,15]. An alternative approach is to construct a Doi-
Peliti path-integral representation of solutions to the master
equation [22–24], which can then be used to derive a least-
action principle [18,19]. One major application of the theory of
large fluctuations is the study of rare events such as the escape
from a metastable state in the weak-noise limit. For example,
suppose that the deterministic Eq. (2.3) exhibits bistability;
that is, there exists a pair of stable fixed points at x = x±
separated by an unstable fixed point at x = x0. The mean first
passage time (MFPT) to escape from the fixed point at x−
can be calculated by imposing an absorbing boundary at x0,
expressing the resulting quasistationary solution in terms of the
WKB approximation (including higher-order terms) and then
matching the WKB solution with an appropriate inner solution
in a neighborhood of the point x = x0. This is necessary since
the WKB solution does not satisfy the absorbing boundary
condition at the point x0. It turns out that the MFPT takes the
general Arrhenius form [16,18,19,28,29]

τ ∼ 
(x0,x−)√|�′′(x0)|�′′(x−)
eN[�(x0)−�(x−)], (2.22)

where 
 is an appropriate prefactor and �(x) is the previously
calculated quasipotential. Moreover, �(x0) − �(x−) is the
value of the action along the optimal path from x− to x0.
A similar expression for τ is obtained using the diffusion ap-
proximation, except that �(x) is replaced by the quasipotential
�(x) and there is a different prefactor. Since �(x) �= �(x)
and N is large, it follows that the diffusion approximation
generates exponentially large errors in the MFPT to escape
from a metastable state.

The physical interpretation of the least-action trajectories
becomes crucial when solving escape problems in higher
dimensions, since a metastable state is now surrounded by a
nontrivial boundary (rather than a single point) and one needs
to determine the relative weighting of optimal paths crossing
different points on the boundary; see Fig. 1. However, care
must be taken in higher dimensions, since it is possible there is
no solution to the variational problem, that is, a quasipotential

Ω

∂Ω

separatrix

xs

Ω

∂Ω

xs

(a) (b)

FIG. 1. (a) Deterministic trajectories of a multistable dynamical
system. The subset � is contained within the basin of attraction of
a fixed point xs . The boundary of the basin of attraction consists of
separatrices, which are also solution trajectories. Paths that start in a
neighborhood of a separatrix are attracted by different fixed points,
depending on whether they begin on the left or right of the separatrix.
(b) Random trajectories of the stochastic system. Escape from the
domain � occurs when a random trajectory hits the boundary ∂�.
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may not exist. Nevertheless, the WKB method has been applied
successfully to master equations in a wide range of applications
in biophysics [19,28–30] and population biology [31–33].

III. ONE-DIMENSIONAL STOCHASTIC HYBRID SYSTEM

Let us now turn to a one-dimensional stochastic hybrid
system evolving according to the equation

dx

dt
= 1

τx

vn(x), (3.1)

where x ∈ R is a continuous variable, n = 0, . . . ,K − 1 is a
discrete internal state variable, and the latter evolves according
to a jump Markov process n′ → n with transition rates
Wnn′ (x)/τn. (For simplicity, we restrict ourselves to a single
continuous variable. It is also possible to have a set of discrete
variables, but one can always relabel the internal states so that
they are effectively indexed by a single integer.) The jump
propagator Wnn′ (x)dt/τn is the probability that the system at
x switches from the discrete internal state n′ at time t to the
state n at time t + dt . The resulting stochastic process is an
example of a stochastic hybrid system based on a piecewise
deterministic process. That is, the transition rates generally
depend on x, with the latter coupled to the associated jump
Markov process according to Eq. (3.1), which is only defined
between jumps, during which x(t) evolves deterministically.
Denote the random state of the full model (3.1) at time t

by [X(t),N (t)], and introduce the corresponding probability
density,

pn(x,t)dx = Prob{X(t) ∈ (x,x + dx),N (t) = n}, (3.2)

given an initial state x(0) = x0,n(0) = n0. The probabil-
ity density evolves according to the differential Chapman-
Kolmogorov (CK) equation (dropping the explicit dependence
on initial conditions)

∂p

∂t
+ 1

τx

∂[vn(x)pn(x,t)]

∂x

= 1

τn

K−1∑
n′=0

[Wnn′(x)pn′ (x,t) − Wn′n(x)pn(x,t)]. (3.3)

We have introduced two time scales in the system, a relaxation
time scale τx for the x dynamics and a transition time scale τn

for the jump process.
In many of the listed biophysical applications, the kinetics

associated with the jump process are much faster than the
relaxation dynamics of x, that is, τn 
 τx . Let us fix the time
units by setting τx = 1 and introduce the small parameter ε =
τn/τx . We can then rewrite (5.6) in the more compact form

∂p

∂t
= −∂[vn(x)pn(x,t)]

∂x
+ 1

ε

K−1∑
n′=0

Ann′ (x)pn′(x,t), (3.4)

with

Ann′(x) = Wnn′ (x) −
K−1∑
m=0

Wmn(x)δn′,n.

In the limit ε → 0, Eq. (3.1) reduces to the deterministic or
mean-field equation

dx

dt
= V(x) ≡

K−1∑
n=0

vn(x)ρn(x), (3.5)

where ρn(x) is the unique steady-state distribution satisfying∑
m∈I Anm(x)ρm(x) = 0. We are assuming that for fixed x,

the matrix An,m(x) is irreducible (which means that there is
a nonzero probability of transitioning, possibly in more than
one step, from any state to any other state in the jump Markov
process), and has a simple zero eigenvalue with corresponding
left eigenvector 1 whose components are all unity, that is,∑

n Anm(x) = 0 for all m. (The latter follows immediately
from the definition of A; we are assuming that there are no other
eigenvectors with a zero eigenvalue.) The Perron-Frobenius
theorem [34] then ensures that all other eigenvalues are
negative and the continuous-time Markov process for fixed
x,

dpn(x,t)

dt
= 1

ε

K−1∑
m=0

Anm(x)pm(x,t),

has a globally attracting steady state ρn(x) such that pn(x,t) →
ρn(x) as t → ∞.

A. Quasi-steady-state diffusion approximation

Now suppose that the system operates in the regime
0 < ε 
 1, for which there are typically a large number
of transitions between different internal states n, while the
variable x hardly changes at all. This suggests that the system
rapidly converges to the (quasi) steady state ρn(x), which
will then be perturbed as x slowly evolves. The resulting
perturbations can be analyzed using a quasi-steady-state
(QSS) diffusion or adiabatic approximation, in which the
CK Eq. (3.4) is approximated by a Fokker-Planck (FP)
equation. The QSS approximation was first developed from
a probabilistic perspective by Papanicolaou [35]; see also
[26]. It has subsequently been applied to a wide range
of problems in biology, including cell movement [36,37],
wavelike behavior in models of slow axonal transport [38,39],
molecular motor-based models of random intermittent search
[40], and stochastic neural networks [12]. The QSS reduction
proceeds in the following steps.

(1) Decompose the probability density as

pn(x,t) = C(x,t)ρn(x) + εwn(x,t), (3.6)

where
∑

n pn(x,t) = C(x,t) and
∑

n wn(x,t) = 0. Substitut-
ing into (3.4) yields

∂C

∂t
ρn(x) + ε

∂wn(x,t)

∂t

= −vn

∂[C(x,t)ρn(x) + εwn(x,t)]

∂x

+ 1

ε

K−1∑
n′=0

Ann′ (x)[C(x,t)ρn′ (x) + εwn′(x,t)].
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Summing both sides with respect to n then gives

∂C

∂t
= −∂V (x)C(x,t)

∂x
− ε

∑
n

vn

∂wn(x,t)

∂x
, (3.7)

where V (x) = ∑
m vmρm(x).

(2) Using the equation for C and the fact that Aρ = 0, we
have

ε
∂wn

∂t
=
∑
n′

Ann′(x)wn′ (x,,t)

− vn

∂ρ(x,n)C

∂x
+ ρ(x,n)

∂V (x)C

∂x

− ε
∑
m

[vnδm,n − ρn(x)vm]
∂wm(x,t)

∂x
.

(3) Introduce the asymptotic expansion

w ∼ w(0) + εw(1) + ε2w(0) + · · ·
and collect O(1) terms:∑

n′
Ann′ (x)w(0)

n′ (x,t) = vn

∂ρn(x)C(x,t)

∂x

− ρn(x)
∂V (x)C(x,t)

∂x
. (3.8)

The Fredholm alternative theorem show that this has a solution,
which is unique on imposing the condition

∑
n w(0)

n (x,t) = 0.
(4) Combining Eqs. (3.8) and (3.7) shows that C evolves

according to the FP equation

∂C

∂t
= − ∂

∂x
(V C) + ε

∂

∂x

(
D

∂C

∂x

)
, (3.9)

with the drift V and diffusion coefficient D given by

V (x) =
K−1∑
m=0

vm(x)ρm(x), D(x) =
K−1∑
n=0

Zn(x)vn(x), (3.10)

and Z(x,n) is the unique solution to∑
m

Anm(x)Zm(x) = [V (x) − vn(x)]ρn(x) (3.11)

with
∑

m Zm(x) = 0. Note that we have written the FP Eq. (3.9)
in the Ito form—differences between Ito and Stratonovich
involve O(ε) corrections to the drift term, which we ignore at
the lowest level of approximation.

The FP Eq. (3.9) takes the form of a conservation equation

∂C

∂t
= −∂J

∂x
, (3.12)

where J (x,t) is the probability flux,

J (x,t) = −εD(x)
∂C(x,t)

∂x
+ V (x)C(x,t). (3.13)

Suppose that the FP equation is restricted to the domain [xa,xb]
with xa < x− < x+ < xb, and impose the no-flux or reflecting
boundary conditions at the ends xa,xb:

J (xa,t) = J (xb,t) = 0. (3.14)

The FP equation then has a unique steady-state solution
obtained by setting J (x,t) = 0 for all xa � x � xb. The

resulting first-order ODE can be solved to give a steady-state
probability density of the form

C(x) = N e−�FP(x)/ε, (3.15)

with the quasipotential

�FP(x) = −
∫ x V (y)

D(y)
dy. (3.16)

Here N is a normalization factor such that
∫ xb

xa
C(x)dx = 1.

B. WKB approximation

The FP equation captures the Gaussian-like fluctuations
within the basin of attraction of a fixed point of the mean-field
Eq. (3.5). On the other hand, as in the case of chemical master
equations (see Sec. II), the diffusion approximation for small
ε can break down when considering rare transitions between
metastable states due to the fact that it generates a different
quasipotential to the one obtained using a WKB approximation
[3,6,11]. The latter takes the form

φε
n(x) ∼ Rn(x) exp

(
−�(x)

ε

)
, (3.17)

where �(x) is the quasipotential. Substituting into the time-
independent version of Eq. (3.4) yields

K−1∑
m=0

[Anm(x) + �′(x)δn,mvm(x)]Rm(x)

= ε
dvn(x)Rn(x)

dx
+ λ0Rn(x), (3.18)

where �′ = d�/dx. Introducing the asymptotic expansions
R ∼ R(0) + εR(1) and � ∼ �0 + ε�1, and using the fact that
λ0 = O(e−L/ε), the leading-order equation is

K−1∑
m=0

Anm(x)R(0)
m (x) = −�′

0(x)vn(x)R(0)
n (x). (3.19)

[Note that since vn(x) is nonzero almost everywhere for x ∈ �,
we can identify −�′

0 and R(0) as an eigenpair of the matrix
operator Ânm(x) = Anm(x)/vn(x) for fixed x.] Positivity of the
probability density φε requires positivity of the corresponding
solution R(0). One positive solution is R(0) = ρ, for which
�′

0 = 0. However, such a solution reflects the quasiequilibrium
state around the fixed point x− and is thus not the correct
WKB solution. It can be proven that if vn(x) for fixed x ∈ �

changes sign as n increases from zero, then there exists one
other positive eigenfunction R(0), which can be identified as
the appropriate WKB solution [11].

C. Higher-dimensional stochastic hybrid systems

Recently, the above QSS and WKB constructions have
been extended to a number of higher-dimensional systems
(more than one piecewise deterministic variable), including
a stochastic conductance-based model [6] and a stochas-
tic hybrid neural network [12]. In the former case, the
continuous variables are membrane voltage and a recovery
variable, whereas the single discrete variable represents the
number of open sodium ion channels. On the other hand,
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the stochastic neural network model consists of a set of
α = 1, . . . ,M neuronal populations, and the state of each
population is described in terms of two stochastic variables
Xα(t) and Nα(t). The continuous variables Xα(t) represent
population-averaged synaptic currents, which evolve accord-
ing to piecewise-deterministic dynamics describing synapses
driven by population spiking activity Nα(t). The discrete
variables Nα(t) satisfy a continuous-time Markov process
whose transition rates depend on the synaptic variables (see
Sec. V). For both models, we used WKB to construct an
effective Hamiltonian, and assumed that the solutions to the
resulting Hamilton’s equations generated optimal stochastic
paths (paths of maximum likelihood) in the multidimensional
phase space. We thus obtained nontrivial results concerning
the geometric nature of the paths of escape from a metastable
state. Although our conclusions based on WKB appeared
consistent with direct Monte Carlo simulations of the full
stochastic models, we did not have a variational principle to
prove that these paths were indeed optimal paths. Therefore,
we now derive such a variational principle for stochastic hybrid
systems using a path-integral formulation. The latter differs
considerably from the Doi-Peliti path integral for a master

equation. We then apply the path-integral formulation to the
particular example of a stochastic hybrid neural network in
Sec. V—the advantage of this model is that the transition
rates are linear in the discrete variables so that various quan-
tities such as the quasipotential can be calculated explicitly.
Elsewhere we will consider applications to more complicated
models such as stochastic ion channels with nonlinear tran-
sition rates, where the construction of a Hamiltonian is less
straightforward.

IV. PATH-INTEGRAL FORMULATION

For ease of notation, we will derive the path-integral
formulation for a one-dimensional stochastic hybrid system
evolving according to the CK equation (3.4); the generalization
to higher dimensions is then straightforward, at least formally.
We first discretize time by dividing a given interval [0,T ]
into N equal subintervals of size �t such that T = N�t and
set xj = x(j�t),nj = n(j�t). The conditional probability
density for x1, . . . ,xN given x0 and a particular realization
of the stochastic discrete variables nj ,j = 0, . . . ,N − 1, is

P (x1, . . . ,xN |x0,n0, . . . ,nN−1) =
N−1∏
j=0

δ(xj+1 − xj − vnj
(xj )�t).

Inserting the Fourier representation of the Dirac δ function gives

P (x1, . . . ,xN |x0,n0,n1, . . . nN−1) =
N−1∏
j=0

[∫ ∞

−∞
e
−ipj [xj+1−xj −vnj

(xj )�t] dpj

2π

]
≡

N−1∏
j=0

[∫ ∞

−∞
Hnj

(xj+1,xj ,pj )
dpj

2π

]
.

On averaging with respect to the intermediate states nj ,j = 1,N − 1, we have

P (x1, . . . ,xN |x0,n0) =
⎡⎣N−1∏

j=0

∫ ∞

−∞

dpj

2π

⎤⎦ ∑
n1,...,nN−1

N−1∏
j=0

Tnj+1,nj
(xj )Hnj

(xj+1,xj ,pj ),

where

Tnj+1,nj
(xj ) ∼ Anj+1,nj

(xj )
�t

ε
+ δnj+1,nj

(
1 −

∑
m

Am,nj
(xj )

�t

ε

)
+ o(�t) =

(
δnj+1,nj

+ Anj+1,nj
(xj )

�t

ε

)
.

Consider the eigenvalue equation∑
m

[Anm(x) + qδn,mvm(x)]R(s)
m (x,q) = λs(x,q)R(s)

n (x,q), (4.1)

and let ξ (s)
m be the adjoint eigenvector. Inserting multiple copies of the identity∑

s

ξ (s)
m (x,q)R(s)

n (x,q) = δm,n,

for all x,q, with q = qj at the j th time step, we have

Tnj+1nj
(xj )Hnj

(xj+1,xj ,pj ) ∼
∑
sj ,m

R
(sj )
nj+1 (xj ,qj )ξ

(sj )
m (xj ,qj )

(
δnj ,m + Amnj

(xj )
�t

ε

)
Hnj

(xj+1,xj ,pj )

=
∑
sj

(
1 + [λsj

(xj ,qj ) − qjvnj
(xj )]

�t

ε

)
R

(sj )
nj+1 (xj ,qj )ξ (s)

nj
(xj ,qj )Hnj

(xj+1,xj ,pj )

=
∑
sj

(
1 + [λsj

(xj ,qj ) − qjvnj
(xj )]

�t

ε

)
e
−ipj [xj+1−xj −vnj

(xj )�t]
R

(sj )
nj+1 (xj ,qj )ξ

(sj )
nj

(xj ,qj )
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∼
∑
sj

exp

([
λsj

(xj ,qj ) − qjvnj
(xj )

]�t

ε
− ipj [xj+1 − xj − vnj

(xj )�t]

)
R

(sj )
nj+1 (xj ,qj )ξ

(sj )
nj

(xj ,qj )

=
∑
sj

exp

([
λsj

(xj ,qj ) − qj

xj+1 − xj

�t

]
�t

ε

)
exp

([
iεpjvnj

(xj ) − qjvnj
(xj )

]�t

ε

)
R

(sj )
nj+1 (xj ,qj )ξ

(sj )
nj

(xj ,qj ), (4.2)

to leading order in O(�x,�t). Let us now introduce the probability density

P (xN,nN |x0,n0) =
N−1∏
j=1

∫ ∞

−∞
dxjP (x1, . . . ,xN ,nN |x0,n0). (4.3)

Substituting for P using Eqs. (4.1) and (4.2) leads to

P (xN,nN |x0,n0) =
⎡⎣N−1∏

j=1

∫ ∞

−∞
dxj

⎤⎦⎡⎣N−1∏
j=0

∫ ∞

−∞

dpj

2π

⎤⎦ ∑
n1,...,nN−1

∑
s0,...,sN−1

⎡⎣N−1∏
j=0

R
(sj )
nj+1 (xj ,qj )ξ

(sj )
nj

(xj ,qj )

⎤⎦
× exp

⎛⎝∑
j

[
λsj

(xj ,qj ) − qj

xj+1 − xj

�t

]
�t

ε

⎞⎠ exp

(
[iεpjvnj

(xj ) − qjvnj
(xj )]

�t

ε

)
. (4.4)

By inserting the eigenfunction products and using the
Fourier representation of the Dirac δ function, we have
introduced sums over the discrete labels sj and new phase
variables pj . However, this representation allows us to derive a
large deviation principle in the limit ε → 0. First, note that the
discretized path integral is independent of the qj . Therefore,
we are free to set qj = iεpj for all j , thus eliminating the final
exponential factor. This choice means that we can perform the
summations with respect to the intermediate discrete states nj

using the orthogonality relation

∑
n

R(s)
n (xj ,qj−1)ξ (s ′)

n (xj+1,qj ) = δs,s ′ + O(�x,�q).

We thus obtain the result that sj = s for all j , which means
that we can then take the continuum limit of Eq. (5.31) to
obtain the following path integral from x(0) = x0 to x(τ ) = x

[after performing the change of variables iεpj → pj (complex
contour deformation)]:

P (x,n,τ |x0,n0,0)

=
∑

s

∫ x(τ )=x

x(0)=x0

exp

(
−1

ε

∫ τ

0
[pẋ − λs(x,p)]dt

)
×R(s)

n (x,p(τ ))ξ (s)
n0

(x0,p(0))D[p]D[x]. (4.5)

Applying the Perron-Frobenius theorem [34] to the linear
operator on the left-hand side of Eq. (4.1) shows that there
exists a real, simple Perron eigenvalue labeled by s = 0, say,
such that λ0 > Re(λs) for all s > 0. It follows that, in the limit
ε → 0, the largest contributions to the path integral (4.5) and
the most likely paths in phase space (x,p) are obtained by
restricting the sum over s to s = 0. Also note that the factor
R(0)

n (x,p(τ ))ξ (0)
n0

(x0,p(0)) in Eq. (4.5) essentially projects on
to stochastic trajectories that start in the discrete state n0 and
terminate in the discrete state n. We will ignore any restrictions
on these discrete states and simply consider the probability

density [for fixed x(0) = x0]

P (x,t) =
∫ x(τ )=x

x(0)=x0

D[x]D[p]e−S[x,p]/ε, (4.6)

with the action

S[x,p] =
∫ τ

0
[pẋ − λ0(x,p)] dt. (4.7)

We now have a classical variational problem, in which the
Perron eigenvalue λ0(x,p) is identified as a Hamiltonian and
the most probable path is the solution to Hamilton’s equations

ẋ = ∂H
∂p

, ṗ = −∂H
∂x

, H(x,p) = λ0(x,p). (4.8)

One could also formulate the least action principle in terms
of the corresponding Lagrangian, through the Legendre trans-
form of λ0(x,p):

L[x,ẋ] ≡ pẋ − λ0(x,p), (4.9)

with p = p(x,ẋ) given implicitly by the equation ẋ = ∂H/∂p.
Hamilton’s equations are equivalent to the Euler-Lagrange
equations for L.

Now suppose that we have a higher-dimensional stochastic
hybrid system with M continuous variables xα , α = 1, . . . M ,
and a single discrete variable n = 0, . . . ,K − 1. (It is straight-
forward to extend to the case of several discrete variables as
occurs in the stochastic neural network model of Sec. V.) The
multivariate CK equation takes the form

∂p

∂t
= −

M∑
α=1

∂

∂xα

[vα(x,n)p(x,n,t)]

+ 1

ε

∑
m

A(n,m; x)p(x,m,t). (4.10)
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The drift “velocities” vα(x,n) for fixed n represent the
piecewise-deterministic dynamics according to

τ
duα

dt
= vα(x,n), α = 1, . . . ,M, (4.11)

Following along identical lines to the one-dimensional case,
we can derive a path-integral representation of the solution to
Eq. (4.10):

p(x,n,τ |x0,n0,0)

=
∫ x(τ )=x

x(0)=x0

D[p]D[x] exp

(
−1

ε
S[x,p]

)
×R(0)(x,p(τ ),n)ξ (0)(x0,p(0),n0), (4.12)

with action

S[x,p] =
∫ τ

0

[
M∑

α=1

pαẋα − λ0(x,p)

]
dt. (4.13)

Here λ0 is the Perron eigenvalue of the following linear
operator equation [cf. Eq. (4.1)]:∑

m

A(n,m; x)R(0)(x,p,m)

= [λ0(x,p) −
M∑

α=1

pαvα(x,n)]R(0)(x,p,n), (4.14)

and ξ (0) is the adjoint eigenvector. Suppose that the underlying
deterministic system (4.11) has a unique stable fixed point
x∗. The quasipotential of the corresponding stationary density
can then be obtained by finding zero-energy solutions of
Hamilton’s equations

ẋ = ∇pH(x,p), ṗ = −∇xH(x,p), (4.15)

with x = (x,y),p = (px,py). If such a solution can be found,
then we can construct a quasipotential � by identifying it as
the action along a zero-energy solution curve x(t). That is,

d�

dt
≡

M∑
α=1

∂�

∂xα

dxα

dt
=

M∑
α=1

pα

dxα

dt
, (4.16)

with pα = ∂�/∂xα .

V. APPLICATION TO A STOCHASTIC HYBRID
NEURAL NETWORK

In order to illustrate the path-integral method, we will
consider a stochastic hybrid neural network model that
generalizes the so-called neural master equation [32,41–43] by
incorporating synaptic dynamics. (A detailed derivation of the
model can be found in [12].) The master equation formulation
assumes that noise in neural networks arises intrinsically as
a collective population effect, and describes the stochastic
dynamics as a continuous-time Markov process. Neurons are
partitioned into a set of M local homogeneous populations
labeled α = 1, . . . ,M , each consisting of K neurons. The state
of each population at time t is specified by the number Nα(t) of
active neurons in a sliding window (t,t + �t], and transition
rates between the discrete states are chosen so that standard
rate-based models are obtained in the mean-field limit, where

statistical correlations can be ignored. There are two versions
of the neural master equation, which can be distinguished
by the size of the sliding window width �t . (Note that the
stochastic models are keeping track of changes in population
activity.) One version assumes that each population operates
close to an asynchronous state for large K [32,42], so that
one-step changes in population activity occur relatively slowly.
Hence one can set �t = 1 and take K to be large but finite.
The other version of the neural master equation assumes
that population activity is approximately characterized by
a Poisson process [41,43]. In order to maintain a one-step
jump Markov process, it is necessary to take the limits
�t → 0,K → ∞ such that K�t = 1. Thus one considers
the number of active neurons in an infinite background sea
of inactive neurons, which is reasonable if the networks are in
low activity states.

One way to link the two versions of the neural master
equation is to extend the Doi-Peliti path-integral representation
of chemical master equations [22–24] to the neural case; the
difference between the two versions then reduces to a different
choice of scaling of the underlying action functional [42].
Buice et al. [41,43] used diagrammatic perturbations methods
(Feynman graphs) to generate a truncated moment hierarchy
based on factorial moments, and thus determined corrections
to mean-field theory involving coupling to two-point and
higher-order cumulants. They also used renormalization-group
methods to derive scaling laws for statistical correlations
close to criticality, that is, close to a bifurcation point of
the underlying deterministic model [41]. On the other hand,
Bressloff [32,42] showed how the path-integral representation
of the master equation can be used to investigate large
deviations or rare event statistics underlying escape from
the basin of attraction of a metastable state, following along
analogous lines to previous work on large deviations in
chemical master equations [18,19,29].

One limitation of both versions of the neural master
equation is that they neglect the dynamics of synaptic currents.
The latter could be particularly significant if the time scale τ

of synaptic dynamics is smaller than the window width �t .
Therefore, we recently extended the Buice et al. neural master
equation by formulating the network population dynamics in
terms of the following stochastic hybrid system [12]. Consider
a set of M homogeneous populations labeled α = 1, . . . ,M ,
with K neurons in each population. [A straightforward
generalization would be for each population to consist of O(K)
neurons.] The output activity of each population is taken to be
a discrete stochastic variable Aα(t) given by

Aα(t) = Nα(t)

K�t
, (5.1)

where Nα(t) is the number of neurons in the αth population
that fired in the time interval [t − �t,t], and �t is the width
of a sliding window that counts spikes. The discrete stochastic
variables Nα(t) are taken to evolve according to a one-step
jump Markov process:

Nα(t)
ω+/τa→ Nα(t) + 1, Nα(t)

ω−/τa→ Nα(t) − 1, (5.2)

with corresponding transition rates

ω+ = K�t F (Xα), ω− = Nα. (5.3)
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Here F is a sigmoid firing rate or gain function

F (x) = F0

1 + e−γ (x−κ)
, (5.4)

where γ,κ correspond to the gain and threshold, respectively,
and Xα(t) is the effective synaptic current into the αth popu-
lation, which evolves (for exponential synapses) according to

τ dXα(t) =
⎡⎣−Xα(t) + 1

K�t

M∑
β=1

wαβNβ(t)

⎤⎦ dt. (5.5)

In the following, we take the thermodynamic limit K → ∞,
�t → 0 such that K�t = 1 is fixed. Our model then reduces
to the Buice et al. [41,43] version of the neural master equation
in the limit τ → 0; see below. The resulting stochastic process
defined by Eqs. (5.1)–(5.5) is clearly an example of a stochastic
hybrid system based on a piecewise deterministic process. That
is, the transition rate ω+ depend on Xα , with the latter itself
coupled to the associated jump Markov according to Eq. (5.5),
which is only defined between jumps, during which Xα(t)
evolves deterministically. It is important to note that the time
constant τa cannot be identified directly with membrane or
synaptic time constants. Instead, it determines the relaxation
rate of a local population to the instantaneous firing rate.

Introduce the probability density

Prob{Xα(t) ∈ (xα,xα + dx),Nα(t) = nα; α = 1, . . . ,M}
= p(x,n,t |x0,n0,0)dx,

with x = (x1, . . . ,xM ) and n = (n1, . . . ,nM ). It follows from
Eqs. (5.1)–(5.5) that the probability density evolves accord-
ing to the differential Chapman-Kolmogorov (CK) equation
(dropping the explicit dependence on initial conditions)

∂p

∂t
+ 1

τ

∑
α

∂[vα(x,n)p(x,n,t)]

∂xα

= 1

τa

∑
α

(
T+1

α − 1
)
[nαp(x,n,t)]

+ 1

τa

∑
α

(
T−1

α − 1
)
[v(xα)p(x,n,t)], (5.6)

with

vα(x,n) = −xα +
∑

β

wαβnβ (5.7)

and T±
α are translation operators: T±1

α f (n) = f (nα±) for any
function f with nα± denoting the configuration with nα

replaced by nα ± 1. Equation (5.6) can be re-expressed in
the more compact form [cf. Eq. (4.10)]

∂p

∂t
= − 1

τ

M∑
α=1

∂

∂xα

[vα(x,n)p(x,n,t)]

+ 1

τa

∑
m

W (n,m; x)p(x,m,t). (5.8)

The drift velocities vα(x,n) for fixed n represent the piecewise-
deterministic synaptic dynamics according to

τ
dxα

dt
= vα(x,n), α = 1, . . . ,M. (5.9)

The Perron-Frobenius theorem [34] ensures that the
continuous-time Markov process for fixed x,

dp(x,n,t)

dt
= 1

τa

∑
m

W (n,m; x)p(x,m,t),

has a globally attracting steady state ρ(x,n) such that
p(x,n,t) → ρ(x,n) as t → ∞. For the given model, the
steady-state solution ρ(x,n) of Eq. (5.6) can be factorized as
ρ(x,n) = ∏M

β=1 ρ0(xβ,nβ ) with

0 = ∑M
α=1

[∏
β �=α ρ0(xβ,nβ)

]
[J (xα,nα + 1) − J (xα,nα)] ,

where

J (x,n) = nρ0(x,n) − F (x)ρ0(x,n − 1).

Since ρ0(x, − 1) ≡ 0, it follows that J (x,n) = 0 for all n and
x. Hence

ρ0(x,n) = ρ0(x,0)
n∏

m=1

F (x)

m
= ρ0(x,0)

F (x)n

n!
, (5.10)

so that the corresponding normalized density is a Poisson
process with rate F (x):

ρ0(x,n) = e−F (x) F (x)n

n!
. (5.11)

There are two time scales in the CK Eq. (5.8), the synaptic
time constant τ and the time constant τa , which characterize
the relaxation rate of population activity. In the limit τ →
0, Eq. (5.5) reduces to the neural master equation of Buice
et al. [41,43]. First, note that the synaptic variables Xα(t) are
eliminated by setting vα = 0, that is, Xα(t) = ∑

β wαβNβ(t).
This then leads to a pure birth-death process for the discrete
variables Nα(t). That is, let P (n,t) = Prob[N(t) = n] denote
the probability that the network of interacting populations has
configuration n = (n1,n2, . . . ,nM ) at time t,t > 0, given some
initial distribution P (n,0). The probability distribution then
evolves according to the birth-death master equation [41–43]

dP (n,t)

dt
=

∑
α

{
(Tα − 1)

[
�−

α (n)P (n,t)
]

+ (
T−1

α − 1
)[

�+
α (n)P (n,t)

]}
, (5.12)

where

�+
α (n) = 1

τa

F

⎛⎝∑
β

wαβnβ

⎞⎠ , �−
α (n) = nα

τa

. (5.13)

It can be shown that the network operates in a Poisson-like
regime in which the rates of the Poisson process are stochastic
variables whose means evolve according to the activity-based
mean-field equation of Wilson and Cowan [44]

τα

daα

dt
= −aα(t) + F

⎛⎝∑
β

wαβaβ(t)

⎞⎠ . (5.14)
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On the other hand, if τa → 0 for fixed τ , then we obtain
deterministic voltage or current-based mean-field equations

τ
dxα

dt
=

∑
n

vα(x(t),n)ρ(x(t),n)

= −xα(t) +
M∑

β=1

wαβ

∑
n

nβρ(x(t),n). (5.15)

Since ρ(x,n) is given by a product of independent Poisson
processes with rates F (xα), consistent with the operating
regime of the Buice et al. master equation [41,43], it follows
that

〈nβ〉 = F (xβ), (5.16)

and Eq. (5.15) reduces to the standard voltage or current-based
activity equation of Amari [45]

τ
dxα

dt
= −xα(t) +

M∑
β=1

wαβF (xβ). (5.17)

Note that the limit τa → 0 is analogous to the slow synapse
approximation used by Ermentrout [46] to reduce determin-
istic conductance-based neuron models to voltage-based rate
models. Here we are interested in the regime 0 < τa/τ ≡ ε 

1, for which there are typically a large number of transitions
between different firing states n, while the synaptic currents
x hardly change at all. This suggests that the system rapidly
converges to the (quasi) steady state ρ(x,n), which will then
be perturbed as x slowly evolves. The resulting perturbations
can be analyzed using a quasi-steady-state (QSS) diffusion
approximation along the lines of Sec. IIIA, in which the
CK Eq. (5.8) is approximated by a Fokker-Planck equation
[12]. However, as we have already highlighted, the diffusion
approximation can break down when considering an escape
problem in the weak noise (small ε) limit, It is then necessary
to use some form of large deviation theory such as the
path-integral formulation of Sec. IV. We will illustrate these
issues by considering bistability in a one-population and then
a multipopulation neural network.

A. Quasipotential in one-population model

In order to illustrate the limitations of the diffusion approx-
imation, consider the simple case of a single recurrent popu-
lation (M = 1) and set x1 = x,n1 = n,p(x1,n1,t) = pn(x,t).
The CK equation for pn takes the form

∂pn

∂t
+ ∂[vn(x)pn(x,t)]

∂x
= 1

ε

∑
m

Anm(x)pm(x,t), (5.18)

with drift term

vn(x) = −x + wn, (5.19)

and tridiagonal transition matrix

An,n−1(x) = F (x), Ann(x) = −F (x) − n,
(5.20)

An,n+1(x) = n + 1.

Following the discussion at the end of Sec. II, we expect the
finite-time behavior of the stochastic population for ε 
 1

0 0.5 1 1.5 2 2.5 3

Ψ(x)

x
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κ = 1.0

x-
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FIG. 2. Bistable potential � for the deterministic network sat-
isfying ẋ = −x + F (x) = −d�/dx, with F given by the sigmoid
(5.4) for γ = 4, κ = 1.0, and F0 = 2. There exist two stable fixed
points x± separated by an unstable fixed point x0. As the threshold
κ is reduced the network switches to a monostable regime via a
saddle-node bifurcation.

to be characterized by small perturbations about the stable
steady state ρn(x) of the underlying jump Markov process,
with x treated as a constant over time scales comparable to
the relaxation time of the birth-death process. The steady-state
density is given by the Poisson distribution (5.11) and the
mean-field equation obtained in the ε → 0 limit is

dx

dt
=

∞∑
n=0

vn(x)ρn(x) = −x + wF (x) ≡ −d�

dx
. (5.21)

The sigmoid function F (x) given by Eq. (5.4) is a bounded,
monotonically increasing function of x with F (x) → F0 as
x → ∞ and F (x) → 0 as x → −∞. Moreover, F ′(x) =
γF0/{4 cosh2[γ (x − κ)/2]} so that F (x) has a maximum
slope at x = κ given by γF0/4. It follows that the function
−x + wF (x) only has one zero if wγF0 < 4 and this corre-
sponds to a stable fixed point. On the other hand, if wγF0 > 4
then, for a range of values of the threshold κ , [κ1,κ2], there
exists a pair of stable fixed points x± separated by an unstable
fixed point x0 (bistability). A stable-unstable pair vanishes via
a saddle-node bifurcation at κ = κ1 and κ = κ2. This can also
be seen graphically by plotting the potential function �(x),
whose minima and maxima correspond to stable and unstable
fixed points of the mean-field equation. An example of the
bistable case is shown in Fig. 2.

Let us first calculate the quasipotential using the QSS
diffusion approximation of Sec. IIIA. Substituting Eqs. (5.11),
(5.19), and (5.20) into Eqs. (3.10) and (3.11), we find that [47]

Zn(x) = w[n − F (x)]ρn(x),

so that

D(x) = w
∑

n

[n − F (x)](−x + wn)ρn(x)

= w{w〈n2〉 − [x + wF (x)]〈n〉 + xF (x)}
= w{w[F (x) + F (x)2] − [x + wF (x)]F (x) + xF (x)}
= w2F (x). (5.22)
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We have used the fact that the mean and variance of the Poisson
distribution (5.11) are both F (x). It follows from Eq. (3.16)
that the FP quasipotential is

�FP(x) = −
∫ x V (y)

D(y)
dy = −

∫ u −y + wF (y)

w2F (y)
dy. (5.23)

As we now show, this differs significantly from the more
accurate estimate of the quasipotential obtained from the
path-integral formulation of Sec. IV. The latter shows there
exists a Hamiltonian H that can be identified with the Perron
eigenvalue λ0(x,p), which is the unique nonzero solution of
the eigenvalue equation∑

m

[Anm(x) + qδn,mvm(x)]R(0)
m (x,q) = λ0(x,q)R(0)

n (x,q),

(5.24)

for which R(0)
n is positive for all n. Substituting the explicit

expressions for vn(x) and A, we have R(0)
n (x,p) = ψn(x,p),

where

F (x)ψn−1(x,p) − [λ0 + F (x) + n]ψn(x,p)

+ (n + 1)ψn+1(x,p)

= −p(−x + wn)ψn(x,p).

Since the eigenvector associated with the Perron eigenvalue is
positive, we consider the trial solution

ψn(x,p) = �(x,p)n

n!
, (5.25)

which yields the following equation relating � and p:[
F (x)

�
− 1

]
n + � − F (x) − λ0 = −p(−x + wn).

We now collect terms independent of n and linear in n,
respectively, to obtain the pair of equations

p = − 1

w

[
F (x)

�
− 1

]
, � = F (x) + px + λ0.

Eliminating � from these equations gives

H (x,p) ≡ λ0(x,p) = pw
F (x)

1 − wp
− px, (5.26)

where we identify H as the Hamiltonian.
Suppose that the deterministic Eq. (5.21) has a unique stable

fixed point at x∗. The corresponding steady-state density of
the stochastic network is obtained by taking the initial time
t → −∞ and x(−∞) = x∗ in Eq. (4.6). Optimal paths are
then given by zero-energy solutions H (x,p) = 0 of Eq. (5.26).
One such solution is p = 0 for which λ0 corresponds to
the zero Perron eigenvalue of the matrix A. Moreover,

0 1 2 3 4
−0.1

0
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0.6
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0.9

x

quasi-stationary

quasi-steady-state

Φ

FIG. 3. Comparison of the quasipotentials �0(x) and �FP(x)
obtained using the quasistationary approximation and the QSS
diffusion approximation, respectively. Parameter values are chosen
so that deterministic network is bistable: F0 = 2, γ = 4, κ = 1, and
w = 1.15.

R(0)
m (x,0) = ρ(x,n) and ξ (0)

m = 1, since they correspond to the
right and left eigenvectors of the matrix A, and the equation
ẋ = ∂pH reduces to the mean-field Eq. (5.21). There is also
one nontrivial zero-energy solution given by

p = −μ(x) ≡ 1

w

[
1 − wF (x)

x

]
. (5.27)

Finally, evaluating the action along the nontrivial zero-energy
solution determines the quasipotential:

�0(x) = −
∫ x

μ(y)dy = −
∫ x 1

w

[
wF (y)

y
− 1

]
dy.

(5.28)

The quasipotential �0(x) for the network operating in a
bistable regime is plotted in Fig. 3 and compared with the
quasipotential based on the QSS diffusion approximation. It
can be seen that they differ significantly over a wide range
of values of x, thus resulting in exponential errors when
calculating the MFPT to escape from a metastable state. Note
that it is also possible to derive the quasipotential �0 using
a WKB approximation [12], but the latter does not have an
obvious Hamiltonian structure. Hence the use of path integrals
or large deviation theory is crucial in order to obtain the correct
variational principle; this becomes even more significant in the
case of the multipopulation model (see below).

Another useful feature of the path-integral representation
(4.6) is that it provides a direct method for deriving the
Gaussian approximation underlying the QSS reduction of
Sec. III. Performing the rescaling p → ip/ε in the action (4.7)
with λ0 given by Eq. (5.26) gives the path integral

P (x,t) =
∫ x(τ )=x

x(0)=x0

D[x]D[p] exp

(
−
∫ τ

0
ip

[
ẋ + x − wF (x)

1 − iεwp

]
dt

)
. (5.29)

The Gaussian approximation involves Taylor expanding the Lagrangian to first order in ε, which yields a quadratic in p:

P (x,t) =
∫ x(τ )=x

x(0)=x0

D[x]D[p] exp

(∫ τ

0
{ip[ẋ + x − wF (x)] − εp2w2F (x)}dt

)
.
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We can now perform the integration over p either directly or
by returning to the discretized path integral, Taylor expanding
to second order in pj , and then performing the Gaussian
integration with respect to pj before taking the continuum
limit:

P (x,t) =
∫ x(τ )=x

x(0)=x0

D[x] exp

(
−
∫ τ

0

[ẋ + x − wF (x)]2

4εw2F (x)
dt

)
.

This path integral is identical in form to the Onsager-
Machlup path-integral representation [48] of solutions to the
FP equation (3.9) obtained using a QSS reduction, whose
corresponding Langevin equation is

dX = −X + wF (X) +
√

2εD(X)dW (t), (5.30)

with D(x) = w2F (x). Since there is no additional Jacobian
factor in the Onsager-Machlup path integral, it follows that the
Langevin equation is of the Ito form.

B. Variational principle and optimal paths for a
multipopulation model

The path-integral formulation of solutions to the mul-
tipopulation CK equation (5.8) again yields a variational
principle, with an action generated from a Hamiltonian H (x,p)
corresponding to the Perron eigenvalue of the following linear
equation [cf. Eq. (5.24)]:∑

m

W (n,m; x)R(0)(x,p,m)

=
[
λ0(x,p) −

M∑
α=1

pαvα(x,n)

]
R(0)(x,p,n), (5.31)

and ξ (0) is the adjoint eigenvector. Equation (5.31) can be
solved for the Perron eigenvalue using the ansatz

R(0)(x,p,n) =
M∏

α=1

�α(x,p)nα

nα!
. (5.32)

Substituting into Eq. (5.31) and using the explicit expressions
for A and vα , we find that

M∑
α=1

([
F (xα)

�α

− 1

]
nα + �α − F (xα)

)
− λ0

= −
M∑

α=1

pα

⎡⎣−xα +
∑

β

wαβnβ

⎤⎦ . (5.33)

Collecting terms in nα for each α yields

F (xα)

�α

− 1 = −
M∑

β=1

pβwβα, (5.34)

and collecting terms independent of all nα gives

λ0 =
M∑

α=1

[�α − F (xα) − xαpα] . (5.35)

Solving for each �α in terms of p, we have

λ0(x,p) ≡
M∑

α=1

[
F (xα)

1 − ∑M
β=1 pβwβα

− xαpα − F (xα)

]
,

(5.36)

which we identify as the Hamiltonian H .
Suppose that the underlying deterministic system (5.17)

has a unique stable fixed x∗. The quasipotential of the
corresponding stationary density can then be obtained by
finding zero-energy solutions of Hamilton’s equations

ẋ = ∇pH(x,p), ṗ = −∇xH(x,p), (5.37)

with x = (x,y),p = (px,py). Substituting for H, Hamilton’s
equations have the explicit form

dxα

dt
= −xα +

∑
β

wαβF (xα)

1 − ∑M
γ=1 pγ wγα

, (5.38a)

dpα

dt
= pα − F ′(xα)

1 − ∑M
γ=1 pγ wγα

+ F ′(xα). (5.38b)

The quasipotential � can now be identified as the action
along a zero-energy solution curve x(t). That is,

d�

dt
≡

M∑
α=1

∂�

∂xα

dxα

dt
=

M∑
α=1

pα

dxα

dt
, (5.39)

and we can make the identification pα = ∂�/∂xα . Note that
one zero-energy solution is p = 0, for which λ0 corresponds
to the zero Perron eigenvalue of the matrix W; see Eq. (5.31).
It follows that R(0)(x,0,n) = ρ(x,n) and ξ (0)(x,0,n) = 1, since
they correspond to the right and left eigenvectors of the matrix
W, respectively. Moreover, Eq. (5.38a) reduces to the mean-
field Eq. (5.17) and � = 0.

In our previous paper [12], we derived the quasipotential
for a two-population model (M = 2) using WKB methods,
and showed that � satisfied a Hamilton-Jacobi equation,
which is recovered by setting λ0 = 0 and pα = ∂�/∂xα in
Eq. (5.31). We also assumed that the solutions of the corre-
sponding Hamilton’s equations generated optimal stochastic
paths (paths of maximum likelihood) in the phase space of
the two-population model. Although our conclusions based
on WKB appeared consistent with Monte Carlo simulations
of the full stochastic system (5.6), we did not have a
variational principle to prove that these paths were indeed
optimal paths. Moreover, our particular choice of Hamiltonian
was not uniquely determined using the WKB method. The
path-integral formulation of Sec. IV has allowed us to derive
a variational problem from first principles, and to establish
that the characteristic paths of the Hamiltonian constructed
in Ref. [12] are indeed optimal paths. In Figs. 4 and 5 we
show a few results from our previous analysis of a bistable
two-population model [12], in order to illustrate the important
role that optimal paths play in higher-dimensional escape
problems. Figure 4(a) shows optimal paths originating from
each of the stable fixed points. If a trajectory crosses the
separatrix away from the saddle, it is most likely to cross
the separatrix above the saddle when starting from the left
fixed point and below the saddle when starting from the right
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x1

x2

(a)

x1

x2

(b)

FIG. 4. (Color online) Two-population network with an excitatory population (α = 1) and an inhibitory population (α = 2). Parameters
are chosen so that the network is bistable: F0 = 1, γ = 3, κ = 2, w11 = 5, w12 = −1, w21 = 9, and w22 = −6. (a) Characteristic paths of
maximum likelihood emerging from a pair of stable fixed points separated by a saddle. Paths originating from the left (right) stable fixed point
are shown in orange (or light gray) and cyan (or dark gray), respectively, with the paths connecting to the saddle shown as thicker horizontal
curves. The gray vertical curve is the separatrix �. Level curves of constant � are shown as black dots. (b) Sample trajectories of the stochastic
network using the Gillespie algorithm with ε = 0.05 and N�t = 1. (The maximum likelihood paths are independent of ε.)

fixed point; see also Figs. 4(b) and Fig. 5(a). The distribution
of exit points along the separatrix is shown for optimal paths
originating from either metastable state (square symbols show
the histogram for exit from the left well and, likewise, “o”
symbols for the right well). Each density function is peaked
away from the saddle point, showing a phenomena known as
saddle-point avoidance [49,50].

As in the one-population model, we can use the multipopu-
lation path integral (4.12) to derive a Gaussian approximation
of the stochastic hybrid system, equivalent to the one obtained
using the more complicated QSS reduction. Again we will

ignore the factor R(0)(x,p(τ ),n)ξ (0)(x0,p(0),n0) in Eq. (4.12),
which projects on to stochastic trajectories that start in the
discrete state n0 and terminate in the discrete state n. Therefore,
we will consider the probability density [for fixed x(0) = x0]

P (x,t) =
∫ x(τ )=x

x(0)=x0

D[x]D[p]e−S[x,p]/ε, (5.40)

with the action defined by Eq. (4.13). Performing the rescaling
p → ip/ε then gives

P (x,t) =
∫ x(τ )=x

x(0)=x0

D[x]D[p] exp

⎛⎝−
∫ τ

0
i
∑

α

pα

⎡⎣ẋα + xα −
∑

β

wαβF (xβ)

1 − iε
∑

γ wγβpγ

⎤⎦ dt

⎞⎠ .

The Gaussian approximation involves Taylor expanding the Lagrangian to first order in ε, which yields a quadratic in p:

P (x,t) =
∫ x(τ )=x

x(0)=x0

D[x]D[p] exp

⎛⎝∫ τ

0

⎡⎣i
∑

α

pα

⎛⎝ẋα + xα −
∑

β

wαβF (xβ)

⎞⎠ − ε
∑
α,γ

pαQαγ (x)pγ

⎤⎦ dt

⎞⎠ ,

where Qαγ (x) = ∑
β wαβF (xβ)wγβ . Performing the Gaussian

integration along similar lines to the one-population model
yields the multivariate Onsager-Machlup path integral

P (x,t) =
∫

D[x]e−A[x]/ε,

with action functional

A[x] = 1

4

∫ τ

0

∑
α,β

{ẋα(t) − Vα[x(t)]}Q−1
αβ (x)

×{ẋβ(t) − Vβ[x(t)]}dt, (5.41)

where Vα(x) = −xα + ∑
β wαβF (xβ). The corresponding Ito

Langevin equation is

dXα(t) = Vα(X)dt +
√

2ε
∑

β

wαβ

√
F (xβ)dWβ(t), (5.42)

where the Wα(t) are independent Wiener processes.

VI. DISCUSSION

In conclusion, we have constructed a path-integral repre-
sentation of solutions to a stochastic hybrid system, and used
this to derive a large deviation principle. In particular, we
have shown that optimal paths of the stochastic dynamics are
given by solutions to a Hamiltonian dynamical system, whose
Hamiltonian can be identified with the Perron eigenvalue of an
appropriately defined linear operator. In this paper, we applied
the analysis to a stochastic hybrid neural network and showed
that, for this particular system, the action along an optimal path
is equal to the quasipotential derived using WKB methods. We
illustrated the theory by considering escape from a metastable
state in a bistable neural network.

Finally, it is important to emphasize that the variational
principle derived using path integrals is not simply an alterna-
tive to WKB methods, but subsumes the latter in a more general
theory. It is a common feature of many Markov processes under
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FIG. 5. (Color online) (a) Maximum-likelihood trajectories crossing the separatrix. (b) The probability density for the exit point (x2

coordinate) where the separatrix is crossed by an exiting trajectory. Results are obtained by 102 Monte Carlo simulation with the same
parameters as used in Fig. 4, with ε = 0.08. The square symbols show trajectories from the left well and “o” symbols show trajectories from
the right well.

weak noise conditions that the WKB approximation results in
a static Hamilton-Jacobi equation for the quasipotential. This
includes processes for which detailed balance does not hold.
In terms of the WKB analysis, one of the key differences
between a birth-death or continuous Markov processes and a
hybrid process is that the latter does not result in a uniquely
defined Hamiltonian. The path-integral derivation of the WKB
approximation resolves this ambiguity and yields a variational
formulation of the quasipotential. That is, the quasipotential
is defined as the minimum of all possible paths satisfying
the Hamiltonian dynamical system. Recently, numerical algo-
rithms have been developed for solving static Hamilton-Jacobi

equations that take advantage of the variational formulation
(e.g., an ordered upwind method [51] and the geometric
minimum action method [52]). The path-integral formulation
presented here allows these algorithms to be adapted for use
in analyzing hybrid stochastic processes.
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