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Abstract We use the theory of noise-induced phase synchronization to analyze the
effects of dispersal on the synchronization of a pair of predator–prey systems within a
fluctuating environment (Moran effect). Assuming that each isolated local population
acts as a limit cycle oscillator in the deterministic limit, we use phase reduction and
averaging methods to derive a Fokker–Planck equation describing the evolution of the
probability density for pairwise phase differences between the oscillators. In the case
of common environmental noise, the oscillators ultimately synchronize. However the
approach to synchrony depends on whether or not dispersal in the absence of noise
supports any stable asynchronous states. We also show how the combination of par-
tially correlated noise with dispersal can lead to a multistable steady-state probability
density.

Keywords Stochastic population dynamics · Moran effect · Noise-induced
synchronization · Predator-prey systems · Metapopulations

Mathematics Subject Classification 92D25 · 60H10

1 Introduction

An important problem in ecology is understanding the mechanisms for synchroniz-
ing spatially separated populations or patches that constitute a meta-population. It
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1670 P. C. Bressloff, Y. M. Lai

is a crucial factor in conservation because synchrony is strongly correlated with the
chances of global extinction (Hanski 1998). Conversely, synchrony can help to elimi-
nate an outbreak in pest or pathogen control. For example, work on measles has shown
that although vaccination reduces the size of an epidemic, it can also desynchronize
populations thus promoting persistence (Earn et al. 1998; Rohani et al. 1999). There
are two basic mechanisms for synchronizing patches within a metapopulation (Lieb-
hold et al. 2004): isolated patches can be driven by the same environmental fluctuations
(the so-called Moran effect Moran 1953; Hudson and Cattadori 1999) or patches can
interact with each other through dispersal in a constant environment (Pecora and Car-
roll 1998; Jansen and Lloyd 2000; Colombo et al. 2008; Vasseur and Fox 2009). The
dominant mechanism will depend on the spatial scale of the metapopulation and the
nature of the local patch dynamics. An oscillating patch is often modeled as a limit
cycle solution of a system of ordinary differential equations, where the timing along
each limit cycle is specified in terms of a single phase variable. The phase-reduction
method can then be used to analyze synchronization of an ensemble of oscillators
by approximating the high-dimensional limit cycle dynamics as a closed system of
equations for the corresponding phase variables (Kuramoto 1984; Ermentrout and
Kopell 1991). Within the context of ecology, Goldwyn and Hastings have recently
used the theory of weakly coupled phase oscillators to investigate various modes of
synchronous and asynchronous phase-locking in predator–prey systems weakly cou-
pled by dispersal (Goldwyn and Hastings 2008, 2009). They have also examined the
joint effects of dispersal and environmental fluctuations, by simulating ensembles of
predator–prey oscillators with diffusive or global coupling and spatially correlated
Poisson inputs (Goldwyn and Hastings 2011); each predator–prey patch is described
by the Rosenzweig and MacArthur (RM) model (Rosenzweig and MacArthur 1963;
Klausmeier 2010).

Recently, a complementary approach to analyzing the effects of external fluctu-
ations on the synchronization of predator–prey populations has been developed Lai
et al. (2011), based on the theory of noise-induced phase synchronization (Pikovsky
1984; Teramae and Tanaka 2004; Goldobin and Pikovsky 2005; Nakao et al. 2007;
Marella and Ermentrout 2008; Teramae et al. 2009; Ly and Ermentrout 2009). The
latter is an extension of phase-reduction methods to stochastic limit cycle oscillators
that provides an analytical framework for studying the synchronisation of an ensem-
ble of oscillators driven by a common randomly fluctuating input; in the case of the
Moran effect such an input would be due to environmental fluctuations. Interestingly,
noise-induced phase synchronization appears to occur in other areas of biology. For
example, evidence for such a mechanism has been found in experimental studies of
the olfactory bulb (Galan et al. 2006). It is also suggested by the related phenom-
enon of spike-time reliability, in which the reproducibility of a single neuron’s output
spike train across trials is greatly enhanced by a fluctuating input when compared to
a constant input (Mainen and Sejnowski 1995; Galan et al. 2008). In our previous
work (Lai et al. 2011), we assumed that the predator–prey oscillators were uncou-
pled (no dispersal). However, we took into account the effects of both correlated and
uncorrelated noise sources: environmental fluctuations treated as a common extrin-
sic noise source, and uncorrelated demographic noise arising from finite size effects.
(see Bressloff and Lai 2011 for a related study of noise-induced phase synchronisa-
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Dispersal and noise: various modes of synchrony in ecological oscillators 1671

tion in an ensemble of neural population oscillators). We incorporated demographic
noise using a stochastic urn model (McKane and Newman 2004). Approximating
the associated master equation using a Kramers–Moyal expansion Gardiner (2009),
we then derived a Langevin equation for an ensemble of predator–prey systems. We
showed that the multiplicative Gaussian noise terms could be decomposed into a set of
independent white noise processes that were uncorrelated across populations (demo-
graphic noise), and an additional white noise term that was common to all populations
(environmental noise). Assuming that each predator–prey system acted as a limit cycle
oscillator in the deterministic limit, we used phase reduction and averaging methods
to derive the steady state probability density for pairwise phase differences between
oscillators, which was then used to determine the degree of synchronization of the
metapopulation.

In this paper, we extend our previous work to the coupled RM model of Goldwyn
and Hastings (2011). We show how the theory of stochastic differential equations and
noise-induced phase synchronisation can be used to develop an analytical framework
for understanding the combined effects of dispersal and noise, at least in the case of
two patches. We begin by considering fully correlated environmental noise, that is, a
common noise source to both patches (Sect. 2). As previously shown by (Goldwyn
and Hastings 2008, 2011), there exist parameter regimes where dispersal alone sup-
ports both synchronous and asynchronous phase–locked states. Here we show how the
existence of an asynchronous state effects the approach to synchrony when common
external fluctuations are included. That is, when dispersal supports only synchronous
phase-locking, the time-dependent probability density function (PDF) is unimodal
with a width that first increases and then decreases as it moves towards the synchronous
state. Moreover, the rate of stochastic synchronization varies approximately linearly
with the initial phase difference between the two oscillators. On the other hand, if dis-
persal also supports asynchronous phase-locking, then for a range of initial conditions
the deterministic system converges to the asynchronous state; environmental noise is
then required to shift the system out of the basin of attraction of the asynchronous state.
This results in a bimodal PDF at intermediate times, before ultimately converging to
the synchronous state. Consequently, there is a sharp decrease in the rate of stochastic
synchronisation as the initial phase difference increases from zero. We interpret such
behaviour in terms of analytical solutions to a Fokker–Planck equation that determines
the PDF of the pair-wise phase difference of the oscillators. We then investigate the
effects of partially correlated environmental noise on the steady-state PDF, which in the
case of common environmental noise reduces to a Dirac delta function at zero phase
difference (Sect. 3). In the case where dispersal and common environmental noise
both cause synchronous phase-locking, partially correlated noise leads to a unimodal
steady-state PDF centered about the synchronous state, which implies that there is a
reduction in the degree of synchrony. On the other hand, when dispersal and common
environmental noise generate transient peaks at asynchronous states, before eventually
converging to the noise-induced synchronous state, the partially correlated noise can
cause these transient peaks to become persistent so that the steady-state PDF exhibits
multistability.
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1672 P. C. Bressloff, Y. M. Lai

2 Dispersal and the Moran effect

2.1 The Rosenzweig–Macarthur model

We consider a predator–prey system consisting of N identical patches labeled i =
1, . . . , N . In the absence of dispersal or external perturbations, the intrinsic deter-
ministic dynamics of each patch is described by a canonical ecological model known
to exhibit limit cycle oscillations, namely, the Rosenzweig–Macarthur (RM) model
(Rosenzweig and MacArthur 1963; Klausmeier 2010). For a single isolated patch, the
dynamics is given by the pair of equations

dhi

dt
= μhi

(
1 − hi

K

)
− cari hi

b + hi
(1a)

dri

dt
= ari hi

b + hi
− mri (1b)

where hi represents the population of prey (or herbivores) and ri the population of
predators. The RM model assumes logistic growth of prey with rateμ up to a carrying
capacity K , linear predator mortality of rate m, and a Holling type-II (or Michaelis–
Menten) functional response with parameters a, b. The loss of prey due to predation
also depends linearly on c with c > 1, which implies that the loss in prey population due
to predation is faster than the gain in predators. Equation (1) can be nondimensionalised
as in Goldwyn and Hastings (2008) to obtain, for the i-th population:

dhi

dτ
= 1

ε

(
hi (1 − αhi )− ri hi

1 + hi

)
≡ Fh(hi , ri ) (2a)

dri

dτ
= ri hi

1 + hi
− ηri ≡ Fr (hi , ri ) (2b)

Here τ = at, α = b/K , η = m/a, ε = a/μ and we have rescaled the populations
according to hi → hi/b, ri → (ac/μb)ri . The pair of equations (2) can be rewritten
in the vector form

dxi

dt
= F(xi ) (3)

where xi = (hi , ri )
T and F = (Fh, Fr )

T . It has previously been shown that α < 1 and
η < (1 − α)/(1 + α) is a parameter regime where stable limit cycles exist (Hastings
1997). Two examples of deterministic limit cycles are shown in Fig. 1.

Migration of the predator and prey species between patches is represented by the
per capita rates Dh and Dp and the symmetric connectivity matrix Ci j . The component
Ci j = 1 if there is mutual migration between the i-th and j-th patch, and Ci j = 0
otherwise. The Moran effect is modeled by assuming that all of the predator popula-
tions and all of the prey populations are driven by a common white noise term η(t).
That is, η(t) is described by zero mean Gaussian processes with two-point correlation

〈η(t)η(t ′)〉 = δ(t − t ′), (4)
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Fig. 1 Limit cycles in the h–r plane for an isolated RM patch. a ε = 0.1, α = 0.4, η = 0.4. b ε = 0.1, α =
0.3, η = 0.3

where δ(t) denotes the Dirac delta function. From now on we set Dh = Dp = D with
D a small parameter in order to simplify the analysis. Also, taking the strength of the
extrinsic noise to be scaled by a small parameter σ , we obtain the following system
of Langevin equations for the stochastic population variables Xi = (Hi , Ri )

T :

d Hi

dτ
= Fh(Xi )+ D

N∑
j=1

Ci j (Hj − Hi )+ σHiη(t) (5a)

d Ri

dτ
= Fr (Xi )+ D

N∑
j=1

Ci j (R j − Ri )+ σ Riη(t). (5b)

Note that we have followed standard treatments of environmental noise by assum-
ing that environmental fluctuations are proportional to population size (Turelli 1978;
Oksendal 2000). Moreover, the resulting multiplicative terms are usually interpreted
in the Ito sense.

2.2 Phase reduction and averaging

Suppose that in the absence of dispersal and external noise, each patch acts dynam-
ically as a limit cycle oscillator. Following previous studies of noise-induced phase
synchronization (Pikovsky 1984; Teramae and Tanaka 2004; Goldobin and Pikovsky
2005; Teramae et al. 2009; Ly and Ermentrout 2009; Lai et al. 2011), we introduce a
single scalar variable θi ∈ [0, 2π) that represents the phase of the i-th oscillator. That
is, each isolated limit cycle evolves according to the simple phase equation θ̇i = ω,
where ω is the natural frequency of the oscillator and the phase-plane representation
of the limit cycle is x∗

i (t) = x∗(θi (t)). The notion of phase is then extended into
some neighborhood M ∈ R

2 of the i-th limit cycle using an isochronal mapping
Π : M → [0, 2π) with θi = Π(xi ). Assuming that the limit cycle is sufficiently
attracting in the presence of weak dispersal and noise, the dynamics can be restricted to
the neighborhood M with high probability. This allows us to define a stochastic phase
variable for each oscillator according to Θi = Π(Xi ) with Xi evolving according
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1674 P. C. Bressloff, Y. M. Lai

to the Langevin equation (5). Moreover, the standard deterministic phase reduction
method used in (Goldwyn and Hastings 2008, 2009) can be extended to the Langevin
equation (5), provided that the multiplicative noise is first converted to Stratonovich
form (Gardiner 2009). Carrying out the phase reduction then leads to the following
stochastic differential equation (SDE) for the stochastic phase variables Θi (t) (Tera-
mae and Tanaka 2004; Nakao et al. 2007; Teramae et al. 2009):

dΘi =
⎛
⎝ω + DZ(Θi ) ·

N∑
j=1

Ci j

(
H(Θ j )− H(Θi )

R(Θ j )− R(Θi )

)
− σ 2

2
Z(Θi ) ·

(
H(Θi )

R(Θi )

)⎞
⎠ dt

+σ
[

Z(Θi ) ·
(

H(Θi )

R(Θi )

)]
dW (t), (6)

where dW = η(t)dt and

〈dW (t)〉 = 0, 〈dW (t)dW (t)〉 = dt. (7)

Here Z = (Zh, Z p) is the infinitesimal phase resetting curve (PRC) whose components
are defined according to

Zk(θ) ≡ ∂

∂xk
Π

∣∣∣∣
x=x∗(θ)

, k = h, r (8)

such that
∑

k Zk(θ)Fk(x∗(θ)) = ω. Note that all terms multiplying the PRC in Eq. (6)
are evaluated on the limit cycle so that, for example, H(Θ j ) = Hj (x∗(Θ j )). It can be
shown that the PRC is the unique 2π -periodic solution of the adjoint linear equation
(Ermentrout and Kopell 1991)

d Zk

dt
= −

∑
j=h,r

(x∗(t))Z j (t), (9)

where Fjk = ∂Fj/∂xk . The PRC can be evaluated numerically by solving the adjoint
equation backwards in time, since all non-zero Floquet exponents of solutions to the
adjoint equation have positive real part. The O(σ 2) correction to the natural frequency
is a consequence of the conversion from Ito to Stratonovich noise (Gardiner 2009).

In order to simplify the analysis of noise-induced synchronization, we now convert
Eq. (6) from a Stratonovich to an Ito system of Langevin equations:

dΘi = Ai (Θ)dt + dζi (Θi , t), (10)

where {ζi (Θi , t)} are correlated Wiener processes and Θ = (Θ1, . . . , ΘN ). That is,

dζi (Θi , t) = σα(Θi )dW (t), (11)
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with

α(s) = Z(s) ·
(

H(s)
P(s)

)
(12)

such that

〈dζi (Θi , t)〉 = 0, 〈dζi (Θi , t)dζ j (Θ j , t)〉 = Δi j (Θ)dt. (13)

Here Δi j (Θ) is the equal-time correlation matrix

Δi j (Θ) = σ 2α(Θi )α(Θ j ). (14)

The drift term Ai (Θ) is given by

Ai (Θ)=ω + σ 2

2
α(Θi )∂Θiα(Θi )− σ 2

2
α(Θi )+ DZ(Θi ) ·

N∑
j=1

Ci j R(Θi ,Θ j ), (15)

where we have set
(

H(Θ j )− H(Θi )

R(Θ j )− R(Θi )

)
:= R(Θi ,Θ j ). (16)

It follows that the ensemble is described by a multivariate Fokker–Planck equation of
the form

∂P(θ , t)

∂t
= −

N∑
i=1

∂

∂θi
[Ai (θ)P(θ , t)] + 1

2

N∑
i, j=1

∂2

∂θi∂θ j
[Δi j (θ)P(θ , t)]. (17)

As first shown by Yoshimura and Arai (2008), and further developed by Teramae et al.
(2009), considerable care must be taken in carrying out the phase reduction procedure
in the presence of Gaussian white noise in order to obtain the correct form of the drift
terms Ai (Θ). However, the correction terms derived in Teramae et al. (2009) are not
required provided that the limit cycles are sufficiently strongly attracting. Even if this
is not the case, neglecting such terms does not affect our subsequent analysis.

Having obtained the FP equation (17), we can now carry out the averaging procedure
of Nakao et al. (2007), see also Ly and Ermentrout (2009). The basic idea is to introduce
the slow phase variables ψ = (ψ1, . . . , ψN ) according to θi = ωt + ψi and set
Q(ψ, t) = P({ωt + θi }, t). For sufficiently small D and σ , Q is a slowly varying
function of time so that we can average the Fokker–Planck equation for Q over one
cycle of length T = 2π/ω. The averaged FP equation for Q is thus (Nakao et al. 2007)

∂Q(ψ, t)

∂t
= −

N∑
i=1

∂

∂ψi

[Ai (ψ)Q(ψ, t)
] + 1

2

N∑
i, j=1

∂2

∂ψi∂ψ j

[
Δi j (ψ)Q(ψ, t)

]
, (18)
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1676 P. C. Bressloff, Y. M. Lai

where

Ai = 1

T

∫ T

0
Ai (ωt + ψ1, . . . , ωt + ψN )dt − ω,

= D

T

∫ T

0
Z(ωt + ψi ) ·

N∑
j=1

Ci j R(ωt + ψi , ωt + ψ j )dt

+ σ 2

2T

∫ T

0
[α(ωt + ψi )∂ψiα(ωt + ψi )]dt − σ 2

2T

∫ T

0
α(ωt + ψi )dt

= D
N∑

j=1

Ci jH(ψ j − ψi )− σ 2

2
ᾱ (19)

since [α(ωt + ψi )
2]T

0 = 0, and

Δi j (ψ) = 1

T

∫ T

0
Δi j (ωt + ψ1, . . . , ωt + ψN )dt

= σ 2

T

∫ T

0
α(ωt + ψi )α(ωt + ψ j )dt

= σ 2Δ(ψ j − ψi ) (20)

with

H(ψ) = 1

T

∫ T

0
Z(ωt) · R(ωt, ωt + ψ)dt (21)

and

Δ(ψ) = 1

T

∫ T

0
α(ωt)α(ωt + ψ)dt. (22)

The averaged FP equation has a corresponding SDE that describes the evolution of
the stochastic phases Ψi (t):

dΨi =
⎛
⎝D

N∑
j=1

Ci jH(Ψ j − Ψi )− σ 2

2
ᾱ

⎞
⎠ dt + dζ i (Ψ , t) (23)

with

〈dζ i (Ψ , t)〉 = 0, 〈dζ i (Ψ , t)dζ j (Ψ , t)〉 = Δi j (Ψ )dt. (24)
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2.3 Results for a pair of oscillators

Let us now focus on a pair of oscillators (N = 2) with C12 = C21 = 1, and define
the phase difference Φ = Ψ2 − Ψ1. The averaged SDE (23) reduces to the pair of
equations

dΨ1 =
(

DH(Φ)− σ 2

2
ᾱ

)
dt + dζ 1(Φ, t) (25a)

dΨ2 =
(

DH(−Φ)− σ 2

2
ᾱ

)
dt + dζ 2(Φ, t), (25b)

with

〈dζ 1(Φ, t)dζ 1(Φ, t)〉 = 〈dζ 2(Φ, t)dζ 2(Φ, t)〉 = σ 2Δ(0)

〈dζ 1(Φ, t)dζ 2(Φ, t)〉 = 〈dζ 2(Φ, t)dζ 1(Φ, t)〉 = σ 2Δ(Φ) (26)

Taking the difference of the equations (25) and using the result that the difference
between two Gaussian random variables is also Gaussian leads to the scalar SDE

dΦ = DG(Φ)dt + σK (Φ)dW (t), (27)

where G(φ) = H(φ) − H(−φ) is the odd part of the phase interaction function H,
W (t) is a Wiener process and

K (Φ) = 1

σ

√
〈[dζ 2(Φ, t)− dζ 1(Φ, t)][dζ 2(Φ, t)− dζ 1(Φ, t)]〉

= √
2[Δ(0)−Δ(Φ)]. (28)

In the absence of extrinsic noise, the dynamics of the phase difference φ is given
by the deterministic differential equation (Ermentrout and Kopell 1991; Goldwyn and
Hastings 2008)

dφ

dt
= DG(φ), (29)

Conditions for synchrony are then determined entirely by the function G, which itself
depends on the PRC and the nature of the diffusive coupling. The steady or phase-
locked states are given by the zeros of G,G(φ) = 0, and are stable when G ′(φ) < 0
and unstable when G ′(φ) > 0. The rate of convergence to a given steady state is
determined by the magnitude of G ′(φ) at that point. In Fig. 2, we plot G(φ) for the
same two sets of parameters used in Fig. 1. In Fig. 2a the synchronous state φ = 0 is
the only stable steady state, whereas in Fig. 2b there are additional stable asynchronous
states at φ ≈ 1.78 (and by symmetry φ ≈ 2π − 1.78); the asynchronous states have
a much larger basin of attraction compared to the synchronous state. When noise
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Fig. 2 Numerically evaluated G-functions. a ε = 0.1, α = 0.4, η = 0.4. Only stable phase-locked state
is the synchronous state φ = 0. b ε = 0.1, α = 0.3, η = 0.3. There is now an additional pair of stable
asynchronous states. Inset close-up of behaviour near φ = 0

is included, the stochastic phase difference evolves according to the SDE (52) with
corresponding FP equation of the form

∂P(φ, t)

∂t
= −D

∂

∂φ
G(φ)P(φ, t)+ σ 2

2

∂2

∂φ2 K (φ)2 P(φ, t). (30)

The steady-state solution P0 satisfies the equation

G(φ)P0(φ) = σ 2

2D

d

dφ
K (φ)2 P0(φ), (31)

which implies that

K (φ)2 P0(φ) = A exp

(∫ φ

0

2DG(θ)

σ 2 K 2(θ)
dθ

)
, (32)

where A is a normalization factor such that
∫ 2π

0 P0(φ)dφ = 1. Figure 3 shows that
the K-function has zeros at φ = 0 = 2π , suggesting that the steady-state PDF P0(φ)

blows up at φ = 0, that is, P0(φ) = δ(φ). This implies that the common noise source
causes total synchronization in the limit t → ∞.

In order to look at transient behavior, we solve the FP equation (30) numerically
assuming the initial condition P(φ, 0) = δ(φ − φ0). The results are shown in Fig 4a
for the first parameter set of Figs. 1, 2 and 3, for which there are no asynchronous
phase-locked states. The initial delta function at φ = φ0 �= 0 first broadens as it moves
towards the steady state at φ = 0, and then narrows again as it tends towards a delta
function centered at φ = 0, indicating complete phase synchronization. In Fig. 4b
we plot the time evolution of one measure of the degree of synchrony Π0(t), namely,
Π0(t) = ∫Δφ

−Δφ P(φ, t)dφ. That is, Π0(t) is the probability that at time t the phase
difference φ is within Δφ radians of the synchronous state φ = 0. For concreteness
we take Δφ = 0.2, although the results do not depend on the precise choice for Δφ
provided Δφ � π . For the second parameter set of Figs. 1, 2 and 3, for which the
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The initial condition is a delta function δ(φ − φ0) with φ0 = 3 radians. a The PDF P(φ, t) is plotted as
a function of φ at several points in time t , normalised with respect to the time T ∗ taken to synchrony (the
peak at t/T ∗ = 1 is not shown here as it would distort the scale of the figure). Synchrony here is defined
as when Π0(t) = ∫ 0.2

−0.2 P(φ, t)dφ > 0.75, which yields T ∗ = 4090. b Plot of Π0(t) against time

synchronous state coexists with a pair of stable asynchronous states, the temporal
evolution of the PDF is very different. In particular, if the initial phase is within the
basin of attraction of the asynchronous state φ = φa ≈ 1.78 in the absence of noise,
then the corresponding PDF develops a bimodal structure at intermediate times before
moving towards φ = 0 and eventually converging to the expected delta function, see
Fig. 5a. The approach to synchrony is significantly slower as shown in Fig. 5b. In Fig.
6a we directly compare the two cases by determining how the time to synchrony T
varies with the initial phase φ0. In order to make the comparison, we normalize time
with respect to the total time to synchrony T ∗. In the absence of an asynchronous
state, T varies relatively slowly with φ0. On the other hand, T is a step-like function
of φ0 in the presence of the asynchronous state φa . The presence or absence of an
asynchronous state can also be discerned by plotting the probability density P(φa, t)
as a function of time, see Fig. 6b. It can be seen that the probability denisty is much
less in the monostable case, with the low peak simply reflecting the transient passage
to the synchronous state. In Fig. 6a we also show data points based on direct numerical
simulations of the SDE model for the phase difference (52). It can be seen that there
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Fig. 6 Comparison of (i) monostable and (ii) multistable cases. a Plots of time taken to synchrony T
(normalized with respect to T ∗ = T (φ0 = 3)) as a function of the initial condition φ0. Continuous curves
are based on solutions to the FP equation (30). Data points are based on numerical solutions of the SDE
(52). b Plot of the PDF P(φ, t) at the asynchronous state φa ≈ 1.78

is good agreement between the FP equation and the SDE in the multistable case. The
latter is less accurate in the monostable case but the basic trend is still captured. Note
that one source of error is that the criterion for synchrony in the FP equation and the
SDE are different. In the former case, we define the time to synchrony to be when
Π0(t) = ∫ 0.2

−0.2 p(φ, t)dφ > 0.75. On the other hand, in simulations of the SDE,
synchrony is defined by the condition |Φ| < 10−3.

3 Partially correlated noise

So far we have considered the effects of a common or fully correlated extrinsic
noise source (environmental noise) on the synchronization of a pair of predator–prey
oscillators. However, a basic assumption of the above model is that in the absence
of environmental noise, each predator–prey patch can be modeled by a determin-
istic system of ODEs in which the number of predators and prey are treated as
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continuous variables. Such an approximation is reasonable when the populations
within a patch are sufficiently large. In recent years there has been a growing
interest in developing stochastic individual-based descriptions of ecological sys-
tems in which explicit rules determining the interaction of individuals are speci-
fied (Roos et al. 1991; McCauley et al. 1993; Ghandi et al. 1998, 2000). Under
the assumption that the system is well mixed, one can derive deterministic ODE
models in the mean-field limit. One of the advantages of individual-based mod-
els is that it is also possible to study the effects of demographic noise for finite
populations (finite-size effects). One example of such a theory has been devel-
oped by McKane and Newman based on a stochastic urn model (McKane and
Newman 2004, 2005). In this type of model a single patch is divided into M
plots of equal area, with the plot size chosen so that each one contains one prey
(species A) or one predator (species B) or neither (an empty plot denoted by E).
One then imagines taking all the A, B and E from their particular sites and mix-
ing them together into a single patch in which spatial location is now ignored.
The time evolution of the model is then specified as follows: at each time step
randomly select either a single individual or a pair of individuals from the pop-
ulation and implement a set of rules associated with the given model. These
rules take the form of state transitions with model-dependent transition rates. For
example, A → E and AE → AA represent the death and birth of an individ-
ual of species A, respectively, whereas AB → E B represents a predator–prey
interaction.

Since a stochastic urn model realises a Markov process, it is possible to describe
a continuous time version of the model in terms of a master equation (McKane
and Newman 2004, 2005; Lai et al. 2011). The latter describes the evolution of the
probability P(m A,m B, t) that there are MA(t) = m A individuals of species A and
MB(t) = m B individuals of species B within a patch at time t , with the constraint
MA(t)+ MB(t)+ ME (t) = M . For large but finite M one can then carry out a system-
size expansion familiar from the study of chemical master equations (Van Kampen
1992), in order to approximate the stochastic dynamics in terms of an FP equation. The
latter describes the evolution of the PDF of an associated SDE for the stochastic vari-
ables X A(t) = MA(t)/M and X B(t) = MB(t)/M with X A, X B treated as continuous
variables. The main consequence of such an analysis is that finite size effects gen-
erate a source of demographic noise. Of particular significance is that demographic
noise is uncorrelated across different patches within a metacommunity. Previously,
we have used a stochastic urn model to analyse the combined effects of correlated
environmental noise (Moran effect) and uncorrelated demographic noise on the sto-
chastic synchronisation of a population of uncoupled predator–prey oscillators (Lai
et al. 2011). As one might expect, the inclusion of uncorrelated noise counteracts the
synchronising effects of common environmental noise with the degree of synchro-
nization an increasing function of M . That is, M determines the level of correlations
between patches.

In this paper we will consider another mechanism for generating partially correlated
noise, namely, a heterogeneous environment. In particular, we will use the model of
partial correlations considered by Evans et al. (2012). The Langevin equations (5) now
take the form
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d Hi

dτ
= Fh(Xi )+ D

N∑
j=1

Ci j (Hj − Hi )+ Hiζi (t)

d Ri

dτ
= Fr (Xi )+ D

N∑
j=1

Ci j (R j − Ri )+ Riζi (t), (33)

where ζi is a linear sum of independent white noise processes η j :

ζi =
∑

j

Γi jη j . (34)

Thus 〈ζi 〉 = 0 and

〈ζiζ j 〉 =
∑

k

ΓikΓ jk = [Γ TΓ ]i j ≡ Σi j , (35)

and Σ can be identified as the correlation matrix. Since the patches are taken to be
identical, we set Γi i = Γ j j for all i, j . We also assume that Γi j = Γ j i (pair-wise
symmetry) and that 〈ζiζi 〉 = ∑

j Γ
2

i j = 1. Let us now focus on two patches with
i = 1, 2 and

Γ 2
11 + Γ 2

12 = Γ 2
22 + Γ 2

21 = 1 (36)

Our various assumptions regarding Γ allow us to write

Γ11 = Γ22 =: γ (37)

Γ12 = Γ21 =
√

1 − γ 2 (38)

It follows that the correlation between patches ρ is

ρ2 ≡ 〈ζ1, ζ2〉 = 2γ
√

1 − γ 2 (39)

In other words, to implement a desired level of correlation ρ, the noise is decomposed
as

ζ1 = γ η1 +
√

1 − γ 2η2

ζ2 =
√

1 − γ 2η1 + γ η2

where

γ =
√

1 ± √
1 − ρ4

2
. (40)
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The existence of two solutions for Γ in terms of ρ reflects the fact that

(
γ

√
1 − γ 2√

1 − γ 2 γ

)
, and

(√
1 − γ 2 γ

γ
√

1 − γ 2

)

are equivalent, since the independent noise sources ηi are i.i.d. If ρ = 0 then γ = 0
or 1 as expected. In the case of fully correlated noise (ρ = 1), γ = 1√

2
, meaning that

ζ1 = ζ2 = 1√
2
(η1 + η2), that is, they are both given by the same Brownian motion.

Without loss of generality we select γ to be the larger root i.e. γ 2 = (1+√
1 − ρ4)/2

and 1/
√

2 < γ < 1.
Note that an analogous system of equations with partially correlated noise has been

studied at some length by Ly and Ermentrout (2009) within the context of a pair of
coupled neuronal oscillators. However, these authors were mainly concerned with
developing a computationally efficient method for calculating the steady-state PDF
based on the use of Fourier methods and asymptotic reduction techniques. They then
applied their phase reduction method to study the behavior of a realistic synaptically-
coupled system of Morris–Lecar oscillators. One of their main results was to show that
the combination of weak coupling and partially correlated noise can lead to bistability
(in the probabilistic sense) between a synchronous and an asynchronous state. An
analogous result will hold in the case of our population model.

We now proceed along identical lines to Sect. 2. That is, applying the phase reduction
method ultimately leads to the following Stratonovich SDE for the stochastic phases:

dΘi =
(
ω + DZ · R − σ 2γ 2

2
α − σ 2(1 − γ 2)

2
α

)
dt

+ σα
(
γ dWi +

(√
1 − γ 2

)
dW j

)
, (41)

where dWi (t) = ξi (t)dt and i = 1, 2, j = 2, 1. Here α and R are given by Eqs. (12)
and (16) respectively. It can be seen that changing the noise to be partially correlated
does not affect the drift terms. Hence we can write our ensemble in the Ito formulation
as

dΘi = Ai (Θ)+ dξi (Θ, t) (42)

where Ai is the same as before but our noise terms are

dξi = σ

[
α(Θi )γ dWi + α(Θ j )

√
1 − γ 2dW j

]
. (43)

Hence if we define a new correlation matrix

〈dξi dξ j 〉 = Δ∗
i j dt (44)
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we have

Δ∗
i i = σ 2α(Θi )

2 (45)

Δ∗
i j = 2σ 2γ

√
1 − γ 2α(Θi )α(Θ j ) = σ 2ρ2α(Θi )α(Θ j ), i �= j (46)

or, more compactly,

Δ∗
i j = σ 2(ρ2 + (1 − ρ2)δi, j )α(Θi )α(Θ j ) (47)

Averaging as in the case of fully correlated noise generates the same effective drift
term Ā, equation (19), while

Δ̄∗
i j = σ 2(ρ2Δ(ψ j − ψi )+ (1 − ρ2)Δ(0)) (48)

with the function Δ defined in equation (22).
As in Sect. 2, we introduce the phase difference Φ to obtain

dΨ1 = DH(Φ)dt + dζ 1(Φ, t) (49)

dΨ2 = DH(−Φ)dt + dζ 2(Φ, t), (50)

with

〈dζ 1(Φ, t)dζ 1(Φ, t)〉 = 〈dζ 2(Φ, t)dζ 2(Φ, t)〉 = σ 2Δ(0)

〈dζ 1(Φ, t)dζ 2(Φ, t)〉 = 〈dζ 2(Φ, t)dζ 1(Φ, t)〉 = σ 2ρ2Δ(Φ) (51)

Taking the difference of the equations and using the result that the difference of two
Gaussian random variables is also Gaussian leads to the scalar SDE

dΦ = DG(Φ)dt + σK ∗(Φ)dW (t), (52)

where G(φ) = H(φ) − H(−φ) is the odd part of the phase interaction function H ,
W (t) is a Wiener process and

K ∗(Φ) = 1

σ

√
〈[dζ 2(Φ, t)− dζ 1(Φ, t)][dζ 2(Φ, t)− dζ 1(Φ, t)]〉

=
√

2[Δ(0)− ρ2Δ(Φ)]. (53)

Therefore we can derive an FPE and solve for a stationary distribution P0 as in Sect. 2:

∂P(φ, t)

∂t
= −D

∂

∂φ
G(φ)P(φ, t)+ σ 2

2

∂2

∂φ2 K ∗(φ)2 P(φ, t). (54)

and

P0(φ) = A

Δ(0)− ρ2Δ(φ)
exp

(∫ φ

0

DG(s)ds

σ 2(Δ(0)− ρ2Δ(s))

)
(55)
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Fig. 7 Monostable case with partially correlated noise. All parameters except ρ are the same as Fig. 4.
a Steady-state PDFs for various values of ρ. b For ρ = 1/

√
2, the PDF is plotted at several points in

time, starting from the initial condition φ0 = 3 radians. c Plot of root-mean-square difference between
the numerical solution to the Fokker–Planck equation and the analytical steady-state solution, ΔP(t) =√∫ 2π

0 [p(φ, t)− P0(φ)]2dφ, as a function of time with ρ = 1/
√

2. d Plot of Π0(t) = ∫ 0.2
−0.2 p(φ, t)dφ

against time for various values of ρ

Note that ρ = 1 recovers the case of fully correlated noise, see Eq. (32), whereas
ρ = 0 (uncorrelated noise) means that our stationary distribution is only dependent
on the G-function, with peaks at zero as expected.

We now explore the effects of partially correlated noise on synchronisation by
numerically solving the FP equation (54). In the monostable case, see Fig. 7, where
both dispersal and common environmental noise cause the system to synchronize
irrespective of initial conditions, reducing the level of correlation simply broadens the
steady-state PDF to give a unimodal function centred at φ = 0 whose width increases
as the level of correlation ρ decreases. In the multistable case, introducing a small
amount of decorrelation (ρ = 0.99) leads to a PDF with multiple peaks at intermediate
times before converging to a unimodal steady-state centred about φ = 0, see Fig. 8a–
c. Reducing the level of correlated noise (ρ = 0.9) causes the transient peaks to
persist so that the steady-state PDF develops multiple peaks indicative of a stochastic
bifurcation, see Fig. 9a, b. Finally, for low levels of correlated noise the steady-state
PDF approaches a unform distribution around the synchronous state, see Fig. 9c, d. It
is also instructive to see how the steady-state probability of being in a neighborhood
of the synchronous state φ = 0 or the asynchronous state φ = φa = 1.78 varies
with ρ and σ . Thus let Πφ = ∫ φ+Δ

φ−Δ P0(φ
′)dφ′ with Δ = 0.2 be a measure of the

degree of stochastic phase-locking around the phase φ. In Fig. 10 we plot Π0 and
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Fig. 8 Multistable case with very high correlations (ρ = 0.99). All other parameters are the same as
Fig. 5. a–c Snapshots of the PDF P(φ, t) with P(φ, 0) = δ(φ − φ0) and φ0 = 3. a At relatively short
times the PDF develops two peaks at the deterministic asynchronous states φ ≈ 1.78 and 2π − 1.78. b
At intermediate times the PDF develops a third peak at φ = 0. c At longer times the PDF approaches
the steady-state solution which is given by a single peak centered about the synchronous state. d Plot of
root-mean-square ΔP(t) as a function of time with ρ = 1/

√
2

�a + �−a as a function of the noise level σ and correlation ρ. It can be seen that
when the noise source is highly correlated and sufficiently strong (σ > 10−4, ρ ≈ 1)
there is a high probability that the oscillators are approximately synchronized with
Π0 ≈ 1 and Πa ≈ 0. As the level of correlation ρ is decreased for fixed σ , the
degree of synchronization decreases but there is still a low probability of being in the
asynchronous states. On the other hand, for sufficiently weak noise (σ < 10−4), the
oscillators occupy one of the two asynchronous states with a probability Πa ≈ 0.5,
and this is insensitive to the level of correlated noise. Interestingly, there is a sharp
transition between synchrony and asynchrony as σ increases for fixed ρ.

4 Discussion

In this paper we used the theory of noise-induced phase synchronization to analyze the
effects of dispersal on the synchronization of a pair of predator–prey systems within
a fluctuating environment. We first showed that in the case of common environmen-
tal noise, the oscillators ultimately synchronize. However, the approach to synchrony
depends on whether or not there exist stable asynchronous states in the determinis-
tic limit. We found that in the absence of asynchronous states, the time–dependent
PDF was unimodal with a width that first increased and then decreased as it moved
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Fig. 9 a, b Same as Fig. 8 for a lower level of correlated noise (ρ = 0.9). The PDF is plotted at various
points in time to show the emergence of persistent peaks around the asynchronous states and convergence
to a multistable steady state. c, d Low levels of correlated noise (ρ = 1/

√
2, 0), the steady-state distribution

becomes more uniform around the synchronous state

towards the synchronous state. Moreover, the rate of stochastic synchronization varied
approximately linearly with the initial phase difference between the two oscillators.
On the other hand, if dispersal also supported asynchronous phase-locking, then the
corresponding PDF exhibited a broad bimodal structure at intermediate times before
ultimately converging to the synchronous state. This led to a sharp decrease in the rate
of stochastic synchronisation as the initial phase difference increased from zero. We
then investigated how these two distinct scenarios were affected by partially corre-
lated noise. In particular, we showed how reducing the level of correlation can cause
the transient peaks in the PDF associated with asynchronous states to become per-
sistent, resulting in a multimodal steady-state PDF that is indicative of a stochastic
bifurcation.

One obvious extension of our work would be to consider a metapopulation of N > 2
predator–prey oscillators with both disperal and noise. This is a considerably more
involved problem from an analytical perspective. Following previous studies of the
Kuramoto model (Kuramoto 1984; Strogatz 2000), one could proceed by identifying
appropriate macroscopic variables (for large N ) that characterize the degree of syn-
chrony of the system. A common choice is the complex amplitude defined according to

Reiψ = 1

N

N∑
i=1

eiθi .
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The amplitude R ∈ [0, 1] with R = 1 denoting complete synchrony and R = 0
denoting complete asynchrony. In the case of common noise and dispersal, we expect
the population to converge to a synchronous state just as for a pair of oscillators.
One could then investigate numerically how the approach to synchrony (R(t) → 1
as t → ∞) depends on the initial distribution of phases and the various phase-locked
states in the deterministic limit. For large N there could be a large number of such
states associated with various forms of clustering. Including the effects of intrinsic
noise would counter the synchronizing effects of dispersal and common noise, but
characterizing the associated steady-state PDF for N phases would be non-trivial.

Another extension of our work would be to carry out a comparison between different
sources of partially correlated noise, namely, heterogeneous environmental noise and
intrinsic demographic noise (due to finite-size effects). The latter is uncorrelated across
different patches within a metacommunity so that under a Langevin approximation it
leads to an additional multiplicative noise term which, when combined with a common
environmental noise source, results in partially correlated noise (Lai et al. 2011). The
degree of correlation increases with the size of the populations. One major difference
is that fluctuations due to intrinsic noise typically depend nonlinearly on the size of
the populations rather than the linear dependence assumed for environmental noise.
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Our results could provide an analytical framework for interpreting various
ecological experiments to determine the dominant factors behind the behaviour of
ecosystems - for example, controlled experiments could be done in phytoplankton-
zooplankton systems, with different levels of environmental fluctuations and ease
of dispersal between populations, that could be compared with our results to find
out which parameter regime the system is in. In the field, population data could be
processed in a similar manner - for instance, constant time-lags between the peaks
of populations of adjacent patches would be indicative of a constant phase differ-
ence, showing that the asynchronous dispersal-induced state was present; alterna-
tively, switching between this constant delay and synchronization would demonstrate
multistability.
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